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Abstract
The red nucleus (RN) is a large subcortical structure located in the ventral midbrain. Although it originated as a primitive 
relay between the cerebellum and the spinal cord, during its phylogenesis the RN shows a progressive segregation between 
a magnocellular part, involved in the rubrospinal system, and a parvocellular part, involved in the olivocerebellar system. 
Despite exhibiting distinct evolutionary trajectories, these two regions are strictly tied together and play a prominent role in 
motor and non-motor behavior in different animal species. However, little is known about their function in the human brain. 
This lack of knowledge may have been conditioned both by the notable differences between human and non-human RN and by 
inherent difficulties in studying this structure directly in the human brain, leading to a general decrease of interest in the last 
decades. In the present review, we identify the crucial issues in the current knowledge and summarize the results of several 
decades of research about the RN, ranging from animal models to human diseases. Connecting the dots between morphol-
ogy, experimental physiology and neuroimaging, we try to draw a comprehensive overview on RN functional anatomy and 
bridge the gap between basic and translational research.
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Introduction

The human red nucleus (RN) is a large subcortical structure 
located in the ventral midbrain, which is cytoarchitectoni-
cally divided into two histologically distinct subregions: 
a magnocellular, caudal region, consisting of large sparse 
neurons (magnocellular RN, mRN) and a rostral parvocel-
lular part, mainly characterized by small and medium-sized 
neurons (parvocellular RN, pRN) (Ulfig and Chan 2002; 

Yamaguchi and Goto 2008; Onodera and Hicks 2009, 2010; 
Paxinos et al. 2012). These structures play a complementary 
role in different aspects of motor control (Kennedy 1990), 
and are likely involved in different motor disorders, such as 
essential tremor (ET) (Wills et al. 1994, 1995), Parkinson’s 
disease (PD) (Wang et al. 2016b; Guan et al. 2017) and in 
the recovery from pyramidal lesions (Yeo and Jang 2010; 
Rüber et al. 2012; Takenobu et al. 2014; Jang and Kwon 
2015; Kim et al. 2018). Despite its remarkable clinical inter-
est, the RN still remains a poorly investigated region of the 
human brain.

We have therefore explored different grounds of research 
that, ranging from phylogenesis, comparative anatomy (ten 
Donkelaar 1988; Onodera and Hicks 2009), experimental 
physiology (Kennedy et al. 1986; Kennedy and Humphrey 
1987; Mewes and Cheney 1994; Belhaj-Saïf et al. 1998), to 
recent brain imaging studies, both in healthy subjects and in 
neurological disorders (Wills et al. 1994; Nioche et al. 2009; 
Rüber et al. 2012; Lewis et al. 2013; Zhang et al. 2015a; 
Milardi et al. 2016; de Hollander et al. 2017; Belkhiria et al. 
2018; Cacciola et al. 2019), may represent the basis to reach 
a better understanding of this integrative region of the brain.
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The mRN and pRN are segregated not only cytoarchi-
tectonically, but also on the basis of their connections. The 
mRN, that is the phylogenetically older region, contains 
efferent neurons whose axons, after crossing the midline, 
project mainly to the spinal cord, whereas the pRN sends 
its major projection to the inferior olive (Papez and Stotler 
1940; Nathan and Smith 1982; Onodera and Hicks 2009, 
2010). These distinct regions of RN show high morphologi-
cal and functional variability across different species (ten 
Donkelaar 1988; Onodera and Hicks 2009) and, currently, 
most of our present knowledge comes from experiments 
carried out in animal species as different as rodents and pri-
mates (Gruber and Gould 2010), though the RN of these ani-
mal models shows striking diversities from one another and, 
crucially, from the human RN: this represents an important 
limitation in translating animal findings to human research.

The most paradigmatic example of such differences is 
the regression of the mRN, that is the best characterized 
region of RN in quadrupedal animals, whilst it is gener-
ally considered a kind of a vestige with unknown functional 
relevance in humans (Nathan and Smith 1982; Patt et al. 
1994). By contrast the pRN, whose functional role remains 
largely unknown in most experimental models (Kennedy 
et al. 1986; Kennedy and Humphrey 1987), is much more 
delineated in non-human and human primates, suggesting 
that it could have gained considerable importance in some 
key features of brain development in humans, and that only 
human research could provide us a complete view about its 
functions. However, available data on human RN have been, 
to date, mostly fragmentary.

The last 30 years have been characterized by the rise of 
neuroimaging techniques, such as structural MRI, functional 
MRI (fMRI), diffusion tensor imaging and tractography, 
which have rapidly affirmed as powerful tools for studying 
the human brain in vivo and non-invasively. Different neuro-
imaging studies examining the human RN in both physiolog-
ical and pathological conditions, suggest that, in humans, it 
could be involved not only in motor control but also in sen-
sory processing and higher-order cognitive functions (Habas 
et al. 2010). However, these results are not always consistent 
and make often difficult to allow a clear-cut interpretation.

Hence, as we succinctly outlined, many open questions 
still remain about RN: if on one hand it is obvious that the 
human RN shows relevant structural differences when com-
pared to the RN of the most studied animal models, thus 
preventing direct translation of findings derived from these 
models to the human brain, on the other hand the claims for 
qualitative functional differences between humans and all 
the other species are supported by limited evidence.

Aimed at providing a comprehensive overview on RN 
functional and clinical anatomy, the present work reviews 
the existing literature, tracing a line between morphol-
ogy, experimental physiology, functional and structural 

neuroimaging, discussing past and current models of RN 
anatomy and physiology, underlining critical issues and sug-
gesting possible future directions of research. We attempt to 
define a unified conceptual framework in which structural 
and functional properties of the human RN, as emerging 
from anatomy, physiology and neuroimaging studies, are 
interpreted in light of the existing knowledge on the evo-
lution of RN among different animal species. In addition, 
pathophysiological and clinical implications are examined 
in order to bridge the gap between basic and translational 
research. Finally, we emphasize the need for further research 
to improve our current knowledge on this neglected brain 
structure.

RN across evolution: a phylogenetic 
perspective

Analyzing RN morphology within a comparative, phylo-
genetic framework is the first step to understand how and 
why this structure is so different between animal species 
and humans.

A classical review by ten Donkelaar (1988) summa-
rizes the earliest steps of this evolutionary process. The 
core concept behind the paper is that, in most of vertebrate 
phyla, major changes in RN cytoarchitecture and connectiv-
ity coincide with major changes in motor behavior, and in 
particular in locomotion patterns. In line with this postu-
late, a primitive RN is almost invariably present in animals 
having fins, wings, limbs or limb-like structures as a mean 
of locomotion, while it is absent in primitive vertebrates, 
boid snakes and sharks (ten Donkelaar 1976; Ten Donke-
laar1976; Smeets and Timerick 1981; Ten Donkelaar and 
Bangma 1983; ten Donkelaar et al. 1983). It appears in rays, 
which use their large pectoral fins for locomotion, and is 
maintained in limbed amphibians, such as anurans and frogs 
(Ten Donkelaar et al. 1980; Corvaja and D’Ascanio 1981). 
Notably, in the tadpoles of the anuran Xenopus levis, the 
ontogenesis of the connections between the primitive RN 
and the spinal cord coincides with the transition from the 
aquatic stage to amphibian stage, and the development of 
structured limbs (ten Donkelaar and de Boer-van Huizen 
1982).

