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Recent advances in Quantum Machine Learning (QML) have provided benefits to several
computational processes, drastically reducing the time complexity. Another approach of combining
quantum information theory with machine learning—without involving quantum computers—is
known as Quantum-inspired Machine Learning (QiML), which exploits the expressive power of

the quantum language to increase the accuracy of the process (rather than reducing the time
complexity). In this work, we propose a large-scale experiment based on the application of a binary
classifier inspired by quantum information theory to the biomedical imaging context in clonogenic
assay evaluation to identify the most discriminative feature, allowing us to enhance cell colony
segmentation. This innovative approach offers a two-fold result: (1) among the extracted and
analyzed image features, homogeneity is shown to be a relevant feature in detecting challenging cell
colonies; and (2) the proposed quantume-inspired classifier is a novel and outstanding methodology,
compared to conventional machine learning classifiers, for the evaluation of clonogenic assays.

The synergies between machine learning and quantum theory has received a massive increase in the last
decades'™. One reason is due to the need for dealing with the current exponential growth of data being captured
and stored®. Standard procedures frequently exhibit relevant slowdown in performances once these procedures
are used in the treatment of big data. The advantages of quantum computation over conventional computation
are widely discussed including the drastic reduction in the time complexity of a large set of algorithms. Moreover,
recent progress made in the direction of producing real quantum computers suggested the combination between
machine learning and quantum computing as a natural connection. However, the discussion involving real
quantum computers is not the only way to exploit the properties of quantum theory at the service of machine
learning; recent works showed that quantum information can inspire new ways to design machine learning
algorithms without requiring the use of quantum computers®’. In other words, it is possible to develop classical
algorithms that are inspired by quantum information. This formalism, known as Quantum-inspired Machine
Learning (QiML)?, is motivated by the fact that the expressive power of the quantum language makes it possible
to gain relevant benefits for computational processes. QiML effectively exploits properties of quantum informa-
tion theory to increase the accuracy of the process, rather than reducing the time complexity, such as in the case
of standard Quantum Machine Learning.

Recently, promising results from QiML have shown to efficiently solve different kinds of classification prob-
lems, i.e., the problem of assigning each object of a given dataset to a membership class’. In particular, the work®
proposed a QiIML technique for binary classification inspired by the theory of quantum state discrimination'?,
whereby the idea was in that discrimination between quantum states produces a very efficient classification
process. The authors compared the QiML algorithm—called the Helstrom Quantum Classifier (HQC)—with
other commonly used classifiers, by applying these classifiers to several conventional machine learning repository
datasets, and they had obtained results which showed an average supremacy of the HQC compared to the other
classifiers. This innovative approach suggested applications of the HQC on real-world datasets. A first attempt
of the application of QiIML technique to biological datasets have also previously been introduced'!.

In this work, we show how the application of quantum information theory to machine learning turns out to
be particularly beneficial in the context of biomedical images. In particular, we show a large-scale application
of the HQC to support the evaluation in clonogenic assays. A clonogenic assay is a quantification technique
of the survival degree of in vitro cell cultures, which is based on the ability of a single cell to grow and form a
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colony. To quantify the number and size of cell colonies after irradiation or drug administration (e.g., cytotoxic
agents)'>!%, a measure to assess the anti-proliferative use of these treatments is required. After some prepara-
tory phases (i.e., plating, incubation, cell treatment'*) the standard procedure includes colony counting with a
stereo-microscope’>'¢. Traditionally, clonogenic assay evaluation is performed by manually counting the colonies
composed of at least 50 densely-packed cells. To estimate the effect of the treatment on cell survival, the Plating
Efficiency (PE), which is the fraction of colonies obtained from untreated cells, and the Surviving Fraction (SF)
of cells after any treatment, are measured'*. From a biological point of view, this quantification—which aims at
identifying and quantifying the colonies grown following a specific treatment (e.g., radiation or drug/substance
administration)—still represents an open problem. In fact, there are critical issues that are not completely solved
yet, such as: (1) the high variability in the scenario related to the specific cell line used, and (2) the subjectivity
in human quantification procedures. Depending on the cell line analyzed, the generated colonies can have very
different characteristics, such as size, shape and heterogeneity (i.e., some colonies are small with well-defined
boundaries and high-contrast compared to the background, whereas others are large and evanescent). A further
difficulty of the evaluation process involves colonies which grow considerably and tend to merge together. Along
with these high variabilities, human subjectivity can also affect the manual procedure. These issues introduce
compelling challenges in manual procedures used in colony detection and quantification. Biologists typically
attempt to reduce this lack of reliability, by considering the average of several manual counts.

Considering these challenging scenarios, recent research efforts'’~'* have proposed an alternative solution to
common counting procedures. In particular, rather than quantifying the number of colonies, the area covered by
cell colonies is determined. Experimental evidence showed that the area covered by a colony is correlated to the
colony number and size. In fact, area-based approaches—which determines the area of the well plates covered
by the colonies—represent a useful alternative, allowing us to provide a measure equivalent to the exact count
of colonies. To quantify the number of colonies grown after a treatment, a post-processing step, which evaluates
the number of colonies contained in the segmented regions, would be integrated into the processing pipeline in
area-based approaches. This surrogate measure allows us to overcome some of the problems highlighted above,
such as the difficulty of correctly quantifying the colonies which, due to the growth, have merged together.

In this work, an area-based approach is proposed, which is based on imaging characteristics that are not
observable by the naked human eye. In particular, we start from the intrinsic assumption that biomedical images
often convey information—contained in so-called descriptors (i.e., contrast, correlation, energy and homogene-
ity)—about the phenotype of the underlying physiopathology, which is not always easily identifiable by a simple
visual inspection by the human eye. These descriptors can be revealed by quantitative analysis, by converting the
images into a high-dimensional dataset, and making it possible to extract further information. In our biological
setting, along with the native imaging characteristics—i.e., Red Green Blue (RGB) and International Commis-
sion on Illumination (CIE) L*u*v* pixel values—these descriptors are used in the classification of colonies vs.
background area, where these high-dimensional set of descriptor features makes it possible to enhance the
detection of difficult cell lines.

Summarizing, the area-based approach strictly depends on the colonies vs. background binary classifica-
tion, where the descriptors assume the role of the features. Several algorithms and techniques have already
been explored in the classification of colonies vs. background area and, specifically, in the context of clonogenic
assays'”?9"%. We here introduce a multidisciplinary effort which involves image processing, machine learning,
quantum information theory, and cell biology (see Fig. 2a). In particular, we apply the HQC to the binary clas-
sification of colonies vs. background area over four different cell lines. Each cell line is given by a dataset where
each row in the dataset is a vector that the HQC has to classify as belonging to a colony area or to a background
area by using the information provided by the corresponding features. Our experimental study is divided into
two stages: (1) we analyze the relevance of different features (descriptors) during the classification process to
identify the one that optimizes the accuracy in the colonies vs. background discrimination, and (2) we provide
a full comparison between HQC and other conventional classifiers aiming to show that the HQC deserves to be
considered as a performant classifier in the real context of clonogenic assay evaluations.

Materials and methods

This section first describes the datasets analyzed in our experiments (i.e., the well plates with cell colonies) along
with how the features—which are the inputs of the HQC—were extracted and prepared from the Grey Level
Co-occurrence Matrix (GLCM) of the well plate images®®?’. The section then outlines the setup of the HQC.

Dataset description. The imaging data used for clonogenic assay evaluation were images of 6-well plates
(produced by Corning Inc., Corning, NY, USA) regarding four different cell lines: (1) MDA-MD-231 is a human
metastatic breast cancer cell line which represents an in vitro model of a subgroup of breast cancer, particularly
radioresistant and refractory to conventional therapies; (2) U87-MG is a human glioblastoma multiforme cell
line; (3) MCEF?7 is a breast epithelial cell line which is often used in the field of cell biology; and (4) U251 is a
human glioblastoma cell line used in brain cancer research and drug development. Figure 1 shows an example
of each cell line analyzed in this study.

