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Abstract. The variety of (pointed) residuated lattices includes a vast proportion of the
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MV-algebras, or De Morgan monoids. Among the outliers, one counts orthomodular lat-

tices and other varieties of quantum algebras. We suggest a common framework—pointed

left-residuated �-groupoids—where residuated structures and quantum structures can all

be accommodated. We investigate the lattice of subvarieties of pointed left-residuated �-

groupoids, their ideals, and develop a theory of left nuclei. Finally, we extend some parts of

the theory of join-completions of residuated �-groupoids to the left-residuated case, giving

a new proof of MacLaren’s theorem for orthomodular lattices.
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1. Introduction

One of the outstanding achievements of algebraic logic, understood as a
research programme at the crossroads of universal algebra and mathematical
logic, is the discovery of profound connections between substructural logics
and residuated structures, through which enormous progress has been made
in the investigations of both domains [33,43,45,47]. The availability of such
a powerful and effective framework has allowed researchers to realise that
classes of algebraic structures that were previously thought to have little in
common, such as �-groups, Heyting algebras, De Morgan monoids, and MV-
algebras, as well as logics with very different origins and motivations, like
intuitionistic, linear, relevant, and fuzzy logics, could be subsumed under a
common conceptual and methodological umbrella, which ultimately revealed
unsuspected similarities between their respective theories. It is by now no
exaggeration to say that virtually every alternative to classical logic, and a
vast majority of the so-called “algebras of logic”, can be incorporated into
this schema.
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An exception, however, strikes the eye—quantum logic and their algebras
[5,12,28,30] really don’t seem to fit in the picture. Quantum structures like
orthomodular lattices have, generally speaking, no pair of operations that
behaves like a residuated pair. Correspondingly, implications in quantum
logics lack the minimal requirements that would entitle them to be regarded
as substructural conditionals [28, Ch. 8]. This state of affairs is unfortunate
in so far as it hinders the application to quantum logics and quantum alge-
bras of results, tools and techniques that have proved successful in the area
of residuated structures and substructural logics.

To overcome this difficulty, all we need to do is to zoom out a little more.
Although orthomodular lattices make no instance of residuated lattices, or
even of residuated �-groupoids, it has been recently observed that they can
be turned into a variety of left-residuated �-groupoids having rather strong
properties [22]. Similar results can be obtained for other classes of algebras
of concern to quantum logicians (see e.g. [8]). It is natural, then, to explore
the extent to which the conspicuous amount of information available on
residuated �-groupoids can be extended to the left-residuated case, with an
eye to encompassing both residuated structures and quantum structures,
and consequently both substructural and quantum logics, into a common
framework.

By starting an exploration of this path, we hope to provide evidence to
the effect that the use of methods from the domain of residuated struc-
tures can provide fresh insights that might eventually lead to new ap-
proaches to long-standing open problems in quantum logic. For example, it
is well-known that orthomodular lattices fail to be closed w.r.t. Dedekind–
MacNeille completions, but whether orthomodular lattices admit comple-
tions has been an open question for several decades [12]. However, there is
a well-rehearsed theory of Dedekind–MacNeille completions of residuated
partially ordered groupoids, which uses significant portions of the theory
of nuclei on residuated po-groupoids [34,35], as well as algebraic proof the-
ory techniques [24,25]. In particular, the identities that axiomatise a given
variety V of residuated �-groupoids can be placed within a hierarchy of com-
plexity classes (the substructural hierarchy [24,25]), somewhat reminiscent of
the arithmetical hierarchy in recursion theory. Properties such as whether
or not V is closed under Dedekind–MacNeille completions, or whether or
not this closure property is equivalent to V’s admitting completions, depend
on the placement of its axioms in this hierarchy. Extending the results in
[24,25,34,35] to the left-residuated case would seem to open a promising
avenue for making some headway on this problem. In this paper, we intend
to lay the foundations for such an approach.
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Let us now summarise the discourse of the paper. In Section 2 we dispatch
all the necessary preliminaries on residuated structures, quantum structures,
and completions of ordered structures. In Section 3 we introduce the vari-
ety PLRG of pointed left-residuated lattice-ordered groupoids, which includes
both the reducts with a single residual of pointed residuated lattices (in
particular, all pointed commutative residuated lattices) and orthomodular
groupoids, a term equivalent version of orthomodular lattices. After going
over their elementary properties, we study some important subvarieties of
PLRG, arriving at an atlas that comprises \-free reducts of pointed resid-
uated �-groupoids, hence in particular of pointed residuated lattices and
members of their subvarieties, as well as term equivalent incarnations of
several classes of algebras of quantum logic, including basic algebras, lat-
tice effect algebras, and orthomodular lattices. Equational bases for some
notable subvarieties relative to PLRG are duly provided. We observe that
PLRG is an arithmetical and 1-ideal determined variety, and we characterise
1-classes of congruences in a large subclass of such. We also develop a the-
ory of left nuclei for these structures, modelled after the theory of nuclei for
residuated �-groupoids [33,45]. Finally, inspired by the approach in [35], in
Section 4 the ideal completion and the Dedekind–MacNeille completion of
an orthomodular groupoid L are obtained as left nucleus-systems on a left
residuated �-groupoid over the powerset of L.

2. Preliminaries

For universal algebraic terminology and notation we generally follow [14],
except where indicated otherwise. Given an algebra A, with a slight abuse
we denote by Con (A) both the lattice of congruences of A and its universe.

Throughout this paper, an ordered structure is a first-order structure
where one of the relations is a partial order. If P is an ordered structure, we
denote by Po is its order reduct; if L is a lattice-ordered algebra, its lattice
reduct will be referred to as Ll.

If P is an ordered structure with order reduct Po = (P,≤), we set, for
any X ⊆ P :

UP (X) = {a ∈ P : a ≥ x, for all x ∈ X} ;

LP (X) = {a ∈ P : a ≤ x, for all x ∈ X} ;

↑P (X) = {a ∈ P : a ≥ x, for some x ∈ X} ;

↓P (X) = {a ∈ P : a ≤ x, for some x ∈ X} .



D. Fazio et al.

Brackets are dropped when X is a singleton. All subscripts and super-
scripts are likewise omitted, both in these notations and elsewhere, whenever
this is not prejudicial to comprehension.

2.1. Residuated Structures

We cannot even remotely hope to give an account of residuated lattices, or
of residuated �-groupoids, that makes the present paper self-contained. We
just recall some definitions and elementary properties, referring the reader
to [33,43,45] for extensive treatments of the topic and for properties of these
algebras that will be used with no special mention in the sequel.

A binary operation · on a partially ordered set (P,≤) is said to be resid-
uated provided there exist binary operations \ and / on P such that for all
a, b, c ∈ P ,

(Res) a · b ≤ c if and only if a ≤ c/b iff b ≤ a\c.

We refer to the operations \ and / as the right residual and left residual
of ·, respectively. We adopt the convention that, in the absence of paren-
theses, · binds stronger than the other operations symbols. Any statement
about residuated structures has a “mirror image” obtained by reading terms
backwards (i.e., replacing x · y by y · x and interchanging x/y with y\x).

If · is an (associative) operation with two-sided unit 1 and the partial or-
der ≤ is a lattice order, the resulting structure L = (L,∧,∨, ·, \, /, 1) is called
a residuated �-groupoid, resp. a residuated lattice. A pointed residuated �-
groupoid, resp. a pointed residuated lattice is an algebra L=

(
L,∧,∨, ·,\,/, 0, 1

)

such that the reduct (L,∧,∨, ·, \, /, 1) is a residuated �-groupoid (a residu-
ated lattice); in other words, nothing is assumed about the additional con-
stant 0. The existence of both residuals for product implies rather strong
properties, some of which are listed below, primarily in view of a comparison
with the left-residuated structures examined below.

Proposition 1. The following identities and quasi-identities (and their mir-
ror images) hold in any (pointed) residuated lattice.

(i) (x\y) · z ≤ x \ y · z

(ii) 1\x ≈ x

(iii) x ≤ y ⇒ z · x ≤ z · y and x ≤ y ⇒ x · z ≤ y · z

(iv) x ≤ y ⇒ y\z ≤ x\z and x ≤ y ⇒ z\x ≤ z\y

(v) (x\y) · (y\z) ≤ x\z

(vi) x · y \ z ≈ y\(x\z)
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(vii) x · (x\1) \ 1 ≈ 1

(viii) x\(y/z) ≈ (x\y)/z

Proposition 2. The classes of (pointed) residuated �-groupoids and
(pointed) residuated lattices are finitely based varieties in their respective
signatures, for the residuation conditions (Res) can be replaced by the fol-
lowing identities (and their mirror images):

(i) y ≤ x\ (x · y ∨ z)

(ii) x · (y ∨ z) ≈ x · y ∨ x · z

(iii) y · (y\x) ≤ x.

2.2. Quantum Structures

In the standard Birkhoff-von Neumann approach to quantum logic, quan-
tum events (or properties) are mathematically represented by projection
operators on a complex separable Hilbert space. If H is a Hilbert space and
Π (H) is the set of all projection operators on H, the structure

(Π (H) ,∧,∨,′ , 0, 1) ,

where 0, resp. 1 are the projections onto the one-element, resp. total sub-
spaces, (PX)′ is the projection onto the subspace X⊥ orthogonal to X and
PX ∨ PY = P

(X∪Y )⊥⊥ , is a canonical example of an orthomodular lattice, a
structure which is defined hereafter.

Definition 3. (i) An ortholattice is an algebra L = (L,∧,∨,′ , 0, 1) of type
(2, 2, 1, 0, 0) such that (L,∧,∨, 0, 1) is a bounded lattice and ′ is an ortho-
complementation on L, namely an antitone involution s.t. a ∧ a′ = 0 for all
a ∈ L.

(ii) An ortholattice L is an orthomodular lattice if and only if for all a, b ∈ L
such that a ≤ b, we have that b = (b ∧ a′) ∨ a.

The orthomodular property, for an ortholattice, can be characterised in
several equivalent ways. We list some of them in the next theorem, which
shows, among other things, that the class of all orthomodular lattices is a
variety.

Theorem 4. Let L be an ortholattice. The following conditions are equiva-
lent:

(i) L is orthomodular;

(ii) for all a, b ∈ L, a ∧ ((b ∧ a) ∨ a′) ≤ b;
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(iii) for all a, b ∈ L, a ∨ b = ((a ∨ b) ∧ b′) ∨ b;

(iv) for all a, b ∈ L, if a ≤ b and a′ ∧ b = 0, then a = b.

