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Abstract. We prove a rigidity result for the anisotropic Laplacian. More

precisely, the domain of the problem is bounded by an unknown surface sup-

porting a Dirichlet condition together with a Neumann-type condition which is
not translation-invariant. Using a comparison argument, we show that the do-

main is in fact a Wulff shape. We also consider the more general case when the
unknown surface is required to have its boundary on a given conical surface:

in such a case, the domain of the problem is bounded by the unknown surface

and by a portion of the given conical surface, which supports a homogeneous
Neumann condition. We prove that the unknown surface lies on the boundary

of a Wulff shape.

1. Introduction. In this manuscript we study an overdetermined boundary-value
problem for elliptic equations. In these kinds of problems, a well-posed elliptic
PDEs problem is overdetermined by adding a further condition on the solution
at the boundary and, for this reason, a solution may exist only if the domain
and the solution itself satisfy some suitable symmetry. For instance, the well-
known Serrin’s overdetermined problem deals with the torsion problem in a bounded
domain Ω ⊆ RN {

∆u = −1 in Ω ,

u = 0 on ∂Ω ,
(1.1)

with the overdetermining condition

|Du| = c on ∂Ω , (1.2)

for some positive constant c. Hence, Problem (1.1)-(1.2) is not well-posed and a
solution may exists only if the domain (and the solution itself) satisfies some special
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symmetry (radial symmetry in this case, see [21]). There are many other results
concerning overdetermined problems and, in particular, many generalizations of
problem (1.1)-(1.2) have been considered in recent years, such as for quasilinear
operators, for domains in convex cones, and in a Finsler (or anisotropic) setting
(see for instance [1, 5, 8, 13, 22] and references therein).

The anisotropic setting that we are considering can be described in terms of a
norm H0 in RN . Let H be the dual norm of H0 (see Section 2), and consider the
Finsler Laplacian ∆H , whose definition is recalled in Section 3. Under convenient
assumptions, Cianchi and Salani [5, Theorem 2.2] generalized Serrin’s result to this
setting and proved that the translation-invariant overdetermined problem

−∆H u = 1 in Ω

u = 0 on ∂Ω

H(Du(x)) = const. on ∂Ω

is solvable if and only if Ω is a ball with respect to the H0 norm (see also [1,
Theorem 1.1] for the generalization to anisotropic p-Laplace equations).

If the overdetermining condition is not prescribed on the whole boundary, then
the problem is called partially overdetermined. In this case, one can say less on
the solution and a large variety of situations may occur. For instance, if we relax
problem (1.1)-(1.2) by prescribing the Dirichlet condition u = 0 on a proper subset
Γ0 ⊆ ∂Ω instead that on the whole boundary, then the existence of a solution does
not imply that Ω is a ball: the simplest counterexample is given by the annulus,
and more refined counterexamples are found in [12]. Nevertheless, under convenient
additional assumptions, a partially overdetermined problem turns out to be globally
overdetermined and the conclusion can be recovered (see [9, 11]).

In this paper we consider an anisotropic overdetermined problem in cones. Let
Ω ⊆ RN , N ≥ 2, be a bounded domain (i.e. an open, connected, nonempty subset)
containing the origin O, and let Σ ⊆ RN be a cone

Σ = { tx : x ∈ ω, t ∈ (0,+∞) } (1.3)

for some domain ω ⊆ SN−1. We mention that the equality ω = SN−1 (which implies
Σ = RN ) is allowed throughout the paper. In the case when ω 6= SN−1 we require
that ∂Σ \ {O} is a hypersurface of class C1 and therefore possesses an outward
normal ν. Define

Γ0 = Σ ∩ ∂Ω and Γ1 = ∂(Ω ∩ Σ) \ Γ0 . (1.4)

Several problems in convex cones have been considered recently, like the isoperimet-
ric and Sobolev inequalities in convex cones (see for instance [6, 16]) and overdeter-
mined and Liouville type problems in [6, 7, 17].

Here we extend the approach in [15] to the more general anisotropic setting and
by considering a (possibly) mixed boundary-value problem. The starting point lies
in the observation (done in [7, p. 28]) that the solution of (1.1) in the Euclidean ball
Ω = BR(O, | · |) obviously satisfies (being a radial function) uν = 0 along Γ1 \ {O}
for every smooth cone Σ 6= RN . Our main result is the following.

Theorem 1.1. Let Ω and Σ ⊆ RN be as above, and let H be a norm of class
C1(RN \ {O}) such that the function V (ξ) = 1

2 H
2(ξ) is strictly convex. Let q(r) be

a positive, real-valued function such that the ratio q(r)/r is increasing in r > 0. If
there exists a weak solution u ∈ C1((Σ ∩ Ω) ∪ (Γ1 \ {O}) ∩ C0( Σ ∩ Ω \ {O}) of the
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problem 
−∆H u = 1 in Σ ∩ Ω

u = 0 on Γ0

DV (Du(x)) · ν = 0 on Γ1 \ {O} ,
(1.5)

satisfying the condition

lim
x→z

H(Du(x)) = q(H0(z)) for all z ∈ Γ0, (1.6)

then Σ ∩ Ω = Σ ∩BR(O,H0) for some R > 0.