The images of the well plates were acquired using a common desktop flat-bed scanner, with a resolution of
800 dpi and a 24-bit color-depth. For each well plate image, only a squared area (about 300 x 300 pixels) com-
posed of about 10° pixels was considered to reduce the computational time. Thirty well plates for each cell line
were considered, treated with different doses of particles (i.e., protons, photons) and/or cytotoxic agents (e.g.,
curcumin, SLNB).

Such cell lines considered in this work have different characteristics, with colonies having different size, shape,
contrast, and uniformity. In these trials, we considered the most challenging scenarios where MDA-MD-231 and

Scientific Reports |

(2021) 11:2830 | https://doi.org/10.1038/s41598-021-82085-8 nature portfolio



www.nature.com/scientificreports/

c

Figure 1. Examples of the wells analyzed in this study. Colony images are displayed for each cell line: (a)
MDA-MD-231. (b) U87-MG. (c) U251. (d) MCF7. Images are depicted by a reduced 0.25 factor to the original
acquisition size.
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Figure 2. Conceptualization. The general scheme of the process: (a) conceptual scheme of the proposed
multidisciplinary approach involving image processing, machine learning, quantum information theory and cell
biology. (b) The pre-processing steps.

U87-MG are cell lines particularly difficult to quantify in clonogenic assays because it produces non-compact
colonies, and can sometimes be evanescent because they tend to take up very few crystal-violet, a dye commonly
added to the culture plate by biologists to increase the contrast of the colonies.

Dataset preparation. The initial part of the experiment was devoted to the preparation of the datasets.
In this experiment, we applied the HQC to the four considered cell lines. For each cell line, we considered 30
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images, which were obtained from 30 different well plates. In order to quantify the effectiveness of the classi-
fier and to determine the most discriminative feature, before applying the HQC, each image was segmented to
define the ground-truth, which is then used to compare the classification result achieved by the HQC and the
competing classifiers. These masks—validated by biologists—were the result of colonies-background segmenta-
tion by means of spatial Fuzzy C-Means (sSFCM) clustering using the pixelwise entropy feature maps of the well
plate. The value 1 (or 0) associated with each pixel within this mask represented the class membership (or not)
of the pixel to a colony. Finally, the mask obtained by sFCM clustering underwent a post-processing step which
removes small connected-components, to consider only the colonies comprising of at least 50 densely-packed
cells'. The choice of entropy to determine the ground-truth was motivated by a previous work'?, which showed
a high correlation between area-based quantification by entropy and manual quantification.

A particular aim of the experiment is to compare different inputs to find out whether, in general, any feature
outperforms the others in the classification process. In particular, the six investigated features in our experiment
were: the RGB and L*u*v* (where L* represents the lightness, while #* and v* denote the chromaticity) color space
encodings, as well as the contrast, correlation, energy and homogeneity descriptors. For this reason, the dataset
was split into 6 different datasets (one for each feature) and properly formatted to obtain a file suitable for the
HQC. In particular, the obtained segmentation mask (our ground truth) was ‘serialized’ forming a set where
each row, which represents the characteristics of each pixel, is structured as follows: (1) the first two columns
represent the two-dimensional coordinates of the pixel, (2) the last column denotes the class label of the pixel (1
if belongs to a colony, and 0 if the pixel belongs to a background), and (3) the middle columns store the values
of the features for each pixel. Prior to classification, all the values of the features were normalized in the range
[1, 255]. Hence, we performed the experiment over 4 cell lines, each one included 30 different well images that
yielded 6 distinct datasets; therefore, the total number of datasets is 720.

Extracted features. For each input image, along with the original encoding in the RGB and L*u*v* color
spaces, the following feature maps were also extracted from the GLCM, namely: contrast, correlation, energy,
and homogeneity.

More specifically: (1) contrast represents a measure of the intensity contrast between a pixel and its neighbor
over the whole image, (2) correlation denotes a measure of how correlated a pixel is to its neighbor over the whole
image, (3) energy (i.e., angular second moment) yields the sum of squared elements in the GLCM, and (4) homo-
geneity quantifies the closeness of the distribution of elements in the GLCM to the GLCM diagonal. The feature
maps were computed using the MatLab (The Mathworks, Natick, MA, USA) built-in function graycoprops,
which relies upon the graycomatrix function.

These GLCM-based local texture descriptors are comprised among the so-called Haralick’s features
particular, the input images were quantitized (i.e., histogram rebinning) by using L gray-levels and processed
by a sliding squared window of size @ x  pixels®®. The parameters for the feature extraction were: sliding win-
dow size w x @ = 5 pixels, number of gray-level bins L = 256. For a detailed description of the mathematical
formulation, please refer to Supplementary Material S1.

We compared the various features extracted individually, with the goal of understanding the most discrimi-
native one. In summary, the HQC was tested on the following set of features: (1) RGB color space triplet, (2)
L*u*v* color space triplet, (3) contrast, (4) correlation, (5) energy, and (6) homogeneity. The use of such a proce-
dure, which separately analyzed the 6 image features, rather than a wrapper method for feature selection® was
mostly motivated by computational limitations®. In wrapper methods, the feature selection criterion is based
on the performance of a subset of the predictors, by searching for the highest classification performance. Indeed,
wrapper methods rely on the classification evaluation for obtaining the optimal feature subset: this search in the
feature space is a non-deterministic polynomial-time hard (NP-hard) problem. Exhaustive search methods are
computationally intensive and infeasible for large-scale datasets, thus search methods and metaheuristics are
typically used to find sub-optimal solutions in the search space’!. Importantly, overuse of the accuracy estimates
in feature subset selection may cause overfitting in the feature subset space due to multiple comparisons and hin-
ders generalization capabilities®’. Therefore, in our experiments, we aimed at identifying the most discriminative
feature in colony vs. background classification by fairly evaluating several different binary classifiers.

26,27 In

Setup of the HQC. Following standard procedures, pre-processing was applied to the 720 datasets before
training the HQC on these datasets. In particular, the pre-processing phase consisted of three steps: (1) random
sampling, (2) standardization, and (3) splitting the sampled dataset into development and test sets (80% and
20%, respectively).

The random sampling simply consisted of the random extraction of a subset over each of the initial 720
datasets. Each of the initial dataset has cardinality 3012 (the number of the pixels) while the sampled dataset has
cardinality 181, hence we considered a random sampling pre-processing step that randomly extracted a differ-
ent 0.2% sample from each of the 720 datasets. In particular, there were 30 datasets for each cell line and each
feature, and a different 0.2% random sample was extracted from each of the 30 datasets, to train the HQC. In
the standardization step, the six features of the sampled dataset (RGB, L*u*v*, contrast, correlation, energy and
homogeneity) were standardized to have mean equal to 0 and standard deviation equal to 1 by using the individual
feature’s mean and standard deviation values (i.e., z-score standardization).

The HQC was trained on the training set and hypertuning is performed simultaneously using the classifier’s
four hyperparameters: (1) the rescaling factor, (2) the encoding method, (3) the number of copies taken for the
density matrices, and (4) the class weights assigned to the quantum centroids in the HQC.

