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a b s t r a c t

This paper is concerned with the attraction–repulsion chemotaxis system with
superlinear logistic degradation,⎧⎪⎨⎪⎩

ut = ∆u − χ∇ · (u∇v) + ξ∇ · (u∇w) + λu − µuk, x ∈ Ω , t > 0,

0 = ∆v + αu − βv, x ∈ Ω , t > 0,

0 = ∆w + γu − δw, x ∈ Ω , t > 0,

under homogeneous Neumann boundary conditions, in a ball Ω ⊂ Rn (n ≥ 3), with
constant parameters λ ∈ R, k > 1, µ, χ, ξ, α, β, γ, δ > 0. Blow-up phenomena in the
system have been well investigated in the case λ = µ = 0, whereas the attraction–
repulsion chemotaxis system with logistic degradation has been not studied. Under
the condition that k > 1 is close to 1, this paper ensures a solution which blows
up in L∞-norm and Lσ-norm with some σ > 1 for some nonnegative initial data.
Moreover, a lower bound of blow-up time is derived.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Chemotaxis is a property of cells to move in response to the concentration gradient of a chemical
substance produced by the cells. More precisely, it accounts for a process in which cells exhibit in response
to chemoattractant and chemorepellent which are produced by themselves, that is, moving towards higher
concentrations of an attractive signal and keeping away from a repulsive signal. A fully parabolic attraction–
repulsion chemotaxis system was proposed by Painter and Hillen [20] to show the quorum effect in the
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chemotactic process and Luca et al. [12] to describe the aggregation of microglia observed in Alzheimer’s
disease, and can be approximated by a parabolic–elliptic–elliptic system.

In this paper we consider the parabolic–elliptic–elliptic attraction–repulsion chemotaxis system with
uperlinear logistic degradation,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ut = ∆u − χ∇ · (u∇v) + ξ∇ · (u∇w) + λu − µuk, x ∈ Ω , t > 0,

0 = ∆v + αu − βv, x ∈ Ω , t > 0,

0 = ∆w + γu − δw, x ∈ Ω , t > 0,
∂u
∂ν = ∂v

∂ν = ∂w
∂ν = 0, x ∈ ∂Ω , t > 0,

u(x, 0) = u0(x), x ∈ Ω ,

(1.1)

here Ω := BR(0) ⊂ Rn (n ≥ 3) is an open ball centered at the origin with radius R > 0; λ ∈ R, k > 1
nd µ, χ, ξ, α, β, γ, δ are positive constants; ∂

∂ν is the outward normal derivative on ∂Ω . Moreover, the initial
ata u0 is supposed to satisfy

u0 ∈ C0(Ω) is radially symmetric and nonnegative. (1.2)

The functions u, v and w represent the cell density, the concentration of attractive and repulsive chemical
substances, respectively.

Blow-up phenomena correspond to the concentration of organisms on chemical substances. Hence it is
important to investigate whether a solution of system (1.1) blows up or not. In this paper we show finite-
time blow-up in L∞-norm and Lσ-norm with some σ > 1, and derive a lower bound of blow-up time. Still

ore, not only blow-up phenomena but also global existence and boundedness have been studied in many
iteratures on chemotaxis systems (see [1,2,9]). Before presenting the main results, we give an overview of
nown results about some problems related to (1.1).

We first focus on the chemotaxis system{
ut = ∆u − χ∇ · (u∇v) + g(u),
τvt = ∆v + αu − βv

(1.3)

nder homogeneous Neumann boundary conditions, where χ, α, β are positive constants and g is a function
of logistic type, τ ∈ {0, 1}. The system with g(u) ≡ 0 was proposed by Keller and Segel [10]. Since then,
system (1.3) was extensively investigated as listed below.

• If τ = 1, g(u) ≡ 0 and α = β = 1, global existence and boundedness as well as finite-time blow-up were
investigated as follows. In the one-dimensional setting, Osaki and Yagi [19] showed that all solutions are
global in time and bounded. In the two-dimensional setting, Nagai et al. [17] established global existence
and boundedness under the condition

∫
Ω

u0(x) dx < 4π
χ . On the other hand, Herrero and Velázquez [8]

presented existence of radially symmetric solutions which blow up in finite time. Winkler in [28] with
χ = 1 and n ≥ 3, derived that if ∥u0∥

L
n
2 +ε(Ω)

and ∥∇v0∥Ln+ε(Ω) are small for sufficiently small ε > 0,
then a solution is global and bounded. Also, Winkler in [29] proved finite-time blow-up under some
conditions for initial data (u0, v0).

• If τ = 1 and g(u) = λu−µuk with λ, µ > 0, global existence for any k > 1 and stabilization for k ≥ 2− 2
n

were achieved in a generalized solution concept by Winkler [31]. Also, for certain choices of λ, µ, Yan and
Fuest in [32], derived global existence of weak solutions under the condition k > min{2 − 2

n , 2 − 4
n+4 },

n ≥ 2 and α = β = 1. In particular for n = 2, they showed that taking any k > 1 suffices to exclude the
possibility of collapse into a persistent Dirac distribution.