From an evolutionary point of view, the RN is likely to 
be involved in the transition from the swimming pattern 
of aqual cordates to the land locomotion of terrestrial ver-
tebrates (ten Donkelaar 1988; Gruber and Gould 2010). 
This evolutionary drive may explain the trend of increas-
ing complexity and progressive structural segregation and 
specialization, observed across different species (Fig. 1). 
In primitive vertebrates and amphibians, the RN consists 
of just a few cells that receive efferents from the cerebel-
lum and reach the contralateral spinal cord through the 
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rubrospinal tract (RST) (Corvaja and D’Ascanio 1981; ten 
Donkelaar and de Boer-van Huizen 1982; Gonzalez et al. 
1984) (Fig. 1a). In four-limbed reptiles, such as the lizard 
Varanus exanthematicus, a small and rudimentary ipsilat-
eral rubro-olivary projection appears (ten Donkelaar and de 
Boer-van Huizen 1981), together with an olivary projection 
to the contralateral cerebellum (ten Donkelaar and de Boer-
van Huizen 1982). Such an advanced level of organization 
likely reflects the need for a wider repertory of skilled limb 
movements in comparison to simple, repetitive behaviors 
that are typical of lower vertebrates (ten Donkelaar 1988) 
(Fig. 1b).

In mammals, the development of the cerebellum and cer-
ebral cortex, along with the corticospinal tract taking the 
place of the reticulospinal tract in controlling spinal motor 
neurons, is thought to reflect the evolutionary need for more 
complex locomotion patterns (Shapovalov 1972, 1975). In 
line with this theory, in the American opossum Didelphis 
virginiana, a primitive marsupial mammal that uses its 
upper limbs to climb on trees, RN anatomy shows a third 
level of organization: two distinct regions (approximately 
a caudal and a rostral portion) are defined by afferent input 
from distinct deep cerebellar nuclei (anterior interpositus 
and lateral nucleus respectively, the latter being the homo-
logue of the human dentate) (Martin et al. 1974). Another 
sign of regional specialization is represented by projections 
from the ipsilateral motor cortex, targeting mostly (but not 
exclusively) the rostral two thirds of the RN (King et al. 
1972; Martin et al. 1974, 1983).

This gradual tendency towards diversification becomes 
more evident in the RN of rodents, which is one of the best 
characterized morphofunctional models. Rodent’s RN is a 

cytoarchitectonic continuum of different sized and shaped 
cells, and although there are not clearly distinguishable 
internal boundaries between the magnocellular and parvo-
cellular portions, a well recognizable gradient of distribu-
tion can still be identified: small and medium-sized cells are 
more represented in the rostral part of RN, while giant and 
large cells in the caudal part. According to their morphology, 
three cell types can be identified: (i) intrinsic achromatic 
Golgi-type II interneurons; (ii) “magnocellular” neurons 
with coarse Nissl body pattern; (iii) “parvocellular” neurons 
with fine-grained Nissl body pattern (Reid et al. 1975; Liang 
et al. 2012). Thus, in rodents, differences between cell types 
reflect differences in terms of efferent connectivity: magno-
cellular “coarse” neurons project to the contralateral spinal 
cord reaching the lumbar enlargement (Strominger et al. 
1987), while small “fine-grained” cells project to the infe-
rior olivary nucleus (Swenson and Castro 1983a, b; Kennedy 
and Humphrey 1987). Similar differences are evident also 
for afferent connectivity patterns: lateral cerebellar nucleus 
(dentate) projects mainly to the rostral RN, whilst anterior 
and posterior interposed nuclei to the caudal RN (Angaut 
et al. 1986; Daniel et al. 1988; Ruigrok 2004), delimiting 
some kind of partially segregated “magnocellular” and “par-
vocellular” territories. Noteworthy, this functional segrega-
tion is not complete, as some “fine-grained” parvocellular 
cells also contribute to the rubrospinal tract (Huisman et al. 
1981, 1983; Shieh et al. 1983; Kennedy 1990); on the other 
hand, direct projections from cerebral cortex involve exclu-
sively the rostral parvocellular part (Brown 1974; Gwyn 
and Flumerfelt 1974). There is, in addition, evidence of a 
somatotopical organization of rubral neurons in relation to 
their projections to the spinal cord: indeed, medial neurons 

Fig. 1  Evolution of the RN circuitry. The scheme highlights the 
increasing complexity of rubral circuitry, and the evolutionary trend 
towards gradual segregation of the rubrospinal (red) and rubro-olivo-
cerebellar (green) systems. a Primitive RN (anurans) is a small, ill-
delimited group of neurons in the ventral midbrain (dashed borders), 
representing a rather simple relay station between the cerebellum and 
the spinal cord. b In quadrupedal reptiles, a rubro-olivary pathway 
appears. c In quadrupedal mammals, a partial segregation between 

rubrospinal and rubro-olivo-cerebellar systems occurs, with distinct 
cerebellar output channels and a gradual differentiation between 
parvocellular and magnocellular RN. d In primates, complete ana-
tomical segregation and functional specialization of rubrospinal and 
rubro-olivo-cerebellar systems can be observed. RN red nucleus, mRN 
magnocellular red nucleus, pRN parvocellular red nucleus, Ln lateral 
nucleus (dentate), In interposed nucleus, IO inferior olive, Thal thala-
mus
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project to cervical spinal cord, whereas ventrolateral ones 
to the lumbar cord (Murray and Gurule 1979; Shieh et al. 
1983). Such a topographical organization is maintained also 
in projections from the anterior interposed nucleus, that 
shows a ventro-dorsal somatotopy (Daniel et al. 1988).

In cats, the organization of the RN is very similar to that 
described in the rat and in the opossum: the parvocellular 
region is mostly connected to the inferior olive and the 
dentate nucleus, whereas the magnocellular region to the 
anterior interposed nucleus and spinal cord (Pompeiano and 
Brodal 1957; Courville 1966; Holstege and Kuypers 1987; 
Holstege and Tan 1988; De Zeeuw et al. 1990; Onodera 
and Hicks 2009); connectivity differences between these 
regions are even less marked and, as for the opossum, direct 
cortico-rubral projections from motor cortex also involve the 
magnocellular caudal pole of RN (Giuffrida et al. 1988). In 
addition, a large extent of parvicellular neurons share the 
same connectivity features of magnocellular neurons (to 
interposed nucleus and spinal cord) and evidence of a prox-
imal-vs-distal organization has been found for the spinal out-
put of parvocellular and magnocellular neurons, respectively 
(Pong et al. 2002). Finally, a direct ascending spino-rubral 
projection conveying somatosensory information to the RN 
has been also described (Padel et al. 1986, 1988) (Fig. 1c).

In primates, the structural segregation between the mag-
nocellular and parvocellular parts of RN is patent, as these 
structures show distinct regional distribution and connec-
tional anatomy: magnocellular neurons with coarse Nissl 
pattern occupy exclusively the caudal portion of the RN, 
while parvocellular (fine-grained) neurons are confined to 
the rostral and ventral portions, forming two easily recogniz-
able substructures: the mRN and pRN (Massion 1967, 1988; 
Miller and Strominger 1973; Onodera and Hicks 2009). The 
marked differences of these substructures become more 
evident also in their structural connectivity profiles: mRN 
receives its main afferent projection from the interposed 
nucleus (Asanuma et al. 1983; Kennedy et al. 1986) and 
gives rise to the crossed rubrospinal tract, which reaches the 
spinal cord (Castiglioni et al. 1978). Conversely, the pRN 
receives afferent fibers from the dentate nucleus (Flumerfelt 
et al. 1973; Stanton 1980) and its exclusive efferent projec-
tion is conveyed to the ipsilateral inferior olive (Miller and 
Strominger 1973; Robertson and Stotler 1974). The vast 
majority (approximately 90%) of direct projections from 
bilateral motor, premotor and supplementary motor corti-
ces are directed to the pRN, with only a smaller contingent 
from ipsilateral motor cortex reaching the mRN (Kuypers 
and Lawrence 1967; Humphrey and Rietz 1976; Humphrey 
et al. 1984; Ralston 1994; Tokuno et al. 1995; Onodera and 
Hicks 2009; Lemon 2016) (Fig. 1d). The projections from 
primary motor cortex are somatotopically organized with a 
medio-lateral gradient (Murray and Haines 1975; Larsen and 
Yumiya 1980) and a similar topographical organization is 

also described for projections from the supplementary motor 
area (SMA) (Tokuno et al. 1995).