The first hyperparameter, the rescaling factor, involves the multiplication of the values of each feature with
a scalar factor. As already shown®, even though this procedure is generally not beneficial for conventional
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classification approaches, a suitable choice for the rescaling factor can produce relevant advantages for the
HQC in terms of the improvement to the classifier’s performance. We considered rescaling factors in the set
{0.5,1, 1.5, 2}. The second hyperparameter was the encoding method that was adopted. In order to apply the
HQC, we need to encode each row data X (a real vector whose elements are the the respective features) into a
density matrix (also called density pattern), px, which is the standard mathematical object representing a quan-
tum state. In our experiment we considered two different encoding methods: the stereographic encoding (SE) and
the amplitude encoding (AE). Intuitively, the SE is inspired by geometrical considerations and associates each
real vector X to a point of a hypersphere with unitary radius, which has a natural interpretation in the standard
quantum scenario. On the other hand, the AE is based on the idea of keeping the information about the ampli-
tude of the vector by considering this as a particular feature®. Both the SE and AE were previously detailed®.
The third hyperparameter was given by taking a certain number of copies for each row vector X of the encoded
training set (which has now been encoded into density matrices). Formally, taking a certain number of copies is
provided by tensor products of the density patterns px with itself (i.e., px ® px ® ... ® px), obtaining a new set
of density patterns. The idea for this procedure originates from quantum information theory where—unlike in the
classical case—taking copies of a given state p provides additional information with respect to the initial state. In
particular, considering more copies of the states can increase the probability of providing a correct discrimination
between two quantum states®. Let us remark how this is relevant because it suggests that the performance of the
HQC could be, in principle, improved by increasing the number of the copies for each density pattern obtained
from the initial dataset. In the experiment, we considered a number of copies equal to {1, 2, 3, 4} for the image
features RGB and L*u*v*; and {1, 2, 3,4, 5} for the image features contrast, correlation, energy and homogeneity.
The last hyperparameter was represented by two types of class weights assigned to the two quantum centroids in
the HQC. The first type, called equiprobable, assigns equal weights of 1/2 to both of the two quantum centroids;
the second type, called weighted, assigns to each centroid a weight which is proportional to the cardinality of the
respective classes®. The pre-processing and hypertuning steps are outlined in Fig. 2b. The performance metrics
considered in the experiment were the balanced accuracy and Area Under the Receiver Operating Characteristic
(AUROC) scores. The balanced accuracy score was chosen to ensure the evaluation of the classification task of
a pixel as either a colony or a background are both equally relevant. The AUROC score was chosen to enable
the evaluation of the overall performance of a classifier. To obtain the combination of hyperparameters which
maximizes any of the two performance metrics, we first partitioned the development set into 5 subsets of the
same cardinality. According to the most common experimental procedures, during the development phase,
we performed a 5-fold cross-validation. The model performance for each combination of hyperparameters is
obtained by averaging the validation set’s performance over the 5 rounds.

The same procedure was performed to determine the best combination of hyperparameters for the other 18
(generally, high performing and well-established) conventional machine learning classifiers. The 18 classifiers
considered were: AdaBoost, Bernoulli Naive Bayes, Dummy Classifier, Extra Trees, Gaussian Naive Bayes, Gra-
dient Boosting, Linear Discriminant Analysis, Logistic Regression, Multi Layer Perceptron, Nearest Centroid,
Nearest Neighbors, Passive Aggressive Classifier, Perceptron, Quadratic Discriminant Analysis, Random Forest,
SVM (with linear kernel), SVM (with polynomial kernel), and SVM (with RBF kernel). For the performance
metric AUROC score, three classifiers—Nearest Centroid, Passive Aggressive Classifier and Perceptron—were
excluded from this performance metric analysis due to the unavailability of the predicted class probabilities
required in the AUROC score calculation.

The HQC was also compared with these 18 other classifiers (for the balance accuracy score) or 15 other clas-
sifiers (for the AUROC score) by determining the best image feature (among RGB, L*u*v*, contrast, correlation,
energy, or homogeneity) and the best classifier—i.e., the HQC or the other 18 (or 15) classifiers—which yielded
the highest performance on the test set, individually for each of the two performance metrics, balance accuracy
and AUROC scores respectively.

Experimental results

Experimental tests were carried out exhaustively, in order to quantify the effectiveness of the classifier and to
establish the most discriminative feature (in terms of colonies vs. background). As a reference for comparing
the HQC classification results against the other standard classifiers, we used the ground-truth masks previ-
ously calculated and validated by experimental biologists. These masks were the result of colonies-background
segmentation by means of sSFCM clustering using entropy as a discriminant'®. The mask obtained by the sSFCM
clustering, prior to be used as ground-truth, underwent a post-processing step (i.e., morphological operations
and small connected-component removal), aiming to cope with the noise in the well background and to consider
only the colonies composed of, at least, 50 densely-packed cells'.

We first present the experimental results for the best performing image feature for each of the four cell lines,
which can be found under section Supplementary Material S2. The results for each cell line consists of two
parts. The first part shows: (1) heatmaps of the balanced accuracy scores over the 30 datasets for the HQC and
the other 18 classifiers, obtained by hypertuning the hyperparameters of each classifier in order to optimize the
balanced accuracy score; (2) heatmaps of a classifier outperforming (“wins”) over another classifier (“losses”)
out of the 30 datasets; and (3) a table showing the averaged scores over the 30 datasets for each of the 6 image
features and 18 classifiers. The second part for each cell line is analogous to the first, where the role of the bal-
anced accuracy score is replaced by the AUROC score. The whole performance evaluation was executed using
the test set. The aim of this experimental procedure was to find the most informative feature that classifies a
pixel as either a colony or a background, i.e., the feature that maximizes the value of the balanced accuracy and
the AUROC scores, respectively.
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Cell line Best image feature | Best classifier Balanced accuracy | Jaccard index | Dice coefficient
MDA-MD-231 | Homogeneity Helstrom Quantum Classifier | 0.959 + 0.036 0.918 +0.080 | 0.955 + 0.046
U87-MG Homogeneity Helstrom Quantum Classifier | 0.919 + 0.050 0.790 +0.121 | 0.877 +0.078
L*u*v* Gaussian Naive Bayes 0.969 + 0.034 0.892 £0.088 | 0.941 +0.050
MCF7 L*u*v* Helstrom Quantum Classifier | 0.965 + 0.033 0.882 +0.084 | 0.935 +0.048
Luw*v* Multi Layer Perceptron 0.965 + 0.042 0.898 £0.100 | 0.943 +0.059
Homogeneity SVM - RBF 0.980 +0.033 0.948 £0.079 | 0.971 +£0.047
Ut Homogeneity Helstrom Quantum Classifier | 0.979 + 0.029 0.944 +0.078 | 0.970 + 0.045

Table 1. The mean and standard deviation balance accuracy score (with respect to 30 datasets) for the best
performing image feature and classifiers (up to and including HQC and classifiers where the score was tied
with HQC), with corresponding mean and standard deviation Jaccard index and Dice coefficient, for cell lines
MDA-MD-231, U87-MG, MCF7 and U251. The rows in boldface denote the results achieved by the HQC.

Cell line Best image feature | Best classifier AUROC Jaccard index | Dice coefficient
Homogeneity Quadratic discriminant analysis | 0.957 +0.039 | 0.914 +0.083 | 0.953 + 0.048
Homogeneity Nearest neighbors 0.956 £0.039 | 0.914+0.083 | 0.953 +0.049
MDA-MD-231 Homogeneity Linear discriminant analysis 0.955+0.049 |0.912+£0.102 | 0.951 +0.060
Homogeneity Gaussian Naive Bayes 0.954 £0.045 | 0.906 +0.095 | 0.948 +0.056
Homogeneity Helstrom quantum classifier 0.954 +0.050 | 0.910 +0.093 | 0.950 + 0.055
U87-MG Homogeneity Helstrom quantum classifier 0.917 £ 0.048 | 0.794 £ 0.099 | 0.882 + 0.062
Lu*v* Gaussian Naive Bayes 0.969 £0.034 | 0.892+0.088 | 0.941 +0.050
Lu*v* Bernoulli Naive Bayes 0.964 +£0.030 |0.844 +0.128 | 0.910 +0.083
MCE L*u*v* Quadratic discriminant analysis | 0.961 +0.036 | 0.892 +0.088 | 0.940 + 0.051
7
Luw*v* Linear discriminant analysis 0.961 £0.047 |0.899+0.114 |0.943 +£0.071
L*u*v* Helstrom quantum classifier 0.960 + 0.041 | 0.869 +0.139 | 0.923 + 0.097
L*u*v* SVM-linear 0.960 +0.052 | 0.894+0.135 | 0.938 £ 0.086
Homogeneity Helstrom quantum classifier 0.978 +0.027 | 0.944 +0.068 | 0.970 + 0.037
U251 Homogeneity Nearest neighbors 0.978 £0.028 | 0.944 +0.069 | 0.970 +0.038
Homogeneity SVM-linear 0.978 £0.035 | 0.945+0.081 | 0.970 +0.048

Table 2. The mean and standard deviation AUROC score (with respect to 30 datasets) for the best performing
image feature and classifiers (up to and including HQC and classifiers whose score are tied with HQC), with
corresponding mean and standard deviation Jaccard index and Dice coefficient, for cell lines MDA-MD-231,
U87-MG, MCF7 and U251. The rows in boldface denote the results achieved by the HQC.

