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Abstract: Parkinson’s disease (PD) is a clinically heterogenic disorder characterized by distinct clinical
entities. Most studies on motor deficits dichotomize PD into tremor dominant (TD) or non-tremor
dominant (non-TD) with akinetic-rigid features (AR). Different pathophysiological mechanisms
may affect the onset of motor manifestations. Recent studies have suggested that gut microbes
may be involved in PD pathogenesis. The aim of this study was to investigate the gut microbiota
and metabolome composition in PD patients in relation to TD and non-TD phenotypes. In order to
address this issue, gut microbiota and the metabolome structure of PD patients were determined from
faecal samples using 16S next generation sequencing and gas chromatography–mass spectrometry
approaches. The results showed a reduction in the relative abundance of Lachnospiraceae, Blautia,
Coprococcus, Lachnospira, and an increase in Enterobacteriaceae, Escherichia and Serratia linked to
non-TD subtypes. Moreover, the levels of important molecules (i.e., nicotinic acid, cadaverine,
glucuronic acid) were altered in relation to the severity of phenotype. We hypothesize that the
microbiota/metabolome enterotypes associated to non-TD subtypes may favor the development
of gut inflammatory environment and gastrointestinal dysfunctions and therefore a more severe
α-synucleinopathy. This study adds important information to PD pathogenesis and emphasizes the
potential pathophysiological link between gut microbiota/metabolites and PD motor subtypes.

Keywords: parkinson’s disease; clinical phenotype; gut microbiota; metabolome

1. Introduction

The pathological characteristics of PD consist of the inclusion of intra-neuronal α-
synuclein, also called Lewy bodies, and dopaminergic neuron loss in the substantia nigra
pars compacta [1]. The Lewy pathology and the loss of dopaminergic neurons are re-
sponsible for the distinctive clinical manifestations of the disease. PD is associated with a
heterogeneity of clinical changes, suggesting the existence of different subtypes, character-
ized by both motor and non-motor dysfunctions [2,3]. Although it remains to be established
whether the different subtypes represent distinct disorders or different disease stages [4], a
current classification based on motor signs suggests two main subtypes of tremor domi-
nant (TD) and non-tremor dominant (non-TD) [2,5]. Typically, in the TD subtype tremors
are the main motor feature [6–8]. On the other hand, non-TD subtypes may display an
akinetic-rigid syndrome characterized by rigidity, bradykinesia and akinesia, as well as an
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increased occurrence of postural instability and non-motor features (akinetic-rigid (AR)
phenotype) [5,9,10]. As the disease progresses, motor symptoms worsen with the onset
of further complications, particularly motor fluctuations and dyskinesia [11,12], usually
associated with prolonged levodopa administration. Interestingly, one subgroup of patients
are particularly prone to developing dyskinetic symptoms at a relatively early stage of the
disease (D phenotype). Such phenotype is less likely to appear in TD patients [13]. It is
important to notice that the onset of motor symptoms in PD is preceded by pre-motor man-
ifestations, such as gastrointestinal (GI) dysfunctions, including constipation, prolonged
intestinal transit time and pathophysiological changes in the intestinal barrier [14–23].
Previous studies reported that these changes can be associated with modification of gut
microbiota composition and microbial metabolites [24]. Though it has been proposed that
the different expressions of motor symptoms may reflect distinct pathophysiological mech-
anisms, emerging evidence from an animal model of PD suggests that the gut microbiota
itself may promote neurodegenerative changes [25–27] and impair motor function through
microglial activation [28].

Although the origin of Lewy pathology is still unclear, one of the most relevant
theories, Braak’s hypothesis, has suggested that an injury of the enteric nervous system
(ENS) triggered by gut bacteria may promote α-synuclein aggregation and its spreading,
via the vagal nerve, from the ENS to the brain through the brainstem, midbrain, basal
forebrain and the cortical areas [28–30]. On the other hand, different lines of evidence have
suggested that α-synucleinopathy could originate in the olfactory bulb or in the brain, and
then spread to the peripheral autonomic nervous system [29].

To date, several studies have investigated the gut microbial changes associated with
PD patients [30–38]; however, several points of interest remain to be established. One
of these concerns whether the dopaminergic drugs can affect gut bacteria or vice versa.
Recent studies highlighted that gut microbes can affect the metabolism of L-DOPA, the most
effective anti-Parkinson medication, potentially reducing its effectiveness and therefore
the clinical manifestations of the disease [39–41]. Another point of interest that is currently
quite conflicting, concerns the correlation between specific groups of bacteria with TD or
non-TD phenotypes [36,42,43].