Proof. See e.g. [7, Ch. 18].

It would be absolutely pointless to try and offer a précis of the theory
of orthomodular lattices in the present context. The reader is referred to
[5] for whatever concepts or results are not covered in this short subsection.
We will only provide very basic information on the commuting relation, of
crucial importance for this paper.

Definition 5. Given an orthomodular lattice L and a, b ∈ L, a is said to
commute with b in case (a ∧ b) ∨ (a′ ∧ b) = b.

We flag some known facts about the commuting relation that will be put
to good use in this paper (items (iii) and (iv) are known as Kröger’s Lemma
[5, Thm. 6.1] and the Gudder–Schelp Theorem [4,37], respectively).

Lemma 6. Let L be an orthomodular lattice, and let a, b, c ∈ L.

(i) The commuting relation is reflexive and symmetric.

(ii) If a commutes with b, then it commutes with b′, b ∨ c and b ∧ c.

(iii) If b commutes with c, then (((a ∨ b′) ∧ b) ∨ c′)∧c = (a ∨ b′)∧(b ∨ c′)∧c.

(iv) If b commutes with c and a commutes with b ∧ c, then a ∨ b′ commutes
with c.

(v) a commutes with b if and only if (a ∨ b′) ∧ b ≤ a.

The next celebrated result is one of the most useful tools for practicioners
of the field:

Theorem 7. (Foulis–Holland) [12, Prop. 2.8] If L is an orthomodular lattice
and a, b, c ∈ L are such that a commutes both with b and with c, then the set
{a, b, c} generates a distributive sublattice of L.

Projection operators are not the largest set of operators on a Hilbert
space that can be assigned a probability value according to the Born rule.
Within the unsharp approach to quantum logic [28], effects of a space H—
bounded linear operators E on H such that, for any density operator ρ
on H, Tr (ρE) ∈ [0, 1]—have been considered more adequate mathematical
representatives of the notions of a quantum event and of a quantum property.
Several algebraic abstractions of the concrete model of effects on a Hilbert
space have been introduced in the literature. Chief among them are effect
algebras [32,36], partial algebras on which a burgeoning literature is by now
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available (see e.g. [30, Ch. 1]). They will not be directly considered in what
follows, unlike a number of structures that we quickly review hereafter.

Definition 8. [16,17] A basic algebra is an algebra A = (A,⊕,′ , 0) of type
(2, 1, 0) satisfying the following identities:

(i) x ⊕ 0 ≈ x;

(ii) x′′ ≈ x;

(iii) (x′ ⊕ y)′ ⊕ y ≈ (y′ ⊕ x)′ ⊕ x;

(iv) (((x ⊕ y)′ ⊕ y)′ ⊕ z)′ ⊕ (x ⊕ z) ≈ 0′.

It can be proved that lattice effect algebras are term equivalent to basic
algebras of a certain sort [17]. In fact, given a lattice effect algebra A =
(A,∧,∨, +,′ , 0), the algebra B(A) = (A,⊕,′ , 0) obtained from A by setting
x ⊕ y = (x ∧ y′) + y is a basic algebra satisfying the effect condition

x ≤ y′ & x ⊕ y ≤ z′ ⇒ (x ⊕ y) ⊕ z ≈ x ⊕ (z ⊕ y). (ec)

In fact, if a ≤ b′ then a ⊕ b = a + b and a ⊕ b ≤ c′ implies

(a ⊕ b) ⊕ c = (a + b) + c = a + (c + b) = a ⊕ (c ⊕ b),

by general properties of lattice effect algebras. Moreover, any basic algebra
B = (B,⊕,′ , 0) satisfying (ec) can be converted into a lattice effect algebra
E(B) = (B,∧,∨, +,′ , 0) by letting x+y = x⊕y be defined whenever x ≤ y′.
It can be proven that B(E(B)) = B and E(B(A)) = A, for any basic algebra
B and any lattice effect algebra A, respectively.

2.3. Completions of Ordered Structures

The next definitions and results, except when credit is explicitly indicated,
belong to the folklore of order theory; our presentation of them is heavily in-
debted to [35]. For further information on completions of ordered structures
see [41,53].

Definition 9. Given two ordered structures P and L of the same type, we
say that L is a join-extension of P, or that P is join-dense in L, if the order
of L restricts to that of P and, moreover, every element of L is a join of
elements of P. If L is a join-extension of P whose partial order is a complete
lattice, L is said to be a join-completion of P.

In general, it is not assumed that the algebra reduct of P is a subalgebra
of that of L. The concepts of a meet-extension and a meet-completion are
defined dually.
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Ordered structures, of course, include posets as limit cases. We have the
following:

Lemma 10. A join-extension L of a poset P preserves all existing meets in

P. That is, if X ⊆ P and
P∧

X exists, then
L∧

X exists and
P∧

X =
L∧

X.
Dually, a meet-extension of P preserves all existing joins in P.

The next result places some constraints on join-completions of a given
poset P. If one such join-completion K is known and P ⊆ L ⊆ K, then L
is the universe of a join-completion of P if and only if it arises as the image
of a closure operator on K:

Proposition 11. Let P be a poset, let K be a join-completion of P, and let
L be a subset of K that contains P . The poset L, with respect to the induced
partial order from K, is a join-completion of P if and only if it is a closure
system of K.

Recall that any poset P is order-isomorphic to the poset ({↓ x : x ∈ P} ,⊆)
of the principal order-ideals of P. The map f (a) =↓ a embeds P into the
complete lattice L(P) of all its order-ideals, which is readily seen to be a
join-completion of P, called the ideal completion of P. Moreover, each join-
extension L of P is isomorphic to ({↓ x ∩ P : x ∈ L} ,⊆), which is a subposet
of L(P). Taking into account Proposition 11, we obtain that:

Proposition 12. Let P be a poset.

(i) L(P) is, up to isomorphism, the largest join-completion of P.

(ii) The join-completions of a poset P are, up to isomorphism, the closure
systems of L(P) containing P , with the induced order.

(iii) L(P) is the unique algebraic and dually algebraic distributive lattice
whose poset of completely join-prime elements is isomorphic to P.

The Dedekind–MacNeille completion N (P) of P is the closure system of
L(P) determined by the closure operator sending any X ⊆ P to LP (UP(X)).
Instead of {X ⊆ P : LP (UP(X)) = X}, we write N (P ).

Proposition 13. Let P be a poset.

(i) N (P) is, up to isomorphism, the smallest join-completion of P [52,
Thm. 8.27].

(ii) N (P) is the only join- and meet-completion of P [3].

(iii) Any existing meets and joins in P are preserved in N (P).
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Observe that, in Proposition 13, item (iii) follows from (ii) and Lemma
10. However, the largest join-completion with the property of Proposition
13.(iii) is not N (P), but the so-called Crawley completion CR(P), consisting
of all order-ideals of P that are closed with respect to any existing joins of
their elements [50,51]. In general, the inclusion N (P) ⊆ CR(P) is proper.

Given an ordered structure Q, it is sometimes possible to expand the
Dedekind–MacNeille completion N (Qo) of its order reduct Qo to an or-
dered structure N (Q) of the same type as Q, in such a way that the
order-embedding of Qo into N (Qo) also preserves the additional operations
and relations. This may happen, in particular, if Q is a (lattice-ordered)
algebra—yet, N (Q) need not satisfy the same identities as Q. As a mat-
ter of fact, the Dedekind–MacNeille construction is notoriously inefficient in
terms of preserving identities. Classes of ordered structures that are closed
under Dedekind–MacNeille completions are few and far between. Boolean
algebras and ortholattices are two cases in point.

Theorem 14. Let L be an ortholattice.

(i) The Dedekind–MacNeille completion N (Lo) of Lo can be expanded to
an ortholattice N (L), by defining the involution as:

X ′ = {x′ : x ∈ U (X)} .

(ii) The Dedekind–MacNeille embedding of Lo into N (Lo) is also an em-
bedding of Ll into N (Ll) that preserves the involution, and thus it is
an embedding of L into N (L).

(iii) [44] N (L) is isomorphic to the algebra
(
C (L) ,∩,∨,⊥ , {0} , L

)
, where:

for any X ⊆ L, X⊥ = {a ∈ L : a ≤ x′ for all x ∈ X} ;

C (L) =
{
X ⊆ L : X = X⊥⊥}

;

for any X,Y ∈ C (L) , X ∨ Y = (X ∪ Y )⊥⊥ .

The previous result holds for all ortholattices, hence in particular for or-
thomodular lattices. Therefore, the Dedekind–MacNeille completion of an
orthomodular lattice is always an ortholattice, which however need not be
orthomodular. For a counterexample, consider the orthomodular lattice of
finite-dimensional or cofinite-dimensional subspaces of a metrically incom-
plete pre-Hilbert space.

The theory of completions of orthomodular lattices abounds in partial
positive results as well as in intriguing open problems. Prominent among
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the latter is whether an arbitrary orthomodular lattice can always be em-
bedded into a complete one, with no additional request whatsoever on the
embedding. We list hereafter a theorem on particular classes of orthomodu-
lar lattices that are closed w.r.t. Dedekind–MacNeille completions. Item (i)
is due to Harding [40], while item (ii) had been previously proved by Bruns,
Greechie, Harding, and Roddy [11].

Theorem 15. (i) Let V be a variety of orthomodular lattices generated by
a class with a finite upper bound on the length of their chains. Then V is
closed w.r.t. Dedekind–MacNeille completions.

(ii) In particular, V is closed w.r.t. Dedekind–MacNeille completions if it
is generated by a single finite algebra.

3. Pointed Left-Residuated l-Groupoids

In this section, we start by collecting a few trivia on pointed left-residuated
�-groupoids, some of which are simple observations. We then try to expand
the boundaries of their structure theory in three directions: the study of the
lattice of subvarieties, a characterisation of their ideals, and an investigation
into left nuclei, certain closure operators on their order reducts that will play
a crucial role in the following section.

3.1. Definition and Basic Properties

The next definition is a modification of a definition in [22].