The experimental results shown in Supplementary Material S2 are summarized in Tables 1 and 2. These tables
were obtained by extracting the best performing image feature and, for this image feature, the best classifier up
to and including the HQC were presented. The corresponding Jaccard index and Dice coefficient values are also
shown for each table.

A premise is needed. We observe the colony vs. background classification task on the datasets considered in
this paper generally produces a high performance score. An explanation for this is because most of the pixels
belonging to a given colony or background class are concentrated together in a large part in each of the images
(see Fig. 1). Hence, the performance of most of the classifiers are generally good. For this reason, the perfor-
mance for a number of classifiers will generally be quite high and the differences in the performances observed
among these classifiers are very subtle. The ease of the classification task on these datasets further gives rise to
the sufficient need for extracting only 0.2% samples from each of the 720 datasets used in the training pipeline
of the classifiers.

The results in Tables 1, 2 and 3 (which we will discuss in more detail below) clearly show that, on average, the
best performing image feature and classifier combination is given by homogeneity and the HQC.

For cell line MDA-MD-231, Tables S2.1.1 and S2.1.2 (see Supplementary Material S2.1) show the best image
feature for both the balanced accuracy and AUROC scores is homogeneity. For this image feature, we can observe
that the HQC was the best performing classifier for the balanced accuracy score and it was also one of the best
performing classifier for the AUROC score (see Tables 1, 2). In previous work®, we discussed the potential of
the HQC achieving a higher performance is dependent upon the number of copies taken for the density pat-
terns. In other words, increasing the number of copies increases, on average, the performance of the classifier.
Consequently, the computation complexity during training increases (whereby the computational complexity is
O(n™), where n and m are the number of features and number of copies, respectively). In principle, a multiple-
core computational platform or server would allow the HQC to achieve a higher performance which leads to
potential future experiments to be explored assessing the real limits of the HQC with more powerful computing
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Hyperpar. used Hyperpar. used Hyperpar. used
in exp. and in exp. and in exp. and
rescale=0.5, rescale=0.5 rescale=0.5, Hyperpar. used in
encod.=amplitude, encod.=amplitude encod.=amplitude, exp. and rescale=1.0,
#copies=6, #copies=>5, #copies=5, Hyperpar. | encod.=amplitude,
Hyperpar. class weight Hyperpar. class weight Hyperpar. class weight used in #copies=6,

(a) Dataset used in exp. | =weighted (b) Dataset | used in exp. | =weighted (c) Dataset | used in exp. | =weighted (d) Dataset | exp. class weight=weighted

1 0.962 0.962 1 0.913 0.935 1 0.935 0.935 1 1.000 1.000

2 0.979 0.979 2 1.000 1.000 2 1.000 1.000 2 1.000 1.000

3 0.950 0.967 3 1.000 1.000 3 1.000 1.000 3 1.000 1.000

4 1.000 1.000 4 0.938 0.938 4 0.878 0.920 4 1.000 1.000

5 0.900 0.900 5 0.941 0.941 5 0.958 0.958 5 1.000 1.000

6 0.977 0.977 6 0.958 0.958 6 1.000 1.000 6 1.000 1.000

7 0.946 0.946 7 0.982 1.000 7 0.944 1.000 7 0.974 0.974

8 0.911 0.955 8 0.938 0.980 8 0.980 0.980 8 1.000 1.000

9 0.774 0.888 9 0.982 0.982 9 0.982 0.982 9 1.000 1.000

10 0.916 0.916 10 0.918 0.918 10 0.918 0.918 10 1.000 1.000

11 0.920 0.920 11 1.000 1.000 11 1.000 1.000 11 0.975 0.975

12 1.000 1.000 12 1.000 1.000 12 0.979 1.000 12 1.000 1.000

13 0.891 0.950 13 0.958 0.979 13 0.979 0.979 13 1.000 1.000

14 1.000 1.000 14 0.960 0.960 14 0.960 0.960 14 1.000 1.000

15 0.947 0.947 15 0.941 0.979 15 0.979 0.979 15 0.962 0.962

16 0.967 0.967 16 0.984 0.984 16 0.984 0.984 16 0.975 0.975

17 1.000 1.000 17 0.981 0.981 17 1.000 1.000 17 0.896 0917

18 0.971 0.971 18 0.940 0.940 18 0.940 0.940 18 0.927 0.927

19 1.000 1.000 19 0.985 0.985 19 0.985 0.985 19 0.946 0.946

20 1.000 1.000 20 1.000 1.000 20 1.000 1.000 20 1.000 1.000

21 1.000 1.000 21 0.967 0.967 21 0.895 0.929 21 0.950 0.950

22 0.974 0.974 22 1.000 1.000 22 1.000 1.000 22 0.974 0.974

23 0.955 0.955 23 0.984 0.984 23 0.884 0.884 23 1.000 1.000

24 1.000 1.000 24 1.000 1.000 24 1.000 1.000 24 0.980 0.980

25 1.000 1.000 25 0.875 0.875 25 0.879 0.879 25 1.000 1.000

26 0.955 0.977 26 0.946 0.946 26 0.971 0.971 26 0.983 0.983

27 0.946 0.974 27 0.911 1.000 27 0.911 1.000 27 0.982 0.982

28 0.957 0.978 28 0.982 0.982 28 0.982 0.982 28 0.895 0.895

29 0.976 1.000 29 1.000 1.000 29 0.981 1.000 29 0.980 0.980

30 0.853 0.971 30 0.969 0.969 30 0.900 0.900 30 0.982 0.982

Mean 0.954 0.969 Mean 0.965 0.973 Mean 0.960 0.969 Mean 0.979 0.980

Table 3. Performance of HQC when increasing the number of copies by an addition of one copy for cases
where HQC does not outperform the other classifiers. (a) For cell line MDA-MD-231, comparison of AUROC
score for HQC when increasing the number of copies to 6 for 30 homogeneity image feature datasets. (b) For
cell line MCF7, comparison of balance accuracy score for HQC when increasing the number of copies to 5

for 30 L*u*v* image feature datasets. (c) For cell line MCF7, comparison of AUROC score for HQC when
increasing the number of copies to 5 for 30 L*u*v* image feature datasets. (d) For cell line U251, comparison of
balance accuracy score for HQC when increasing the number of copies to 6 for 30 homogeneity image feature
datasets.

infrastructures. Inspired by this motivation, we repeated the experiment by increasing the number of copies by
an additional copy for cases where the HQC is not, initially, the best performing classifier. As an example, in
Table 3a we show how by adding one more copy, the AUROC score (averaged across 30 homogeneity feature data-
sets) increases from 0.954 to 0.969, making the HQC the best performing classifier for cell line MDA-MD-231.

For cell line U87-MG, Tables S2.2.1 and S2.2.2 (see Supplementary Material $2.2) and Tables 1 and 2 show
a subtle but clear supremacy of the image feature and classifier combination of homogeneity and the HQC, for
both balanced accuracy and AUROC scores. However, it is worth noting that the balanced accuracy and AUROC
scores obtained for cell line U87-MG for all classifiers (including HQC) were lower compared to the other three
cell lines, indicating the classification task of discriminating a pixel being a colony or a background class to be
slightly more difficult for the cell line U87-MG in comparison to the other three cell lines.