Based on the early development of the GI dysfunction and the evidence that the
intestinal microbiota impacts brain functions with potential pathophysiological effects in
motor impairment in PD, we investigated whether variations in the composition of gut
microbiota/metabolome may be associated to different TD and non-TD motor subtypes of
PD, in particular TD versus AR and D phenotypes.

2. Materials and Method
2.1. Patients and Clinical Assessment

All patients provided written informed consent after the study was approved by the
local Institutional Ethics Committee (Prot.PG/2017/17817) of the Azienda Opedaliero
Universitaria di Cagliari, Italy. Idiopathic PD patients (n = 56) diagnosed according to the
UK Brain Bank criteria were recruited at the Neurology Department AO Brotzu (Cagliari,
Italy).

All PD were evaluated by the Movement Disorder Society-Unified Parkinson’s Disease
Rating Scale (MDS-UPDRS https://www.movementdisorders.org/MDS/MDS-Rating-
Scales/MDS-Unified-Parkinsons-Disease-Rating-Scale-MDS-UPDRS.htm) part III and IV
and by the Non-Motor Symptom Scale (NMSS) and were classified into two main groups
according to phenotype categories: tremor dominant (TD) (n = 19) and akinetic rigid (AR)
(n = 23). We have also included another phenotypic group in the study called Diskinetic
(D, n = 14). Patients displaying prominent dyskinesias were defined as “dyskinetic”; this
definition was applied to those who had a score of at least 2 over 4 in the sequences 2, 4.3,
4.4 in the MDS-UPDRS part IV and/or onset of dyskinesias within 3 years from the start of
therapy with levodopa.

https://www.movementdisorders.org/MDS/MDS-Rating-Scales/MDS-Unified-Parkinsons-Disease-Rating-Scale-MDS-UPDRS.htm
https://www.movementdisorders.org/MDS/MDS-Rating-Scales/MDS-Unified-Parkinsons-Disease-Rating-Scale-MDS-UPDRS.htm
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This criterion was selected because up to 50% of PD patients can develop dyskine-
sias and motor fluctuations after three/four years of levodopa treatment; this effect is
the clinical reflection of a breakdown of neuronal homeostasis in the central nervous sys-
tem [44]. Therefore, we decided that the onset of dyskinesias after less than three years
of exposure to levodopa reflected a phenotype specifically prone to this type of disabling
complication. All patients were enrolled on the basis of a well-balanced Mediterranean diet
without nutritional variations, as defined in the Mediterranean diet questionnaire [45]. The
exclusion criteria were: atypical parkinsonism; neurological or psychiatric illness; severe
cognitive impairment; primary gastrointestinal disease; simultaneous presence of internal
medicine; use of probiotics or antibiotics in the 3 months before enrolment. All patients
included in the study were given levodopa-carbidopa (LD) for at least 3 years (short LD)
or more (long-term LD), or alternatively LD-carbidopa intestinal gel (LCIG). Patients did
not assume inhibitors of catechol-o-methyl-transferase.

2.2. Gut Microbiota Analysis

Gut microbiota composition in PD patients with different phenotypes (TD; RA; D) was
investigated. DNA samples from frozen stools were extracted and analyzed by 16S rRNA
sequencing, as previously described [38,46]. A total of 56 samples were sequenced using
an Illumina MiSeq platform. Sequencing data were deposited in the European Nucleotide
Archive (https://www.ebi.ac.uk/ena), under the study accession numbers PRJEB30401.

2.3. Gut Metabolome Analysis

Gut metabolome analysis was carried out as previously described [38]. In brief, faecal
metabolites were extracted from each sample in methanol solution. One microliter of
derivatized sample was injected into a 7890A gas chromatograph coupled with a 5975C
Network mass spectrometer (Agilent Technologies, Santa Clara, CA, USA) equipped
with a fused silica capillary column for gas chromatography–mass spectrometry (GC-MS)
analysis. The gas flow rate through the column was 1 mL/min. Relative concentrations
of the discriminant metabolites were determined by the chromatogram area and then
normalized.

2.4. Data and Statistical Analysis

The variations in the frequency of phenotype groups were determined using Pearson’s
chi-squared test.