In the case when Σ = RN we have Γ1 = ∅ and the third condition in (1.5)
is trivially satisfied. If, in addition to Σ = RN , we also have H(·) = | · |, then
Theorem 1.1 was proved by the second author in [15] under the weaker assumption
that q(r)/r is non-decreasing. We mention that the rate of growth of q is crucial to
obtain the rigidity result. A counterexample for the Euclidean norm can be found
in [14, p. 488]. We also notice that, in the Euclidean case, the boundary condition
on Γ1 is simply uν = 0.

We stress that problem (1.5)-(1.6) can be seen as a partially overdetermined
problem, since the overdetermining condition is given only on the part Γ0 of the
boundary. Accordingly, we are able to determine the shape of Γ0, while Γ1 depends
on the choice of the cone Σ.

We emphasize that no regularity assumption is imposed on Γ0. For this reason,
we have to consider condition (1.6) instead of the simpler

H(Du(z)) = q(H0(z)) on Γ0

(as, for instance, in [13]).
We also mention that Theorem 1.1 could be extended to the case in which the

ratio q(r)/r is non-decreasing in r > 0 by using Hopf’s boundary point lemma (see
[14]), as well as to more general anisotropic quasilinear operators (see for instance
[18]). More precisely, one has to prove a Hopf’s boundary point comparison principle
between the solution and the solution in the Wulff shape and then can expect
to prove a symmetry result in cones in the spirit of Theorem 1.1 for a class of
anisotropic equations of the form div(DV (Du)) + f(u) = 0.

The paper is organized as follows. In Section 2 we recall some well-known facts
about norms in RN . In Section 3 we recall the definition of Finsler Laplacian and
prove some basic properties of (1.5). Sections 2 and 3 will be the occasion to give full
details of some basic facts, and for this reason we give a detailed description which
is readable also at a beginner level. In Section 4 we give the proof of Theorem 1.1.
In Appendix A we provide an example of a smooth norm having non-smooth dual
norm (see also [4, Example A. 1.19]).

2. Norms, dual norms and Wulff shapes. In this section we collect the defini-
tions and properties needed in the sequel. Further details are found in many recent
papers: see, for instance, [1, Section 2.2] and [3, Section 2.1]. A standard reference
on convex analysis is [20].

2.1. Norms, convexity and the Wulff shape. Let H0 : RN → R be a norm
on RN , N ≥ 1, i.e. let H0 be a nonnegative function such that

H0(x) = 0 if and only if x = 0; (2.1)

H0(tx) = |t|H0(x) for all t ∈ R and x ∈ RN ; (2.2)
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H0(x1 + x2) ≤ H0(x1) +H0(x2) for all x1, x2 ∈ RN . (2.3)

The last inequality, known as the triangle inequality, may be equivalently replaced
by the requirement that H0 is a convex function, as in [1, 2, 5]. Indeed, from (2.2)-
(2.3) it follows that every norm satisfies H0(λx1 + (1 − λ)x2) ≤ λH0(x1) + (1 −
λ)H0(x2) for all λ ∈ (0, 1) and x1, x2 ∈ RN , i.e. H0 is a convex function. Conversely,
every nonnegative, convex function H0 : RN → R satisfying (2.1) and (2.2) also
satisfies (2.3): indeed, we may write H0(x1 + x2) = H0((2x1 + 2x2)/2), and by
convexity H0(x1 +x2) ≤ 1

2 H0(2x1) + 1
2 H0(2x2). Now using (2.2) we arrive at (2.3)

and hence H0 is a norm.
We denote by BR(x0, H0) = {x ∈ RN : H0(x− x0) < R } the ball centered at x0

and with radius R > 0 with respect to the norm H0 (also called the Wulff shape).

2.2. Dual norms. As usual, the dual norm H(ξ) of the norm H0(x) is defined for
ξ ∈ RN by

H(ξ) = sup
x 6=0

x · ξ
H0(x)

. (2.4)

It is well known that the supremum above is indeed a maximum, i.e., it is attained
with a particular x 6= 0. Furthermore, any given norm H0 turns out to be the dual
norm of its dual norm H.

2.3. Properties of the gradient of a norm. Let us recall some essential prop-
erties of the gradient DH0 of a (differentiable) norm H0.

