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Abstract In the framework of the couple stress theory, we discuss the effective elastic properties of a metal
open-cell foam. In this theory, we have the couple stress tensor, but the microrotations are fully described by
displacements. To this end, we performed calculations for a representative volume element which give the
matrices of elastic moduli relating stress and stress tensors with strain and microcurvature tensors.

Keywords Foam · Effective properties · Couple stress theory · Anisotropy

1 Introduction

Polymer and metal foams have rather perspective properties and widely used in the engineering, see, e.g., [1–5].
From the mechanical point of view, foams may demonstrate quite unusual behavior. It is worth to mention
that the re-entrant foams have negative Poisson’s ratio [6] and belong to the class of auxetic materials [7]. As
an open-cell foam can be treated as a beam lattice where bending deformations of struts may play a dominant
role, it is natural to consider it as a material with couple stresses. In fact, foams are treated as an example of
Cosserat-type materials. In order to find the micropolar material parameters, the straightforward experiments
on foams were performed in [8–13].

Let us note that for generalized continua such as media with couple stresses, the determination of material
parameters used in constitutive equations constitute a rather complex and important problem. Even in the
case of classic (Cauchy–type) materials, this problem was stated as a crucial one by Truesdell, see [14,15]. In
addition to aforementioned experimental results, we mentioned here the various homogenization techniques.
In fact, the homogenization of composite materials with high contrast in properties may lead to generalized
models of continuum, such as micropolar and micromorphic media, or strain- and stress-gradient elasticity,
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see, e.g., [16–28], and the references therein. Even in the case of isotropic materials undergoing infinitesimal
deformations, the constitutive equations contain a lot of elastic parameters. For example, within the linear
micropolar elasticity we have six elastic moduli [29,30], so in addition to the classic Lame moduli we require
four micropolar moduli. In the Toupin–Mindlin strain-gradient elasticity [31–33], we get five additional elastic
moduli, see also [34–38] for discussion about the representation of a strain energy function and tensors of elastic
moduli. A particular class of strain-gradient elasticity consists of the couple stress theory called also Cosserat
continuum with constraint rotations [29]. A modified couple stress theory with symmetric stress and couple
stress tensor was proposed by [39]. In [39], we have only one additional length-scale material parameter in
the isotropic case. Let us note that the strain-gradient elasticity and its various models became a fruitful model
for modeling of beam lattice and other architectured materials, see [18–28] and the references therein. In
particular, the couple stress theory was developed in [40] as a result of homogenization.

The aim of this paper is to discuss the homogenization technique of foams in the framework of the couple
stress theory as discussed in [40]. A real geometry of an alumina foam specimen was obtained using the
tomography technique. As an open-cell foam has quite complex microstructure advanced technologies as
tomography is required to get real geometry as well as extensive calculations, see, e.g., [40–45]. As a result,
we obtain the complete set of anisotropic material parameters which can be used for further analysis of this
foam materials.

The paper is organized as follows. In Sect. 2, we recall in brief the governing equations of the couple stress
theory. In order to demonstrate the used approach, we consider a benchmark solution for an isotropic material
in Sect. 3. Here, we consider deformations of a solid cube for different boundary conditions. The derivation of
the effective properties is based on Hill–Mandel lemma, that is on the comparison of the mechanical energies of
the non-homogeneous material and the effective media [46,47]. To this end, we propose new set of consistent
kinematic boundary conditions. Finally, in Sect. 4 we apply this technique for the real tomography-based
structures. Here, we obtain 21 elastic moduli for a given metal foam. As a result, we get the complete set of
material parameters for the considered foam in the framework of the couple stress theory.