• If τ = 0, g(u) ≡ 0 and β = 1, Nagai in [15] proved global existence and boundedness when n = 1,
or n = 2 and

∫
u (x) dx < 4π , and finite-time blow-up under some condition for the energy function
Ω 0 χα
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and the moment of u when n ≥ 2. Also, in the two-dimensional setting, Nagai in [16] obtained global
existence and boundedness under the condition

∫
Ω

u0(x) dx < 8π
χα , and finite-time blow-up under the

conditions that α = 1,
∫
Ω

u0(x) dx > 8π
χ and that∫

Ω

u0(x)|x − x0|2 dx is sufficiently small for some x0 ∈ Ω . (1.4)

• If τ = 0, g(u) ≤ a−µu2 with a > 0, µ > 0 (n ≤ 2), µ > n−2
n χ (n ≥ 3) and α = β = 1, Tello and Winkler

in [26] showed global existence and boundedness.
• If τ = 0 and χ = α = β = 1, when g(u) = λu − µuk with λ ∈ R, µ > 0 and k > 1, Winkler in [30]

established finite-time blow-up in L∞-norm under suitable conditions on data; more precisely, the author
asserted that if Ω = BR(0) ⊂ Rn with n ≥ 3, R > 0 and 1 < k < 7

6 (n ∈ {3, 4}), 1 < k < 1 + 1
2(n−1)

(n ≥ 5), then system (1.3) admits a solution which blows up in L∞-norm at finite time. In [14], Marras
and Vernier derived finite-time blow-up in Lσ-norm with σ > n

2 and finally obtained a lower bound of
blow-up time. Moreover, as to system (1.3) with nonlinear diffusion, finite-time blow-up in L∞-norm was
obtained by Black et al. in [3] (see also [21,22] for weak chemotactic sensitivity and [13] for finite-time
blow-up in Lp-norm to more general chemotaxis system).

We now shift our attention to the attraction–repulsion chemotaxis system⎧⎪⎨⎪⎩
ut = ∆u − χ∇ · (u∇v) + ξ∇ · (u∇w) + g(u),
τvt = ∆v + αu − βv,

τwt = ∆w + γu − δw

(1.5)

nder homogeneous Neumann boundary conditions, where χ, ξ, α, β, γ, δ > 0 are constants and τ ∈ {0, 1}.
he system with τ = 0 and g(u) = λu−µuk coincides with (1.1), whereas the previous works on this system
re collected as follows.

• If τ = 0 and g(u) ≡ 0, existence of solutions which blow up in L∞-norm at finite time was studied in [24]
and [11]. More precisely, in the two-dimensional setting, Tao and Wang [24] derived finite-time blow-up
under the conditions (1.4) and

(i) χα − ξγ > 0, δ = β and
∫
Ω

u0(x) dx > 8π
χα−ξγ .

Also, in the two-dimensional setting, Li and Li [11] extended the above (i) to the following two conditions:

(ii) χα − ξγ > 0, δ ≥ β and
∫
Ω

u0(x) dx > 8π
χα−ξγ ;

(iii) χαδ − ξγβ > 0, δ < β and
∫
Ω

u0(x) dx > 8π
χαδ−ξβγ .

• If τ = 0 and g(u) ≡ 0, Yu et al. [33] replaced χαδ − ξγβ with χα − ξγ in (iii) and filled the gap
between the above (ii) and (iii). In [11,24,33], blow-up phenomena were analyzed by introducing the
linear combination of the solution components v, w such that z := χv − ξw (as to the fully parabolic
case τ = 1, see [5]).

• If τ = 0 and g(u) ≡ 0, explicit lower bound of blow-up time for system (1.5) was provided under the
condition χα − ξγ > 0 in the two-dimensional setting (see [27]).

In summary, blow-up phenomena have been well studied in both a parabolic–elliptic Keller–Segel system
nd an attraction–repulsion one when logistic sources are missing. However, blow-up with effect of logistic
egradation in a Keller–Segel system has been investigated, while for an attraction–repulsion system it is
till an open problem.

The purpose of this paper is to solve the above open problem. Namely, we examine finite-time blow-up in
he attraction–repulsion system (1.1) and we achieve a lower bound of the blow-up time. This paper shows
 38

3



NA: 112550

Y. Chiyo, M. Marras, Y. Tanaka et al. Nonlinear Analysis xxx (xxxx) xxx

1
2
3
4
5
6
7

8
9

10

a11
r12

13

a14
15

t

w16

17

18
T19

T20
s21

22

23

24

25

T26
σ27

28

29

w30
that logistic degradation does not necessarily rule out blow-up in the system (1.1), while there are some
related works studying whether signal consumption suppresses blow-up, see e.g., [23,25] for (1.3) and [6,7]
for (1.5), in which both systems have the second equation vt = ∆v − uv. These literatures prove that signal
consumption prevents blow-up in some special cases. However, whether this is true or not is still open in
general.

We now state main theorems. The first one asserts finite-time blow-up in L∞-norm. The statement reads
as follows.