Unlike U87-MG, the balanced accuracy and AUROC scores obtained for cell line MCF7 were high, thus
indicating this cell line was particularly simple to classify and naturally resulting in the comparison among the
best performing classifiers more unstable. For this cell line, Tables $2.3.1 and S2.3.2 (see Supplementary Material
§2.3) show the best image feature is L*u*v*, and for this image feature, the best classifier was Gaussian Naive Bayes
for both the balanced accuracy and AUROC scores (see Tables 1, 2). Even though the balanced accuracy and
AUROC scores obtained with the HQC were not considerably different from that of the Gaussian Naive Bayes,
we repeated the experiment by considering the HQC with one additional copy (using the similar procedure as
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described for cell line MDA-MD-231 above). In Tables 3b and 3¢, we show the scores (averaged across 30 L*u*v*
feature datasets) of the HQC obtained with the additional copy outperformed (for the balance accuracy score)
and equalizes (for the AUROC score) the performance of the Gaussian Naive Bayes.

Finally, for cell line U251, Tables S2.4.1 and S2.4.2 (see Supplementary Material S2.4) show the best image
feature for both the balanced accuracy and AUROC scores is homogeneity. For this image feature, we can observe
the HQC is close to (for the balance accuracy score) or is one of the best (for the AUROC score) performing
classifier (see Tables 1, 2). We also note the balanced accuracy and AUROC scores obtained are high, indicat-
ing this cell line was also particularly simple to classify and naturally resulting in the comparison among the
best performing classifiers more unstable. Again, we repeated the experiment for the balanced accuracy score
by considering taking one more additional copy for the HQC and this gave us a further small increase of the
performance of the HQC to equalize the performance of the SVM (with linear kernel) (see Table 3d).

Along the whole experiment, the calculation of the Jaccard index and the Dice coeflicient confirms a good
similarity of the sample sets. Moreover, in order to show how, for these clonogenic assay datasets, the 0.2% ran-
dom sample extraction of the datasets is sufficiently representative, a sub-experiment was performed where the
trained HQC model was tested on a new unseen test set extracted from the remaining 99.8% of the datasets. This
experiment was done by randomly selecting 10 datasets (out of the 30 datasets) from the best performing image
feature for each of the four cell lines. The results are shown in Tables S3.1-53.4 (see Supplementary Material S3)
where we have presented a comparison of the performance on this new unseen test set against the performance
on the test set from the 0.2% random sample used in the main experiment. We could see, on average over the 10
datasets, the performance on both of these test sets is generally not considerably different, suggesting that a small
training set is sufficient for the HQC to perform well on classification tasks on these type of clonogenic assay
datasets. In conclusion, our results showed how the HQC is particularly efficient for the colony vs. background
classification in the context of clonogenic assays. Moreover, this work gave rise to the discovery of the homoge-
neity image feature as the most informative and discriminant feature for this classification. From a biological
perspective, this result represented a relevant confirmation regarding the evidence that homogeneity—at the phe-
notypic level in a radiobiology experiment—might be a very important feature to count the number of colonies in
a reliable and reproducible manner and to, finally, determine the surviving fraction of the dose response curves.

Discussion and further developments

The approach proposed in this work was based on fundamental synergies between machine learning, quantum
information theory and biological analysis. Overall, the achieved results are accurate and reliable. In fact, from
a computational point of view, the used approach, both in terms of features and quantum-like classifier types,
allowed us to obtain effective segmentation performance, with results (in particular, considering the balanced
accuracy) being very similar to the reference ground-truth. The HQC being proposed, which has already shown®
excellent performance even when compared to other quantum-like classifiers, performed well when applied to
the problem at hand. Furthermore, the extracted descriptors made it possible to further improve the classifier
capabilities, compared to the RGB and L*u*v* color space encodings.

From a biological point of view, the results obtained would provide support in the quantification of the well
area covered by cell colonies in clonogenic survival assays. Indeed, the main problems still unsolved in a radio-
biology experiment for studying the effect of a cell treatment—such as irradiation or drug administration—and
quantifying the surviving cells are the high variability related to the specific cell line used, as well as the subjectiv-
ity, due to operator-dependence, in evaluation methods. Therefore, it is extremely important to use an approach
that allows us to quantify the cell survival in a reliable and reproducible manner to determine the dose response
curves, which represent the primary study models in radiobiology.

In the future, we plan to extend the application of the proposed classification approach, which currently
provides a clonogenic assay evaluation based only on the colony area alone. We aim to integrate the developed
classifier into a processing pipeline together with an ad hoc post-processing step allowing us to accurately quantify
the number of colonies grown, as required in traditional clonogenic assay evaluations.

From the classifier’s perspective, future challenges are the following: (1) develop a pure quantum version of
the HQC (i.e., the quantum algorithm for the HQC running on quantum computers) which will enable both the
advantages of a reduction in time complexity and an improvement in the accuracy at the same time, (2) inves-
tigate an optimal strategy exploiting parallel computing to allow us the use of the HQC with higher number of
copies (producing a further improvement in the performance), and (3) find a multi-class generalization of the
HQC (i.e., to extend the classification capability of the HQC to more than two classes). This would allow us to
expand considerably the potential applications to other real-world contexts, including—but not limited to—the
field of biomedical imaging.

Data availability

The software for the HQC was developed in Python and the experiment was conducted on a server with 128 GB
RAM memory and 16 CPU cores. The software package is available in the public repository https://github.com/
leockl/helstrom-quantum-centroid-classifier.
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ABSTRACT

This file contains all the supplementary material regarding the experimental trials described and carried out in the manuscript
“A quantum-inspired classifier for clonogenic assay evaluations”. In the first section, detailed descriptions of the extracted
texture features are provided. In the second section, we show the experimental results obtained for each of the four cell lines
MDA-MD-231, U87-MG, MCF7, and U251, by considering the best performing image feature. The third section is devoted to
show the performance of the Helstrom Quantum Classifier (HQC) on a new unseen test set. Finally, in the last section we
summarize the full results of the whole experiment, for all the investigated cell lines and image features.

S1. The extracted Haralick’s features

We start from the assumption that biomedical images contain information phenotype of the underlying physiopathology, which
is not always easily identifiable by simple ‘visual’ inspection. These information can be revealed through quantitative analysis,
by extracting the so called ’descriptors’ in order to make it possible to acquire further knowledge on the dominion. The
Gray-Level Co-occurrence Matrix (GLCM) computation is the first step to obtain the features.

Formally, let a GLCM with size L x L, where L represents the maximum number of gray-levels according to a given
quantization scheme, denote the second-order joint probability function p(i, j) of an image region (where i, j € [0,1,...,L— 1]
represent a gray-level pair) after the normalization by the total number of pixels. These descriptors are generally called
Haralick’s features'-2.

Given a squared window of size @ x @ pixels sliding over the whole image>, we computed the following GLCM-based
features (with i, j € [0,1,...,L— 1]):

e contrast € [0,(L— 1) x (L— 1) yields a measure of the intensity contrast between neighboring pixels:
L-1L-1 R
contrast(i, j) = ) ). li—jl* p(i.J), (1
i=0 j=0
contrast = 0 for a constant image;
e correlation € [—1, 1] indicates the degree of correlation between a pixel and its neighbor:

LY (i — ) (G — ) - p(is j
correlation(i, j) = —=2 oo cl:j_(J ) J), )
<Oy

where: pe =YY ;i p(i, j), by =X X5 j- p(i, ), 0 = L Xj(i — o) - p(i ), and 0y = ¥, 35 (j — My) - p(i, j) (with ¥; and
Y ; denoting ZiL:_OI and ):JL.;(;, respectively). This feature is 1 or —1 for a perfectly positively or negatively correlated
image, respectively;



e energy € [0, 1] calculates the sum of squared elements in the GLCM:
L-1L-1 5
energy(i, /) =} ) p(i.j)*, ©)
i=0 j=0

energy = 1 for a constant image;

e homogeneity € [0, 1] Returns a value that measures the closeness of the distribution of elements in the GLCM to the

GLCM diagonal:
L1yl (. -
S i=0 j:oP(lyj)
homogeneity (i, j) = ———4——_", 4)
N (T )

homogeneity = 1 for a diagonal GLCM.