2 Constitutive equations of the couple stress theory

The kinematics of a Cosserat-type medium is based on two kinematical descriptors that are the fields of
displacements and microrotations

u = u(x), φ = φ(x), (1)

where x is the position vector of material particles. Unlike Cosserat continuum where φ is independent on u,
in the couple stress theory φ depends on u as follows [29,40]

φ =
1

2
∇ × u, (2)

where ∇ is the three-dimensional nabla operator and × stands for the cross product.
In the couple stress theory, we introduce two symmetric strain measures

ε =
1

2

(

∇u + (∇u)T
)

, χ =
1

2

(

∇φ + (∇φ)T
)

, (3)

which are strain and microcurvature tensors, respectively.
For anisotropic media with central symmetry, there is a strain energy density given by the formula

W =
1

2
ε : C : ε +

1

2
χ : D : χ , (4)

where C and D are the fourth-order tensors of elastic moduli and : denotes the inner product in the space of
second-order tensors. For (4), we get the stress–strain relations in the form

σ = C : ε, µ = D : χ , (5)

where σ and µ are the stress and couple stress tensors, respectively. The form of C and D was discussed in
[30,48,49] for various material symmetries of micropolar solids. Let us only note that this analysis should be
modified as here χ is a traceless tensor.
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3 Benchmark solution

For the determination of effective material properties using the homogenization, the volume of the represen-
tative volume element plays a very important role. Another important issue is the type of the loading which
can be considering in the form of constant traction, kinematic assumptions (prescribed displacements) or a
periodic boundary conditions (PBCs). With the increased size of representative volume element, these three
types should lead to the same solution. However, a large size of RVE requires solving large boundary-value
problems which is both expensive and time-consuming. In most of the problems, the periodic boundary con-
ditions provide the best convergence in the determination of the effective material data (unless the analyzed
structure is periodical).

In the analysis of the high-porosity foams, constant traction may generate locally very large deformations
of the foam skeleton which results in plasticity and/or buckling phenomena. Because of this strain localization,
this type of BCs is not considered here. Thus, in this research prescribed displacements (kinematic load) are
assumed. The general approach to determination of the effective properties of porous media in the framework
of the couple stress theory has been recently proposed by Goda et al. [40]. In [40], twenty-one numerical tests
were performed in order to determine twenty-one couple-stress material elastic parameters. In what follows,
we use the approach of [40] with some modifications related to boundary conditions. In order to discuss the
proposed approach in more details, we consider a benchmark test for an isotropic homogeneous material and
performed all numerical tests for it.

Following Hill–Mandel lemma, here we compare stored energies of a non-homogeneous material with
stored energies of heterogeneous material with effective elastic moduli. For example, assuming that displace-
ments are linear functions of coordinates such as

u = ε · x, (6)

where ε is a constant tensor and dot means the scalar product, or in Cartesian coordinates

ui = εi j x j , (7)

we get that χ = 0 and strain energy U of RVE takes the form

U =
V

2
Ci jklεi jεkl , (8)

where V is the volume of RVE. So choosing one or two components of εi j equal to 1, we can easily calculate
the corresponding elastic moduli. To this end, we have to applied proper boundary conditions on the faces of
RVE.

With C in hands, we can determine D in a similar way. Again, assuming χi j constant we can consider the
following field of rotations φ

φ = χ · x, (9)

or, in the coordinate form,

φi = χi j x j , (10)

we get the average energy in the form

U =
V

2
Ci jkl〈εi jεkl〉 +

V

2
Di jklχi jχkl , (11)

where 〈...〉 denotes the averaged (mean) value. Again, assuming simple form of χi j we can obtain from
calculated energy the value of corresponding Di jkl . Let us note that here we cannot use both εi j and χi j

constant as in the case of the couple stress theory constant χ corresponds to rotations given as linear functions
of coordinates. As the rotations relate to the displacements through (2), in this case we have a quadratic
dependence for u and linear one for ε.
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As an example, we consider steel with the following properties: Young modulus E = 2e5 MPa and
Poisson’s ratio ν = 0.33. In Voigt’s notation, C takes the form of 6 by 6 matrix