Analysis of the data generated on the Miseq System platform was carried out as
previously described [38] using the BaseSpace 16S Metagenomics App (Illumina). Micro-
biomeAnalyst tool [47] was used to estimate alpha- and beta-diversity indices. The linear
discriminant analysis effect size (LEfSe) (http://huttenhower.sph.harvard.edu/galaxy/)
and the non-parametric factorial Kruskal–Wallis sum rank test, followed by the Benjamini
and Hochberg false discovery rate (FDR) test for multiple comparisons was carried out to
detect bacterial taxa that were statistically different among PD phenotypes groups.

The general linear model (GLM) analysis and Bonferroni correction test for multiple
comparisons were used on Statistical Package for the Social Sciences (SPSS) (version 25.0 for
Windows) to evaluate the effect of potential confounders (sex, age, BMI, coffee consumption,
smoking status and pharmacological treatment covariates) on gut microbiota composition
related to PD phenotypes.

For the metabolome analysis the multivariate statistical analysis was carried out as
previously described [38] using SIMCA-P software (version 14.0, Umetrics, Sweden). To
evaluate the significant differences of metabolites among the phenotype groups a Mann–
Whitney U test followed by the Holm–Bonferroni correction test were used.

https://www.ebi.ac.uk/ena
http://huttenhower.sph.harvard.edu/galaxy/
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3. Results
3.1. PD Patient Subtypes

The distribution of the different clinical phenotypes was determined in the PD patient
cohort (Table 1).

Table 1. Distribution of clinical phenotype groups in PD patients.

Phenotypes TD AR D p Value

0.434 (TD-AR)
n (%) 19 (33.93%) 23 (41.07%) 14 (25.00%) 0.301 (TD-D)

0.070 (AR-D)
Statistical differences (p < 0.05) in the frequency of the Parkinson’s disease (PD) patients in the phenotype groups
(TD = Tremor Dominant; AR = Akinetic Rigid; D = Dyskinetic) were determined using chi-square test.

PD patients with the TD phenotype were 33.93% (n = 19), while 41.07% (n = 23)
presented AR phenotype and 25.00% presented D phenotype (n = 14). No significant
variations were observed in the distribution between TD vs. AR and D phenotypes groups
(χ2 = 0.609, p = 0.434; χ2 = 1.066, p = 0.301), and between AR and D phenotypes (χ2 = 3.269;
p = 0.070).

3.2. Demographic and Clinical Characteristics

The demographic and clinical characteristics of PD patients in regard to clinical
phenotypes are shown in Table 2.

Table 2. Demographic and clinical characteristics of PD patients based on motor phenotypes.

Variable PD Patients
(TD; n = 19)

PD Patients
(AR; n = 23)

PD Patients
(D; n = 14)

Age, mean ± SD 72.00 ± 8.00 71.00 ± 11.07 68.00 ± 9.21
BMI, mean ± SD 27.00 ± 3.93 26.19 ± 3.05 25.61 ± 5.26

Sex, n (%)
Male 13 (68.42%) 17 (73.91%) 9 (64.29%)

Female 6 (31.58%) 6 (26.09%) 5 (35.71%)
Constipation, n (%)

Yes 9 (52.94%) 9 (40.91%) 9 (64.29%)
No 8 (47.06%) 13 (59.09%) 5 (35.71%)

Missing 2 1 0
Coffee consumption, n (%)

Yes 11 (64.71%) 15 (71.43%) 7 (50.00%)
No 6 (35.29%) 6 (28.57%) 7 (50.00%)

Missing 2 2 0
Smoking status, n

(%)
Yes 1 (5.88%) 0 (0%) 3 (21.43%)
No 16 (94.12%) 19 (100%) 11 (78.57%)

Missing 2 4 0
Duration of disease,

n (%)
0–3 years 7 (41.18%) 4 (21.05%) 0 (0%)
4–13 years 10 (58.82%) 10 (52.63%) 7 (50.00%)
>13 years 0 (0%) 5 (26.32%) 7 (50.00%)
Missing 2 4 0

Treatment, n (%)
Short LD 8 (41.11%) 5 (21.74%) 1 (7.14%)

Long-term LD 9 (47.37%) 11 (47.83%) 6 (42.85%)
L-CIG 2 (10.53%) 7 (30.43%) 7 (50.00%)

PD phenotypes: TD = Tremor Dominant; AR = Akinetic Rigid; D = Dyskinetic; BMI = Body Mass Index.
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The phenotype groups were comparable for most of the considered variables, such as
age, gender, BMI, constipation, coffee consumption and smoking status.