Some preliminary functional considerations can be drawn 
from this phylogenetic model.

First, the evolution of RN moved toward the gradual seg-
regation and specialization of two distinct neural circuits: a 
rubrospinal system (mRN and related circuitry) and a rubro-
olivo-cerebellar system (pRN and related circuitry). The 
former is the expression of a phylogenetically older motor 
control system, depending more from the cerebellum than 
from the cerebral cortex. The latter appeared for the first 
time in quadrupedal lizards, and reached its most complete 
development in quadrupedal mammals, where the develop-
ment of cerebral cortex and its increasing importance in 
motor control led to the appearance of cerebello-cortical 
and cortico-rubral projections. In primates also, the gradual 
transition from quadrupedal to bipedal stance marked the 
gradual regression of mRN and the progressive enlargement 
of pRN. A well-developed mRN can be identified in mon-
keys, such as macaques and baboons, which use quadru-
pedal gait during locomotion (Miller and Strominger 1973; 
Padel et al. 1981). By contrast, increasingly bipedal apes, 
gibbons and chimpanzees show a smaller mRN (Padel et al. 
1981; Massion 1988). Hence, it is likely that such a struc-
tural regression of mRN may subserve a further functional 
specialization, in relation to a new evolutionary drive: the 
need for complex upper limb motility and the development 
of hands.

From locomotion to hand skilled 
movements: the evolution of the rubrospinal 
system

As seen before, the rubrospinal system is the phylogeneti-
cally older functional unit of the RN. In earlier vertebrates it 
consists of a simple circuit in which magnocellular neurons 
act as a relay between the cerebellar interposed nucleus and 
the contralateral spinal cord through the RST (Corvaja and 
D’Ascanio 1981; Gonzalez et al. 1984).

Magnocellular neurons can be considered as primitive 
motoneurons: if stimulated singularly (microstimulation), 
each of them is able to elicit contraction of single muscular 
units (Ghez 1975).

In rats (Jarratt and Hyland 1999), cats (Ghez and Kubota 
1977; Burton and Onoda 1978; Padel and Steinberg 1978; 
Amalric et al. 1983; Batson and Amassian 1986) and pri-
mates (Gibson et al. 1985a; Kennedy et al. 1986; Mewes 
and Cheney 1991, 1994; Miller and Houk 1995), activity 
of rubrospinal neurons show a striking correlation with 
the execution of voluntary movements by forelimbs and 
hindlimbs, as burst firing activity usually precedes or fol-
lows the onset of movements. Experiments in a turtle in vitro 
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model of mRN activation support the hypothesis of a posi-
tive feedback between RN and interposed nucleus, as the 
selective inactivation of RN reduces activity in interposed 
nucleus and vice-versa (Keifer 1996); this would suggest 
that burst discharge initiation depends on activation of the 
interposed nucleus (Toyama et al. 1970). In primates, neu-
ronal activity of rubrospinal neurons strongly correlates 
with timing and magnitude of upper limb muscular activity 
(Miller et al. 1993; Mewes and Cheney 1994; Miller and 
Houk 1995) and encodes both kinematic (velocity-related) 
and dynamic (force-related) parameters of upper limb move-
ments (Kohlerman et al. 1982; Kennedy 1987; Cheney et al. 
1988).

Interestingly, lesions of the rubrospinal tract lead to a 
more marked motor impairment in distal rather than in 
proximal limb muscles (Lawrence and Kuypers 1968). 
Indeed, in both cats and primates, burst activation of mRN 
is stronger in movements involving distal rather than proxi-
mal limbs (Ghez and Kubota 1977; Burton and Onoda 1978; 
Ghez and Vicario 1978; Amalric et al. 1983; Mewes and 
Cheney 1991). In cats, where a consistent part of the RST 
is formed by cells from pRN, a proximal-vs-distal topo-
graphical organization of spinal outputs has been found: 
mRN acts mostly on distal muscles, while pRN mostly on 
proximal muscles (Horn et al. 2002; Pong et al. 2002). This 
organization is not maintained in primates, where the RST 
originates exclusively from mRN and acts on proximal and, 

preferentially, distal muscles, in particular on the extensor 
muscles (Belhaj-Saïf et al. 1998).

In addition to the motor function, mRN neurons of both 
cats and primates respond to sensory stimulation (in particu-
lar, light touch, proprioception, pressure and painful pres-
sure), via sensory-encoding neurons that are somatotopically 
organized into receptive fields (Eccles et al. 1975; Larsen 
and Yumiya 1980; Kennedy et al. 1986; Matsumoto and 
Walker 1991). However, sensory responses are weaker than 
motor responses (Kennedy et al. 1986) and do not influence 
motor-related discharge (Gibson et al. 1985a). Although a 
direct spino-rubral pathway has been demonstrated in cats 
(Padel et al. 1988; Vinay and Padel 1990), it remains unclear 
whether sensory information comes from direct projections 
from spinal cord in other animals. Most likely, sensory infor-
mation is simply relayed from the interposed nucleus, that 
in turn receives it from the spinocerebellar tracts and shows 
similarly organized receptive fields (Ekerot et al. 1997). 
In this regard, it has been postulated that the mRN exerts 
its role in motor control via a recurrent loop involving the 
spinocerebellum, interposed nucleus and RST. In this loop, 
proprioceptive information conveyed to the paravermal cer-
ebellum through the spinocerebellar tracts reach the inter-
posed nucleus and are subsequently relayed to the mRN, 
thus exerting a feedback control on motor RST efferents 
(Arshavsky et al. 1988; Houk 1991). Functional anatomy of 
the rubrospinal system is resumed in Fig. 2a.

Fig. 2  The RN circuitry in detail. 3D rendering of the cerebellum, 
mRN (edges), pRN (red), dentate nucleus (light blue), interposed 
nucleus (yellow), inferior olive (green) and thalamus (white). a The 
rubrospinal system. Descending motor cortical output (red arrows) is 
relayed by the mRN through the rubrospinal tract. Sensory afferents 
from the spinal (blue arrows) cord reach both the IN and the paraver-
mal cerebellum through the spinocerebellar tracts; cortical cerebellar 
output converges on the interposed nucleus through Purkinje fibers 
(purple arrow). Cerebellar output from IN (orange arrow) in turn is 
relayed on mRN forming a feedback loop. b The rubro-olivo-cerebel-
lar system. The pRN receives excitatory afferent fibers (red arrows) 

from a larger set of cortical regions and from the dentate nucleus, 
while its main projection output is the rubro-olivary pathway. The 
inferior olive is connected to the cerebellar cortex via the climbing 
fibers (green arrow) that synapse directly on Purkinje cells directed 
to the DN (purple arrow), modulating cerebellar plasticity. Excita-
tory projections from the inferior olive (red arrows) reach also the 
dentate nucleus, that in turn sends inhibitory descending projections 
(blue arrows) forming a feedback loop. RST rubro-spinal tract, CST 
cortico-spinal tract, CTT  central tegmental tract, ICP inferior cerebel-
lar peduncle, SCP superior cerebellar peduncle, VA ventral anterior, 
VL ventral lateral
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Several animal studies outlined the involvement of the 
rubrospinal system in automatic, complex limb movements. 
One example is quadrupedal locomotion, that, as seen previ-
ously, represented the strongest evolutionary drive for RN 
differentiation and evolution (ten Donkelaar 1988). Indeed, 
experiments on decerebrated cats showed that during loco-
motion, rubrospinal neurons are phasically active preferen-
tially during the swing phase (Orlovsky 1972; Arshavsky 
et al. 1988), and their microstimulation during walking mod-
ifies the activity of physiologically flexor muscles (Rho et al. 
1999). More recently it has been hypothesized also a role 
of the mRN in the maintenance of posture against external 
perturbations in cats (Zelenin et al. 2010; Herter et al. 2015).