C =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

K + 4
3 G K − 2

3 G − 2
3 G 0 0 0

K + 4
3 G − 2

3 G 0 0 0
K + 4

3 G 0 0 0
G 0 0

G 0
sym G

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where K = E
3(1−2ν)

and G = E
2(1+ν)

are the bulk and shear moduli. So we have K + 4/3G = 2.9633e5
MPa, K − 2/3G = 1.4595e5 MPa, and G = 7.5188e4 MPa. Comparison of given material parameters and
obtained ones in numerical computations can prove the reliability of the proposed strain energy approach. In
the numerical simulations, the 1×1×1 mm cube is considered, see Fig. 1. So the volume of the RVE is V = 1
mm3. The Cartesian coordinate system is located in the RVE centroid.

Here, we used an idea to compare stored energies of a non-homogeneous material with stored energies of
heterogeneous material with effective elastic moduli.

1. For computation of C11, we assume an uniaxial tension with a uniform strain εxx = 1. To this end, we
assume the following boundary conditions

ux = x on nx faces,

uy = 0 on ny faces,

uz = 0 on nz faces.

The corresponding shape is given in Fig. 2. The strain energy from the FEM analysis and the corresponding
modulus are

UFEM = 148165 mJ,

C11 = 2UFEM/V = 296330 MPa.

The latter value coincides with the value of K + 4/3G.
2. For computation of C22, we assume an uniaxial tension with a uniform strain εyy = 1. Here, we assume

the following boundary conditions

ux = 0 on nx faces,

u y = y on ny faces,

uz = 0 on nz faces.

The calculated strain energy and the corresponding modulus are

UFEM = 148165 mJ,

C22 = 2UFEM/V = 296330 MPa.

3. Computation of C33—uniaxial tension with a uniform strain εzz = 1. Assumed boundary conditions (BCs)
are

ux = 0 on nx faces,

u y = 0 on ny faces,

uz = z on nz faces.

Here, we get again

UFEM = 148165 mJ,

C33 = 2UFEM/V = 296330 MPa.

In the last two cases, moduli coincide again with the value of K + 4/3G.
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4. Computation of C12—biaxial tension with a uniform strains εxx = εyy = 1 (Fig. 3). BCs are

ux = x on nx faces,

uy = y on ny faces,

uz = 0 on nz faces.

This results in

UFEM = 442282 mJ,

C12 = (2UFEM/V − C11 − C22)/2 = 145952 MPa,

which coincides with the value of K − 2/3G.
5. Computation of C23—biaxial tension with a uniform strains εyy = εzz = 1. BCs are

ux = 0 on nx faces,

u y = y on ny faces,

uz = z on nz faces.

This results in

UFEM = 442282 mJ,

C23 = (2UFEM/V − C22 − C33)/2 = 145952 MPa,

6. Computation of C13—biaxial tension with a uniform strains εxx = εzz = 1. BCs are

ux = x on nx faces,

uy = 0 on ny faces,

uz = z on nz faces.

This results in

UFEM = 442282 mJ,

C13 = (2UFEM/V − C11 − C33)/2 = 145952 MPa,

It is seen that C12 = C23 = C13 = K − 2/3G.
7. Computation of C44—shear deformation with εxy = 1 (Fig. 4). BCs are

ux = y/2 on nx and nz faces,

uy = x/2 on ny and nx faces,

uz = 0 on nz faces.

This results in

UFEM = 37594 mJ,

C44 = 2UFEM/V = 75188 MPa,

which confirms G value as it should be. It is worth to note that both prescribed displacements must be
applied to all nx and ny faces in order to extort the pure shear state. If ux is applied only on ny faces and
u y is applied only of nx faces as in [40] the distorted shape of RVE seems to be correct, but locally near
the corners the tension and compression stresses arise and the stress state is far from being the pure shear.

8. Computation of C55—shear deformation with εyz = 1. BCs are

ux = 0 on nx faces,

u y = z/2 on ny and nz faces,

uz = y/2 on nz and nx faces.