3.3. Changes in Bacterial Diversity Associate with Distinct PD Phenotypes

The variation of microbial communities within sample (alpha-diversity) and between
samples (beta-diversity) was estimated in the PD phenotype groups. Marked differences
in alpha-diversity were obtained in the comparison between the TD phenotype vs. AR and
D phenotypes (Figure 1a–d).
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Figure 1. Alpha-diversity box plots throughout different PD phenotypes groups: Tremor Dominant
(TD); Akinetic Rigid (AR); Dyskinetic (D). Indices of alpha diversity of the microbial species in the
samples: (a) Abundance-based Coverage Estimator (ACE), (b) Chao, (c) Fisher and (d) Shannon. p values
were evaluated using Mann–Whitney U non-parametric test. Median values, interquartile ranges and
p values≤ 0.05 were indicated in the plots.

Significant differences were observed among Abundance-based Coverage Estimator ACE,
Chao, Fisher, Shannon indexes (p values from≤ 0.001 to≥ 0.032); however, the Simpson index
was not significantly different in comparison to the TD and D phenotypes, or the Shannon and
Simpson indexes between TD and AR phenotypes (p values≥ 0.05). The TD group showed the
highest alpha-diversity, while on the contrary D and AR revealed the lowest alpha-diversity.
No differences in alpha diversity analysis were detected in the comparison between AR and
D phenotypes. Similarly, the inter-sample beta-diversity analysis showed the separation
between the TD phenotype vs. AR and D phenotypes groups (p value = 0.003; p value = 0.001,
respectively) (Figure 2a–b), while no significant differences were found between the AR and D
phenotypes (p values > 0.05) (data not shown).
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Figure 2. Beta-diversity analysis throughout different PD phenotypes groups: (a) Tremor Dominant
(TD) vs. Akinetic Rigid (AR); (b) Tremor Dominant (TD) vs. Dyskinetic (D). Data are displayed as a
2D plot based on a principal coordinate analysis (PCoA). The statistical significance was evaluated
using Permutational Multivariate Analysis of Variance (PERMANOVA).

3.4. PD Phenotypes Differs in the Taxonomic Composition of Gut Microbiota

The changes in the gut microbiota composition related to PD phenotypes are shown
in Table 3 and Figure 3a–c. The main modifications included 16 taxa that were significantly
different in comparison between the TD and AR phenotypes (Table 3, Figure 3a).
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Table 3. Significant differences in gut bacteria in PD patients with different motor phenotypes.

Phenotype
Comparison Phylum Family Genus ↓/↑ MD Adjusted p Value

AR vs. TD

Actinobacteria Brevibacteriaceae ↓ −0.417 0.000 * 0.005
Brevibacteriun ↓ −0.417 0.000 * 0.005

Firmicutes ↓ −0.153 0.005 −
Clostridiaceae ↓ −0.301 0.008 −

Tindallia ↓ −0.744 0.003 −
Gemellaceae ↓ −0.286 0.004 −

Gemella ↓ −0.286 0.004 −
Lachnospiraceae ↓ −0.366 0.004 * 0.005

Blautia ↓ −0.344 0.003 * 0.014
Coprococcus ↓ −0.931 0.002 * 0.014
Lachnospira ↓ −0.450 0.005 * 0.036

Ruminococcaceae Faecalibacterium ↓ −0.403 0.009 −
Peptostreptococcaceae Sedimentibacter ↑ 0.424 0.000 * 0.004

Proteobacteria Enterobacteriaceae ↑ 0.819 0.005 * 0.010
Escherichia ↑ 1.039 0.002 −

Serratia ↑ 0.925 0.002 * 0.026

D vs. TD

Actinobacteria Brevibacteriaceae ↓ −0.481 0.000 * 0.004
Brevibacteriun ↓ −0.481 0.000 * 0.004