Definition 16. A left-residuated �-groupoid is an algebra

L = (L,∧,∨, ·,→, 1) ,

of type (2, 2, 2, 2, 0), such that:

• (L,∧,∨) is a lattice;

• (L, ·, 1) is a left-unital groupoid (a groupoid with a left unit 1);

• the condition a·b ≤ c if and only if a ≤ b → c is satisfied for all a, b, c ∈ L.

A pointed left-residuated �-groupoid is an algebra

L = (L,∧,∨, ·,→, 0, 1) ,

of type (2, 2, 2, 2, 0, 0), such that the reduct (L,∧,∨, ·,→, 1) is a left-residua-
ted �-groupoid.
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Observe that in the latter definition no condition is assumed about the
constant 0. Examples of (pointed) left-residuated �-groupoids that immedi-
ately spring to mind include \-free reducts (namely, reducts with just one
residual) of (pointed) residuated �-groupoids. If product is associative and
1 is a two-sided unit, Definition 16 specialises to \-free reducts of (pointed)
residuated lattices [33,45]. Here are two totally unrelated examples, which
we owe to Antonino Salibra and Tomasz Kowalski (personal communica-
tions), respectively.

Example 17. In λ-calculus, a graph model [13,48] is a pair (A, i), where A
is an infinite set and i : ℘fin (A)×A → A is an injective map. For X,Y ⊆ A,
set:

X · Y = {x ∈ A : i (Z, x) ∈ X for some finite Z ⊆ Y } ;

X → Y ={x∈A : x /∈ cod (i)} ∪ {i (Z, y) : y∈Y } ∪ {i (W,x) : W �fin X} ;

1 = {i (X,x) : x ∈ X} .

Then (℘ (A) ,∩,∪, ·,→, 1) is a left-residuated �-groupoid.

Example 18. The relevant logic E was introduced by Anderson and Bel-
nap [1] to model the notion of entailment. Its attendant algebras form a
variety that is term equivalent to a variety of pointed left-residuated �-
groupoids. Namely, let an E-algebra be a pointed left-residuated �-groupoid
L = (L,∧,∨, ·,→, 0, 1) satisfying the identities

• ((x → y) · (z → x)) · z ≤ y;

• ((x → y) · (y → z)) · x ≤ z;

• x ≤ x · x;

• (x → x) → y ≤ y.

An example of a non-associative E-algebra which is not a reduct of a
residuated groupoid and has no right unit is given by the 4-element chain
⊥ < 1 < a < �, where product is defined as follows:

· ⊥ 1 a �
⊥ ⊥ ⊥ ⊥ ⊥
1 ⊥ 1 a �
a ⊥ 1 a �
� ⊥ 1 � �

Non-pointed left-residuated �-groupoids will not be further considered
in this paper. We employ the same notational shortcuts that are already
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in force for residuated lattices (Section 2). In particular, remember that
products bind stronger than implications, joins or meets.

Lemma 19. Let L be a pointed left-residuated �-groupoid. Then for all X ∪
{a} ⊆ L, whenever

∨
X and

∧
X esist, we have that:

(i)
(∨

X
)

· a =
∨

x∈X

(x · a);

(ii) a →
∧

X =
∧

x∈X

(a → x).

Proof. It follows from the fact that for any a ∈ L, the pair (ϕa (x) , ψa (y)),
where ϕa (x) = x · a and ψa (y) = a → y, is a residuated pair.

The proof of the following easy lemma is left to the reader. Observe that
in a generic pointed left-residuated �-groupoid, product preserves the order
only on the right-hand side, unlike in the case of residuated �-groupoids.
Therefore, although pointed left-residuated �-groupoids are groupoids and
are lattice-ordered, they need not be lattice-ordered groupoids. Similarly,
product need not distribute on joins from the left-hand side.

Lemma 20. Let L be a pointed left-residuated �-groupoid, and let a, b, c ∈ L.
Then: (i) (a → b) · a ≤ b; (ii) if a ≤ b, then a · c ≤ b · c; (iii) if a ≤ b, then
c → a ≤ c → b.

We show that pointed left-residuated �-groupoids form a variety.

Lemma 21. Let L = (L,∧,∨, ·,→, 1, 0) be an algebra of type (2, 2, 2, 2, 0, 0).
Then L is a pointed left-residuated �-groupoid if and only if the following
hold:

(i) (L,∧,∨) is a lattice;

(ii) (L, ·, 1) is a left-unital groupoid;

(iii) the following identities hold:

x ≤ y → (x · y ∨ z), (l-res1)

(x ∧ (y → z)) · y ≤ z. (l-res2)

Proof. Suppose that L is a pointed left-residuated � groupoid. Since a ·b ≤
a · b ∨ c, we have that a ≤ b → (a · b ∨ c), while a ∧ (b → c) ≤ b → c implies
(a∧ (b → c)) · b ≤ c. Conversely, assume that L satisfies conditions (1)− (3).
If a · b ≤ c then a ≤ b → (a · b ∨ c) = b → c. The converse can be proved
similarly, using (l-res2).
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In what follows, we will denote by PLRG the variety of pointed left-
residuated �-groupoids. Next, we examine some important subclasses of
PLRG.

Definition 22. A pointed left-residuated �-groupoid L is said to be:

• unital, if 1 is a two-sided unit for (L, ·, 1);

• 1-cyclic, if a · b ≤ 1 implies b · a ≤ 1 for all a, b ∈ L;

• involutive, if (a → 0) → 0 = a for all a ∈ L;

• strongly involutive, if a → b = (b → 0) · a → 0 for all a, b ∈ L;

• antitone, if a ≤ b implies b → 0 ≤ a → 0 for all a, b ∈ L;

• left-monotonic, if a ≤ b implies c · a ≤ c · b for all a, b, c ∈ L;

• left-distributive, if a · (b ∨ c) = a · b ∨ a · c for all a, b, c ∈ L;

• integral, if 1 is the top element of (L,∧,∨);

• 0-bounded, if 0 is the bottom element of (L,∧,∨);

• strongly idempotent, if a · (a ∨ b) = a for all a, b ∈ L;

• divisible, if (a → (a ∧ b)) · a = a ∧ b for all a, b ∈ L;

• Sasakian, if a · b = (a ∨ (b → 0)) ∧ b for all a, b ∈ L;

• →-Sasakian, if a → b = (b ∧ a) ∨ (a → 0) for all a, b ∈ L.

By Lemma 19, if L is integral, then it is divisible if and only if for all
a, b ∈ L we have that (a → b)·a = a∧b. Since we will not consider divisibility
for non-integral members of PLRG, hereafter by divisibility we will mean
the property that (a → b) · a = a ∧ b for all a, b ∈ L.

Strong idempotency is a rather powerful assumption. Indeed, we show
that it implies several of the properties in the previous list.

Lemma 23. Every strongly idempotent member of PLRG L is: (i) integral;
(ii) unital; (iii) divisible.

Proof. (i) By strong idempotency, 1 = 1 · (1 ∨ a) = 1 ∨ a.
(ii) By (i) and strong idempotency, a · 1 = a · (a ∨ 1) = a.
(iii) Let a, b, c ∈ L. It will suffice to prove the nontrivial inequality a∧b ≤

(a → b) · a, since the converse inequality easily follows from integrality and
Lemma 20.(i)–(ii). Observe that a ∧ b = (a ∧ b) · ((a ∧ b) ∨ a) = (a ∧ b) · a,
by strong idempotency. Thus (a ∧ b) · a = a ∧ b ≤ b, whence a ∧ b ≤ a → b.
By Lemma 20.(ii), a ∧ b = (a ∧ b) · a ≤ (a → b) · a.
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We now recall a construction that will be crucial in the following sections.
Let L =(L,∧,∨, ·,→, 0, 1) be a pointed left-residuated �-groupoid. It is well-
known (see e.g. [34, Lm. B1]) that the structure

P (L) =
(
℘ (L) ,∩,∪, ·P(L),→P(L), {0} , {1}

)
,

where for X,Y ⊆ L,

X ·P(L) Y = {a · b : a ∈ X, b ∈ Y } ,

X →P(L) Y =
{

c : {c} ·P(L) X ⊆ Y
}

,

is also a pointed left-residuated �-groupoid. We codify this fact and a few
easy additional properties in the next

Lemma 24. If L is a pointed left-residuated �-groupoid, then P (L) is a
left-monotonic, antitonic pointed left-residuated �-groupoid. Unitality is pre-
served in the construction.

3.2. Some Notable Subvarieties

In this subsection we undertake a preliminary study of the lattice of subva-
rieties of PLRG. The resulting atlas includes, perhaps for the first time, the
main varieties of residuated algebras and of algebras of quantum logic in a
common framework. The first subvariety we focus on is a term equivalent
counterpart of basic algebras.

Definition 25. A pointed left-residuated �-groupoid L = (L,∧,∨, ·,→, 1, 0)
is a basic groupoid if it is unital, divisible and strongly involutive.

Given a basic algebra A, if we put x · y = (x′ ⊕ y′)′, x → y = y ⊕ x′, and
1 = 0′, then L(A) = (A,∧,∨, ·,→, 0, 1) is a basic groupoid [8]. Conversely,
any basic groupoid can be converted into a basic algebra B(L) = (L,⊕,′ , 0)
by setting x ⊕ y = (x′ · y′)′. Moreover, B(L(A)) = A and L(B(L)) = L [21].
In view of the above considerations, we have the following:

Lemma 26. Basic groupoids are term equivalent to basic algebras.

We denote by B the subvariety of PLRG corresponding to basic groupoids.
We also observe that a basic algebra B satisfies (ec) from Section 2.2 if and
only if L(B) satisfies the following effect groupoid quasiequation:

x ≤ y & y → x ≤ z ⇒ z → (y → x) ≈ z · y → x. (eg)

Indeed, for all a, b ∈ L(B), we have that a⊕ b = a⊕ b′′ = b′ → a. Therefore,
under the indicated assumptions, if a, b, c ∈ L(B),

c → (b → a) = (a ⊕ b′) ⊕ c′ = a ⊕ (c′ ⊕ b′) = c · a → b.
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Conversely, assume that a ≤ b′ and a⊕b ≤ c′ in B. Then one has b′ → a ≤ c′

in L(B). By (eg), it follows that c′ → (b′ → a) = c′ · b′ → a. Translating
both sides of the preceding equality, one has (a ⊕ b) ⊕ c = a ⊕ (c ⊕ b).
Finally, note that (eg) is equivalent to the following identity (hereafter de-
noted by (eg) as well):

(x · (x′ ∨ y)) · ((x′ ∨ y) ∨ z → x′) ≈ x · (((x′ ∨ y) ∨ z → x′) · (x′ ∨ y)).