Theorem 1.1 (Finite-time Blow-up in L∞-norm). Let Ω = BR(0) ⊂ Rn, n ≥ 3 and R > 0, and let λ ∈ R,
µ > 0, χ, ξ, α, β, γ, δ > 0. Assume that k > 1 satisfies

k <

{
7
6 if n ∈ {3, 4},

1 + 1
2(n−1) if n ≥ 5,

(1.6)

nd χ, ξ, α, γ > 0 fulfill χα − ξγ > 0. Then, for all L > 0, m > 0 and m0 ∈ (0, m) one can find
0 = r0(R, λ, µ, k, L, m, m0) ∈ (0, R) with the property that whenever u0 satisfies (1.2) and is such that

u0(x) ≤ L|x|−n(n−1) for all x ∈ Ω (1.7)

s well as ∫
Ω

u0(x) dx ≤ m but
∫

Br0 (0)
u0(x) dx ≥ m0,

here exist Tmax ∈ (0, ∞) and a classical solution (u, v, w) of system (1.1), uniquely determined by

u ∈ C0(Ω × [0, Tmax)) ∩ C2,1(Ω × (0, Tmax)),
v, w ∈

⋂
ϑ>n

C0([0, Tmax); W 1,ϑ(Ω)) ∩ C2,1(Ω × (0, Tmax)),

hich blows up at t = Tmax in the sense that

lim sup
t↗Tmax

∥u(·, t)∥L∞(Ω) = ∞. (1.8)

We next state a result which guarantees a solution blows up in Lσ-norm at the blow-up time in L∞-norm.
he theorem is the following.

heorem 1.2 (Finite-time Blow-up in Lσ-norm). Let Ω = BR(0) ⊂ Rn, n ≥ 3 and R > 0. Then, a classical
olution (u, v, w) for t ∈ (0, Tmax), provided by Theorem 1.1, is such that for all σ > n

2 ,

lim sup
t↗Tmax

∥u(·, t)∥Lσ(Ω) = ∞. (1.9)

Define for all σ > 1 the energy function

Ψ(t) := 1
σ

∥u(·, t)∥σ
Lσ(Ω) with Ψ0 := Ψ(0) = 1

σ
∥u0∥σ

Lσ(Ω).

The third theorem provides a lower bound of blow-up time. The result reads as follows.

heorem 1.3 (Lower Bound of Blow-up Time). Let Ω = BR(0) ⊂ Rn, n ≥ 3 and R > 0. Then, for all
> n

2 there exist B1 ≥ 0, B2, B3 > 0, depending on λ, µ, σ, n, such that for all u0 fulfilling the same
conditions as in Theorem 1.1, the blow-up time Tmax in (1.9) satisfies the estimate

Tmax ≥
∫ ∞

Ψ0

dη

B1η + B2ηγ1 + B3ηγ2
, (1.10)

ith γ := σ+1 , γ := 2(σ+1)−n .
1 σ 2 2σ−n

4
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Theorems 1.2 and 1.3 provide additional information about blow-up in the system (1.1), which cannot be
found for the attraction–repulsion chemotaxis system with/without logistic source.

One of the difficulties in the proofs of the above theorems is that the transformation z := χv − ξw does
ot work to reduce (1.1) to the Keller–Segel system in the case β ̸= δ, in contrast to the case β = δ which
nsures the simplification of (1.1) as{

ut = ∆u − ∇ · (u∇z) + λu − µuk, x ∈ Ω , t > 0,

0 = ∆z + (χα − ξγ)u − βz, x ∈ Ω , t > 0,

hich has already been studied in [14,30]. To overcome the difficulty, we carry out the arguments in the
iteratures without using the above transformation z.

This paper is organized as follows. In Section 2 we give preliminary results on local existence of classical
olutions to (1.1) and some basic and useful facts. In Sections 3 and 4 we prove finite-time blow-up in L∞-
orm and Lσ-norm (Theorems 1.1 and 1.2), respectively. Section 5 is devoted to the derivation of a lower
ound of blow-up time (Theorem 1.3).

. Preliminaries

We start with the following lemma on local existence of classical solutions to (1.1). This lemma can be
roved by a standard fixed point argument (see e.g., [26]).

emma 2.1. Let Ω = BR(0) ⊂ Rn, n ≥ 3 and R > 0, and let λ ∈ R, µ > 0, k > 1, χ, ξ, α, β, γ, δ > 0.
hen for all nonnegative u0 ∈ C0(Ω) there exists Tmax ∈ (0, ∞] such that (1.1) possesses a unique classical

olution (u, v, w) such that

u ∈ C0(Ω × [0, Tmax)) ∩ C2,1(Ω × (0, Tmax)),
v, w ∈

⋂
ϑ>n

C0([0, Tmax); W 1,ϑ(Ω)) ∩ C2,1(Ω × (0, Tmax)),

nd
u ≥ 0, v ≥ 0, w ≥ 0 for all t ∈ (0, Tmax).

oreover,
if Tmax < ∞, then lim sup

t↗Tmax
∥u(·, t)∥L∞(Ω) = ∞. (2.1)

emark 2.1. We can use limt↗Tmax ∥u(·, t)∥L∞(Ω) instead of lim supt↗Tmax ∥u(·, t)∥L∞(Ω) in the blow-up
riterion (2.1), because we can construct a classical solution on [0, T ] with some positive time T depending
nly on ∥u0∥L∞(Ω) and discuss the extension of the classical solution in a neighborhood of its maximal
xistence time Tmax, if Tmax < ∞.