S2. Experimental results

This section is divided into four groups, one for each cell line MDA-MD-231, U87-MG, MCF7 and U251, respectively. Each
group contains two reports, the first shows: (1) the balanced accuracy score over 30 datasets (for the best performing image
feature) for the HQC and the 18 competing classifiers, obtained by hypertuning the hyperparameters of each classifier in order
to optimize the balanced accuracy score; (2) heatmaps of a classifier outperforming (“wins”) over another classifier ("losses")
out of the 30 datasets (for the best performing image feature); and (3) a table showing the averaged balanced accuracy score
over the 30 datasets for each of the six image features, RGB, L*u*v*, contrast, correlation, energy and homogeneity. The
second report is the analogous of the first, where the role of the balanced accuracy is replaced by the AUROC score. All
performance evaluation is performed using the test set. The aim of the experimental procedure is to find the most informative
image feature in discriminating a pixel between a colony or a background, i.e., the image feature which maximizes the value of
the balanced accuracy and the AUROC scores, respectively.

S2.1. Cell line MDA-MD-231
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Fig. 2.1.1 | Balance accuracy score of 19 classifiers across 30 homogeneity image feature datasets for cell line
MDA-MD-231.
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image feature datasets for cell line MDA-MD-231 (balanced accuracy score).

Table 2.1.1 [ThenmMmmmmmdmm(ﬂrMhﬂhm)hunﬂlem&MEl

Image features
Classifiers RGB L¥u*v* Contrast Correlation Energy Homogeneity
AdaBoost 0.861=0.088 0878=0065 0898=0065 0.738=0.110 0936=0052 0942=0.046
Bernoulli Naive Bayes 08410060 0.855=0.079 0.840+0097 06300126 0.854=0.087 0.940=0.057
Dummy Classifier 05070047 05130056 0506=0069 0518=0042 0497=0069 0.485=0.060
Extra Trees 0822+0.120 0.839=0.141 0709+0.163 06160121 0.767=0.169  0.851+0.139
Gaussian Naive Bayes 0855=0.063 0874=0084 0886=0063 0.711=0102 09230067 0954=0.045
Gradient Boosting 08760076 0.874=0.069 0.899+0063 0835:0.113 09410047 0933=0.050
Helstrom Quantum Classifier ~ 0.895=0058 0883=0.069 0902=0070 0.775=0081 0938=0.047 0.959=0.036
Linear Discriminant Analysis 08500066 0865=0080 0837=0075 0660=0122 0860=0089 0955=0.049
Logistic Regression 0882=0061 0879=0086 0883=0066 0.657=0.131 0932=0056 00951=0.045
Multi Layer Perceptron 08900055 0.885=0.069 0901+0069 08330086 0.942=0.052 0.940=0.091
Nearest Centroid 0.839=0.058 0868=0078 0846=0070 0.686=0.114 08670063 0941=0044
Nearest Neighbors 08900069 0.875=0.064 0903+0073 08080070 0.942=0.049 0953=0.040
Passive Aggressive Classifier 0831=0.105 0809=0113 0828=0.18 0.607=0.137 0907+0062 0935=0052
Perceptron 0.790+0.117 0.832=0.106 08310112 06310103 0914=0.054 0916=0.060
Quadratic Discriminant Analysis ~ 0.872+0.065 08760074 08760076 0.731x0112 09250066 0.957=0.039
Random Forest 08740078 0.883=0.074 0919+0058 0827+0.119 0944=0.043 0951=0.036
SVM - linear 0.880=0.063 0873=0078 0880=0071 0.655=0.141 0929+0052 00949=0.046
SVM - poly 08830055 0.892=0.069 0899+0065 08110084 09260050 0.950=0.042
SVM - 1bf 0876=0.062 0874=0.084 0890=0069 0.662=0.134 09310052 00948 =0.046
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Fig. 2.1.4 | Percentage of datasets where model A (“Wins”) outperformed model B (“Losses”) out of 30 homogeneity
image feature datasets for cell line MDA-MD-231 (AUROC score).
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Table 2.1.2 | The mean and standard deviation AUROC score (with respect to 30 datasets) for cell line MDA-MD-231

Image features
Classifiers RGB L¥u?v* Contrast Correl Energy Homogeneity
AdaBoost 0.874=0076 08810067 0898=0.063 0.739=0130 0932+0.051 09430048
Bernoulli Naive Bayes 08410060 0855+0079 0840+0097 0630=0.126 0854=0087 0.940=0.057
Dummy Classifter 0.505+0027 0498+0072 0484=0046 0497=0070 05030077 0497=0.049
Extra Trees 0.813=0.132 0812=0.159 0678=0.162 0615=0.127 0.740=0.178 0.837=0.159
Gaussian Naive Bayes 08550063 08740084 08860063 07110102 09230067 0954=0.045
Gradient Boosting 0.880=0.074 0868=0.076 0902=0066 0.834=0.114 0930=0.056 0.935=0.039
Helstrom Quantum Classifier =~ 0.879=0.081 0884=0.066 0905=0.062 0.787=0082 0927=0.058  0.954=0.050
Linear Discriminant Analysis 0.850=0.066 0865=0.080 0837=0075 0.660=0.122 0860=0.089 0.955=0.049
Logistic Regression 0.872+0072 0874=0088 08860068 0.660=0138 0927+0.051 09500044
Multi Layer Perceptron 0.889=0.056 0.889=0.057 0894=0065 0804=0.104 09320041 0946=0.042
Nearest Neighbors 08830070 08770066 0902+0064 0.800=0075 09370049 0.956=0.039
Quadratic Discriminant Analysis  0.872+0.065 08760074 08760076 0.731+0.112 09250066 0.957=+0.039
Random Forest 08810068 0878+0.077 0912+0062 08170117 09430040 0946=0.043
SVM - linear 0.879=0.064 08760076 0.881=0.073 0.648=0135 0914=0049 0953=0.043
SVM - poly 0.880+0058 0864=0082 08970064 0.805=0087 0920+0.052 0.950=0.047
SVM - 1bf 08450115 0860+0.104 0831+0147 0652+0132 0879+0.138 0.843=0.193

Rasults exclude Naarast Cantroid, Passive Aggrassive Classifier and Perceptron.