Therefore, we conclude that lattice effect algebras are term equivalent to the
subvariety LEA of basic groupoids axiomatised relative to B by (eg).

Since any orthomodular lattice induces a lattice effect algebra, it seems
reasonable to surmise that a handy characterisation of this class in the
context of left-residuated �-groupoids can be achieved. This result was first
obtained by Chajda and Länger [22].
Definition 27. A pointed left-residuated �-groupoid L = (L,∧,∨, ·,→, 1, 0)
is an orthomodular groupoid if it is involutive, antitone, strongly idempotent,
Sasakian and →-Sasakian.

Let A= (A,∧,∨,′ , 0, 1) be an orthomodular lattice. The algebra f (A) =
(A,∧,∨, ·,→, 0, 1), where

x · y = (x ∨ y′) ∧ y (Sasaki projection);

x → y = (y ∧ x) ∨ x′ (Sasaki hook),

is an orthomodular groupoid. Conversely, given an orthomodular groupoid
L = (L,∧,∨, ·,→, 0, 1), the algebra g (L) = (L,∧,∨,′ , 0, 1), where x′ = x →
0, is an orthomodular lattice. Further, the correspondences f and g are
mutually inverse. Thus, we have:
Theorem 28. [22] Orthomodular groupoids are term equivalent to ortho-
modular lattices.

The variety of orthomodular groupoids will be denoted by OG. In what
follows, Theorem 28 will be used without special mention to speed up com-
putations. In other words, we will prove our arithmetical results in whatever
signature (ortholattices or pointed left-residuated �-groupoids) we find most
convenient.

Orthomodular groupoids, in general, fail left-monotonicity. It is easy to
see that L ∈ OG is left-monotonic if and only if g (L) is Boolean (cf. [12]).
If g (L) is Boolean, then L satisfies x · y ≈ x ∧ y, whence left-monotonicity
follows. Conversely, if L is left-monotonic, then by integrality and unitality
a ≤ 1 implies b · a ≤ b · 1 = b and the latter inequality implies that g (L) is
Boolean. A restricted form of left-monotonicity, though, holds in OG. This is
but one of a bunch of useful observations that we collect in the next lemma.
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Lemma 29. Let L be an orthomodular groupoid, and let a, b, c ∈ L. Then:
(i) a · (a → b) ≤ b; (ii) a · b ≤ b; (iii) if a commutes with b, then a · b ≤ c if
and only if b ≤ a → c; (iv) if a commutes with b and b ≤ c, then a · b ≤ a · c;
(v) a → a · b = a → b = a → (a ∧ b); (vi) b → a · b = a ∨ (b → 0).

Proof. We confine ourselves to (v) and (vi).
(v) Since a · b ≤ b by (ii), by Lemma 20.(iii) a → a · b ≤ a → b. Since by

Lemma 23.(iii) (a → b) · a ≤ a ∧ b, we also have that a → b ≤ a → (a ∧ b).
Finally, a ∧ b ≤ (a ∨ (b → 0)) ∧ b = a · b, so by Lemma 20.(iii) a → (a ∧ b) ≤
a → a · b.

(vi) b → a · b = (a · b ∧ b) ∨ (b → 0) = ((a ∨ (b → 0)) ∧ b) ∨ (b → 0) =
a ∨ (b → 0).

Actually, Chajda and Länger’s axiomatisation of OG can be streamlined
in different ways. We collect these alternative sets of postulates in the fol-
lowing

Theorem 30. Let L = (L,∧,∨, ·,→, 1, 0) be a pointed left-residuated �-
groupoid. The following are equivalent:

(i) L is orthomodular;

(ii) L is strongly idempotent and strongly involutive;

(iii) L is unital, Sasakian and strongly involutive.

Proof. (i) implies (ii). We only need to prove that L is strongly involutive.
This is immediate if we use Theorem 28; however, we include here a direct
proof. For a, b ∈ L, we use involutivity and antitonicity, plus the fact that
L is Sasakian and →-Sasakian, and argue as follows:

((a → 0) · b) → 0 = (((a → 0) ∨ (b → 0)) ∧ b) → 0

= (((a → 0) → 0) ∧ ((b → 0) → 0)) ∨ (b → 0)

= (a ∧ b) ∨ (b → 0)

= b → a.

(ii) implies (iii). By Lemma 23.(ii) every strongly idempotent L ∈ PLRG

is unital, whence in particular a · 1 ≤ a implies a ≤ 1 → a. Thus, by strong
involutivity, a = 1 → a = ((a → 0) · 1) → 0 = (a → 0) → 0. Moreover,
suppose that a ≤ b = (b → 0) → 0, whence a · (b → 0) → 0 ≥ 1. Applying
strong involutivity, (b → 0) → (a → 0) ≥ 1, whence b → 0 ≤ a → 0. Thus,
strong involutivity and unitality jointly imply involutivity and antitonicity.
By strong idempotency, ((a → 0) ∧ b) · b = (a → 0) ∧ b ≤ a → 0, whence
(a → 0) ∧ b ≤ b → (a → 0) and thus by strong involutivity, involutivity and
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antitonicity a · b = (b → (a → 0)) → 0 ≤ ((a → 0) ∧ b) → 0 = a ∨ (b → 0).
Moreover, by Lemma 23.(i) and Lemma 20.(ii) we have a · b ≤ b and so
a ·b ≤ (a ∨ (b → 0))∧b. Conversely, note that (a ∨ (b → 0))∧b ≤ a∨(b → 0);
thus, by strong idempotency, Lemma 19, Lemma 20.(ii)–(iii) and Lemma 23,

(a ∨ (b → 0)) ∧ b = ((a ∨ (b → 0)) ∧ b) · b ≤ (a ∨ (b → 0)) · b
= a · b ∨ ((b → 0) · b) ≤ a · b ∨ 0 = a · b.

(iii) implies (i). We must prove that L is strongly idempotent and →-
Sasakian; this will suffice for our claim, by the proof of the previous item.
We proved on that occasion that strong involutivity and unitality jointly
imply involutivity and antitonicity. Thus a → b = (b → 0) · a → 0 =
(((b → 0) ∨ (a → 0)) ∧ a) → 0, which boils down to a → b = (b ∧ a) ∨
(a → 0). Hence L is →-Sasakian. By lattice absorption,

a ∧ b = (a ∧ b) ∧ ((b → 0) ∨ (a ∧ b))

= a ∧ b ∧ (b → a).

So a∧b ≤ b → a, hence (a ∧ b) ·b ≤ a. Also, (a ∧ b) ·b = ((a ∧ b) ∨ (b → 0))∧
b ≤ b. Thus, (a ∧ b) · b ≤ a ∧ b. Conversely, a ∧ b ≤ (a ∧ b) ∨ (b → 0) and
a ∧ b ≤ b, whence a ∧ b ≤ ((a ∧ b) ∨ (b → 0)) ∧ b = (a ∧ b) · b. Summing up,
(a ∧ b) · b = a∧ b, and strong idempotency is obtained replacing b by a∨ b.

It is easily seen that left-monotonicity is equivalent to the identity z ·x ≤
z · (x∨ y). Thus, left-monotonic members of PLRG form a variety, hereafter
denoted by PLRGlm. In light of the above considerations, since for any
L ∈ OG, if L is not Boolean, then L ∈ B\PLRGlm, we conclude that B �⊆
PLRGlm. Furthermore, any non-divisible pointed commutative residuated
lattice is witness to the fact that PLRGlm �⊆ B. Left-distributive pointed
left-residuated �-groupoids form a variety PLRGld, which is a subvariety of
PLRGlm. The inclusion is obvious. That such an inclusion is proper is shown
by the next

Example 31. Let us consider the pointed left-residuated �-groupoid

L = ({0, 1, a, b},∧,∨, ·,→, 0, 1)
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with the Hasse diagram

a

��
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��
��

��
�

1
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��
��

0

��
��
��
��

b

whose operations are defined according to the following Cayley tables:

· 0 1 a b
0 0 0 a 0
1 0 1 a b
a 0 a a 0
b b b b b

→ 0 1 a b
0 a 0 b a
1 b 1 b 1
a a a a a
b b b b 1

A routine check shows that L is left-monotonic. However, one has that 0 ·
(0 ∨ 1) = 0 · a = a �= 0 = 0 ∨ 0 = 0 · 0 ∨ 0 · 1.

By generalising to the non-integral and non-associative case Ono and Ko-
mori’s [46] embedding technique, one can characterise the \-free subreducts
of unital pointed residuated �-groupoids (in the interests of space, proof is
omitted):

Proposition 32. Let L be a unital pointed left-residuated �-groupoid. Then
L is the \-free subreduct of a unital pointed residuated �-groupoid if and only
if it is left-distributive.

Another well-understood subvariety of PLRGlm is represented by pointed
commutative residuated �-groupoids, which satisfy the identity x · y ≈ y · x.
This subvariety, here referred to as PCRG, has been the object of extensive
investigations from both the algebraic and the proof-theoretical perspec-
tive (see e.g. [23,29,34]). This applies, in particular, to its most prominent
subvarieties, such as the varieties PCRL of pointed commutative residuated
lattices, MV of MV-algebras and H of Heyting algebras.

It is well-known that a pointed residuated lattice is (term equivalent to)
a Heyting algebra if and only if it is 0-bounded and satisfies the identity
x · y ≈ x ∧ y [43]. Equally succint axiomatisations of H are available in the
context of PLRG.

Proposition 33. Let L ∈ PLRG. The following are equivalent:

(i) L is a Heyting algebra;
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(ii) L is 0-bounded and satisfies the identity x · y ≈ x ∧ y;

(iii) L is unital, distributive and Sasakian;

(iv) L is unital, left-monotonic and Sasakian.

Proof. (i) implies (ii). This implication is clear from the preceding remarks.
(ii) implies (iii). Unitality is obvious. Let a, b, c ∈ L. Using the assumption

and Lemma 19,

(a ∨ b) ∧ c = (a ∨ b) · c = a · c ∨ b · c = (a ∧ c) ∨ (b ∧ c) .