This results in

UFEM = 37594 mJ,

C55 = 2UFEM/V = 75188 MPa.
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Fig. 1 RVE in the benchmark test

Fig. 2 Displacements of RVE in the prediction of C11 parameter

9. Computation of C66—shear deformation with εxz = 1. BCs are

ux = z/2 on nx and nz faces,

u y = 0 on ny faces,

uz = x/2 on nz and nx faces.

This results in

UFEM = 37594 mJ,

C66 = 2UFEM/V = 75188 MPa.

Now we calculate Di j . Here, we also use Voigt’s notation as described in [40].

10. For computation of D11, we consider an uniaxial torsional rotations with χxx = 1. For such value of χxx ,
we get the rotation component φx = x and as

φx =
1

2
(uz,y − u y,z)
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Fig. 3 Displacements of RVE in the prediction of C12 parameter

Fig. 4 Displacements of RVE in the prediction of C44 parameter

the correspondent displacements are u y = −xz and uz = xy. The boundary conditions are

uy = −xz on nx faces,

uz = xy on nx faces.

The corresponding shape of the RVE is shown in Fig. 5. This results in

UFEM = 5287.77 mJ,

D11 = 10577.5 N.

In this case, optionally we can also apply ux = 0 on nx faces assuming the bounded torsion (without warp-
ing). This can be confirmed in experiments made on cylindrical samples. Such boundary conditions can
be accepted for the solid cubic samples, but for the porous samples they provide unrealistic deformations.
The assumption about bounded torsion overestimates D11, D22 and D33 parameters, and in consequence
D12, D23 and D13 parameters can became negative. For this reason, we have assumed unbounded torsion
(with warping) in the computations of D11, D22 and D33 parameters.

11. Computation of D22—uniaxial torsional rotations with χyy = 1. Here

φy = y =
1

2
(ux,z − uz,x ), ux = yz, uz = −xy.



1786 A. Skrzat, V. A. Eremeyev

Fig. 5 Displacements of RVE in the prediction of D11 parameter

Fig. 6 Displacements of RVE in the prediction of D12 parameter

BCs are

ux = yz on ny faces,

uz = −xy on ny faces.

This results in

UFEM = 5287.77 mJ,

D22 = 10577.5 N.

Note that here we have the same value as for D11.
12. Computation of D33—uniaxial torsional rotations with χzz = 1. Here

φz = z =
1

2
(uy,x − ux,y), u y = xz, ux = −zy.

BCs are

ux = −yz on nz faces,

u y = zx on nz faces.
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This results in

UFEM = 5287.77 mJ,

D33 = 10577.5 N.

Here, we have again the same value as for D11 and for D22.
13. Computation of D12—biaxial torsional rotations with χxx = 1 and χyy = −1 (Fig. 6). Here,

φx = x =
1

2
(uz,y − uy,z), φy = −y = −

1

2
(ux,z − uz,x ),

ux = −yz, uz = xy, u y = −xz.

BCs are

ux = −yz on ny faces,

uy = −zx on nx faces,

uz = xy on nx faces,

uz = xy on ny faces,

This results in

UFEM = 12531.3 mJ,

D12 = 1593.14 N.

It is worth to note that one of the microrotation gradients (or equivalent torsional moments) should be
negative. Otherwise, on the common edges between nx and ny faces the prescribed displacements act in
the opposite directions which relates to a certain kinematic inconsistency.

14. Computation of D23—biaxial torsional rotations with χyy = 1 and χzz = −1 . Here,

φz = −z = −
1

2
(uy,x − ux,y), φy = y =

1

2
(ux,z − uz,x ),

ux = zy, u y = −xz, uz = −xy.

BCs are

ux = yz on ny faces,

uz = −yx on ny faces,

ux = zy on nz faces,

u y = −xz on nz faces.