Along with their contribution to locomotion, in rodents, 
rubrospinal neurons are also involved in controlling skilled 
movements of the forepaw. This further specialization may 
have originated from the necessity of avoiding obstacles dur-
ing walking, as the firing pattern of mRN neurons during 
this activity is strikingly similar to those of the corticospinal 
tract (Lavoie and Drew 2002).

Deficits in skilled movements of the forelimb and hand 
after lesions of the rubrospinal tract are extensively docu-
mented on rat models, where the forepaw specializes into 
hands that can perform rudimentary prehension movements 
(Whishaw and Gorny 1994; Metz and Whishaw 2000). Exci-
totoxic lesions of rubrospinal neurons do not impair directly 
the efficacy of skilled reaching or grasping movements, 
but selectively interfere with components of the reaching 
actions, such as limb aiming, hand supination and pronation, 
and the so-called “arpeggio movement” (gradual opening 
of fingers after extension of the limb during prehension) 
(Whishaw et al. 1990, 1992, 1998; Whishaw and Gorny 
1994, 1996; Morris et al. 2015). Similar effects are obtained 
when the RST is transected in the dorsolateral funiculus or 
at the cervical level (Schrimsher and Reier 1993; Kanagal 
and Muir 2007, 2008; Morris et al. 2011). It is worth to note 
that the “arpeggio movement”, a kind of precursor of com-
plex grasping movements of primates (including humans), 
is selectively impaired by lesions of RST, but not of the 
corticospinal tract (Whishaw et al. 1998; Kanagal and Muir 
2008); this would suggest that, at least in rodents, this move-
ment could be exclusively controlled by the RST.

In primates, the importance of the rubrospinal system in 
hand movements, such as grasping or manipulation, is evi-
dent, as early lesion studies demonstrated deficit in skilled 
hand movements after mRN lesions (Lawrence and Kuypers 
1968). The activity of mRN is extensively correlated with 
different movements of the upper limbs but discharge rates 
are higher when movements of the upper extremities are 
coupled with hand use (Gibson et al. 1985b; Miller et al. 
1993; Mewes and Cheney 1994; Belhaj-Saïf et al. 1998; Van 
Kan and McCurdy 2002a, b). Miller and colleagues showed 
that a similar number of mRN neurons are active during 

reaching and grasping, while other limb movements (in this 
case, the returning of hand to mouth after grasping food) 
activated a reduced number of neurons. In addition, cross-
correlation with electromyographic data revealed that dif-
ferent units within mRN are preferentially related to flexion 
or extension movements and that their activity is organized 
in correlation with muscle coordinates (Miller et al. 1993; 
Miller and Houk 1995).

Other studies highlighted that preferential activity of 
mRN during reach-to-grasp movements could be related to 
muscular synergies controlling both flexor and extensor mus-
cles involved in hand pre-shaping (Van Kan and McCurdy 
2002a). Further examinations showed that, at least in part, 
reaching-to-grasp related modulations of discharge rate may 
contribute to differences in hand pre-shaping connected with 
target location (Van Kan and McCurdy 2002b).

Taken together these results suggest then a further func-
tional specialization of the rubrospinal system in controlling 
hand movements. Interestingly, this functional specializa-
tion can be observed also for interposed nucleus neurons 
(Gibson et al. 1994, 1996; van Kan et al. 1994; Geed et al. 
2017), highlighting a coherent evolution pattern within the 
entire functional system. In summary, the primary role of 
the rubrospinal system in locomotion and postural stabil-
ity, described in quadrupedal animals, almost disappears 
in bipedal primates, while the emerging role in controlling 
hand movements, already present in rodents, further devel-
ops towards a more complete specialization.

Parvocellular RN and the rubro‑olivary 
pathway

In contrast to mRN and the rubrospinal system, that have 
been extensively characterized in different animal species, 
functions of the pRN and the rubro-olivary system are less 
known. This is probably due to the fact that, in other mam-
mals, pRN is less developed and, in any way, not dissociable 
from its counterpart. On the other hand, in primates, pRN 
and mRN are anatomically segregated and easily identifiable 
from electrophysiological recordings, as the former does not 
show any kind of movement-related activity (Kennedy et al. 
1986).

Different animal studies clarified that the inferior olive 
receives ipsilateral projections from a rich set of mesodi-
encephalic nuclei (Brown et al. 1977; Saint‐Cyr and Cour-
ville 1981; Onodera 1984; Ruigrok and Voogd 1995, 2000), 
including pRN and other neighboring structures that in rats 
or cats are considered part of the “extended pRN”, such as 
the pararubral area (Ruigrok 2004), or the nucleus of Bech-
terew (Pompeiano and Brodal 1957; Onodera 1984; Horn 
et al. 2002). The inferior olive sends in turn efferent projec-
tions, in form of climbing fibers, that reach the contralateral 
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cerebellar cortex and synapse directly on Purkinje cells with 
a 1:1 ratio (Eccles et al. 1966; Llinás 2014).

Electrophysiological experiments show that olivo-cere-
bellar inputs have a characteristic firing pattern (“complex 
spikes”) (Eccles et al. 1966). Marr (1969) and Albus (1971) 
proposed that the activation of this system could increase 
synaptic efficacy of parallel fibers-to-Purkinje synapses, 
by enhancing synaptic plasticity (Marr 1969; Albus 1971). 
Purkinje cells project to deep cerebellar nuclei, that in turn 
project back to the inferior olive, with recurrent projections 
(Bentivoglio and Kuypers 1982; Teune et al. 1995). In par-
ticular, the inferior olive sends excitatory projections to deep 
cerebellar nuclei, which in turn send inhibitory projections 
to the IO. Hence, the rubro-olivo-cerebellar system consists 
of a double feedback/feedforward loop: the IO, that directly 
modulates Purkinje cells of the cerebellar cortex, has also 
an excitatory effect on cerebellar nuclei, thus resulting in a 
feedback inhibition (De Zeeuw and Ruigrok 1994); on the 
other hand, the mesodiencephalic nuclei of the “extended 
pRN” send excitatory efferent fibers to inferior olive and 
receive excitatory afferent fibers from cerebral cortex and 
deep cerebellar nuclei, establishing a feed-forward loop. 
(Fig. 2b) (Sotelo et al. 1986; De Zeeuw et al. 1990, 1998; 
Fredette and Mugnaini 1991; Bazzigaluppi et  al. 2012; 
Llinás 2014). Despite many functions have been attributed 
to these complex olivo-cerebellar loops, including error 
sensing, timing and learning of acquired motor behavior, or 
reflex conditioning, their exact functional roles are highly 
debated and a clear consensus is still lacking (see De Zeeuw 
et al. 1998; Lang et al. 2017; Llinás, 2014; Teune et al. 1995 
for an exaustive review).