Firmicutes ↓ −0.215 0.002 −
Clostridiaceae ↓ −0.454 0.002 −

Tindallia ↓ −0.811 0.012 −
Eubacteriaceae ↓ −0.199 0.002 * 0.003

Acetobacterium ↓ −0.422 0.002 * 0.008
Gemellaceae ↓ −0.394 0.000 * 0.040

Gemella ↓ −0.394 0.000 * 0.040
Lachnospiraceae ↓ −0.422 0.003 * 0.008

Blautia ↓ −0.407 0.004 * 0.016
Coprococcus ↓ −0.888 0.003 * 0.036
Lachnospira ↓ −0.740 0.000 * 0.005

Lactobacillaceae ↑ 0.095 0.002 −
Lactobacillus ↑ 0.841 0.002 −

Peptococcaceae ↓ −0.450 0.000 * 0.037
Peptostreptococcaceae Sedimentibacter ↓ −0.893 0.000 * 0.000

Ruminococcaceae ↓ −0.487 0.002 −
Faecalibacterium ↓ −0.493 0.004 −

Proteobacteria Enterobacteriaceae ↑ 1.061 0.003 −
Escherichia ↑ 1.273 0.003 * 0.019

Serratia ↑ 1.062 0.004 * 0.010

D vs. AR
Firmicutes Lactobacillaceae ↑ 0.814 0.008 −

Lactobacillus ↑ 0.749 0.007 −
Kruskall–Wallis test and Analysis of Covariance (ANCOVA) performed using Generalized Linear Model (GLM) followed by the Benjamini
and Hochberg false discovery rate (FDR) and Bonferroni correction test for multiple comparisons in SPSS (version 25.0 for Windows); MD:
Mean difference between logarithmic value of relative abundance in the different phenotype groups TD (n = 19): Tremor Dominant, AR
(n = 23): Akinetic Rigid, and D (n = 14): Dyskinetic; adjusted p values (p < 0.05) obtained by Kruskall–Wallis and FDR correction tests;
* adjusted p values (p < 0.05) obtained by ANCOVA and Bonferroni correction test where sex, age, BMI, constipation, coffee consumption,
smoking status and pharmacological treatment were covariates; (−): adjusted p values (p > 0.05); ↓ Significantly reduced, ↑ Significantly
increased with respect to first phenotype shown.
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Figure 3. Linear discriminant analysis effect size (LEfSE) analysis: The bar plots represent the
significantly different taxa among PD patients with distinct motor phenotypes, based on effect size
(Linear discriminant analysis (LDA) score (log 10) > 2). (a) Positive LDA score (green) highlights
the enriched taxa in PD patients with Tremor Dominant (TD) and negative LDA score (red) shows
the enriched taxa in PD patients with Akinetic Rigid (AR); (b) Positive LDA score (green) highlights
enriched taxa in PD patients with Tremor Dominant (TD) and negative LDA score (red) shows
enriched taxa in PD with Dyskinetic (D); (c) Positive LDA score (green) highlights enriched taxa
in PD patients with Dyskinetic (D) compared to Akinetic Rigid (AR) phenotype; Kruskal–Wallis
test (α = 0.05) and Benjamini and Hochberg false discovery rate (FDR) correction test for multiple
comparisons were used to evaluate the differences among classes.

The relative abundance of the Firmicutes phylum and several families such as Clostridi-
aceae, Gemellaceae and Lachnospiraceae was decreased in the AR phenotype. A reduction
in the Brevibacteriaceae family within the Actinobacteria phylum was also observed. At a
genus level, the most relevant reductions concerned Brevibacterium within the Brevibacte-
riaceae family, Tindallia within the Clostridiaceae family, Gemella within the Gemellaceae
family and Blautia, Coprococcus and Lachnospira within the Lachnospiraceae family. The rela-
tive abundance of Faecalibacterium within the Ruminococcaceae family showed a decreased
abundance in the same group as well. On the contrary, an increase in the Enterobacteriaceae
family and Escherichia and Serratia genera and Sedimentibacter within the Peptostreptococ-
caceae family was observed.

Similar changes were documented in the comparison between D vs. TD pheno-
types: 22 taxa were significantly modified (Table 3, Figure 3b). At the phylum level
only Firmicutes decreased in the D phenotype. At the family level, the most relevant
reductions concerned the Brevibacteriaceae, Clostridiaceae, Eubacteriaceae, Gemellaceae,
Lachnospiraceae, Peptococcaceae and Ruminococcaceae families. A reduction in the abun-
dance of several genera, such as Brevibacterium, Tindallia, Acetobacterium, Gemella, Blautia,
Coprococcus, Lachnospira, Faecalibacterium and Sedimentibacter was also observed. On the
contrary, the relative abundance of the Lactobacillaceae family and related genus Lactobacil-
lus, and the Enterobacteriaceae family and Escherichia and Serratia genera increased in D
phenotype.