Lemma 2.1. If H0 is differentiable at some x ∈ RN \ {O}, then

1. The scalar product x ·DH0(x) satisfies

x ·DH0(x) = H0(x). (2.5)

2. H0 is differentiable at tx for every t ∈ R \ { 0 }, and satisfies

DH0(tx) = (sgn t)DH0(x). (2.6)

3. The gradient DH0(x) is a unit vector with respect to the dual norm H in the
sense that

H(DH0(x)) = 1. (2.7)

Proof. Property (2.5) is already found in the seminal dissertation by Finsler as
well as in several recent papers: see, for instance, [3, (2.10)], [10, (1.8)] and [22,
Proposition 1, (i)]. Equality (2.6), instead, can be derived from [3, (2.9)]. Let us
give a proof, for completeness. Both (2.5) and (2.6) are obtained by differentiating
the equality (2.2): more precisely, (2.5) follows by differentiating (2.2) in t at t = 1,
while (2.6) is obtained by differentiation in xi for i = 1, . . . , N . Equality (2.7)
corresponds to [5, (3.12)], [10, (1.7)] and [22, Proposition 1, (iii)]). Let us prove the
assertion and give a geometrical interpretation.

Define R = H0(x) and consider the ball BR(O,H0). By (2.4), in order to compute
the dual norm H(DH0(x)) it suffices to find a point y ∈ ∂BR(O,H0) that maximizes
the ratio

y ·DH0(x)

H0(y)
=

y ·DH0(x)

R
.

The hyperplane passing through x and orthogonal to DH0(x) is a supporting hy-
perplane for the convex set BR(O,H0), and hence we may take y = x to maximize



OVERDETERMINED PROBLEM ASSOCIATED TO FINSLER LAPLACIAN 5

Figure 1. Maximizing the scalar product y · DH0(x) under the
constraint H0(y) = R

the numerator (see Figure 1). Consequently we have

H(DH0(x)) =
x ·DH0(x)

R
.

Now using (2.5) the conclusion follows.

2.4. Differentiability of a norm. Let H0 be a norm, and denote by H its dual
norm. Because of (2.2), H0(x) is never differentiable at x = 0. By [20, Corol-
lary 1.7.3], instead, differentiability of H0 at x 6= 0 is related to the strict convexity
of the unit ball B1(0, H) of the dual norm H: the next lemma collects several
equivalent conditions.

Lemma 2.2. The following conditions are equivalent.

(1) H0(x) is differentiable at every x 6= 0.
(2) H0 ∈ C1(RN \ {O}).
(3) B1(0, H0) is a domain of class C1.
(4) B1(0, H) is strictly convex.
(5) The function V (ξ) = 1

2 H
2(ξ) is strictly convex.

Proof. (2) ⇒ (1) is obvious. The converse implication (2) ⇐ (1) follows by [4,
Theorem A.1.13] because H0 is a convex function. The implication (2)⇒ (3) holds
because DH0(x) 6= 0 when x 6= 0 by homogeneity (2.2), and hence the level surface
Γ1 = ∂B1(0, H0) = {x ∈ RN : H0(x) = 1 } is of class C1 by the implicit function
theorem. To prove the converse implication (2) ⇐ (3), observe that every x 6= 0
can be represented in polar coordinates ρ, η given by ρ = |x| and η = |x|−1 x. In
such a coordinate system, by (3) and by the convexity of B1(0, H0) the surface
Γ1 = ∂B1(0, H0) is the graph of a C1-function ρ = ρ(η) whose domain is the
Euclidean unit sphere SN−1 = { η ∈ RN : |η| = 1 }. Since x/H0(x) ∈ Γ1, we may
write

x

H0(x)
= ρ(η) η = ρ(|x|−1 x)

x

|x|
and hence H0(x) = |x|/ρ(|x|−1 x). Consequently, H0 ∈ C1(RN \{O}) and (2) holds,
hence (2)⇐ (3). Let us check that (1) is equivalent to (4). As a consequence of [20,
Corollary 1.7.3], the unit ball B1(0, H) of the dual norm H is strictly convex (its
boundary does not contain any segment) if and only if H0 is differentiable at every
x ∈ RN \ {O}, namely (1) ⇔ (4), as claimed. The preceding arguments imply
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that the first four conditions in the statement are equivalent to each other. To
complete the proof we now verify that (4) is equivalent to (5). Before proceeding
further, observe that 2V (ξ) (hence V (ξ) as well) is convex because it is the square
of the convex, nonnegative function H(ξ). Hence V (ξ) is not strictly convex if and
only if there exists a line segment ` ⊆ RN such that the restriction V |` is a linear

function. But then H(ξ) =
√

2V (x) is concave along `. Since H(ξ) is also convex,
it follows that H(ξ) is constant along `. Hence V (ξ) fails to be strictly convex if
and only if H(ξ) takes a constant value (say c) along some segment `. Now recall
that H(ξ) is homogeneous of degree 1: this has two relevant consequences. The first
consequence is that H(ξ) is not constant in the radial direction, hence the segment `
is not aligned with the origin. The second consequence is that we may find a new
segment, say `′, parallel to ` and such that H(ξ) = 1 on `′: indeed, we may take

`′ = { ξ ∈ RN : c ξ ∈ ` }.
In short, there is no loss of generality if we assume c = 1. But then we may assert
that V (ξ) is not strictly convex if and only if ∂B1(0, H) contains a line segment, i.e.,
if and only if B1(0, H) is not strictly convex. This proves the equivalence between
(4) and (5), and the lemma follows.