S2.2. Cell line U87-MG

Fig. 2.2.1 | Balance accuracy score of 19 classifiers across 30 homogeneity image feature datasets for cell line

U87-MG.
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Fig. 2.2.4 | Percentage of datasets where model A (“Wins”) outperformed model B (“Losses”) out of 30 homogeneity
image feature datasets for cell line U§7-MG (AUROC score).
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Table 2.2.2 | The mean and standard deviation AUROC score (with respect to 30 datasets) for cell line US7-MG

Image features
Classifiers RGB L¥u*v* Contrast Correlation Energy Homogeneity
AdaBoost 0.776+0.117 0.779+0.110 0864=0060 0.704+0.105 0873+0082 0.898=0.077
Bernoulli Naive Bayes 0.765=0.095 0.788=0.084 0841=0070 0.629=0088 0.771=0.126  0.869=0.082
Dummy Classifter 0.504 0050 0504+0056 0512+0.055 0480=0076 05050055 0.516=0.058
Extra Trees 0.577=0.098 0583=0.120 0529=0.078 0515=0.043 05250068 0.613=0.156
Gaussian Naive Bayes 0.734=0089 0.752+009 0.780+0.086 0.674=0074 0890+0.065 0.905=0.059
Gradient Boosting 08150091 0827+0085 08770064 0.758=0095 0879+0075 0.871=0.085
Helstrom Quantum Classifier ~ 0.791=0.099  0.792=0.090 0838=0.066 0.768=0075 0%02=0.057 0.917+0.048
Linear Discriminant Analysis 0.752=0.095 0.736=0.085 0.740=0.076 0.639=0086 0842=0.107 0.900=0.065
Logistic Regression 0.770+0.100 0.764=0.102 0805+0.085 0.636=0086 08770071 0.897=0.070
Multi Layer Perceptron 0.792+0.109 0.784+0.115 0840+0067 0.768+0079 0877+0099 0.901=0.070
Nearest Neighbors 0.793+0.105 07930090 0847+0044 0.739=0086 0884:0076 0.902=0.054
Quadratic Discriminant Analysis ~ 0.773=0.100 0.750=0.102 0.782=0.100 0.667=0.074 0.879=0.081 0.908=0.050
Random Forest 0.808=+0.106 0803+0.100 0861+0.059 0.763=0083 0900+0.070 0.902=0.068
SVM - linear 0.764=0.100 0.751=0.113 0.798=0.088 0.591=0.103 08910065 0.888=0.076
SVM - poly 0.745+0.119 0.746+0.111 0780+0.084 0.720=0091 08650095 0.864=0.090
SVM - 1bf 0.756+0.123 0.741+0.114 0682+0.157 0575009 0859+0.130 0.770=0.179

Rasults exclude Naarast Cantroid, Passive Agzrassive Classifier and Perceptron.

$2.3. Cell line MCF7
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Fig. 2.3.1 | Balance accuracy score of 19 classifiers across 30 L*u*v* image feature datasets for cell line MCF7.
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Fig. 2.3.2 | Percentage of datasets where model A (“Wins”) outperformed model B (“Losses”) out of 30 L*u*v*
image feature datasets for cell line MCF7 (balanced accuracy score).

Table 2.3.1 | The mean and standard deviation balanced accuracy score (with respect to 30 datasets) for cell line MCF7

Image features
Classifiers RGB L¥u*v* Contrast Correlation Energy Homogeneity
AdaBoost 0959=0046 0940=0070 0827=0.106 0.699=0099 08510111 0875=0092
Bernoulli Naive Bayes 09510048 0.964=0.030 07170124 06610107 0.718=0.133 0.837=+0.118
Dummy Classifier 05050064 0509=0041 0494=0048 0484=0044 03500=0057 0491=0044
Extra Trees 0.858+0.150 0914=0.125 0507+0037 05260061 0.523+0.078 0.585+0.124
Gaussian Naive Bayes 09430043 0969=0034 0641=0095 0.715=0091 0886=0060 0.882=0078
Gradient Boosting 09340080 0939=0.062 0814+0103 0706=0088 0844=0.093 0.866=0.110
Helstrom Quantum Classifier ~ 0.949=0052 0.965+0.033 0.798=0.109 0.775=0081 0875=0.059 0.892=0.065
Linear Discriminant Analysis 0947+0.047 09610047 06260097 06850098 0.781=0.139 0.874=0.095
Logistic Regression 09460055 0948=0060 0638=0.107 0.674=0.095 0866=0097 0.856=0.096
Multi Layer Perceptron 09460052 0965=0.042 0760+0.106 07180089 0.867=0.089 0.856=0.111
Nearest Centroid 09230056 0964=0032 0770=0.117 0.739=0.095 08510068 0.890=0.063
Nearest Neighbors 0951+£0056 0947=0.063 0.769+0.109 07590075 0861=0.075 0.854=0.101
Passive Aggressive Classifier 09450048 09430051 0690=0.120 0616=0.145 0.787=0.145 0.770=0.154
Perceptron 09380056 0.923=0.094 0652+0.167 06300145 0.774=0.122 0.795+0.149
Quadratic Discriminant Analysis ~ 0.959+0050 09610036 0638=0.096 07100111 0883=0072 0.872=0.089
Random Forest 09480064 0956=0.044 08160112 07400097 0851=0.113 0.860=0.110
SVM - linear 09550050 0956=0052 0654=0.138 0.696=0.107 0868=0.110 0873=0.108
SVM - poly 09400054 0949=0.060 0.762+0.108 0.730+0080 0.862=0.078 0.874=0.105
SVM - 1bf 09500053 0962=0.048 0681=0.134 0.697=0.108 0868=0.112 0877=0.102
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Fig. 2.3.4 | Percentage of datasets where model A (“Wins”) outperformed model B (“Losses”) out of 30 L*u*v?*
image feature datasets for cell line MCF7 (AUROC score).
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Table 2.3.2 | The mean and standard deviation AUROC score (with respect to 30 datasets) for cell line MCF7

Image features
Classifiers RGB Lu*v* Contrast Correlation Energy Homogeneity
AdaBoost 09440076 0951=0058 0821=0110 0704=0107 0845=0103 0.857=0.102
Bernoulli Naive Bayes 09510048 0964=0030 0717=0124 0661=0.107 0718=0.133 0.837=0.118
Dummy Classifier 04750066 0506=0073 0504=0041 0506=0051 0496=0069 0493=0.051
Extra Trees 0856=0.148 0918=0.129 0505=0025 0511=0038 0509=0043 0.527=0.068
Gaussian Naive Bayes 09430043 0969=0034 0641=0095 0715=0091 0886=0069 0.882=0.078
Gradient Boosting 09110112  0.952=0.060 7730121 07190091 08200092 0837=0.117
Helstrom Quantum Classifier ~ 0.955=0045 0960+0.041 0753=0.120 0.766=0090 0866=0.078 0.883=0.071
Linear Discriminant Analysis 09470047 09610047 0626=009 0685=0098 0780=0.141 0.874=0.095
Logistic Regression 09430062 0950=0054 0637=0108 0672=0095 0853=0.115 0.848=0.107
Multi Layer Perceptron 09530056 0950=0054 0770=0120 0700=0.103 0850=0082 0.869=0.104
Nearest Neighbors 09480045 0947=0061 0.767=0115 0751=0087 0862=0080 0850=0.110
Quadratic Discriminant Analysis ~ 0.959=0.050 09610036 0.638=009 0.710=0.111 0883=0072 0872=0.089
Random Forest 09460066 0953=0057 0811=0116 0733=0100 0838=0.133 0852=0.104
SVM - linear 09460054 0960=0052 0635=0135 0687=0113 0849=0126 0.858=0.130
SVM - poly 08870093 0927+0063 0713=0125 0682=0113 0841=0107 0.866=0.121
SVM - 1bf 08720144 0859=0.176 0586=0.111 0601=0.121 0839=0.142 0.717=0.200

Rasults exclude Naarast Cantroid, Passive Aggrassive Classifier and Perceptron.

s S2.4. Cell line U251
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Fig. 2.4.1 | Balance accuracy score of 19 classifiers across 30 homogeneity image feature datasets for cell line U251.
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Fig. 2.4.2 | Percentage of datasets where model A (“Wins”) outperformed model B (“Losses”) out of 30 homogeneity

image feature datasets for cell line U251 (balanced accuracy score).