In contrast to the huge amount of studies on the olivo-
cerebellar system, the precise role of pRN and cortico-
rubro-olivary projections within this system has not been 
properly clarified. Early lesional experiments showed that 
RN lesions disrupt both acquisition and execution of con-
ditioned reflexes (Smith 1970a, b; Rosenfield and Moore 
1983, 1985), though evidence is contradictory on whether 
this structure is preferentially involved in the acquisition or 
simply in the execution. In this regard, by using a lesion 
approach, Tsukahara et al. (1981) demonstrated that the cor-
ticorubral and rubrospinal pathways alone can be sufficient 
for the acquisition of a conditioned reflex. The primary neu-
ral change for this phenomenon was thought to be a change 
in the synaptic transmission efficacy at the corticorubral 
synapses (Murakami et al. 1988), as also demonstrated by 
further investigations that provided both morphological and 
electrophysiological evidence of the involvement of corti-
corubral plasticity in the acquisition of conditioned reflexes 
(Ito and Oda 1994). By contrast, it has also been suggested 
that plastic adaptations may take place either in the inter-
posed nucleus or cerebellar cortex, and RN acts simply as a 
relay involved in the execution of the conditioned response, 

by controlling rubrospinal or rubrobulbar projections to 
effector muscles. Arguments in support of this view are that 
(i) changes of neuronal activity in RN are temporally corre-
lated with the appearance and time course of the conditioned 
response, suggesting its role in the execution of the response 
rather than its acquisition (McCormick et al. 1983; Haley 
et al. 1988; Desmond and Moore 1991); (ii) reversible inacti-
vation of RN seems to have no effect on the response-related 
activity recorded in the interposed nucleus, whilst inactiva-
tion of the interposed nucleus affect the response-related 
activity of the RN (Chapman et al. 1990); (iii) inactivation of 
RN exerts its effects both on conditioned and unconditioned 
eyeblink related responses, while inactivation of the IN pre-
vents the acquisition of conditioned stimuli (Bracha et al. 
1993; Krupa et al. 1993). This long-lasting question is still 
far from being settled, despite recent experiments suggest a 
more active role for cortico-rubral projections in the acquisi-
tion of conditioned reflexes (Pacheco-Calderón et al. 2012).

However, as the vast majority of these experiments have 
been performed in rabbits and cats, which show peculiar 
features of rubral neurons (Morcuende et al. 2002; Pong 
et al. 2002), it is unclear if these results can be translated to 
primates, where mRN and pRN are more clearly segregated 
in terms of anatomy and connectivity.

Kennedy and Humphrey (1987) studied the effects of dif-
ferential lesions at the level of the RN by taking advantage 
from the property of RST lesions to be almost completely 
compensated by the corticospinal tract and vice-versa. Two 
groups of rats were used: the first group was lesioned at 
the level of the whole RN by using a fiber sparing agent 
to reduce the interference of fibers of passage. The second 
group on contrast was first lesioned at the level of the RST, 
and then received a second lesion in the RN after a few days, 
after that corticospinal tracts fully compensated the effects 
of RST transection. While the first group showed absent or 
partial recovery after lesion, the second group compensated 
the loss of function almost immediately. The Authors con-
cluded that the rubro-olivary tract may not be necessary 
in the execution of acquired motor responses, when corti-
cospinal tract has compensated after lesions of RST; vice-
versa, impairments on acquired movement execution fol-
lowing lesions of both RST and rubro-olivary tract show no 
complete functional compensation if they are both lesioned 
(Kennedy and Humphrey 1987). Results of these experi-
ments, in light of the existing evidence, led Kennedy (1990) 
to hypothesize that, while pRN and corticospinal tract (in 
synergy with the olivocerebellar system, corticocerebellar 
system and dentate nucleus) are active preferentially during 
motor learning, the mRN and the rubrospinal tract may be 
involved mainly in the execution of learned or automated 
movements (Kennedy 1990). This would explain why, after 
lesions of corticospinal tract in primates, automated move-
ments can be re-acquired by the RST in cooperation with the 
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cortico-rubro-olivo-cerebellar system but, when the olivo-
cerebellar tract is lesioned, or both RST and corticospinal 
tract are severed, the recovery becomes impossible (Law-
rence and Kuypers 1968). The rubro-olivary pathway, by 
exerting an excitatory effect on the olivary nucleus, would 
then act as a “switch” from automated movements (prefer-
ential activity of mRN and the rubrospinal system) to move-
ment learning, mediated by the corticospinal tract and the 
olivocerebellar system (Kennedy 1990). In this model, it is 
unclear what kind of input would activate the pRN, regulat-
ing the switch from preferential activity of the rubrospinal 
system to preferential activity of the olivocerebellar system. 
A more recent experiment conducted in primates suggested 
that the convergence of cortical and dentate activity on the 
pRN would encode error information, allowing the acti-
vation of the olivocerebellar system during learning from 
errors (Reid et al. 2009). Although fascinating, however, it 
should be kept in mind that this model is based on limited 
experimental evidence and that further research is needed to 
strengthen these hypotheses.

Non‑motor functions of RN: a role 
in mediating antinociceptive responses?

Aside to its well-known role in motor behavior, there are 
some lines of research suggesting that the RN could be also 
involved in non-motor functions, namely responses to pain-
ful stimuli. In rodents, cats and primates, the whole RN 
contains sensory-encoding neurons that respond to painful 
stimulation; these responses are, in general, stronger in mRN 
than in pRN (Nishioka and Nakahama 1973; Eccles et al. 
1975; Larsen and Yumiya 1980; Kennedy et al. 1986; Vinay 
and Padel 1990; Matsumoto and Walker 1991).

In addition, stimulation of the RN in rodents elicits a 
long-lasting and intense analgesia (Prado et al. 1984), which 
is probably mediated by sparse anatomical connections of 
RN with components of the descending antinociceptive sys-
tem, such as periaqueductal gray, nucleus raphe magnus and 
lateral reticular nucleus (Gwyn and Flumerfelt 1974; Larsen 
and Yumiya 1980; Kennedy et al. 1986; Bernays et al. 1988). 
Probably, this antinociceptive response is regulated on a cel-
lular level by the metabolic pathway of nitric oxide (NO): 
microinjections of l-arginine (a NO precursor) into RN have 
a strong antinociceptive effect, that is, in turn, prevented by 
the inhibition of the NO synthase (Kumar et al. 1995). Since 
the inhibition of non-NMDA and metabotropic glutamate 
receptors has also an antinociceptive effect, it is likely that 
glutamate, the most important neurotransmitter in the RN, 
plays an opposite effect, by reducing the antinociceptive 
response (Yu et al. 2015).

However, more recent studies suggest that the molecu-
lar regulation of antinociceptive responses in rat RN may 

be very complex, involving a large network of inflamma-
tory mediators and cytokines. Most of our knowledge about 
pain regulation in the RN of rodents comes from studies on 
spared-nerve injury (SNI), an experimental model of per-
sistent peripheral neuropathic pain (Decosterd and Woolf 
2000). SNI-induced neuropathic allodynia up-regulates 
expression of different inflammatory mediators in RN, 
including Tumor Necrosis Factor-α (TNF-α), interleukin 
1-β (IL-1β) 6 (IL-6) and 10 (IL-10), Nerve Growth Factor 
(NGF) or Transforming Growth Factor-beta (TGF-β) (Li 
et al. 2008; Wang et al. 2012, 2015, 2016a; Zhang et al. 
2013, 2015b; Ding et al. 2018; Guo et al. 2018). Some of 
these factors, such as TNF-α, IL-1β, IL-6 and NGF, can be 
inhibited through microinjections of monoclonal antibodies 
in RN, relieving neuropathic allodynia (Zhang et al. 2013; 
Wang et al. 2016a; Ding et al. 2018); in addition, these fac-
tors can directly induce allodynia in healthy rats when they 
are injected into RN (Wang et al. 2016a). By contrast, anti-
inflammatory mediators such as IL-10 or TGF-β relieve neu-
ropathic pain when injected into RN neurons (Wang et al. 
2012, 2015).

Taken together, these results suggest a role for RN in 
pain induction and modulation. However, neurophysiologi-
cal and anatomical substrates of this modulatory role are 
not completely explored at the current state of research. In 
addition, this role for RN in antinociceptive responses has 
not been described in other animal species, although limited 
evidence (that will be discussed further) suggests that RN 
could exploit similar functions in the human brain.

The human RN and its unsolved issues

Information about structural and functional organization of 
RN in human beings is surprisingly lacking when compared 
with other animals. Historically, this may have been due to 
many issues that made RN difficult to be studied directly 
in the human brain. Although these problems have been 
partially overcome with the rise of non-invasive neuroim-
aging techniques, the last decades have been characterized 
by reduced interest in studying human RN anatomy and 
physiology.