Moreover, our assumptions imply that 0 ≤ (b → 0)∧b = (b → 0)·b ≤ 0, hence
(b → 0) ∧ b = 0. Therefore, since distributivity has already been proved,

a · b = a ∧ b = (a ∧ b) ∨ ((b → 0) ∧ b) = (a ∨ (b → 0)) ∧ b.

(iii) implies (iv). Under the indicated hypotheses, L is integral and 0-
bounded. Indeed, for all a ∈ L,

1 = 1 ∨ (1 ∧ (a ∨ (1 → 0))) = 1 ∨ a · 1 = 1 ∨ a,

a = a · 1 = (a ∨ (1 → 0)) ∧ 1 = (a ∨ 0) ∧ 1 = a ∨ 0.

Consequently, observe that for all x,

0 ≤ (x → 0) ∧ x = ((x → 0) ∧ x) ∨ ((x → 0) ∧ x)

= ((x → 0) ∨ (x → 0)) ∧ x = (x → 0) · x ≤ 0.

Now, suppose that b ≤ c. Then a ∧ b ≤ a ∧ c, and thus

a · b = (a ∨ (b → 0)) ∧ b = (a ∧ b) ∨ ((b → 0) ∧ b)

≤ (a ∧ c) ∨ ((c → 0) ∧ c) = (a ∨ (c → 0)) ∧ c = a · c.

(iv) implies (i). By the proof of the previous item (which does not depend
on distributivity in the relevant part), L is 0-bounded and integral. Fix
a, b ∈ L. Since L is Sasakian, we have that a ∧ b ≤ a · b, and since L is left-
monotonic and integral, a·b ≤ a and a·b ≤ b. Hence a·b = a∧b. It follows that
L is right-residuated and product is associative and commutative, hence L is
a commutative pointed residuated lattice. Therefore L is a Heyting algebra.

It is well-known that MV-algebras are exactly associative basic algebras
[18,20]. Also, a basic algebra B is associative if and only if the pointed
left-residuated �-groupoid L(B) is such. Indeed, if B is associative, then it
is an MV-algebra and therefore L(B) is a commutative, divisible, integral,
distributive, involutive residuated lattice. Moreover, if L(B) is associative,
then in B one has
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(x ⊕ (y ⊕ z))′ = x′ · (y ⊕ z)′ = x′ · (y′ · z′) = (x′ · y′) · z′ = ((x ⊕ y) ⊕ z)′.

Applying ′ to both sides of the preceding identity, associativity follows since ′

is an involution. Moreover, regarded as a residuated lattice, any MV-algebra
L satisfies the identity

x → (y → z) ≈ x · y → z.

Therefore, L trivially satisfies (eg) and we conclude that MV, the term
equivalent counterpart of MV-algebras in PLRG, is included in LEA (see
also [31]). By Theorem 30 and Lemma 23.(iii), orthomodular groupoids are
a proper subvariety of B. Moreover, using the term equivalences in Lemma
26 and Theorem 28, it is easily seen that any orthomodular groupoid is an
effect groupoid (cf. e.g. [28, Ch. 5]). Therefore, we conclude that OG ⊆ LEA.
Summing up, the variety MV ∨ OG is a subvariety of LEA. Now, within
the lattice of subvarieties of basic algebras, the varietal join of MV-algebras
and orthomodular lattices is strictly smaller than the variety of effect basic
algebras [39]. In [39], a relative equational basis for this join is given via the
identity

x � (x ⊕ y) ∧ z ∧ z′ = 0,

where x � y = (x′ ⊕ y)′. We now give an analogous result in the context of
PLRG.

Lemma 34. Let L ∈ PLRG. The following are equivalent:

(i) L ∈ MV ∨ OG;

(ii) L is a basic groupoid that satisfies (eg) and the following identity:

x · ((x → 0) · y) ∧ (z ∧ (z → 0)) = 0. (mv+og)

Proof. If L ∈ MV ∨ OG, then B(L) is an effect basic algebra satisfying
x�(x⊕y)∧z∧z′ = 0 (see [39]). Therefore, L is an effect groupoid satisfying
mv+og. Conversely, under the indicated assumptions, B(L) is an effect basic
algebra and the translation of (mv+og) yields that x � (x ⊕ y) ∧ z ∧ z′ = 0
is satisfied. We conclude that L ∈ MV ∨ OG.

In the investigations on probability theory and the theory of expert sys-
tems, a prominent role is played by non-associative fuzzy logics [9,26]. A case
in point is the weakly implicative logic LCBA, which is algebraisable with the
variety of commutative basic algebras as an equivalent algebraic semantics
[9]. In our framework, this variety corresponds to the commutative subva-
riety CB of the variety B of basic groupoids. Moreover, CB = PCRG ∩ B.
Observe further that MV ⊂ CB (cf. [15]) and CB �⊆ LEA. In fact, assume
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PLRG

PLRGlm B

PLRGld Blm LEA

PCRG

PCRL CB MV ∨ OG

HA MV OG

BA

Figure 1. The lattice of subvarieties of PLRG

by way of contradiction that CB ⊆ LEA and consider L ∈ CB. Thus, there
exists a commutative lattice effect algebra A such that L(A) = L. By [17,
Corollary 4.7], A is an MV-algebra and L =L(A) ∈ MV. Since L was arbi-
trary, we would have that CB ⊂ MV, which contradicts the above observa-
tions. Finally, let us briefly discuss the variety Blm of left-monotonic basic
groupoids, which is term equivalent to the variety of monotone basic alge-
bras (see [10]). Remarkably enough, it has been shown in [10, Theorem 4.7]
that every finite monotone basic algebra is an MV-algebra. So, any finite
member of Blm is in CB. However, [21, Example 10] proves that there are
infinite monotone and non-commutative basic algebras. So we conclude that
CB � Blm.

Figure 1 provides a synopsis of the main subvarieties of PLRG that we
have encountered in our investigation.

3.3. Ideals and Congruences

Both residuated lattices and orthomodular lattices have very strong con-
gruence properties and a well-behaved ideal theory. Thus, it makes sense
to investigate the extent to which these features carry on to their common
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generalisation of pointed left-residuated �-groupoids. It turns out that the
outcome is rather satisfactory. For a start, PLRG is both arithmetical and
1-ideal-determined, as we now proceed to show.

Recall that a necessary and sufficient condition for a variety V to be
congruence permutable is the existence of a Maltsev term for V, namely,
a ternary term p (x, y, z) s.t. V � p (x, x, y) ≈ y, p (x, y, y) ≈ x [14, Thm.
II.12.2]. Also, recall that a necessary and sufficient condition for a pointed
variety V (with a constant 1 in its type) to be 1-regular is the existence
of Csákány terms for V, viz. binary terms b1 (x, y) , . . . , bn (x, y) s.t. V �
b1 (x, y) ≈ 1 &...& bn (x, y) ≈ 1 ⇐⇒ x ≈ y [27]. The reader is further re-
minded that for a pointed variety V (with a constant 1 in its type) the
property of 1-subtractivity is equivalent to 1-permutability (thus obviously
implied by congruence permutability: [38, Cor. 1.9]). A pointed variety is
1-ideal-determined in case it is both 1-subtractive and 1-regular; if A is a
member of a 1-ideal-determined variety V, the lattice I (A) of Ursini V-
ideals of A is isomorphic to the lattice Con (A) of congruences of A [2,
Thm. 2.6].

Lemma 35. PLRG is an arithmetical and 1-ideal-determined variety.

Proof. Clearly, PLRG is congruence distributive since it is a variety of
lattice-ordered algebras. For congruence permutability, observe that, setting
x ↔ y = (x → y) ∧ (y → x) ∧ 1, the term

p (x, y, z) = ((x ↔ y) · z) ∨ ((y ↔ z) · x)

is a Maltsev term for PLRG. The term x ↔ y, moreover, is easily seen to
be a Csákány term for PLRG. Therefore PLRG is 1-regular and congruence
permutable, whence also 1-ideal-determined.

Analogues of Lemma 35 have been provided for several subvarieties of
PLRG. In particular, Chajda and Radelecki [23] come very close to the
generality attained in this lemma, since the only additional assumption they
make on their algebras are 0-boundedness and integrality.

When studying a 1-ideal determined variety V, the obvious question arises
as to whether the Ursini V-ideals of members of V can be given a handy de-
scription, possibly by specifying a finite basis of ideal terms. It is well-known
that this problem has been successfully addressed for several subvarieties of
PLRG. In particular, if V is either the class of the \-free reducts of pointed
1-cyclic residuated lattices or the class of pointed commutative residuated
lattices, and A ∈ V, H ⊆ A is a V-ideal of A if and only if it is a convex (nor-
mal) subuniverse of the 0-free reduct of A [6,42]. Other characterisations
of ideals in individual varieties that are term equivalent to subvarieties of
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PLRG are included e.g. in [12,19,49]. We observe that occasionally, e.g. for
orthomodular lattices [12, Prop. 4.7], we have extremely elegant streamlined
descriptions.

Although we were unable to specify a finite basis of ideal terms for PLRG,
ideals can be described in at least two cases, jointly encompassing all the
subvarieties of interest mentioned in this paper: left-monotonic pointed left-
residuated �-groupoids and basic groupoids. For a start observe that, mim-
icking the strategy in [6], the following lemma can be proved without diffi-
culty:

Lemma 36. Let L ∈ PLRG and θ ∈ Con (L). The following conditions are
equivalent:

(i) a θ b;

(ii) [(a → b) ∧ 1] θ 1 and [(b → a) ∧ 1] θ 1.

Next, we define a putative notion of an ideal, with an eye to identifying
the subvarieties V of PLRG where it actually describes V-ideals.

Definition 37. Let L ∈ PLRG and let H ⊆ L be a convex subuniverse of
the 0-free reduct of L. H is said to be strongly normal if:

(i) for all a, b, c ∈ L, (a → b)∧1 and (b → a)∧1 ∈ H imply (c · a → c · b)∧1
and (a · c → b · c) ∧ 1 ∈ H;

(ii) for all a, b, c ∈ L, (a → b) ∧ 1 and (b → a) ∧ 1 ∈ H imply ((c → a) →
(c → b)) ∧ 1 and ((a → c) → (b → c)) ∧ 1 ∈ H.