We next give some properties of the Neumann heat semigroup which will be used later. For the proof,
ee [4, Lemma 2.1] and [28, Lemma 1.3].

emma 2.2. Suppose (et∆)t≥0 is the Neumann heat semigroup in Ω , and let µ1 > 0 denote the first non
ero eigenvalue of −∆ in Ω under Neumann boundary conditions. Then there exist k1, k2 > 0 which only
epend on Ω and have the following properties:

(i) if 1 ≤ q ≤ p ≤ ∞, then
∥et∆z∥Lp(Ω) ≤ k1t− n

2 ( 1
q − 1

p )∥z∥Lq(Ω), ∀ t > 0 (2.2)

holds for all z ∈ Lq(Ω).

5
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(ii) If 1 < q ≤ p ≤ ∞, then

∥et∆∇ · z ∥Lp(Ω) ≤ k2
(
1 + t− 1

2 − n
2 ( 1

q − 1
p ))e−µ1t∥z ∥Lq(Ω), ∀ t > 0 (2.3)

is valid for any z ∈ (Lq(Ω))n, where et∆∇ · is the extension of the operator et∆∇ · on (C∞
0 (Ω))n to

(Lq(Ω))n.

In Section 5 we will use the following lemma which is obtained by a minor adjustment of the power of
he Gagliardo–Nirenberg inequality.

emma 2.3. Let Ω be a bounded and smooth domain of Rn with n ≥ 1. Let r ≥ 1, 0 < q ≤ p ≤ ∞, s > 0.
hen there exists a constant CGN > 0 such that

∥f∥p
Lp(Ω) ≤ CGN

(
∥∇f∥pa

Lr(Ω)∥f∥p(1−a)
Lq(Ω) + ∥f∥p

Ls(Ω)

)
(2.4)

or all f ∈ Lq(Ω) with ∇f ∈ (Lr(Ω))n, and a :=
1
q − 1

p
1
q + 1

n − 1
r

∈ [0, 1].

Proof. Following from the Gagliardo–Nirenberg inequality (see [18] for more details):

∥f∥p
Lp(Ω) ≤

[
cGN

(
∥∇f∥a

Lr(Ω)∥f∥1−a
Lq(Ω) + ∥f∥Ls(Ω)

)]p
,

with some cGN > 0, and then from the inequality

(a + b)α ≤ 2α(aα + bα) for any a, b ≥ 0, α > 0,

we arrive to (2.4) with CGN = 2pcp
GN. □

3. Finite-time blow-up in L∞-norm

Throughout the sequel, we suppose that Ω = BR(0) ⊂ Rn (n ≥ 3) with R > 0 and u0 satisfies condition
1.2) as well as λ ∈ R, µ > 0, k > 1, χ, ξ, α, β, γ, δ > 0. Then we denote by (u, v, w) = (u(r, t), v(r, t), w(r, t))

the local classical solution of (1.1) given in Lemma 2.1 and by Tmax ∈ (0, ∞) its maximal existence time.
The goal of this section is to prove finite-time blow-up in L∞-norm. To this end, noting that u0 is radially

symmetric and so are u, v, w, we first define the functions

U(s, t) :=
∫ s

1
n

0
ρn−1u(ρ, t) dρ, s ∈ [0, Rn], t ∈ [0, Tmax),

V (s, t) :=
∫ s

1
n

0
ρn−1v(ρ, t) dρ, s ∈ [0, Rn], t ∈ [0, Tmax),

W (s, t) :=
∫ s

1
n

0
ρn−1w(ρ, t) dρ, s ∈ [0, Rn], t ∈ [0, Tmax).

Then we prove the following lemma.

Lemma 3.1. Under the above notation, we have

Ut(s, t) = n2s2− 2
n Uss(s, t) + nχαU(s, t)Us(s, t) − nχβV (s, t)Us(s, t)

− nξγU(s, t)Us(s, t) + nξδW (s, t)Us(s, t)

+ λU(s, t) − nk−1µ

∫ s

0
Uk

s (σ, t) dσ (3.1)

for all s ∈ (0, Rn), t ∈ (0, T ).
max

6
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Proof. By the definitions of U, V, W , we obtain

Us(s, t) = 1
n

u(s 1
n , t), Uss(s, t) = 1

n2 s
1
n −1ur(s 1

n , t),

Vs(s, t) = 1
n

v(s 1
n , t), Vss(s, t) = 1

n2 s
1
n −1vr(s 1

n , t),

Ws(s, t) = 1
n

w(s 1
n , t), Wss(s, t) = 1

n2 s
1
n −1wr(s 1

n , t),

or all s ∈ (0, Rn), t ∈ (0, Tmax). Since u, v, w are radially symmetric functions, we see from the second and
hird equations in (1.1) that