This results in

UFEM = 12531.3 mJ,

D23 = 1593.14 N.

15. Computation of D13—biaxial torsional rotations with χxx = 1 and χzz = −1 . Here,

φx = x =
1

2
(uz,y − uz,z), φz = −z = −

1

2
(uy,x − ux,y),

ux = zy, uy = −xz, uz = xy.

BCs are

ux = yz on nz faces,

u y = −zx on nx faces,

uz = xy on nx faces,

uy = −xz on nz faces.
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Fig. 7 Displacements of RVE in the prediction of D44 parameter

This results in

UFEM = 12531.3 mJ,

D13 = 1593.14 N.

16. Computation of D44—uniform curvature χxy = 1 (Fig. 7). Here,

φy = x =
1

2
(ux,z − uz,x ), ux = xz, uz = −

x2

2
.

BCs are

ux = xz on nx faces,

u y = 0 on ny faces (optionally),

uz = −
x2

2
on nz faces.

Optionally we can also apply u y = 0 on ny faces (Fig. 7). This assumption will increase the magnitude of
D44 parameter about 10% (in this benchmark test). However, in the case of foams it generates unrealistic
solution without warping. This results in

UFEM = 9350.46 mJ,

D44 = 118700.92 N.

Without BC u y = 0 we get

UFEM = 8425.02 mJ,

D44 = 16850.04 N.

For the remaining D55, D66, D77, D88 and D99, we get the same value as for D44. Thus, in the following
text only the BCs are presented.

17. Computation of D55—uniform curvature χyx = 1. Here,

φx = y =
1

2
(uz,y − uy,z), u y = −yz, uz =

y2

2
.

BCs are

ux = 0 on nx faces (optionally),

uy = −yz on ny faces,

uz =
y2

2
on nz faces.
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18. Computation of D66—uniform curvature χyz = 1. Here,

φz = y =
1

2
(uy,x − ux,y), u y = xy, ux = −

y2

2
.

BCs are

ux = −
y2

2
on nx faces,

u y = xy on ny faces,

uz = 0 on nz faces (optionally).

19. Computation of D77—uniform curvature χzy = 1. Here,

φy = z =
1

2
(ux,z − uz,x ), ux =

z2

2
, uz = −zx .

BCs are

ux =
z2

2
on nx faces,

u y = 0 on ny faces (optionally),

uz = −zx on nz faces.

20. Computation of D88—uniform curvature χxz = 1. Here,

φz = x =
1

2
(uy,x − ux,y), u y =

x2

2
, ux = −xy.

BCs are

ux = −xy on nx faces,

u y =
x2

2
on ny faces,

uz = 0 on nz faces (optionally).

21. Computation of D99—uniform curvature χzx = 1. Here,

φx = z =
1

2
(uz,y − uy,z), u y = −

z2

2
, uz = zy.

BCs are

ux = 0 on nx faces (optionally),

uy = −
z2

2
on ny faces,

uz = yz on nz faces.

Comparing used boundary conditions with used in [40], one can see that we propose changes in BCs for
C44, C55, C66, and for D12, D23, D13, D11, D22, . . . , D99.



1790 A. Skrzat, V. A. Eremeyev

Fig. 8 Geometry of analyzed RVE

Fig. 9 Enlargement of the FEM mesh

4 Effective properties for a metal foam

Following the benchmark test scheme, we perform here the investigations of mechanical properties of the
metallic foam. We consider the representative volume element of dimensions 2.5075 × 2.5075 × 2.5075 mm
as shown in Fig. 8. The geometrical model of the foam is obtained by microcomputer tomography with the
ScanIP+Fe software [45]. The porosity of the foam (the volume of pores related to the RVE volume) is 93.66%.
The isotropic material data of the foam are as follows: Young’s modulus is 110 GPa, Poisson’s ratio is 0.34,
and the mass density is 8960 kg/m3.