Observe that, if H is a convex strongly normal subuniverse of the 0-
free reduct of L and a ∈ H, then for every c ∈ L we have that λc (a) =
(c → a · c)∧1 ∈ H. We also prove that convex strongly normal subuniverses
admit a simplified characterisation for orthomodular groupoids. Recall that,
if L is an orthomodular lattice, then H ⊆ L is an OML-ideal of L if and
only if it is a lattice filter of L such that for all a ∈ H, b ∈ L, we have that
(a ∧ b′) ∨ b ∈ H. Correspondingly:

Proposition 38. Let L ∈ OG and let ∅ �= H ⊆ L. Then H is a convex
strongly normal subuniverse of the 0-free reduct of L if and only if it is a
lattice filter of L such that for all a ∈ H, b ∈ L, we have that b → a ∈ H.

Proof. If H is a convex strongly normal subuniverse of L and a ∈ H, b ∈ L,
then (a → 1) ∧ 1, (1 → a) ∧ 1 ∈ H and thus, using Lemma 29.(v), we obtain
that b → ba = b → a ∈ H.

Conversely, let H be a lattice filter of L such that for all a ∈ H, b ∈ L, we
have that b → a ∈ H. Then H contains 1 and is closed w.r.t. meets and joins,
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so in particular if a, b ∈ H then a∧b ∈ H and a∧b ≤ (a ∨ b′)∧b = a ·b ∈ H,
thus a → b = (b ∧ a) ∨ a′ ≥ b ∧ a, and so a → b ∈ H. Hence H is a convex
subuniverse of the 0-free reduct of L. Also, if a → b, b → a ∈ H, then since
H is an OML-ideal of L, it follows that

{(a, b) : a → b, b → a ∈ H}
is an equivalence that respects ∧,∨ and ′, hence also product and implica-
tion, which are definable in terms of these operations. So conditions (1) and
(2) in Definition 37 are satisfied.

We now show that the 1-class of a congruence is always a convex strongly
normal subuniverse of the 0-free reduct of L.

Lemma 39. If L ∈ PLRG and θ ∈ Con (L), then 1/θ = {a ∈ A : a θ 1} is a
convex strongly normal subuniverse of the 0-free reduct of L.

Proof. 1/θ is a subuniverse of the 0-free reduct of L because 1 is idem-
potent with respect to all the binary operations of L. Moreover, members
of Con (L) are in particular lattice congruences, whence convexity follows.
Finally, let (a → b) ∧ 1 ∈ 1/θ and (b → a) ∧ 1 ∈ 1/θ. By Lemma 36, aθb.
Thus, for any c ∈ L, c · aθc · b and a · cθb · c. Applying Lemma 36 backwards,
(c · a → c · b) ∧ 1 ∈ 1/θ and (a · c → b · c) ∧ 1 ∈ 1/θ, which suffices for (1) in
Definition 37. Item (2) is established similarly.

As usual, associating a suitable convex strongly normal subuniverse to
a given congruence is slightly trickier. If L ∈ PLRG and H ⊆ L, let θH =
{(a, b) : (a → b) ∧ 1 ∈ H and (b → a) ∧ 1 ∈ H}. Following closely [6] again,
we obtain that:

Lemma 40. θH = {(a, b) : ∃h ∈ H,h · a ≤ b and h · b ≤ a}.
Lemma 41. Let L ∈ PLRG be either left-monotonic or a basic groupoid,
and let H be a convex strongly normal subuniverse of the 0-free reduct of L.
Then θH is a congruence on L.

Proof. Since PLRG and its subvarieties are congruence permutable, to
achieve our conclusion it suffices to show that θH is a tolerance on L. θH

is clearly reflexive and symmetric, and by items (1) and (2) in Definition
37 it is compatible with product and implication on both sides. To show
compatibility with the lattice operations, we distinguish cases.

Let L be a basic groupoid, a, b, c ∈ L, and (a, b) ∈ θH . Thus, (a → b) ∧
1, (b → a) ∧ 1 ∈ H. By (2) in Definition 37, ((c → a) → (c → b)) ∧ 1 ∈ H
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and ((c → b) → (c → a))∧ 1 ∈ H, whence by (1) in the same Definition and
by divisibility,

((a ∧ c) → (b ∧ c)) ∧ 1 = ((c → a) · c → (c → b) · c) ∧ 1 ∈ H,

and similarly ((b ∧ c) → (a ∧ c)) ∧ 1 ∈ H. Compatibility with join follows
from the involutivity condition.

On the other hand, let L be left-monotonic, a, b, c ∈ L, and (a, b) ∈
θH . Therefore (a → b) ∧ 1, (b → a) ∧ 1 ∈ H. Since (a → b) ∧ 1 ≤ 1 and
(a → b) ∧ 1 ≤ a → b, we obtain on the one hand that ((a → b) ∧ 1) · c ≤ c,
and on the other that ((a → b) ∧ 1) · a ≤ b. By left-monotonicity,

((a → b) ∧ 1) · (a ∧ c) ≤ ((a → b) ∧ 1) · a ∧ ((a → b) ∧ 1) · c ≤ b ∧ c.

Hence (a → b) ∧ 1 ≤ (a ∧ c) → (b ∧ c), whereby (a → b) ∧ 1 ≤ ((a ∧ c) →
(b ∧ c)) ∧ 1 ≤ 1, and we obtain ((a ∧ c) → (b ∧ c)) ∧ 1 ∈ H by convexity.
The remaining compatibility condition for meet, as well as the conditions
for join, are analogous.

Theorem 42. Let L ∈ PLRG be either a 1-cyclic left-monotonic or a basic
groupoid. The lattice CN (L) of convex strongly normal subuniverses of L is
isomorphic to Con (L). The isomorphism is given by the mutually inverse
maps H �→ θH and θ �→ 1/θ.

Proof. Before we start, we remind the reader that basic groupoids are
integral and therefore 1-cyclic.

If H ∈ CN (L) and θ ∈ Con (L), then θH is a congruence by Lemma 41
and 1/θ is a convex strongly normal subuniverse by Lemma 39. It is clear
that the maps H �→ θH and θ �→ 1/θ are isotone. It remains to be shown
that they are mutually inverse, since it will then follow that they are lattice
homomorphisms.

Given θ ∈ Con (L),

a θ b ⇔ (a → b) ∧ 1 θ 1 and (b → a) ∧ 1 θ 1
⇔ (a → b) ∧ 1 ∈ 1/θ and (b → a) ∧ 1 ∈ 1/θ
⇔ a θ1/θ b

For the other direction, for any H ∈ CN (L) we must show that H = 1/θH .
However, if a ∈ H, then (1 → a) ∧ 1, (a → 1) ∧ 1 ∈ H, so a ∈ 1/θH . Con-
versely, if a ∈ 1/θH , in light of Lemma 40 there exists some h ∈ H such that
h · a ≤ 1 and h · 1 ≤ a. By 1-cyclicity a · h ≤ 1 and thus a ≤ h → 1, whence
by the convexity of H, h · 1 ≤ a ≤ h → 1 implies a ∈ H.
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3.4. Left Nuclei

Just like closure operators are the bread and butter of the working order
theorist, nuclei (closure operators that interact smoothly with the product
operation) are a fundamental tool for the practicioner of residuated struc-
tures. The theory of nuclei for residuated lattices is rich and far-reaching
(see [33,45] for comprehensive accounts); much of it transfers to the non-
associative case with only a modest detriment. When we drop one residual,
however, one needs more extensive adjustments to get started. In this sub-
section, we try to recover some important parts of the theory of nuclei of
residuated �-groupoids in the left-residuated case. Henceforth, to simplify
notation, we mostly omit dots in product terms, replacing them by mere
juxtaposition.

Let L∈ PLRG, and let γ : L → L. For future reference, we list below
some conditions that γ may satisfy for all a, b ∈ L:

N1 γ (a) γ (b) ≤ γ (ab);

N2 γ (a) γ (b) ≤ γ (aγ (b));

N3 a → γ (b) = γ (a → γ (b));

N4 a → γ (b) ≤ γ (a) → γ (b).

Clearly, N1 implies N2 whenever γ is idempotent.

Definition 43. Let L∈ PLRG. A closure operator γ on Ll is a left nucleus
on L if and only if it satisfies N3; it is a nucleus on L if it satisfies N1 and
N3.

Proposition 44. Let L∈ PLRG and let γ be a closure operator on Ll.

(i) If γ is a left nucleus, it satisfies N2.

(ii) If γ is a left nucleus and satisfies N4, it is a nucleus.

(iii) If L∈ OG, N1 and N3 are equivalent; hence, γ is a nucleus on L if and
only if it satisfies any of these equivalent conditions.

Proof. (i) We have that:

aγ (b) ≤ γ (aγ (b)) γ is enlarging
⇒ a ≤ γ (b) → γ (aγ (b)) left resid.
⇒ γ (a) ≤ γ (γ (b) → γ (aγ (b))) γ is monotonic
⇒ γ (a) ≤ γ (b) → γ (aγ (b)) N3
⇒ γ (a) γ (b) ≤ γ (aγ (b)) left resid.
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(ii) We have that:

ab ≤ γ (ab) γ is enlarging
⇒ a ≤ b → γ (ab) left resid.
⇒ a ≤ γ (b) → γ (ab) N4
⇒ γ (a) ≤ γ (γ (b) → γ (ab)) γ is monotonic
⇒ γ (a) ≤ γ (b) → γ (ab) N3
⇒ γ (a) γ (b) ≤ γ (ab) left resid.

(iii) We first show that N3 implies N4, whence by (ii) N3 implies N1. To that
effect, observe that b commutes with γ (b) and that γ (a)∧ b commutes with
b = b∧ γ (b), whence by Lemma 6.(iv) b → γ (a) = (γ (a) ∧ b)∨ b′ commutes
with γ (b). Thus:

b (b → γ (a)) ≤ γ (a) Lm. 29.(i)
⇒ b ≤ (b → γ (a)) → γ (a) left resid.
⇒ b ≤ γ (b → γ (a)) → γ (a) N3
⇒ γ (b) ≤ γ (γ (b → γ (a)) → γ (a)) γ is monotonic
⇒ γ (b) ≤ γ (b → γ (a)) → γ (a) N3
⇒ γ (b) ≤ (b → γ (a)) → γ (a) N3
⇒ γ (b) (b → γ (a)) ≤ γ (a) left resid.
⇒ b → γ (a) ≤ γ (b) → γ (a) Lm. 29.(iii)

Next, we show that N1 implies N3. It clearly suffices to establish γ (a → γ (b))
≤ a → γ (b). Using properties of nuclei and Lemma 29.(iii):

γ (b → γ (a)) b ≤ γ (b → γ (a)) γ (b) ≤ γ ((b → γ (a)) b) ≤ γ (γ (a)) = γ (a) ,

whence, by left-residuation, γ (b → γ (a)) ≤ b → γ (a). This application of
the Lemma is justified because b′ ≤ b → γ (a) ≤ γ (b → γ (a)), whence b′

commutes with γ (b → γ (a)) and so does b.