1
rn−1 (rn−1vr(r, t))r = −αu(r, t) + βv(r, t),

1
rn−1 (rn−1wr(r, t))r = −γu(r, t) + δw(r, t),

rom which we obtain

rn−1vr(r, t) = −αU(rn, t) + βV (rn, t), (3.2)
rn−1wr(r, t) = −γU(rn, t) + δW (rn, t) (3.3)

or all r ∈ (0, R), t ∈ (0, Tmax). Moreover, rewriting the first equation in (1.1) in the radial coordinates as

ut(r, t) = 1
rn−1 (rn−1ur(r, t))r − χ

1
rn−1 (u(r, t)rn−1vr(r, t))r

+ ξ
1

rn−1 (u(r, t)rn−1wr(r, t))r

+ λu(r, t) − µuk(r, t)

(3.4)

nd integrating it with respect to r over [0, s
1
n ], we have

Ut(s, t) = n2s2− 2
n Uss(s, t) − nχUs(s, t)s1− 1

n vr(s 1
n , t)

+ nξUs(s, t)s1− 1
n wr(s 1

n , t)

+ λU(s, t) − nk−1µ

∫ s

0
Uk

s (σ, t) dσ

for all s ∈ (0, Rn), t ∈ (0, Tmax). Thanks to (3.2) and (3.3), we arrive at (3.1). □

Given p ∈ (0, 1), s0 ∈ (0, Rn), we next derive a differential inequality for the moment-type function Φ

defined as
Φ(t) :=

∫ s0

0
s−p(s0 − s)U(s, t) ds, t ∈ [0, Tmax).

Lemma 3.2. Let λ ∈ R, µ > 0, χ, ξ, α, β, γ, δ > 0 and let χα − ξγ > 0. Assume that k > 1 satisfies (1.6).
Then there is p ∈ (1 − 2

n , 1) with the following property: For all m > 0 and L > 0 there exist s∗ ∈ (0, Rn)
nd C1 > 0 such that whenever u0 fulfills (1.2), (1.7) and

∫
Ω

u0(x) dx ≤ m, for any s0 ∈ (0, s∗) the function
satisfies

Φ′(t) ≥ 1
C1

sp−3
0 Φ2(t) − C1s

2
n +1−p
0 (3.5)

or all t ∈ (0, T̂max), where T̂max := min{1, Tmax}. Moreover, for all m0 ∈ (0, m) one can find s0 ∈ (0, s∗) and
0 = r0(R, λ, µ, k, L, m, m0) ∈ (0, R) such that if

∫
Br0 (0) u0(x) dx ≥ m0 and T̂max > 1

2 , then for all t ∈ (0, 1
2 ),

Φ′(t) ≥ C2sp−3
0 Φ2(t), (3.6)

where C is a positive constant.
2 15
7
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Proof. By the definition of Φ and Eq. (3.1), we have

Φ′(t) =
∫ s0

0
s−p(s0 − s)Ut(s, t) ds

= n2
∫ s0

0
s2− 2

n −p(s0 − s)Uss(s, t) ds

+ n(χα − ξγ)
∫ s0

0
s−p(s0 − s)U(s, t)Us(s, t) ds

− nχβ

∫ s0

0
s−p(s0 − s)V (s, t)Us(s, t) ds

+ nξδ

∫ s0

0
s−p(s0 − s)W (s, t)Us(s, t) ds

+ λ

∫ s0

0
s−p(s0 − s)U(s, t) ds − nk−1µ

∫ s0

0
s−p(s0 − s)

[∫ s

0
Uk

s (σ, t) dσ
]

ds. (3.7)

Since Us(s, t) = 1
n u(s 1

n , t) ≥ 0 and hence the fourth term on the right-hand side of (3.7) is nonnegative, we
obtain

Φ′(t) ≥ n2
∫ s0

0
s2− 2

n −p(s0 − s)Uss(s, t) ds

+ n(χα − ξγ)
∫ s0

0
s−p(s0 − s)U(s, t)Us(s, t) ds

− nχβ

∫ s0

0
s−p(s0 − s)V (s, t)Us(s, t) ds

+ λ

∫ s0

0
s−p(s0 − s)U(s, t) ds − nk−1µ

∫ s0

0
s−p(s0 − s)

[∫ s

0
Uk

s (σ, t) dσ
]

ds

or all t ∈ (0, Tmax). Since χα − ξγ > 0 by assumption, following the steps in [30, (4.3)], we can derive the
ifferential inequalities (3.5) and (3.6); note that, in the assumption T̂max > 1

2 for (3.6) the value 1
2 can be

replaced with other positive values less than 1. □

Now, we can prove Theorem 1.1.