The finite element method analysis is made in ABAQUS commercial software. The dense, quite regular
mesh consists of tetrahedral elements, see Fig. 9. The size of the problem is large, but reasonable from the
point of view of the computation time: the number of nodes is 965,126, the number of elements is 4,077,000,
and the total number of unknowns is 2,895,606. The computation time of each problem executed on an average
PC equipped with 32 GB memory was about 15 min, which is surprisingly short. It was caused by the effective
optimization made by the sparse solver for the analysis of highly porous media. If the solid structure without
pores of similar size (about 3 millions of DOFs) is investigated, the execution time would be at least one order
longer.
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Fig. 10 Displacements of RVE in the prediction of C11 parameter

Twenty-one numerical cases necessary for the determination of the couple-stress theory material data are
the same as in the benchmark problem. In the computation of Di j parameters, the boundary conditions marked
in text as optional are not prescribed. It is caused by the fact that the deformed foam does not preserve the
flatness of the not loaded surfaces. Below, we present the foam deformations for all considered kinematic
loading cases as well as computed strain energy and the value of the corresponding material parameter. The
Cartesian coordinate system is displayed only for visualization of the spatial orientation of the RVE. (The
global coordinate system is located in the RVE centroid.) The performed calculations are described in the
sequel.

1. Computation of C11—uniaxial tension with a uniform strain εxx = 1. The corresponding shape of the
RVE is given in Fig. 10. This leads to the following values:

UFEM = 3219.78 mJ,

C11 = 2UFEM/V = 408.45 MPa.

2. Computation of C22—uniaxial tension with a uniform strain εyy = 1 (Fig. 11). This results in

UFEM = 3564.07 mJ,

C22 = 2UFEM/V = 452.12 MPa.

3. Computation of C33—uniaxial tension with a uniform strain εzz = 1 (Fig. 12). This results in

UFEM = 5025.94 mJ,

C33 = 2UFEM/V = 637.57 MPa.

4. Computation of C12—biaxial tension with a uniform strains εxx = εyy = 1 (Fig. 13). This results in

UFEM = 10750.3 mJ,

C12 = (2UFEM/V − C11 − C22)/2 = 251.58 MPa.

5. Computation of C23—biaxial tension with a uniform strains εyy = εzz = 1 (Fig. 14). This results in

UFEM = 13822.0 mJ,

C23 = (2UFEM/V − C22 − C33)/2 = 331.85 MPa.

6. Computation of C13—biaxial tension with a uniform strains εxx = εzz = 1 (Fig. 15). This results in

UFEM = 13208.2 mJ,

C13 = (2UFEM/V − C11 − C33)/2 = 314.75 MPa.
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Fig. 11 Displacements of RVE in the prediction of C22 parameter

7. Computation of C44—shear deformation with εxy = 1 (Fig. 16). This results in

UFEM = 826.07 mJ,

C44 = 2UFEM/V = 104.78 MPa.

8. Computation of C55—shear deformation with εyz = 1 (Fig. 17). This results in

UFEM = 738.1 mJ,

C55 = 2UFEM/V = 93.63 MPa.

9. Computation of C66—shear deformation with εxz = 1 (Fig. 18). This results in

UFEM = 958.63 mJ,

C66 = 2UFEM/V = 121.61 MPa.

10. Computation of D11—uniaxial torsional rotations with χxx = 1 (Fig. 19).
This results in

UFEM = 384.12 mJ,

D11 = 2UFEM/V = 48.73 N.

11. Computation of D22—uniaxial torsional rotations with χyy = 1 (Fig. 20). This results in

UFEM = 439.78 mJ,

D22 = 2UFEM/V = 55.79 N.

12. Computation of D33—uniaxial torsional rotations with χzz = 1 (Fig. 21). This results in

UFEM = 420.69 mJ,

D22 = 2UFEM/V = 53.37 N.