Table 2.4.1 | The mean and standard deviation balanced accuracy score (with respect to 30 datasets) for cell line U251

Image features
Classifiers RGB L¥u#v* Contrast Correlati Energy Homogeneity
AdaBoost 09110049 0909=0.046 0969=0027 0771+0081 0968=0.045 0972=0.032
Bernoulli Naive Bayes 08900047 0903=0043 0934=0055 0649=0108 0859=0.118 0.967=0.059
Dummy Classifier 0504=0068 0494=0058 0495=0049 0485x0057 0495=0051 0509=0.069
Extra Trees 0832+0.126 0865=0098 0.714=0188 0571=0.110 0692=0206 0.867=0.164
Gaussian Naive Bayes 0908=0052 0912=0051 0969=0030 0698=0084 0964=0033 0.976=0.027
Gradient Boosting 09170049 0907=0054 0958=0034 0845=0064 0965=0039 0970=0.035
Helstrom Quantum Classifier ~ 0.917=0045 0907=0.03¢ 0966=0032 0.792=0070 0973=0.024 0.979+0.029
Linear Discriminant Analysis 08920062 0904=0047 0916=0065 0674=0087 0935=0058 0975=0.036
Logistic Regression 09110051 0918=0.044 0965=0030 0677=0087 0964=0031 0.976=0.031
Multi Layer Perceptron 09150045 0924=0046 0965=0035 0837=0087 0968=0034 0.969=0.035
Nearest Centroid 08920051 0892=0048 0927=0033 0694=0091 0923=0048 0.967=0.038
Nearest Neighbors 09140046 0907=0050 0969=0032 0836=0078 0974=0036 0974=0.033
Passive Aggressive Classifier 08750070 0881=0070 0951=0050 0575=0.111 0958=0047 0.959=0.046
Perceptron 0902+0054 0889=0060 0945=0060 0586=0117 0951=0039 0952=0.056
Quadratic Discriminant Analysis 09230053 0924=0051 0972=0028 0.712=0085 0969=0033 0976=0.028
Random Forest 09260048 0918=0047 0973=0033 0815=0086 0970=0044 0974=0.034
SVM - linear 09160047 0914=0051 0970=0027 0656=0.103 0975=0028 0.976=0.035
SVM - poly 09250052 09110064 0972=0027 0821=0072 0970=0031 0978=0.025
SVM - 1bf 09130051 09170053 0969=0032 06670100 0976=0.027 0.980=0.033
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Table 2.4.2 | The mean and standard deviation AUROC score (with respect to 30 datasets) for cell line U251

Image features
Classifiers RGB L¥u?v* Contrast Correl Energy Homogeneity
AdaBoost 09200046 09110048 0971+0.027 07410099 09670045 0975+0.034
Bernoulli Naive Bayes 0.860=0.047 0903=0.043 0934=0.055 0.649=0.108 0859=0.118 0.967=0.059
Dummy Classifter 0.500=0.050 0492+0.049 04990059 0.502=0054 05030055 05110055
Extra Trees 0.808+0.152 0843+0110 0653+0177 0558+0098 0673+0.186 0.838=0.155
Gaussian Naive Bayes 09080052 09120051 0969=0.030 0.698=0084 0964+0.033 0976=0.027
Gradient Boosting 0.924=0052 0906=0.046 0964=0.031 0830=0060 09660040 0.968=0.034
Helstrom Quantum Classifier ~ 0.899=0.057 0907=0.053 0948=0063 0.797=0093 0966=0.031 0.978+0.027
Linear Discriminant Analysis 0.892=0.062 0904=0.047 09160065 0.674=0087 09350058 0975=0.036
Logistic Regression 09110050 09170046 0962+0.030 0.676=0088 0962+0.036 0.975+0.034
Multi Layer Perceptron 09210046 0918+0051 0965+0034 0830+0093 0962+0034 0971=0.040
Nearest Neighbors 09140051 0907+0050 0964+0040 0.823x0062 0972+0.036 0.978+0.028
Quadratic Discriminant Analysis ~ 0.923+0.053  0924=0.051 0972=0028 07120085 0969=0033 0.976=0.028
Random Forest 09210050 09250049 09750025 0836=0076 09730038 0.972+0.035
SVM - linear 0916=0.049 0909=0.047 0962+0.030 0651=0.103 09710030 0.978=0.035
SVM - poly 0.897+0.063 09010062 0952+0061 0.801=0089 0969+0.030 0.955+0.051
SVM - 1bf 0.849=0.150 0833=0.156 07760221 0.634=0.114 0871=0.189 0.723=0.240

Rasults exclude Naarast Cantroid, Passive Agzrassive Classifier and Perceptron.

S3. Performance of HQC on a new unseen test set (for the best image feature for each
cell line)

In this sub-experiment the trained HQC model was tested on a new unseen test set extracted from the remaining 99.8% of
the datasets. This experiment was done by randomly selecting 10 datasets (out of the 30 datasets) from the best performing
image feature for each of the four cell lines. We show a comparison of the performance on this new unseen test set against the
performance on the test set from the 0.2% random sample used in the main experiment.

Table 3.1 | Balance accuracy and AUROC score for HQC on the test set used in the
experiment and a new unseen test set for 10 randomly selected homogeneity image
feature datasets for cell line MDA-MD-231

Datasets Balanced accuracy Balanced accuracy AUROC

AUROC

Table 3.2 | Balance accuracy and AUROC score for HQC on the test set used in the
experiment and a new unseen test set for 10 randomly selected homogeneity image
feature datasets for cell line U87-MG

Datasets Balanced accuracy Balanced accuracy AUROC

AUROC

Testsetusedin  Newunseentest Testsetusedin New unseen test Testsetusedin  Newunseentest Testsetusedin  New unseen test

the experiment  set the experi; set the experiment  set the experiment  set
P5 0.500 0.943 0.500 0.943 P1 0.931 0.947 0.931 0.947
P6 0.977 0.921 0.977 0.921 P2 0.985 0.953 0.985 0.954
P7 0.916 0.897 0.946 0.896 PS5 0.869 0.908 0.869 0.908
P8 0.944 0.937 0.911 0.843 Pg 0.943 0.928 0.943 0.940
P14 0.971 0.935 1.000 0.933 P10 0.891 0.8%4 0.891 0.897
P15 0.921 0.869 0.947 0.888 P14 0.898 0.868 0.898 0.870
P23 0.955 0.968 0.955 0.567 P21 0.564 0.910 0.929 0.901
P26 0.977 0.947 0.955 0.944 P22 0.867 0.868 0.839 0.870
P27 0.974 0.953 0.946 0.951 P25 0.871 0.893 0.871 0.893
P30 0.971 0.951 0.853 0.811 P27 0.980 0.869 0.960 0.871
Mean 0.951 0.932 0.939 0.520 Mean 0.920 0.904 0.912 0.905

Table 3.3 | Balance accuracy and AUROC score for HQC on the test set used in the

experiment and a new unseen test set for 10 randomly selected L*u*v* image feature

Table 3.4 | Balance accuracy and AUROC score for HQC on the test set used in the
experiment and a new unseen test set for 10 randomly selected homogeneity image

datasets for cell line MCF7 feature datasets for cell line U251
Datasets Balanced accuracy Balanced accuracy AUROC AUROC Datasets Balanced accuracy Balanced accuracy AUROC AUROC
Testsetusedin Newunseentest Testsetusedin New unseen test Testsetusedin  Newunseentest Testsetusedin New unseen test
the experiment  set the experiment  set the experiment  set the experiment  set
Pe 0.958 0.955 1.000 0.958 P2 1.000 0.985 1.000 0.977
P8 0.938 0.349 0.980 0.951 P7 0.974 0.962 0.974 0.962
2] 0.982 0.958 0.982 0.955 P15 0.962 0.956 0.962 0.898
P13 0.958 0.966 0.979 0.570 P18 0.927 0.971 0.927 0.971
P14 0.960 0.978 0.960 0.978 P20 1.000 0.960 1.000 0.959
P16 0.984 0.959 0.984 0.951 P21 0.950 0.964 0.950 0.964
P19 0.985 0.977 0.985 0.976 P22 0.574 0.941 0.974 0.948
P23 0.984 0.967 0.884 0.947 P27 0.982 0.965 0.982 0.973
P25 0.875 0.867 0.879 0.886 P29 0.80 0.926 0.938 0.932
P26 0.946 0.980 0.971 0.946 P30 0.982 0.976 0.982 0.968
Mean 0.957 0.956 0.960 0.952 Mean 0.973 0.961 0.969 0.955
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