The relative abundance of only two taxa, the Lactobacillaceae family and related
genus, increased in the D phenotype compared to the AR phenotype (Table 3, Figure 3c).

Most differences in the gut microbiota composition among PD phenotypes groups
were maintained at various taxonomic levels when the same data were corrected for sev-
eral confounding factors, such as sex, age, BMI, coffee consumption, smoking status and
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pharmacological treatments by analysis of covariance (ANCOVA) (Table 3, * adjusted p
values <0.05). The significant differences still associated with the AR phenotype, compared
to the TD phenotype, consisted of a reduction in the Brevibacteriaceae and Lachnospiraceae
families and several genera, such as Brevibacterium, Blautia, Coprococcus and Lachnospira. In
addition, a significant increase in Enterobacteriaceae and related genus Serratia, and Sedi-
mentibacter was also still observed. In the comparison between D vs. TD phenotypes, the
significant differences concerned a reduction in several families, such as Brevibacteriaceae,
Eubacteriaceae, Gemellaceae, Lachnospiraceae, and Peptococcaceae. The depletion of sev-
eral genera such as Brevibacterium, Acetobacterium, Gemella, Blautia, Coprococcus, Lachnospira,
and Sedimentibacter was still associated with the D phenotype, while increases were noted
for Escherichia and Serratia genera. No significant differences in the microbiota composition
were preserved when the D phenotype group was compared to the AR phenotypes ((−) p
value > 0.05).

3.5. Distinct Metabolic Changes Associate with PD Phenotypes

The multivariate statistical analysis (MVA) related to the gut metabolome composition
among PD phenotypes groups is shown in Figure 4a–c.
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Figure 4. Metabolomic multivariate statistical analysis (MVA): orthogonal partial least-square dis-
criminant analysis (OPLS-DA) score plots of: (a) Tremor Dominant (TD) blank circle vs. Akinetic
Rigid (AR) blue rhombus; (b) Tremor Dominant (TD) blank circle vs. Dyskinetic (D) green hexagon;
(c) Akinetic Rigid (AR) blue rhombus vs. Dyskinetic (D) green hexagon.
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The quality parameters of the orthogonal partial least-square discriminant analysis
(OPLS-DA) model and the permutation test showed the statistical validity of the analysis
between AR vs. TD phenotypes (R2Y, 0.590; Q2, −0.155; R2 intercept, 0.0, 0.662; Q2
intercept, 0.0, −0.137), D vs. TD phenotypes (R2Y, 0.757; Q2, 0.249; R2 intercept, 0.0,
0.718; Q2 intercept, 0.0, −0.133) and D vs. RA phenotypes (R2Y, 0.661; Q2, −0.210; R2
intercept, 0.0, 0.628; Q2 intercept, 0.0, 0.072). The results revealed distinct metabolic changes
associated with the PD phenotypes (Figure 5a–c).
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groups: Tremor Dominant (TD); Akinetic Rigid (AR); Dyskinetic (D). Corrected p values were
evaluated using Mann–Whitney U test followed by Holm–Bonferroni correction test. The metabolites
found, (a) nicotinic acid, (b) cadaverine, (c) glucuronic acid, are displayed and expressed in the
graphs y axis as ranks (data transformation in which numerical or ordinal values are substituted by
their rank once the data are sorted). (*): p < 0.05; (**): p < 0.01.

An up-regulation of cadaverine and glucuronic acid was observed in the comparison
between D phenotype vs. TD and AR phenotypes (FDR corrected p values < 0.05) (Figure 5a,c).
On the contrary, a downregulation of nicotinic acid was observed in the same comparisons, D
phenotype vs. TD and AR phenotypes (FDR corrected p values < 0.05) (Figure 5b).