The human RN is located in the ventral midbrain at the 
level of substantia nigra (SN), it has a roughly spherical 
shape and is encapsulated by the superior cerebellar pedun-
cle (SCP), which traverses it (Fig. 3). Other white matter 
tracts passing through RN are the 3rd cranial nerve, that 
runs along its surface, and the fasciculus retroflexus, that 
penetrates it at the rostral level delineating a dorso-medial 
compartment. Many cell bodies are filled with ferric pig-
ment, that probably gives the typical reddish color (Mai and 
Paxinos 2012). Olszewski and Baxter (1982) subdivided 
the RN according to its microscopical anatomy into three 
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subregions: a rostral pars oralis, a dorsal pars dorsomedialis 
and a posterior pars caudalis. Pars oralis is divided from pars 
dorsomedialis by a thin medullary lamella, while pars cauda-
lis hosts largely interspersed neuronal perikarya (Olszewski 
and Baxter 1982; Paxinos et al. 2012); these histologically 
identified regions can be also recognized using high-resolu-
tion structural MRI (Abduljalil et al. 2003; Deistung et al. 
2013). It is generally believed that the major part of RN is 
composed by the pRN and that just a few scattered magno-
cellular neurons are identifiable at the caudal pole of RN 
(Papez and Stotler 1940; Nathan and Smith 1982; Onodera 
and Hicks 2009). Recent anatomical studies used incubation 
with carbocyanine dye, that allowed a clear identification 
of boundaries of the RN and between pRN and mRN in 
humans, showing mRN as a small region of large neurons 
wrapped around the caudal pole of pRN (Onodera and Hicks 
2010).

Comparative anatomical studies performed in cat, 
macaque and man clarified the last steps of the phyloge-
netical transition to human RN by describing a rolled-sheet 
model of RN evolution.

In cats, pRN is part of a neural sheet that confines with 
meso-diencephalic structures such as the nucleus of Dark-
schewitsch and the nucleus of Bechterew that can be consid-
ered as parts of the extended pRN since they project to the 
inferior olive through the medial tegmental tract (Onodera 
1984). This neural sheet in macaque and man “rolls” in a 
way that the most caudal parts is located rostrally, with the 
nucleus of Bechterew being located backward to form the 
dorsomedial part of the pRN. The nucleus of Darkschewitsch 
is separated from the RN and projects to the inferior olive 
through the medial tegmental tract, whilst pRN through the 
central tegmental tract (Onodera and Hicks 2009). By con-
trast, mRN projects only to the cervical enlargement of the 

spinal cord through the RST, that crosses the midline and 
descends in the lateral funiculus, adjacent to the corticospi-
nal tract (Nathan and Smith 1982).

The connectivity of human RN is thought to reflect those 
of non-human primates. Although rubrospinal, rubro-olivary 
and cerebello-olivary projections were identified early by 
classical anatomical dissection (Verhaart 1962), relatively 
a few studies addressed the topic of anatomical connections 
of the RN.

In the last decades, technical advances in diffusion tensor 
imaging and tractography allowed the indirect reconstruc-
tion of putative white matter tracts with accurate anatomical 
detail, non-invasively and in vivo (Cacciola et al. 2016a, b, 
2017a, b; Rizzo et al. 2018; Bertino et al. 2020). Tractogra-
phy has been used to reconstruct known white matter path-
ways of the human RN, such as the dento-rubral and rubro-
olivary tracts (Granziera et al. 2009), but also to explore in 
detail its structural connectivity profiles. Habas and Cab-
anis, using diffusion tensor imaging combined with both 
deterministic and probabilistic fiber tracking algorithms, 
reconstructed cortico-rubral connections between RN and 
prefrontal, cingulate, precentral, temporal and occipital cor-
tices. Subcortical connectivity patterns with contralateral 
and ipsilateral dentate nucleus, and sparsely with putamen 
and globus pallidus were also identified (Habas and Cab-
anis 2006, 2007a). Although the existence of direct rubro-
pallidal projections, passing through the zona incerta, is in 
line with early anatomical investigations (Papez and Stotler 
1940), a more recent study using advanced diffusion signal 
modeling algorithms failed in replicating these findings, 
reporting also cortical connectivity patterns restricted to sen-
sorimotor areas such as superior frontal, precentral, postcen-
tral and paracentral gyri (Milardi et al. 2016). All of these 
studies, along with intrinsic limitations concerned with low 

Fig. 3  Anatomy of the human RN. a Macrophotograph of human 
autoptic upper midbrain from an adult male of 81 years. b Schematic 
transverse sections of normal human upper midbrain illustrating ter-
ritorial delineations (adapted from Nieuwenhuys et al. 1980). c Right 
half of a midbrain section from an adult male of 81 years, counter-
stained with Luxol Fast Blue. 3 nucleus of oculomotor nerve, 3n ocu-
lomotor nerve, bic brachium of inferior colliculus, CC cerebral crus, 

CG central grey substance, CNF cuneiform nucleus, ctg central teg-
mental tract, ml medial lemniscus, mlf medial longitudinal fascicu-
lus, PN paranigral nucleus, R red nucleus, SC superior colliculus, scp 
superior cerebellar peduncle, SNC substantia nigra, compact part, 
SNL substantia nigra, lateral part, SNR substantia nigra, reticular part. 
Scale bar = 2.5 mm
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resolution and signal modeling algorithms (Behrens et al. 
2007), are not able to differentiate between RN connectivity 
and passing-by fibers, such as the dento-thalamo-cortical 
tracts in the SCP. Indeed, passing-by-fibers in the SCP may 
affect results, as tractography cannot neither distinguish 
between direct and indirect connectivity nor detect synapses 
(Jbabdi and Johansen-Berg 2011).

In addition, RST is a very small fiber tract and has a 
complex decussating course: these features make it hard to 
be reconstructed with low spatial and angular resolution. 
Despite these limitations, a preliminary study performed on 
21 healthy subjects with 1.5 T MRI and probabilistic trac-
tography reconstructed the RST only in 12 brains bilaterally 
and 3 unilaterally (Yang et al. 2011). More recently, RST 
was reconstructed as part of a brainstem white matter atlas 
using deterministic tractography on a population template 
obtained from high quality datasets of 466 subjects from 
the Human Connectome Project (HCP) repository, achiev-
ing a complete reconstruction of its origin, decussation and 
brainstem course (Meola et al. 2016).

Another open question is whether some kind of topo-
graphical organization of structural connectivity can be 
identified within the human RN. A recent study from our 
research group combined tractography with a connectivity-
based parcellation approach to identify topographically 
organized connectivity clusters within the RN, showing a 
caudal cluster more connected to interposed nucleus and a 
rostral cluster more connected to cerebral cortex and inferior 
olive (Cacciola et al. 2019).

It is generally believed that, in the human brain, mRN and 
the rubrospinal system are only vestigial residuals without 
any kind of functional relevance. However, morphological 
observation in the developing human fetus clearly underline 
that the development of mRN precedes pRN and that, in the 
human fetal and neonatal brain, mRN is structurally promi-
nent over pRN (Ulfig and Chan 2001, 2002; Yamaguchi 
and Goto 2008). These data suggest an intriguing analogy 
between phylogeny and ontogeny, as mRN and RST could 
play an important role in the neonatal brain, and its regres-
sion in the adult brain can be linked to the transition from 
quadrupedal to bipedal stance (Hicks and Onodera 2012).