It may well happen that H0 ∈ C1(RN \ {O}) and H 6∈ C1(RN \ {O}): see
Appendix A or [4, Example A. 1.19]. If both H0 and H are smooth, then it is
relevant for our purposes to notice that the gradient DH(ξ) evaluated at ξ = DH0(x)
is radial in the following sense (see also [3, Lemma 2.2] and [10, c), p. 249]):

Lemma 2.3. If H0, H ∈ C1(RN \ {O}) then x = H0(x)DH(DH0(x)) for all x ∈
RN \ {O}. Furthermore, for every ξ 6= O, a point x 6= O realizes the supremum
in (2.4) if and only if

x = H0(x)DH(ξ). (2.8)

Proof. The unit ball B1(0, H0) is a strictly convex domain of class C1, hence for
every ξ ∈ ∂B1(0, H) there exists a unique x ∈ ∂B1(0, H0) that maximizes the linear
function L(x) = x · ξ under the constraint H0(x) = 1. Taking the definition (2.4)
of H(ξ) into account, we may say that for every ξ ∈ ∂B1(0, H) there exists a
unique x ∈ ∂B1(0, H0) satisfying the equality

1 = x · ξ.
Furthermore there exists λ ∈ R (the Lagrange multiplier) such that ξ = λDH0(x).
More precisely, since x ·DH0(x) > 0 by the convexity of B1(0, H0), we have λ > 0.
This and (2.7) imply H(ξ) = λ, and therefore ξ = H(ξ)DH0(x). By reverting the
roles of x and ξ we get (2.8) and the lemma follows using (2.6).

We conclude this section with the following proposition:

Proposition 2.4 (Regularity of the Lagrangian). Let H be a norm of class C1(RN \
{O}). Then the Lagrangian V (ξ) = 1

2 H
2(ξ) belongs to the class C1(RN )

Proof. Since all norms on RN are equivalent, there exist two positive constants σ, γ
such that

σ |ξ| ≤ H(ξ) ≤ γ |ξ| for all ξ ∈ RN (2.9)

(the notation is taken from [5, (3.4)]). In particular, H(ξ) is continuous at ξ = 0.
Concerning the differentiability, for ξ 6= 0 we may apply the standard rules of
calculus and get

DV (ξ) = H(ξ)DH(ξ). (2.10)
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Furthermore, the right-hand side admits a continuous extension to ξ = 0 because
DH(ξ) is bounded on the compact surface SN−1 = { ξ : |ξ| = 1 }, and by (2.6)
DH(ξ) is also bounded in the whole punctured space RN \ {O}. Hence DV (ξ)→ 0
as ξ → 0. This and the continuity of V (ξ) at ξ = 0 imply that V is also differentiable
at ξ = 0, and DV (0) = 0. The proposition follows.

3. The Finsler Laplacian. Given a norm H of class C1(RN \{O}), the func-
tion V (ξ) = 1

2 H
2(ξ) belongs to the class C1(RN ) by Proposition 2.4. The Finsler

Laplacian associated to H is the differential operator ∆H which is formally defined
by

∆H u(x) = div
(
DV (Du(x))

)
.

Notation. In the present paper it is understood that the gradient operator D takes
precedence over the composition of functions: thus, the notation DV (Du(x)) repre-
sents the vector field DV (ξ) evaluated at the point ξ = Du(x). Such a vector field
differs, in general, from the field whose components are the derivatives of V (Du(x))
with respect to xi, i = 1, . . . , N . Clearly, if H(ξ) is the Euclidean norm |ξ| then
V (ξ) = 1

2 |ξ|
2 and therefore DV (ξ) = ξ. Thus, the operator ∆H reduces to the

standard Laplacian ∆.
Let Ω be a bounded domain in RN , N ≥ 2, containing the origin O. Let Σ and

Γ0,Γ1 be as in (1.3) and (1.4), respectively. We define the function space

W 1,2
Γ0

(Ω ∩ Σ) = {v : Ω ∩ Σ→ R s.t. v = wχΩ∩Σ for some w ∈W 1,2
0 (Ω)} ,

where χΩ∩Σ denotes the characteristic function of Ω ∩ Σ. Notice that a function v
in W 1,2

Γ0
(Ω ∩ Σ) has zero trace on Γ0.