4. Discussion

Our data highlight that the gut microbiota and metabolome composition differ in PD
patients in relation to the clinical phenotypes. This work provides important information
that better defines the potential pathological interaction between gut microbes–bacteria
metabolites and motor PD subtypes. The results revealed that the overall gut microbiota
structure showed a higher diversity and richness of bacterial species associated to the TD
form, whereas a reduction in diversity and richness linked to non-TD phenotypes was
also apparent. The beta diversity analysis showed that the composition of gut microbial
communities was similar between PD patients with AR and D phenotypes; however, both
non-TD phenotypes differed from the TD phenotype. While a reduction in the abundance
of different taxa, such as Eubacteriaceae and related genus Acetobacterium, Gemellaceae
and Gemella genus, and Peptococcaceae family, was exclusively related to the D form, the
main relevant differences in the composition of gut microbiota were common in both the
non-TD phenotypes. In particular, an increase in the Enterobacteriaceae family within the
Proteobacteria phylum and related genus Escherichia and Serratia was linked to non-TD
phenotypes. It has been suggested that enrichment of Enterobacteriaceae and key members
plays an important role in PD dysbiosis [35,37]. Indeed, the gut microbiota dysbiosis is
characterized by a shift in relative bacterial abundances with a prevalence of pathobionts be-
longing to the phylum Proteobacteria (i.e., Enterobacteriaceae), while beneficial symbionts
belong mainly to the phylum Firmicutes and Bacteroides are less expressed. This persistent
imbalance of the gut microbial community between harming and non-harming symbionts
induces an immune reaction, which promotes an inflammation status that represents a
favorable microenvironment for the growth of the same Enterobacteriaceae [48].

Interestingly, Enterobacteriaceae are among the most typically overgrown symbionts
in many conditions implying inflammation, such as inflammatory bowel disease (Crohn’s
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disease and ulcerative colitis), obesity and colorectal cancer [48]. The overgrowth of Enter-
obacteriaceae in the gut has been associated with oxidative stress and alteration of barrier
integrity due to continuous exposition to bacterial endotoxins [48]. Moreover, it is known
that an inflammatory environment and an increase in gut permeability, triggered by bacte-
rial endotoxins, can lead to an enhancement of α-synuclein expression and aggregation in
the ENS [20,49,50]. In fact, it has been reported that an increase in α-synuclein aggregation
may further activate microglia, which leads to additional α-synuclein propagation and
progression of the disease [51]. Our findings are in agreement with a previous report [36]
that showed an increase in Enterobacteriaceae in patients affected by postural instability
disorder with gait difficulty (PIGD phenotype; a non-TD form related to the AR phenotype).
In addition to the aforementioned enrichment of Enterobacteriaceae, our results strengthen
the association between dysbiosis and non-TD phenotypes, extending the previous report
with findings of a parallel reduction in several butyrate-producing bacteria within the
Firmicutes phylum, as well as the Lachnospiraceae family and some genera in the same
family, such as Blautia, Coprococcus, and Lachnospira. It is known that butyrate-producing
bacteria are involved in promoting gastrointestinal integrity and motility [52] and in the
modulation of intestinal inflammation by activation of the G protein-coupled receptor
GPR109A [53]. Interestingly, it has been reported that subjects with PD display intestinal
inflammation [21]. These considerations allow us to hypothesize that in PD patients with
non-TD phenotypes, a co-reduction in butyrate-producing bacteria (i.e., Lachospiraceae
members), known to be associated with PD [32,34,37,38], may impact gut homeostasis even
more, thus, exacerbating the inflammation and GI dysfunctions. Based on this knowledge,
the results from the present study suggest that a greater abundance of pro-inflammatory En-
terobacteriaceae and a reduction in protective Lachospiraceae members in non-TD patients
might be associated with gut inflammation and more severe α-synucleinopathy in the ENS.
It has been proposed that non-TD phenotypes might be associated with a worse prognosis
and faster progression of PD compared to TD patients and also with a more severe colonic
α-synucleinpathology [22,36,54]. Even though more genetic and neuropathological studies
are needed to establish the relationship of the gut microbiota changes with α-synuclein,
leucine-rich repeat kinase 2, or glucocerebrosidase gene expression, as well as with other
proteinopathies (i.e., amyloid-beta, tau and TAR DNA binding protein 43), our results
suggest that gut dysbiosis may play a role in the different natural history and prognosis of
disease related to TD and non-TD phenotypes.