13. Computation of D12—biaxial torsional rotations with χxx = 1 and χyy = −1 (Fig. 22). This results in

UFEM = 914.27 mJ,

D22 = (2UFEM/V − D11 − D22)/2 = 5.73 N.
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Fig. 12 Displacements of RVE in the prediction of C33 parameter

Fig. 13 Displacements of RVE in the prediction of C12 parameter

Fig. 14 Displacements of RVE in the prediction of C23 parameter
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Fig. 15 Displacements of RVE in the prediction of C13 parameter

Fig. 16 Displacements of RVE in the prediction of C44 parameter

Fig. 17 Displacements of RVE in the prediction of C55 parameter
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Fig. 18 Displacements of RVE in the prediction of C66 parameter

Fig. 19 Displacements of RVE in the prediction of D11 parameter

Fig. 20 Displacements of RVE in the prediction of D22 parameter
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Fig. 21 Displacements of RVE in the prediction of D33 parameter

Fig. 22 Displacements of RVE in the prediction of D12 parameter

Fig. 23 Displacements of RVE in the prediction of D23 parameter
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Fig. 24 Displacements of RVE in the prediction of D13 parameter

Fig. 25 Displacements of RVE in the prediction of D44 parameter

Fig. 26 Displacements of RVE in the prediction of D55 parameter
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Fig. 27 Displacements of RVE in the prediction of D66 parameter

Fig. 28 Displacements of RVE in the prediction of D77 parameter

14. Computation of D23—biaxial torsional rotations with χyy = 1 and χzz = −1 (Fig. 23). This results in

UFEM = 1074.82 mJ,

D22 = (2UFEM/V − D22 − D33)/2 = 13.59 N.

15. Computation of D13—biaxial torsional rotations with χxx = 1 and χzz = −1 (Fig. 24). This results in

UFEM = 1211.14 mJ,

D13 = (2UFEM/V − D11 − D33)/2 = 25.77 N.

16. Computation of D44—uniaxial torsional rotations with χxy = 1 (Fig. 25). This results in

UFEM = 836.78 mJ,

D44 = 2UFEM/V = 106.15 N.
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Fig. 29 Displacements of RVE in the prediction of D88 parameter

Fig. 30 Displacements of RVE in the prediction of D99 parameter

17. Computation of D55—uniaxial torsional rotations with χyx = 1 (Fig. 26). This results in

UFEM = 911.66 mJ,

D55 = 2UFEM/V = 115.65 N.

18. Computation of D66—uniaxial torsional rotations with χyz = 1 (Fig. 27). This results in

UFEM = 830.71 mJ,

D66 = 2UFEM/V = 105.38 N.

19. Computation of D77—uniaxial torsional rotations with χzy = 1 (Fig. 28). This results in

UFEM = 1134.68 mJ,

D77 = 2UFEM/V = 143.94 N.

20. Computation of D88—uniaxial torsional rotations with χxz = 1 (Fig. 29). This results in

UFEM = 800.25 mJ,

D88 = 2UFEM/V = 101.52 N.
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21. Computation of D99—uniaxial torsional rotations with χzx = 1 (Fig. 30). This results in

UFEM = 1229.97 mJ,

D99 = 2UFEM/V = 156.03 N.

5 Conclusions

Using the linear homogenization technique similar to developed in [40], we have obtained full matrices of
elastic moduli which relate the stress and couple stress tensors with the tensors of strain and microcurvature.
Here, we have considered a metal foam of porosity 93.66%. We have shown that this foam can be treated as
material couple stress. In a certain sense, the presented results solved a problem of reconstruction of constitutive
equations for a given microstructured material, which was treated as one of principal problem of continuum
mechanics [14,15]. In fact, in addition to other material data these matrices give a source for further modeling
of the considered foam and other porous materials in the framework of the couple stress theory, whereas
the developed technique can be applied for other materials with complex microstructure. In particular, such
beam-lattice structures could be interesting also for non-mechanical applications considering electroelastic
coupling, see, e.g., [50,51].
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