Definition 3.1 (Weak solution). Let Ω be as above and let f be a function in
L2(Ω ∩ Σ). A weak solution of

−∆H u = f in Ω ∩ Σ;

u = 0 on Γ0

DV (Du) · ν = 0 on Γ1 \ {O}
(3.1)

is a function u ∈W 1,2
Γ0

(Ω ∩ Σ) such that∫
Ω∩Σ

Dv(x) ·DV (Du(x)) dx =

∫
Ω∩Σ

f(x) v(x) dx (3.2)

for every v ∈W 1,2
Γ0

(Ω ∩ Σ).

Theorem 3.2 (Existence). Let Ω, Σ and f be as above. If H is a norm of class
C1(RN \ {O}), then Problem (3.1) has a weak solution.

Proof. Define V (ξ) = 1
2 H

2(ξ). By (2.9), and by the Poincaré inequality in W 1,2
Γ0

(Ω∩
Σ) (see [19, Theorem 7.91]), the functional

F [u] =

∫
Ω∩Σ

(
V (Du(x))− f(x)u(x)

)
dx (3.3)

is well defined and coercive over the Sobolev space W 1,2
Γ0

(Ω∩Σ), hence there exists
a minimizer. Since the functional F is differentiable (as a consequence of Proposi-
tion 2.4), each minimizer is a weak solution of the Euler equation−∆H u = f(x).
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Remark 1. If, in addition to the assumption of Theorem 3.2, the function V (ξ)
is strictly convex, then the functional F in (3.3) is also strictly convex, and the
minimizer is unique. Uniqueness of the weak solution to Problem (3.1) also follows
by letting Ω1 = Ω2 = Ω in Lemma 3.4. Several conditions equivalent to the strict
convexity of V (ξ) are given in Lemma 2.2.

In view of our subsequent application we now prepare the following comparison
principle, which asserts that if f ≥ 0 then the solution of (3.1) is not only unique
but also nonnegative and monotonically increasing with respect to set inclusion.

Lemma 3.3 (Nonnegativity). Let H be a norm of class C1(RN \ {O}), and let Ω
and Σ be as above. If f ∈ L2(Ω ∩ Σ) is nonnegative, then any weak solution u to
(3.1) is also nonnegative.

Proof. By (2.10) and (2.5) we find ξ · DV (ξ) = 2V (ξ) for ξ 6= 0. The equality
continues to hold at ξ = 0 by Proposition 2.4. Hence, using v(x) = −u−(x) =
min{u(x), 0} as a test-function in (3.2) we get

0 ≤ 2

∫
Ω∩Σ

V (Dv(x)) dx = 2

∫
{u<0 }

V (Du(x)) dx =

∫
{u<0 }

f(x)u(x) dx ≤ 0 ,

which implies Dv(x) = 0 almost everywhere in Ω ∩ Σ. Since v ∈ W 1,2
Γ0

(Ω ∩ Σ), by
the Poincaré inequality [19, Theorem 7.91] it follows that v = 0, hence u ≥ 0 a.e.
in Ω ∩ Σ.

Lemma 3.4 (Monotonicity). Let H be a norm of class C1(RN \ {O}) such that
the function V (ξ) = 1

2 H
2(ξ) is strictly convex. Let Σ be as in (1.3), and let Ωi,

i = 1, 2, be two bounded domains in RN , N ≥ 2, containing the origin and satisfying
Ω1∩Σ ⊆ Ω2∩Σ. Choose a nonnegative f ∈ L2(Ω2∩Σ), and denote by ui any weak
solution of Problem (3.1) with Ω = Ωi. Then u1 ≤ u2 almost everywhere in Ω1∩Σ.

Proof. Let Γi0 = Σ∩∂Ωi, i = 1, 2. Since f ≥ 0, from Lemma 3.3 we have u2 ≥ 0

a.e. in Ω2∩Σ. Hence the function v=(u1−|u2|)+ belongs to W 1,2
Γ1
0

(Ω1∩Σ) and has

an extension, still denoted by v, to W 1,2
Γ2
0

(Ω2∩Σ) vanishing identically outside Ω1.

Therefore v is an admissible test-function in Definition 3.1 for Ω=Ωi, i=1, 2, and
we may write ∫

Ω1∩Σ

Dv(x) ·DV (Du1(x)) dx =

∫
Ω1∩Σ

f(x) v(x) dx,

∫
Ω1∩Σ

Dv(x) ·DV (Du2(x)) dx =

∫
Ω1∩Σ

f(x) v(x) dx.