Another interesting clue about the functional role of mRN 
and the rubrospinal system in the human brain comes from 
a case series of two PD patients who underwent therapeutic 
deep brain stimulation (DBS) of the subthalamic nucleus 
(STN): in such cases, an error of few millimeters in the 
mediolateral axis lead to the erroneous targeting of RN. 
Electrophysiological recordings showed that, similarly to 
STN, RN firing activity resulted to be related to both active 
and passive movements of the contralateral upper limb and 
jaws (Rodriguez-Oroz et al. 2008). Despite possible limita-
tions (few subjects studied, pathologic conditions that may 
have altered RN firing pattern, uncertainty about the precise 

microelectrode location at the cellular level) this may be the 
strongest evidence supporting the existence of a functionally 
active mRN in the adult human brain, as pRN, in primates, 
does not show any appreciable movement-related activity 
(Kennedy et al. 1986).

On the other hand, another case report of RN-DBS in a 
patient with alcoholic cerebellar tremor, reported that RN 
firing rate was not affected by active or passive movements 
and showed no tremor-related activity (Lefranc et al. 2014). 
The Authors suggested that these findings may be due to 
alcoholic degeneration of deep cerebellar nuclei; another 
possible explanation could be that authors targeted and 
recorded pRN activity instead of mRN.

Despite the limited electrophysiological evidence, most 
of our knowledge about human RN functional activity 
comes from task-based functional neuroimaging (Habas 
et al. 2010). An early fMRI study found slight RN activa-
tion during passive sensory stimulation and grasping, and 
significantly higher activity when the task was coupled 
with an active discrimination task (Liu et al. 2000). Similar 
results were obtained comparing activations during simple 
finger opposition and tactile-tactile bimanual discrimination: 
RN was active both in the pure motor and in the sensory-
motor task (Habas and Cabanis 2007b). These studies sug-
gest that, in line with animal research, human RN could 
play a role both in grasping and finger movements (Van Kan 
and McCurdy 2002a) and in somatic sensation (Larsen and 
Yumiya 1980), but add a possible role in active sensory dis-
crimination. In addition, different studies reported bilateral 
RN activation during both somatic and visceral pain process-
ing (Bingel et al. 2003; Dunckley 2005), thus reinforcing the 
hypothesis of RN as a nociceptive/antinociceptive structure 
put forward in rat models (see paragraph above).

Human RN could be also involved in motor control. 
Early task-related fMRI studies reported contralateral RN 
activation during execution of both externally triggered and 
self-initiated sequences of finger movement; in particular, 
RN activity is stronger during the “planning phase” of self-
initiated finger movement in respect to externally triggered 
movements (Cunnington et al. 2002; Boecker et al. 2008; 
Habas and Cabanis 2008). A recent approach based on task-
related effective connectivity suggested that, during motor 
preparation, RN functional connectivity is modulated by 
the presupplementary motor area (preSMA), being part of a 
cerebello-thalamo-preSMA-RN circuit. Such a circuit would 
act in synergy with a preSMA-thalamo-caudate nucleus-pri-
mary motor area loop during mental concentration before a 
motor task (Belkhiria et al. 2018). In line with this evidence, 
another recent task related fMRI study found greater activ-
ity bilaterally in RN, STN and SN during failed ’stop’ tasks 
(i.e. subject were receiving an auditory cue to stop them 
from pressing a button, but pressed it anyway) versus ‘go’ 
tasks (de Hollander et al. 2017), thus suggesting a strong 
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cooperation between RN and the basal ganglia circuitry in 
initiation and termination of motor tasks. It is interesting to 
note that nearly all the mentioned task-related studies were 
concerned with finger use: this would allow to hypothesize a 
preferential RN activation when movements of distal upper 
limbs are involved, in line with its role in animal models.

Another contribution to our understanding of the human 
RN comes from a few resting-state functional MRI stud-
ies. Nioche et al. (2009) showed that RN is functionally 
connected with a rich set of cortical and subcortical areas, 
including prefrontal cortex, occipital cortex, posterior hip-
pocampus, caudal insula, thalamus, hypothalamus, basal 
ganglia and cerebellar lobule V (bilaterally), left precuneus, 
superior temporal cortex, and dorsolateral prefrontal cortex 
(only right RN). Another ROI-based analysis described a 
similar, but less extensive RN functional connectivity net-
work including the dorsal pons, STN, dentate nucleus, SN, 
insula, dorsal thalamus, putamen, globus pallidus, head of 
the caudate nucleus, supramarginal gyrus, precuneus and 
dorsal anterior cingulate cortex (Zhang et al. 2015a). Habas 
and colleagues used independent-component analysis to 
disclose cerebellar involvement in resting-state functional 
networks, and identified at least four functional networks in 
which RN could be involved: the sensorimotor network, the 
salience network, the right executive network and the default 
mode network (Habas et al. 2009).

Taken together, functional neuroimaging studies are in 
line with animal literature, by suggesting that human RN 
could be involved in grasping, motor control, somatic tactile 
and pain perception; however, some works further extend 
the role of RN in cortico-cerebellar circuitry, suggesting its 
involvement in higher order functions ranging from sensory 
discrimination to salience detection, or executive functions. 
Noteworthy, resting state and task related fMRI studies 
reporting functional connectivity between RN, cerebellum 
and basal ganglia structures are in keeping with a growing 
line of research suggesting a strong interplay between these 
systems in the human brain (Cacciola et al. 2017c; Caligiore 
et al. 2017; Milardi et al. 2019; Quartarone et al. 2020). The 
results of RN neuroimaging research in the last 20 years are 
summarized in Table 1.

However, care is required in the interpretation of fMRI 
results about RN, since different limitations may affect the 
study of midbrain structures. The small size and tightly 
packed arrangement of midbrain nuclei and the low spatial 
resolution of fMRI make challenging to obtain a reliable 
blood oxygen level dependent signal in this area. Moreover, 
additional noise may come from the cardiac and respira-
tory cycles (Logothetis 2008). Finally, with these limitations 
in mind, a registration to a brainstem-optimized template 
should be carried out in order to properly localize midbrain 
signals at a group level. In this regard, recently developed, 
optimized fMRI techniques for brainstem imaging on both 

3 T (Limbrick-Oldfield et al. 2012) and 7 T (de Hollander 
et al. 2017) may help in overcoming these issues and in clari-
fying the functional role of RN in the human brain.

From anatomy to clinic: RN in neurological 
diseases

In the history of neurology, RN has been classically implied 
in the pathophysiology of tremor, since Gordon Holmes, in 
1904, hypothesized that lesions of the RN could lead to a 
characteristic tremor type, the so-called “Holmes tremor” 
(HT) or rubral tremor (Holmes 1904). However, several case 
reports suggest that HT may arise from different lesions, not 
necessarily involving the RN (Rieder et al. 2003; Raina et al. 
2007, 2015, 2016). Currently, the most commonly accepted 
pathophysiological hypothesis postulates a “double-hit” 
pathogenesis of HT, that may be due to contemporary lesion 
of dopaminergic nigro-striatal projections and cerebellar 
dento-thalamic fibers (Remy et al. 1995; Shepherd et al. 
1997; Rieder et al. 2003; Gajos et al. 2010). More recent 
reports described that infarction of RN may manifest with 
both motor cerebellar symptoms (tremor, asynergia, adiado-
chokinesia, dysmetria) and non-motor symptoms (memory 
impairment, decreased verbal fluency, intellectual fatigabil-
ity) (Lefebvre et al. 1993). However, as RN lesions often 
involve also neighboring structures, these clinico-pathologic 
correlations should be interpreted with care (Pérez-Balsa 
et al. 1998).

Another form of tremor that has been historically related 
to lesions in the dento-rubro-olivo-cerebellar pathway is the 
oculopalatal tremor (OPT) (Guillain and Mollaret 1931). 
This kind of tremor may arise from lesions involving the 
dento-rubro-olivary pathway, in particular at the level of 
dentate nucleus or central tegmental tract, and is frequently 
associated with hypertrophic olivary degeneration (HOD) 
(Tilikete and Desestret 2017). However, animal models of 
OPT/HOD suggest that the RN may be not directly involved 
in OPT, that would instead derive from lesion of inhibitory 
projections from deep cerebellar nuclei to inferior olive 
via the central tegmental tract. Inferior olive denervation 
would cause hypertrophy and disinhibition, altering the nor-
mal tonic firing pattern, thus likely resulting in abnormal 
olivo-cerebellar feedback manifesting as tremor (Sotelo et al. 
1974; Ruigrok et al. 1990; Shaikh et al. 2010; Tilikete and 
Desestret 2017).