Proof of Theorem 1.1. Thanks to Lemma 3.2, in particular, from (3.6), we can see that Tmax < ∞.
Therefore, from blow-up criterion (2.1), we conclude that the finite-time blow-up in L∞-norm occurs.
Namely, (1.8) is proved. □

4. Finite-time blow-up in Lσ-norm

In these next sections we will assume the conditions contained in Theorem 1.1. In order to prove
heorem 1.2, first we state the following lemmas.

emma 4.1. Let Ω ⊂ Rn, n ≥ 3 be a bounded and smooth domain, and λ ∈ R, µ > 0, k > 1. Then for a
lassical solution (u, v, w) of (1.1) we have∫

Ω

u dx ≤ m∗ := max
{∫

Ω

u0 dx,
(λ+

µ
|Ω |k−1

) 1
k−1

}
for all t ∈ (0, Tmax), (4.1)

here λ+ := max{0, λ}.
8
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Proof. Integrating the first equation in (1.1) and applying the divergence theorem and boundary conditions
f (1.1), we obtain

d

dt

∫
Ω

u dx = λ

∫
Ω

u dx − µ

∫
Ω

uk dx ≤ λ+

∫
Ω

u dx − µ|Ω |1−k
(∫

Ω

u dx
)k

, (4.2)

where in the last term we used Hölder’s inequality:
∫
Ω

u ≤ |Ω |
k−1

k (
∫
Ω

uk) 1
k . From (4.2) we deduce that

:=
∫
Ω

u dx fulfills {
y′(t) ≤ λ+y(t) − µyk(t), µ := µ|Ω |1−k for all t ∈ (0, Tmax),
y(0) = y0, y0 :=

∫
Ω

u0 dx.

Upon an ODE comparison argument this implies that y(t) ≤ m∗ for all t ∈ (0, Tmax). The lemma is
proved. □

We next prove the following lemma which plays an important role in the proof of Theorem 1.2.

Lemma 4.2. Let Ω ⊂ Rn, n ≥ 3 be a bounded and smooth domain. Let (u, v, w) be a classical solution of
system (1.1). If for some σ0 > n

2 there exists C > 0 such that

∥u(·, t)∥Lσ0 (Ω) ≤ C for all t ∈ (0, Tmax),

then, for some Ĉ > 0,
∥u(·, t)∥L∞(Ω) ≤ Ĉ for all t ∈ (0, Tmax). (4.3)

roof. For any x ∈ Ω , t ∈ (0, Tmax), we set t0 := max{0, t − 1} and we consider the representation formula
or u:

u(·, t) = e(t−t0)∆u(·, t0) − χ

∫ t

t0

e(t−s)∆∇ · (u(·, s)∇v(·, s)) ds

+ ξ

∫ t

t0

e(t−s)∆∇ · (u(·, s)∇w(·, s)) ds +
∫ t

t0

e(t−s)∆[
λu(·, s) − µuk(·, s)

]
ds

=: u1(·, t) + u2(·, t) + u3(·, t) + u4(·, t)

nd
0 ≤ u(·, t) ≤ ∥u1(·, t)∥L∞(Ω) + ∥u2(·, t)∥L∞(Ω) + ∥u3(·, t)∥L∞(Ω) + u4(·, t). (4.4)

e have

∥u1(·, t)∥L∞(Ω) ≤ max{∥u0∥L∞(Ω), m∗k1} =: C5, (4.5)

ith k1 > 0 and m∗ defined in (4.1). In fact, if t ≤ 1, then t0 = 0 and hence the maximum principle yields
1(·, t) ≤ ∥u0∥L∞(Ω). If t > 1, then t − t0 = 1 and from (2.2) with p = ∞ and q = 1, we deduce from (4.1)
hat ∥u1(·, t)∥L∞(Ω) ≤ k1(t − t0)− n

2 ∥u(·, t0)∥L1(Ω) ≤ m∗k1. We next use (2.3) with p = ∞, which leads to

∥u2(·, t)∥L∞(Ω) ≤ k2χ

∫ t

t0

(1 + (t − s)− 1
2 − n

2q )e−µ1(t−s)∥u(·, s)∇v(·, s)∥Lq(Ω) ds. (4.6)

Here, we may assume that n
2 < σ0 < n, and then we can fix q > n such that 1 − (n−σ0)q

nσ0
> 0, which enables

s to pick θ ∈ (1, ∞) fulfilling 1 < 1 − (n−σ0)q , that is, qθ < nσ0 . Then by Hölder’s inequality, we can
θ nσ0 θ−1 n−σ0

9
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estimate

∥u(·, s)∇v(·, s)∥Lq(Ω) ≤ ∥u(·, s)∥Lqθ(Ω)∥∇v(·, s)∥
L

qθ
θ−1 (Ω)

≤ C6∥u(·, s)∥Lqθ(Ω)∥∇v(·, s)∥
L

nσ0
n−σ0 (Ω)

for all s ∈ (0, Tmax),

with some C6 > 0. The Sobolev embedding theorem and elliptic regularity theory applied to the second
equation in (1.1) tell us that ∥v(·, s)∥

W
1,

nσ0
n−σ0 (Ω)

≤ C7∥v(·, s)∥W 2,σ0 (Ω) ≤ C8 with some C7, C8 > 0. Thus

gain by Hölder’s inequality and (4.1), we obtain

∥u(·, s)∇v(·, s)∥Lq(Ω) ≤ C9∥u(·, s)∥Lqθ(Ω) ≤ C10∥u(·, s)∥θ
L∞(Ω) for all s ∈ (0, Tmax),

ith some θ ∈ (0, 1), C9 := C6C8 and C10 := C9m1−θ
∗ . Hence, combining this estimate and (4.6), we infer