Although the analysis of faecal metabolites did not reveal significant differences in
the total levels of butyrate between TD and non-TD phenotypes, the metabolome findings
in our study are consistent with the pro-inflammatory microbiota profile associated with
non-TD subtype. Specifically, depletion of nicotinic acid and a parallel increase in cadaver-
ine and glucuronic acid is associated with non-TD (D phenotype) phenotypes, instead of
the TD and AR phenotypes. It has been reported that nicotinic acid (vitamin B3) shares the
same butyrate receptor in the gut [53], GPR109A, displaying anti-inflammatory, antioxidant
and protective effects against neurodegenerative mechanisms [55,56]. The depletion of vita-
min B3 may be caused by a reduction in several vitamin B3-producing bacteria within the
Firmicutes phylum [57], that we found to be linked to PD patients in a previous report [38]
and in the present study. On the contrary, the increased levels of cadaverine match well
with an overgrown Escherichia population; the bacteria in the human gut that can produce
this biogenic amine [58]. It has been suggested that dysregulation of cadaverine can be
involved in neurodegeneration and the formation of Lewy bodies in PD [59,60]. In vitro
studies highlighted that biogenic amines can bind the N-terminal region of the amyloid beta
peptide, significantly increasing the aggregation of α-synuclein [61]. Another pathological
mechanism by which increased cadaverine levels affect neurodegeneration may be the in-
duction of oxidative stress through the formation of toxic metabolites, including aldehydes,
H2O2 and ammonia [60,62,63]. These pathogenic effects might contribute to promoting an
inflammatory environment and α-synuclein aggregation in the ENS [38,60,64].



Biomolecules 2021, 11, 144 12 of 16

Interestingly, we found an increase in glucuronic acid to be associated with the D
phenotype. Multiple mechanisms may underlie the increased levels of glucuronic acid.
One of the most reasonable possibilities involves the cleavage of glucuronic acid from
glucuronidated xenobiotics by gut β-glucuronidase-bacteria [65]. Escherichia are among the
opportunistic pathogens in the human gut that harbor a β-glucuronidase enzyme [66,67]
and cause the release of glucuronic acid and, consequently, of xenobiotics, such as environ-
mental toxins and drug metabolites with pro-inflammatory effects, that interfere with their
inactivation and elimination via the GI tract [65,68].

These data are of particular importance since a direct correlation between pesticide
exposure and increased risk of PD development has been already reported [69]. Further-
more, two important neurotransmitters generated in the GI tract [70,71] and involved
in the regulation of gut motility [72,73], dopamine and serotonin, which are commonly
glucuronidated to allow for their easier transport through the body, can be hydrolyzed
by β-glucuronidase-bacteria in the GI lumen [68,74]. These observations have led us to
hypothesize that increased levels of Escherichia and glucuronic acid could be linked to a
reduction in glucuronidation, one of the major detoxification pathways [67,75]. This event
might contribute to promoting an inflammatory environment in the gut and a reduction
in dopamine and serotonin availability, which may be correlated with the more frequent
hyperkinetic motor symptoms and GI dysfunctions displayed by D subtypes.

5. Conclusions

Our study highlights that the gut microbiota of PD patients with TD and non-TD
motor phenotypes differs in terms of bacterial diversity and taxonomic composition, sug-
gesting a possible relationship between gut dysbiosis and motor impairment. In particular,
our findings show that non-TD subtypes were associated with a decrease in bacteria diver-
sity, characterized by a predominant enrichment of Enterobacteriaceae and Escherichia and
a reduction in Lachospiraceae and other key members. Moreover, interesting modifications
of bacterial products, such as a reduction in nicotinic acid and an increase in cadaverine
and glucuronic acid, were found to be linked to non-TD phenotype. Although gut mi-
crobiota modifications reported in the study could also be ascribed in part to the effect of
dopaminergic drugs or to the different stages of disease related to TD and D subtypes, we
believe that our findings are of importance and warrant further investigations to clarify
the biological interplay between gut microbiota and bacterial metabolite expression in the
pathophysiology of PD.

While the PD-causing event and the cause–effect relationship between gut microbiota
and the Lewy pathology still remain unclear, the emerging hypothesis, supported also by
our findings, suggests that a shift from gut microbial communities to harmful symbionts,
probably induced by an exogenous pathogenic insult that gains access to gastric system,
might impair the intestinal barrier and initiate the pathological process in the ENS causing
inflammation, oxidative stress and α-synuclein aggregation [29,76–78]. As the propagation
of α-synuclein spreads from gut to brain in a prion-like manner [79], the Lewy pathology
advances and the damage to dopaminergic neuron and motor manifestations of the disease
increase.
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