The proof of Proposition 44 immediately implies the following:

Corollary 45. If L ∈PLRGlm, and γ is a closure operator on Ll, N1
implies N3; hence, γ is a nucleus on L if and only if it satisfies N1.

The next theorem generalises a standard result in the theory of residuated
lattices: for γ a nucleus, γ-closed elements are the universe of a residuated
lattice under appropriately redefined operations. Here, something analogous
happens:

Theorem 46. Let L =(L,∧,∨, ·,→, 0, 1) be a pointed left-residuated �-grou-
poid, and let γ be a (left) nucleus on it.
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(i) The structure

Lγ = (γ [L] ,∧,∨γ , ·γ ,→, γ (0) , γ (1)) ,

where a ∨γ b = γ (a ∨ b) and a ·γ b = γ (ab), is a pointed left-residuated
�-groupoid, called a (left) nucleus-system of L.

(ii) Integrality, 0-boundedness and left-monotonicity are preserved in the
construction.

(iii) If L is left-monotonic, antitonicity holds in Lγ.

(iv) If L is left-monotonic, the construction preserves the inequation x ≤
x (x ∨ y), while if γ is a nucleus, the construction preserves the inequa-
tion x (x ∨ y) ≤ x.

Proof. (i) (γ [L] ,∧,∨γ) is a lattice by properties of closure operators. If
a ∈ γ [L], by left-unitality, Lemma 20.(ii) and the properties of left nuclei,
γ (1) ·γ a = γ (γ (1) a) ≤ γ (γ (1a)) = a and 1 ≤ γ (1) implies a ≤ γ (1) a ≤
γ (γ (1) a), whence γ (1) ·γ a = a. Moreover, γ [L] is closed with respect
to implications by N3. It remains to be shown that Lγ is left-residuated.
However, observe that, whenever c = γ (c), a ·γ b ≤ c if and only if ab ≤ c.
In fact, if a ·γ b = γ (ab) ≤ c, then ab ≤ γ (ab) ≤ c, while if ab ≤ c, then
γ (ab) ≤ γ (c) = c. (ii) For integrality, simply observe that if a ≤ 1 for
all a ∈ L, then 1 ≤ γ (1) ≤ 1 and our conclusion clearly follows. For 0-
boundedness, if 0 ≤ a for all a ∈ L, then by monotonicity of γ, γ (0) ≤ b
for all b ∈ γ [L]. For left-monotonicity, if a ≤ b, then for any c we have
that ca ≤ cb and thus c ·γ a = γ (ca) ≤ γ (cb) = c ·γ b. (iii) If L is left-
monotonic, then a ≤ b implies b → c ≤ a → c for all c. In fact, if a ≤ b, then
(b → c) a ≤ (b → c) b ≤ c, whence the conclusion follows. So in particular
b → γ (0) ≤ a → γ (0) whenever a, b ∈ γ [L]. (iv) If L is left-monotonic,
then a ≤ a (a ∨ b) ≤ aγ (a ∨ b) ≤ γ (aγ (a ∨ b)) = a ·γ (a ∨γ b). If γ is a
nucleus and a ∈ γ [L], then aγ (a ∨ b) ≤ γ (a (a ∨ b)) ≤ γ (a) = a, whereby
a ·γ (a ∨γ b) = γ (aγ (a ∨ b)) ≤ γ (a) = a.

4. Completions

In this section, by and large inspired by the thought-provoking paper [35]
from which several of the following results are adapted, we obtain some of
the known results on completions of quantum structures as a spin-off from
an investigation into pointed left-residuated �-groupoids. To do so, we put to
good use Theorem 28. The vantage point yielded by this result is remarkable.
Indeed, (join-)completions of residuated �-groupoids have been thoroughly
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studied in the literature on residuated lattices and on substructural logics
[24,25,33–35]. These enquiries make a crucial recourse to a strengthening of
Proposition 11 to the effect that join-completions of residuated �-groupoids
can be obtained as nucleus-systems of their ideal completions [35, Thm. 3.5].
Using in the same guise the theory of left nuclei we have just developed, we
can obtain a new proof of Theorem 14 for orthomodular lattices.

A more ambitious continuation of this project would be as follows. The
papers [24,25] build a fascinating hierarchy of complexity classes of for-
mulas in the language of residuated �-groupoids, which is used to deter-
mine which varieties of residuated �-groupoids are closed with respect to
Dedekind–MacNeille completions, as well as for which varieties of residu-
ated �-groupoids closure with respect to Dedekind–MacNeille completions
is equivalent to the property of admitting completions (see e.g. [24, Thm.
6.3]). Extending these results to the left-residuated case might offer an in-
terpretation of the deep reason behind the fact that orthomodular lattices
are not closed under completions by cuts; possibly, it might also suggest a
new strategy to prove, or disprove, that OML admits completions.

Let L be a pointed left-residuated �-groupoid. We are now going to con-
struct a pointed left-residuated �-groupoid L (L) as a left nucleus-system of
P (L) (see Section 3.1) in such a way that (L (L))l is nothing but the ideal
completion of Ll.

Lemma 47. If L∈ PLRG, then the map γ↓, defined by γ↓ (X) =↓ X, is a
left nucleus on P (L).

Proof. Clearly, γ↓ is a closure operator on P (L). As to N3, observe that,
for X,Y ⊆ L,

γ↓ (X → γ↓ (Y )) = {c : ∃d (c ≤ d & ∀a (a ∈ X ⇒ ∃b (b ∈ Y & da ≤ b)))} .

Thus, let c ≤ d and fix an a ∈ X. Then there is b ∈ Y such that da ≤ b.
Since c ≤ d, by Lemma 20.(ii) ca ≤ da ≤ b, whence c ∈ X → γ↓ (Y ). The
converse inclusion follows from the fact that γ is enlarging.

The previous lemma justifies the next definition, where we use the nota-
tion of Theorem 46:

Definition 48. If L∈ PLRG, its ideal completion is the structure L (L) =
P (L)γ↓ .

By Proposition 12, (L (L))o is the largest join-completion of Lo. The next
results list some properties of L (L).

Theorem 49. (i) If L∈ PLRG, L (L) is a left-monotonic and antitonic
pointed left-residuated �-groupoid.
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(ii) If L is integral, then so is L (L) .

(iii) If L is 0-bounded, then so is L (L) .

(iv) If L is orthomodular, then L (L) satisfies the quasi-identity xy ≈ 0 ⇒
yx ≈ 0 and the identity xx′ ≈ 0.

Proof. (i) L (L) ∈ PLRG by Lemma 47, Lemma 24 and Theorem 46.(i). It
is left-monotonic by Lemma 24 and Theorem 46.(ii). Finally, it is antitonic
by Lemma 24 and Theorem 46.(iii).

(ii) If L is integral, then γ↓ ({1}) = L, which is the top element in L (L).
(iii) If L is 0-bounded, then every element in L (L) contains 0, whence

{0} = γ↓ ({0}) is the bottom element in L (L).
(iv) Let γ↓ (XY ) = {0}. For any x in X and any y in Y , xy ≤ xy

and thus xy = 0, whence yx = 0 as L∈ OG. Then Y ·γ↓ X ⊆ {0}, while
the converse inclusion is clear. Applying this quasi-identity to the fact that
(X → {0})X = {0}, we obtain that the identity xx′ ≈ 0 is satisfied in L (L).

Theorem 49 is of limited value in the general case. In fact, an arbitrary
L ∈ PLRG need not embed into its ideal completion: the map ϕ (x) =
γ↓ ({x}), which is an order-embedding of Lo into (L (L))o, does not neces-
sarily preserve products or implications.1 However:

Proposition 50. If L is an antitonic, integral and 0-bounded pointed left-
residuated �-groupoid, then the order-embedding of Lo into (L (L))o preserves
0, 1, and ′.

Proof. If L is integral and 0-bounded, ϕ (0) = {0} = 0L(L) and ϕ (1) =
L = 1L(L). We now check that ϕ preserves ′. However:

ϕ
(
x →L 0

)
= {a ∈ L : a ≤ x → 0} ;

ϕ (x) →L(L) ϕ (0) = {a ∈ L : ∀b (b ≤ x ⇒ ab = 0)} .

If a ≤ x → 0 and b ≤ x, then by antitonicity x → 0 ≤ b → 0, whereby
a ≤ b → 0 and ab = 0. If for all b ≤ x we have that ab = 0, then this holds
in particular for x itself, whence ax = 0 and thus a ≤ x → 0.

1A simple counterexample is given by the (�-groupoid corresponding to the) modular
ortholattice MO2. In fact, if a, b are two atoms of such, neither of which is the orthocom-
plement of the other, b = ab ∈ ϕ (a) ϕ (1), but b /∈ ϕ (a1) = ϕ (a) = {a, 0}.
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It may be worth to observe that, when L is Sasakian, L (L) need not be
such by any means.2 Therefore, Proposition 50 does not imply that under
this additional assumption L embeds into L (L).

Next, we introduce two properties of elements of a pointed left-residuated
�-groupoid L that will play a decisive role in the subsequent results. Here-
after, for any fixed d ∈ L, let the map γd be defined for all a ∈ L by the
condition

γd (a) = (a → d) → d.

Definition 51. Let L∈ PLRG. An element d ∈ L is right-residuated if and
only if, for all a, b ∈ L,

ab ≤ d if and only if a ≤ b → d if and only if b ≤ a → d.

Definition 52. Let L∈ PLRG. An element d ∈ L is weakly associative and
commutative (wac) if and only if it satisfies the following conditions for all
a, b ∈ L:

W1 a ((ab → d) b) = (ab) (ab → d);
W2 γd (a) ((ab → d) b) = (γd (a) (ab → d)) b;
W3 γd (a) (γd (b) (ab → d)) = (γd (a) (ab → d)) γd (b);
W4 γd (a) (γd (b) (ab → d)) = (γd (a) γd (b)) (ab → d).