By subtracting the second equality from the first one we obtain∫
Ω1∩Σ∩{ v>0 }

(
Du1(x)−Du2(x)

)
·
(
DV (Du1(x))−DV (Du2(x))

)
dx = 0

Since V is strictly convex by assumption, the Lebesgue measure of the set Ω1 ∩Σ∩
{ v > 0 } must be zero, and the lemma follows.

In the case when Ω = BR(O,H0) for some R > 0 and f ≡ 1, Problem (3.1) is
explicitly solvable:
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Proposition 3.5 (Solution in the Wulff shape). Let H be a norm of class C1(RN \
{O}), and suppose that its dual norm H0 also belongs to C1(RN \ {O}). Let Σ be
as in (1.3). The function uR ∈ C1(RN ) given by uR(x) = 1

2N (R2 − H2
0 (x)) is a

weak solution of the problem
−∆H u = 1 in BR(O,H0) ∩ Σ,

u = 0 on Σ ∩ ∂BR(O,H0),

DV (Du) · ν = 0 on BR(O,H0) ∩ ∂Σ \ {O}.

(3.4)

Furthermore, the gradient DuR is given by DuR(x) = − 1
N H0(x)DH0(x) for x 6= 0

and satisfies H(DuR(x)) = 1
N H0(x) for all x ∈ RN .

Proof. By differentiation we find DuR(x) = − 1
N H0(x)DH0(x) for x 6= 0, and

therefore H(DuR(x)) = 1
N H0(x) by (2.7). The last equality continues to hold at

the origin by Proposition 2.4. Let us check that uR satisfies (3.4) in the weak
sense. Of course, uR vanishes by definition when H0(x) = R. Since uR ∈ C1(RN )
and the boundary of Ω = BR(0, H0) also belongs to the class C1, it follows that

uR ∈W 1,2
Γ0

(Ω ∩ Σ), where Γ0 is as in (1.4). Furthermore, by (2.10), (2.6) and (2.7)

we have DV (DuR(x)) = H(DuR(x))DH(DuR(x)) = − 1
N H0(x)DH(DH0(x)). But

then by Lemma 2.3 it follows that DV (DuR(x)) = − 1
N x. We note in passing that

DV (DuR(x)) · ν = 0 pointwise on Ω∩ ∂Σ \ {O}. To complete the proof we have to
show that (3.2) holds. This is peculiar because, although uR may fail to have second
derivatives, the compound function DV (DuR(x)) = − 1

N x belongs to C∞(RN ,RN ),
and therefore by the divergence theorem we have∫

Ω∩Σ

Dv(x) ·DV (Du(x)) dx = − 1

N

∫
Ω∩Σ

Dv(x) · x dx =

∫
Ω∩Σ

v(x) dx

for every v ∈W 1,2
Γ0

(Ω ∩ Σ), as claimed.

Remark 2. In the case when Σ = RN , the solution in the Wulff shape is considered,
for instance, in [1, (1.8)] and [10, Theorem 2.1].

4. Proof of Theorem 1.1. Roughly speaking, Theorem 1.1 asserts that if q(r)
grows faster than r then the solvability of Problem (1.5)-(1.6) implies that Ω is a
Wulff shape centered at the origin. The minimal rate of increase of q(r) in order to
get the result is discovered by letting R vary in Problem (3.4): more precisely, using
Proposition 3.5 we find that H(DuR(x)) = R/N for every x ∈ ∂BR(O,H0), hence
the value of H(DuR(x)) at x ∈ ∂BR(O,H0) is proportional to R. This information
is transferred to Problem (1.5) by means of the following comparison argument.

Proof of Theorem 1.1. Preliminaries. Define

R1 = min
z∈Γ0

H0(z), R2 = max
z∈Γ0

H0(z)

and let ui, i = 1, 2, be the solution of the Dirichlet problem (3.4) in the Wulff shape
Ωi = BRi

(0, H0). Thus, Σ ∩Ω1 ⊆ Σ ∩Ω ⊆ Σ ∩Ω2. We aim to prove that Ω1 = Ω2,
which implies the claim of the theorem. To this purpose, pick zi ∈ Γ0 ∩ ∂Ωi and
observe that Ri = H0(zi), i = 1, 2. Using Lemma 3.3 and Lemma 3.4 twice, we get

u1 ≤ u a.e. in Σ ∩ Ω1, u ≤ u2 a.e. in Σ ∩ Ω. (4.1)
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Part 1. Taking into account that u1(z1) = u(z1) = 0 and u1 is continuously
differentiable up to z1, let us check that the first inequality in (4.1) implies

R1

N
= H(Du1(z1)) ≤ q(R1) . (4.2)

Letting x(t) = z1 − t |z1|−1 z1 ∈ Σ ∩ Ω1 for t ∈ (0, |z1|), we compute the limit

` = lim
t→0+

u1(x(t))

t

following two different arguments. On the one side, the limit ` is the radial derivative
` = −|z1|−1 z1 ·Du1(z1), and using Proposition 3.5 and equality (2.5) we may write

` =
1

N
|z1|−1R2

1.