∥u2(·, t)∥L∞(Ω) ≤ C10k2χ

∫ t

t0

(1 + (t − s)− 1
2 − n

2q )e−µ1(t−s)∥u(·, s)∥θ
L∞(Ω) ds.

ow fix any T ∈ (0, Tmax). Then, since t − t0 ≤ 1, we have

∥u2(·, t)∥L∞(Ω) ≤ C10k2χ

∫ t

t0

(1 + (t − s)− 1
2 − n

2q e−µ1(t−s)) ds · sup
t∈[0,T ]

∥u(·, t)∥θ
L∞(Ω)

≤ C11χ sup
t∈[0,T ]

∥u(·, t)∥θ
L∞(Ω), (4.7)

here C11 := C10k2(1+µ
n
2q − 1

2
1

∫ ∞
0 r− 1

2 − n
2q e−r dr) > 0 is finite, because − 1

2 − n
2q > −1. Similarly, we conclude

∥u3(·, t)∥L∞(Ω) ≤ C11ξ sup
t∈[0,T ]

∥u(·, t)∥θ
L∞(Ω). (4.8)

e next prove that there exists a constant C12 ≥ 0 such that u4(·, t) ≤ C12. To this end, we observe that

h(u) := λu − µuk ≤ h(u∗) =: C12,

ith u∗ := ( λ+
µk )

1
k−1 . We have

u4(·, t) =
∫ t

t0

e(t−s)∆[
λu(·, s) − µuk(·, s)

]
ds ≤ C12

∫ t

t0

ds ≤ C12. (4.9)

lugging (4.5), (4.7), (4.8) and (4.9) into (4.4), we see that

0 ≤ u(x, t) ≤ C5 + C12 + C11(χ + ξ) sup
t∈[0,T ]

∥u(·, t)∥θ
L∞(Ω),

hich implies

sup
t∈[0,T ]

∥u(·, t)∥L∞(Ω) ≤ C13 + C14

(
sup

t∈[0,T ]
∥u(·, t)∥L∞(Ω)

)θ

for all T ∈ (0, Tmax),

ith C13 := C5 + C12 and C14 := C11(χ + ξ). From this inequality with θ ∈ (0, 1), we arrive at (4.3). □

Proof of Theorem 1.2. Since Theorem 1.1 holds, the unique local classical solution of (1.1) blows up at
t = Tmax in the sense lim supt↗Tmax ∥u(·, t)∥L∞(Ω) = ∞ (i.e., (1.8)). By contradiction, we prove that it blows
up also in Lσ-norm. In fact, if there exist σ0 > n

2 and C > 0 such that

∥u(·, t)∥Lσ0 (Ω) ≤ C for all t ∈ (0, Tmax),

hen, from Lemma 4.2, there exists Ĉ > 0 such that

∥u(·, t)∥L∞(Ω) ≤ Ĉ for all t ∈ (0, Tmax),

hich contradicts (1.8), so that, if u blows up in L∞-norm, then u blows up in Lσ-norm for all σ > n
2 . □
10
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5. A lower bound for Tmax, the proof of Theorem 1.3

Let us consider Ψ(t) = 1
σ

∫
Ω

uσ(x, t) dx, u(x, t) the first component of solutions to (1.1) and we prove
that Ψ satisfies a first order differential inequality.

In the proof of Theorem 1.3 we need an estimate for
∫
Ω

uσ+1 dx. To this end, we use the Gagliardo–
irenberg inequality (2.4) with f = u

σ
2 , p = 2(σ+1)

σ , r = 2, q = 2, s = 2. Since σ > n
2 , we

ave ∫
Ω

uσ+1 dx = ∥u
σ
2 ∥

2(σ+1)
σ

L
2(σ+1)

σ (Ω)

≤ CGN∥∇u
σ
2 ∥

2(σ+1)
σ θ0

L2(Ω) ∥u
σ
2 ∥

2(σ+1)
σ (1−θ0)

L2(Ω) + CGN∥u
σ
2 ∥

2(σ+1)
σ

L2(Ω)

= CGN

(∫
Ω

|∇u
σ
2 |

2
dx

) σ+1
σ θ0(∫

Ω

uσ dx
) σ+1

σ (1−θ0)
+ CGN

(∫
Ω

uσ dx
) σ+1

σ

≤ CGNε1β0

∫
Ω

|∇u
σ
2 |

2
dx + CGNε

− β0
1−β0

1 (1 − β0)
(∫

Ω

uσ dx
) (σ+1)(1−θ0)

σ(1−β0)

+ CGN

(∫
Ω

uσ dx
) σ+1

σ

= c1(ε1)
∫
Ω

|∇u
σ
2 |

2
dx + c2(ε1)

(∫
Ω

uσ dx
) 2(σ+1)−n

2σ−n + c3

(∫
Ω

uσ dx
) σ+1

σ
, (5.1)

ith ε1 > 0, θ0 := n
2(σ+1) ∈ (0, 1) and β0 := σ+1

σ θ0 = n
2σ ∈ (0, 1). Now, we derive a differential inequality of

he first order for Ψ(t).