Using Lemma 6 and Theorem 7, we observe that in any L ∈ OG, for any
a, b, c ∈ L, a (bc) = (ab) c and bc = cb whenever b and c commute. Therefore
0 is wac in any orthomodular groupoid. The proof of the next lemma is left
to the reader.

Lemma 53. Let L∈ PLRG, and let d be a right-residuated and wac element
of L. Then, for all a, b ∈ L: (i) if a ≤ b, then b → d ≤ a → d; (ii) a (a → d) ≤
d; (iii)

∨
X → d =

∧

x∈X

(x → d).

If L is a residuated lattice, the map γd is a nucleus on L whenever d is a
cyclic element of L (namely, an element for which the two residuals always
yield a common value). Besides the cyclicity of d, which is a restricted form
of commutativity, two further aspects play a key role in this property: the

2For a counterexample, we look again at the (�-groupoid corresponding to the) modular
ortholattice MO2. Keeping the notation from the preceding footnote, observe that:

↓ a· ↓ 1 =
{
a, a′, b, b′, 0

}

(↓ a ∨ (↓ 1)′) ∧ ↓ 1 = {a, 0} .
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associativity of product, and the presence of both residuals for the same
operation. However, if restricted forms of associativity, commutativity and
right-residuation are built into equalities involving d, an analogous result is
available in a larger context.

Lemma 54. Let either L ∈ PLRGlm or L ∈ OG, and let d be a right-
residuated and wac element of L. Then the map γd is a nucleus on L.

Proof. The proof that γd is a closure operator is again left to the reader
(see e.g. [33, Lm. 2.8 and Lm. 3.35]). Observe that Lγd

= {x → d : x ∈ L}.
We show that γd (a) γd (b) ≤ γd (ab), for all a, b ∈ L. This will be enough
in the cases mentioned in our statement, in light of Proposition 44 and
Corollary 45. By Lemma 53.(ii), (ab) (ab → d) ≤ d. By W1, it follows that
a ((ab → d) b) ≤ d, whence (ab → d) b ≤ a → d as d is right-residuated.
By Lemma 53.(i), γd (a) ≤ (ab → d) b → d. Using left-residuation, we ob-
tain γd (a) ((ab → d) b) ≤ d, and, by W2, (γd (a) (ab → d)) b ≤ d. So γd (a)
(ab → d) ≤ b → d, and by Lemma 53.(i), γd (b) ≤ γd (a) (ab → d) → d,
whereby

(γd (a) (ab → d)) γd (b) ≤ d,

since d is right-residuated. By W3, γd (a) (γd (b) (ab → d)) ≤ d, and thus by
W4, (γd (a) γd (b)) (ab → d) ≤ d. Finally, this entails γd (a) γd (b) ≤ γd (ab).

Theorem 55. Let either L ∈ PLRGlm or L ∈ OG, and let γ be a nucleus
on L. If d ∈ L is wac and b → d ≤ a → d, for all a, b ∈ L such that a ≤ b,
then condition B) below implies condition A):

A) Lγ is d-involutive, i.e. (a → d) → d = a for all a ∈ Lγ;

B) d is right-residuated in L and γ = γd.

If L is orthomodular, the two conditions are equivalent.

Proof. B) implies A). Suppose that d is right-residuated. Then γd is a
nucleus by Lemma 54. Furthermore, d = 1d ≤ d implies d ≤ 1 → d, and
1 → d = 1 (1 → d) ≤ d, whence d = 1 → d ∈ Lγd

. Finally, Lγd
is d-

involutive, because d is right-residuated in L ⊇ Lγd
and γd (a) = a for all

a ∈ Lγd
. A) implies B). Suppose that L is orthomodular and that Lγ is

d-involutive.
Claim 1 : for all a ∈ L, γ (a) → d = a → d. One inequality is straightfor-

ward from our assumption that b → d ≤ a → d, for all a, b ∈ L such that
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a ≤ b. Conversely, taking into account that d ∈ Lγ :

a (a → d) ≤ d Lm. 29.(i)
⇒ a ≤ (a → d) → d left resid.
⇒ a ≤ γ (a → d) → d N3
⇒ γ (a) ≤ γ (γ (a → d) → d) γ is monotonic
⇒ γ (a) ≤ γ (a → d) → d N3
⇒ γ (a) ≤ (a → d) → d N3

Thus:
a → d = γ (a → d) N3

= (γ (a → d) → d) → d Lγ invol.
= ((a → d) → d) → d N3
≤ γ (a) → d Assumption on d

Claim 1 is therefore settled.
Claim 2 : d is right-residuated in Lγ . If γ (a) γ (b) ≤ d, then γ (a) ≤

γ (b) → d, whence γ (b) = γd (γ (b)) ≤ γ (a) → d because Lγ is d-involutive.
If γ (b) ≤ γ (a) → d, then γ (a) = γd (γ (a)) ≤ γ (b) → d, and thus
γ (a) γ (b) ≤ d.

Next, we show that d is right-residuated in L. Suppose that ab ≤ d.
Then a ≤ b → d, whence, by Claim 1, a ≤ γ (b) → d. It follows that
γ (a) ≤ γ (γ (b) → d) = γ (b) → d, by N3. Because of Claim 2, γ (b) γ (a) ≤ d
and thus, applying again Claim 1, b ≤ γ (b) ≤ γ (a) → d = a → d. For
the other direction, if b ≤ a → d, then by Claim 1 b ≤ γ (a) → d, whence
monotonicity of γ and N3 yield γ (b) ≤ γ (γ (a) → d) = γ (a) → d. Therefore,
by Claim 2, γ (a) γ (b) ≤ d and thus a ≤ γ (a) ≤ γ (b) → d = b → d. A final
application of left-residuation entails that ab ≤ d.

Therefore, by Lemma 54, γd is a nucleus on L. So, taking into account
Claim 1 and the fact that Lγ is d-involutive,

γd (a) = (a → d) → d = (γ (a) → d) → d = γ (a) .

The next theorem shows under what conditions the Dedekind–MacNeille
completion of an orthomodular groupoid M can be obtained as a nucleus-
system under the operator γ0 of a join-completion of M which is a pointed
left-residuated �-groupoid. Subsequently, we prove that the ideal completion
L (M) of M satisfies these conditions. The crucial fact, here, is that the
application of the nucleus γ0 allows us to recover the involutivity equation
which is generally lost in passing from M to L (M).
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Theorem 56. Let M ∈ OG, and let L be a left-monotonic pointed left-
residuated �-groupoid such that Lo is a join-completion of Mo; suppose fur-
ther that the term operation ′L extends the corresponding operation ′M and
that 0 is right-residuated and wac in L. Then (Lγ0)

l = N (
Ml

)
, i.e., Lγ0 is

the Dedekind–MacNeille completion of M.

Proof. By Lemma 54, γ0 is a nucleus. We now have to show that (Lγ0)
l is

a join-and-meet completion of Ml, whence the result follows by Proposition
13.(ii). Actually, Theorem 55 implies that Lγ0 is involutive; thus the map
sending an a ∈ Lγ0 to a → 0 is an involution of Lγ0, which means that it is
enough to show that (Lγ0)

l is a meet completion of Ml. Thus, let a ∈ Lγ0,
whence there is b ∈ L s.t. a = b → 0. Since Ll is a join-completion of Ml,

b =
∨L

X for some X ⊆ M and then

a = b → 0 =

(
L∨

X

)

→ 0 =
∧

x∈X

(
x →L 0

)
=

∧

x∈X

(
x →M 0

)
,

since ′L extends ′M. Our claim follows.

Corollary 57. If L ∈ OG, then
(
L (L)γ{0}

)l

=
((

P (L)γ↓

)

γ{0}

)l

= N (
Ll

)
.

Proof. The result follows from Theorem 56 provided we can prove the
following three claims:

(i) {0} is right-residuated in L (L).

(ii) {0} is wac in L (L).

(iii) The term operation ′L(L) extends ′L.

As regards Claim (i), by Theorem 49.(iv), X ·L(L) Y ⊆ {0} if and only if
Y ·L(L) X ⊆ {0} if and only if Y ⊆ X →L(L) {0}. For Claim (ii) we have to
check all cases of Definition 52, one of which we compute explicitly, i.e. W1.
Let us show that for any downsets X,Y ⊆ L,

X ·L(L)
((

X ·L(L) Y →L(L) {0}
)

·L(L) Y
)

=
(
X ·L(L) Y

)(
X ·L(L) Y →L(L) {0}

)
.
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By Theorem 49.(iv), the right-hand side of this equality equals {0}, whence
it suffices to prove that so does its left-hand side. In fact:

X ·L(L)
((

X ·L(L) Y →L(L) {0}) ·L(L) Y
)

= γ↓
(
X ·P(L) γ↓

((
γ↓

(
X ·P(L) Y

) →P(L) {0}) ·P(L) Y
))

=
{

a ∈ L : ∃xyzw

(
x ∈ X & y ∈ Y & w ∈ γ↓ (XY ) → {0}

& z ≤ wy & a ≤ xz

)}
.

In the remainder of the proof, we will drop unnecessary superscripts. Now,
let a have the indicated properties. Then w ≤ (xy)′, whence z ≤ wy ≤
(xy)′

y = x′ ∧ y, and thus z ≤ x′, whereby z commutes with x, by Lemma
6.(ii). An application of Lemma 29.(iii) yields a ≤ xz ≤ x (x′ ∧ y) = 0.
Claim (iii) follows from Proposition 50.

Observe that the (∧,∨,′ , 0, 1)-term reduct of the algebra we have just
constructed is the same as the algebra in Theorem 14.(iii), whence Corollary
57 counts as a new proof of MacLaren’s theorem in the orthomodular case.
Indeed,

X
′L(L)γ{0} = X →P(L) {0}

= {a : ∀x (x ∈ X ⇒ ax = 0)}
= {a : ∀x (x ∈ X ⇒ a ≤ x′)} = X⊥;

γ{0} (γ↓ (X)) =
(↓ X →P(L) {0}) →P(L) {0} = X⊥⊥;

X ∨L(L)γ{0} Y =
(↓ (X ∪ Y ) →P(L) {0}) →P(L) {0}

= (X ∪ Y )⊥⊥ ;

0
L(L)γ{0} =

({0} →P(L) {0}) →P(L) {0} = {0} ;

1
L(L)γ{0} =

(
L →P(L) {0}) →P(L) {0} = L.
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