On the other side, by the mean-value theorem we have u(x(t)) = −t |z1|−1 z1 ·Du(x̃)
for a convenient point x̃ on the segment from z1 to x(t). Letting ξ = Du(x̃)
and x = t |z1|−1 z1 in (2.4), and since H0(z1) = R1, we may estimate u(x(t)) ≤
tR1 |z1|−1H(Du(x̃)). Recalling that u1 ≤ u by (4.1), and using assumption (1.6)
we arrive at ` ≤ R1 |z1|−1 q(R1) and (4.2) follows.

Part 2. By using the second inequality in (4.1), and since u2 is continuously
differentiable, taking assumption (1.6) into account we now prove the inequality

q(R2) ≤ H(Du2(z2)) =
R2

N
. (4.3)

The argument is by contradiction: suppose there exists ε0 ∈ (0, |z2|) such that
H(Du(x)) > H(Du2(z2)) + ε0 for all x ∈ U0 = {x ∈ Σ ∩ Ω : |x − z2| < ε0 }, and
choose x0 ∈ U0. Observe that w0 = u2(x0)−u(x0) > 0 because the equality w0 = 0
together with u ≤ u2 implies Du2(x0) = Du(x0), which is not the case. While ε0 is
kept fixed, the point x0 will tend to z2 in the end of the argument. Since the vector
field DH(ξ) is continuous by assumption in RN \ {O}, for every choice of x0 ∈ U0

there exists a local solution x(t), t > 0, of the initial-value problem{
x′(t) = DH(Du(x(t))),

x(0) = x0.

Since the Euclidean norm |x′(t)| is bounded from above by some constant M0, the
length of the arc γ described by x(τ) when τ ranges in the interval (0, t) satisfies
|γ| ≤M0 t, and therefore

|x(t)− z2| ≤M0 t.

We claim that the curve γ can be extended until |x(t0) − z2| = ε0 for some finite
t0 > 0. Indeed, by differentiation of u(x(t)) we find du/dt = Du(x(t))·x′(t). Letting
ξ = Du(x(t)) in Lemma 2.3 we see that the vector x′(t) realizes the supremum
in (2.4), i.e., we may write the equality

H(Du(x(t))) =
Du(x(t)) · x′(t)
H0(x′(t))

.

This and (2.7) imply du/dt = H(Du(x(t))). Since H(Du(x)) > ε0 in U0, it follows
that u increases along γ and therefore the curve, which starts at x0 ∈ U0, cannot end
on Γ0 where u = 0. Similarly, we find du2/dt = Du2(x(t)) · x′(t) ≤ H(Du2(x(t)))
and therefore

du2

dt
+ ε0 <

du

dt
,
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hence the difference w(t) = u2(x(t)) − u(x(t)) satisfies dw/dt < −ε0. Since w(t)
must be positive as long as x(t) ∈ U0, it follows that

t < w0/ε0 (4.4)

and the length of γ is bounded from above by

|γ| ≤M0 w0/ε0. (4.5)

In the case when γ reaches prematurely Γ1⊆∂Σ, i.e., if x(t)∈U0 for t∈ [0, t1) and
x(t1)=x1∈Γ1, with |x1−z2|<ε0, the assumption that ∂Σ is of class C1 ensures the
existence of a local solution x(t)∈∂Σ, t>t1, to the following initial-value problem:{

x′(t) = DH(Du(x(t))),

x(t1) = x1.
(4.6)

Indeed, the third condition in (1.5) implies that DH(Du(x)) is a tangent vector
to ∂Σ as long as x ∈ ∂Σ, and therefore problem (4.6) admits a local solution lying
on the hypersurface ∂Σ and extending the curve γ. Since the curve γ, possibly
extended as above, has a finite length by (4.5), and cannot end either on Γ0 nor on
Γ1 as long as |x(t) − z2| < ε0, nor can it have a limiting point in U0 because x′(t)
keeps far from zero and the parameter t is bounded by (4.4), there must be some
finite t0 > 0 such that |x(t0) − z2| = ε0, and therefore |γ| ≥ ε0. This and (4.5)
yield the estimate ε20 ≤M0 w0, which is uniform in the sense that M0 and ε0 do not
depend on the choice of x0 ∈ U0. To conclude the argument, we now let x0 → z2:
thus, w0 → 0 while ε0 and M0 do not change, and a contradiction is reached.

Conclusion. By (4.2) and (4.3) we deduce

q(R2)

R2
≤ q(R1)

R1
.

Since the ratio q(r)/r strictly increases, we must have R1 = R2 and Ω1 = Ω2 = Ω,
as claimed.