Ψ ′(t) =
∫
Ω

uσ−1∆u dx − χ

∫
Ω

uσ−1∇ · (u∇v) dx + ξ

∫
Ω

uσ−1∇ · (u∇w) dx

+ λ

∫
Ω

uσ dx − µ

∫
Ω

uσ+k−1 dx

=: I1 + I2 + I3 + I4 + I5. (5.2)

We have:

I1 =
∫
Ω

uσ−1∆u dx = −(σ − 1)
∫
Ω

uσ−2|∇u|2 dx

= −4(σ − 1)
σ2

∫
Ω

|∇u
σ
2 |

2
dx, (5.3)

and

I2 = −χ

∫
Ω

uσ−1∇ · (u∇v) dx = χ
σ − 1

σ

∫
Ω

∇uσ · ∇v dx

= −χ
σ − 1

σ

∫
Ω

uσ∆v dx

= −χβ
σ − 1

σ

∫
Ω

uσv dx + χα
σ − 1

σ

∫
Ω

uσ+1 dx

≤ χα
σ − 1

σ

∫
Ω

uσ+1 dx (5.4)
11
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as well as

I3 = ξ

∫
Ω

uσ−1∇ · (u∇w) dx

= ξδ
σ − 1

σ

∫
Ω

uσw dx − ξγ
σ − 1

σ

∫
Ω

uσ+1 dx

≤ ξδ
σ − 1

σ

(∫
Ω

uσ+1 dx
) σ

σ+1
(∫

Ω

wσ+1 dx
) 1

σ+1 − ξγ
σ − 1

σ

∫
Ω

uσ+1 dx

≤ ξγ
σ − 1

σ

∫
Ω

uσ+1 dx − ξγ
σ − 1

σ

∫
Ω

uσ+1 dx

= 0, (5.5)

here the last inequality holds from (
∫
Ω

wσ+1)
1

σ+1 ≤ γ
δ (

∫
Ω

uσ+1)
1

σ+1 established by standard testing
procedures in the equation for w. We now use (5.1) in (5.4) to obtain

I2 ≤ c̃1(ε1)
∫
Ω

|∇u
σ
2 |

2
dx + c̃2(ε1)

(∫
Ω

uσ dx
) 2(σ+1)−n

2σ−n + c̃3

(∫
Ω

uσ dx
) σ+1

σ
, (5.6)

ith c̃1(ε1) := χα σ−1
σ c1(ε1), c̃2(ε1) := χα σ−1

σ c2(ε1), c̃3 := χα σ−1
σ c3. Also, using Hölder’s inequality, we see

hat

I4 + I5 = λ

∫
Ω

uσ dx − µ

∫
Ω

uσ+k−1 dx

≤ λ+

∫
Ω

uσ dx − µ|Ω |
1−k

σ

(∫
Ω

uσ dx
) σ+k−1

σ
. (5.7)

Substituting (5.3), (5.5), (5.6) and (5.7) in (5.2) we get

Ψ ′ ≤ B1Ψ + B2Ψ
σ+1

σ + B3Ψ
2(σ+1)−n

2σ−n − B4Ψ
σ+k−1

σ

+
(

c̃1(ε1) − 4(σ − 1)
σ2

) ∫
Ω

|∇u
σ
2 |

2
dx, (5.8)

with B1 := λ+σ, B2 := c̃3σ
σ+1

σ , B3 := c̃2(ε1)σ
2(σ+1)−n

2σ−n , B4 := µ|Ω |
1−k

σ σ
σ+k−1

σ . In (5.8) we choose ε1 such
that c̃1(ε1) − 4(σ−1)

σ2 ≤ 0 and neglecting the negative terms, we obtain

Ψ ′ ≤ B1Ψ + B2Ψ
σ+1

σ + B3Ψ
2(σ+1)−n

2σ−n . (5.9)

Integrating (5.9) from 0 to Tmax, we arrive to (1.10). □

Remark 5.1. Since u blows up in Lσ(Ω)-norm at finite time Tmax, then there exists a time t1 ∈ [0, Tmax),
where Ψ(t1) = Ψ0. As a consequence, Ψ(t) ≥ Ψ0, t ∈ [t1, Tmax) so that Ψρ ≤ Ψγ2Ψρ−γ2

0 for some ρ ≤ γ2.
oreover, taking into account that 1 < σ+1

σ ≤ 2(σ+1)−n
2σ−n = γ2, it follows that

Ψ ′ ≤ AΨγ2 in (t1, Tmax), (5.10)

ith A := B1Ψ
− 2

2σ−n
0 + B2Ψ

− n
σ(2σ−n)

0 + B3. Integrating (5.10) from t1 to Tmax, we derive the following
explicit lower bound of the blow-up time Tmax:

Tmax ≥ 1
A(γ2 − 1)Ψγ2−1

0
.

12
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