Appendix A. A smooth norm with a non-smooth dual norm. A simple
example of norm in RN is the p-norm |x|p given by

|x|p =
( N∑
k=1

|xk|p
) 1

p

for p ∈ [1,+∞).

In the special case when p ∈ (1,+∞), the dual norm of |x|p is the q-norm |ξ|q,
where q is related to p by the equality 1

p + 1
q = 1. Both norms belong to the

class C1(RN \ {O}). The dual norm of |x|1, instead, is |ξ|∞ = max{ |ξ1|, . . . , |ξN | }.
Neither of the last two norms belongs to the class C1(RN \ {O}). In this section
we construct an explicit example of a norm H0 ∈ C1(R2 \ {O}) whose dual norm
H does not belong to the same class. The example below should be compared with
[4, Example A. 1.19].

Definition A.1. The norm H0 is defined as the gauge function, also called the
Minkowski functional, of a convenient, convex, plane domain which plays the role
of the unit ball B1(0, H0). Such a ball is defined as the convex envelope of the four
Euclidean discs of radius 1

2 centered at (± 1
2 , 0), (0, ± 1

2 ) (see Figure 2). Notice that
the origin belongs to the boundary of each of the given discs.

Since the boundary of the domain B1(0, H0) defined above is a C1-curve, by
Lemma 2.2 the norm H0 belongs to the class C1(R2 \ {O}). However, we have:
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Lemma A.2. Denote by H(ξ) the dual norm of the norm H0(x) in Definition A.1.
The unit ball B1(0, H) is the intersection of four convex open sets, each bounded
by a parabola with focus at the origin and vertex at one of the four points (±1, 0),
(0, ±1).

Before proving the lemma, we notice that the boundary ∂B1(0, H) of the unit
ball described in the statement has a corner at each of the four points (±ξ, ±ξ),
ξ = 2 (

√
2 − 1). To see this, let us consider the parabola γ with focus at O and

vertex at (1, 0). This line is the graph of the function ξ1(ξ2) = 1 − 1
4 ξ

2
2 whose

derivative satisfies ξ′1(ξ) = − 1
2 ξ = 1 −

√
2 > −1. Hence γ is not orthogonal to

the straight line ξ1 = ξ2 at the point of intersection (ξ, ξ), and consequently the
boundary ∂B1(0, H) must have a corner there. Thus, the dual norm H of the given
norm H0 does not belong to the class C1(R2 \ {O}).

Figure 2. The ball B1(0, H0) (left) is smooth, its dual (right) is not.

Proof of Lemma A.2. Let us describe the boundary of the ball B1(0, H) in para-
metric form. Passing to polar coordinates ρ, ϑ related to ξ1, ξ2 by ξ1 = ρ cosϑ,
ξ2 = ρ sinϑ, for every ϑ ∈ (−π4 ,

π
4 ) we compute the Euclidean norm ρ(ϑ) = |vϑ|

of the unique vector vϑ = ρ(ϑ) (cosϑ, sinϑ) satisfying H(vϑ) = 1. To this purpose
it is enough to locate the point Pϑ ∈ ∂B1(0, H0) where the outer normal ν equals
(cosϑ, sinϑ): indeed, due to (2.7), we have H(DH0(Pϑ)) = 1 and therefore we may
take vϑ = DH0(Pϑ). Recalling that H0(Pϑ) = 1, the radial derivative ∂H0/∂r,

r =
√
x2

1 + x2
2 , is easily computed at Pϑ by (2.5) and (2.6):

∂H0

∂r
(Pϑ) = |Pϑ|−1.

Now the construction of B1(0, H0) comes into play: since the origin O and the
point Pϑ belong to the circumference of radius 1

2 centered at ( 1
2 , 0), by a classical

theorem in Euclidean geometry we get that the line segment OPϑ makes an angle
α = ϑ/2 with the x1-axis (see Figure 3), and therefore |Pϑ| = cosα = cos(2ϑ).
Finally, since the radial derivative is the projection of the gradient in the radial
direction, we have

∂H0

∂r
(Pϑ) = |DH0(Pϑ)| cosα,

and hence

|DH0(Pϑ)| = 1

cosα

∂H0

∂r
(Pϑ) =

2

1 + cosϑ
.
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Figure 3. Finding the Euclidean norm of DH0(Pϑ)

Thus, the components ξ1(ϑ), ξ2(ϑ) of vϑ are given by
ξ1(ϑ) =

2 cosϑ

1 + cosϑ
;

ξ2(ϑ) =
2 sinϑ

1 + cosϑ
.

The parametric equations given above describe the parabola whose Cartesian equa-
tion is ξ1 = 1− 1

4 ξ
2
2 , which passes through the points (0, ±2 (

√
2 −1)) and has focus

at the origin and vertex at (1, 0). The remaining parts of ∂B1(0, H) are managed
similarly, and the lemma follows.
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