RN and its connections have also been long-time regarded 
as involved in the pathophysiology of essential tremor (ET). 
Early PET findings demonstrated metabolic hyperactivity 
in RN, along with thalamus, cerebellum, DN and striatum, 
in patients with ET (Wills et al. 1994, 1995). In addition, 
alteration of diffusion parameters of RN, SCP and dentate 
nucleus have been interpreted as early pathological changes 
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Table 1  Twenty years of structural and functional neuroimaging of the RN

Author, year Subjects Field strength Method Results

Liu et al. (2000) 7 1.9 T Task-related fMRI RN activation during passive tactile stimu-
lation; higher RN activation during active 
discrimination

Cunnington et al. (2002) 12 3 T Task-related fMRI RN activation during both self-initiated and 
externally triggered finger tapping

Abduljalil et al. (2003) 20 8 T Susceptibility weighted imaging Macroscopical subdivisions of RN: pars 
oralis, pars dorsomedialis and pars 
caudalis

Bingel et al. (2003) 14 3 T Task-related fMRI RN activation in response to painful stimuli 
(laser stimulation)

Dunckley (2005) 10 3 T Task-related fMRI RN activation in response to cutaneous and 
visceral painful stimuli

Habas and Cabanis (2006) 7 1.5 T DTI, deterministic tractography RN structural connectivity with prefrontal 
cortex, premotor cortex, sensorimotor 
cortex, SCP and CTT 

Habas and (2007a) 5 3 T DTI, probabilistic tractography RN structural connectivity with prefrontal 
cortex, premotor cortex, sensorimotor cor-
tex, temporo-occipital cortex, SCP, CTT, 
globus pallidus

Habas and Cabanis (2007b) 9 3 T Task-related fMRI RN activation during bimanual finger-
thumb opposition

Boecker et al. (2008) 12 3 T Task-related fMRI RN activation during planning and 
execution of self initiated and externally 
triggered finger movement sequence; 
higher RN activation during planning of 
self-initiated movement

Habas and Cabanis (2008) 7 3 T Task-related fMRI Contralateral RN activation during drawing 
circles (continuous) or triangles (discrete) 
with pointed index finger

Granziera et al. (2009) 4 3 T DSI, deterministic tractography Reconstruction of rubro-olivary and dento-
rubral tracts

Habas et al. (2009) 37 3 T Resting-state fMRI; ICA network analysis RN involvement in sensorimotor, salience, 
right executive control and default mode 
resting state networks

Nioche et al. (2009) 14 3 T Resting-state fMRI RN functional connectivity with prefrontal 
cortex, occipital cortex, hippocampus, 
claustrum, thalamus, lentiform nucleus, 
hypothalamus, substantia nigra and 
cerebellum

Yang et al. (2011) 21 1.5 T DTI, probabilistic tractography Reconstruction of rubrospinal tract (only in 
32 hemispheres on 42)

Deistung et al. (2013) 9 7 T Quantitative susceptibility mapping Macroscopical subdivisions of RN: pars 
oralis, pars dorsomedialis and pars 
caudalis

Zhang et al. (2015a, b) 19 3 T Resting-state fMRI; effective connectivity RN functional connectivity with STN, DN, 
SN, insula, dorsal thalamus, putamen, glo-
bus pallidus, head of the caudate nucleus, 
supramarginal gyrus, precuneus and 
dorsal anterior cingulate cortex; negative 
modulatory effect of thalamus

Meola et al. (2016) 488 3 T Q-space imaging; deterministic tractog-
raphy

Reconstruction of rubrospinal tract and CTT 

Milardi et al. (2016) 15 3 T CSD; probabilistic tractography RN structural connectivity with cerebellar 
cortex, thalamus, paracentral lobule, post-
central gyrus, precentral gyrus, superior 
frontal gyrus and dentate nucleus
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that may underline tremor symptoms (Jia et al. 2011; Shin 
et al. 2008).

Although RN appears to be strictly tied to both olivocer-
ebellar and cerebello-thalamo-cortical systems, which have 
been implied in the pathophysiology of ET (Simantov et al. 
1976; Llinás and Yarom 1986; Sharifi et al. 2014; Louis and 
Lenka 2017) its precise role on the onset and development 
of ET symptoms is yet to be clarified.

Moreover, recent findings suggest that RN might be 
involved in PD. Human RN is rich in iron, and oxidative 
stress subsequent to alteration in iron storage and metabo-
lism has been considered as a potential mechanism for neu-
ronal cell death and pathological features in PD (Hirsch and 
Faucheux 1998; Rhodes and Ritz 2008).

Several studies using advanced MRI techniques for iron 
detection and quantification reported progressive accumula-
tion of iron in different brain nuclei, including RN. However, 
this finding has never been confirmed neither discarded by 
neuropathological analysis and it remains unclear if iron 
content in RN increases or decreases during PD course 
(Martin et al. 2008; Barbosa et al. 2015; Wang et al. 2016b; 
Guan et al. 2017). It has been suggested that, while in the 
early stages of disease only substantia nigra pars compacta 
is affected, substantia nigra pars reticulata, globus pallidus 
and RN are affected in advanced PD stages (Guan et al. 
2017). The pathophysiological meaning of this phenomenon 
is still unclear: as iron content of RN was correlated with 
development of levodopa-induced dyskinesia, it has been 
hypothesized that it may underlie a cerebellar motor com-
pensation mechanism after treatment with levodopa (Wang 
et al. 2016b; Guan et al. 2017). Finally, Lewis et al. (2013) 
demonstrated a correlation between increased iron in den-
tate nucleus and RN with tremor symptoms in advanced PD 
patients.

It can be concluded that, although evidence ties RN with 
tremor and tremorgenic syndromes, the RN role in tremor 
generation is still to be better elucidated. Nevertheless, it 
has been suggested that RN could represent a suitable DBS 
target to treat tremor, as the outcome from a single case of 
RN-DBS for cerebellar alcoholic tremor gave encouraging 

results on the postural component of tremor (Lefranc et al. 
2014).

Notably, also the mRN and rubrospinal tract may have 
clinical implications in humans.

Traditionally, the involvement of RN, in particular of 
its magnocellular portion and of the rubrospinal tract, has 
been implied in mediating the clinical differences between 
decorticate and decerebrate rigidity (Ward 1947; Carey et al. 
1971), as commonly stated also in modern-days neurology 
and neurosurgery textbooks (Whitney and Alastra 2020).

In experimental animal models, decerebrate rigidity, char-
acterized by extension of the lower and upper limbs, gener-
ally develops due to transection of the brainstem from the 
level of superior colliculus to the level of vestibular nuclei. 
By contrast, lesions above the superior colliculus may mani-
fest with decorticate rigidity, that involves a flexor response 
of the upper limbs (Sherrington 1898; Bazett and Penfield 
1922; Ranson and Hinsey 1929a).

Earlier experiments suggested that a lesion damaging the 
RST, which has a facilitatory effect on flexor muscles, may 
cause the extension of the upper limbs in decerebrate rigid-
ity, while damage in cortico-rubral tracts, and the following 
disinhibition of the RN, are likely to account for the flexor 
response in decorticate rigidity (Rademaker 1931). How-
ever, this view has been challenged by different early experi-
ments which failed to replicate flexor or extensor rigidity 
after ablation, stimulation or lesion of the RN (Ranson and 
Hinsey 1929b; Ingram and Ranson 1932; Ingram et al. 1932; 
Keller 1934); moreover, additional experimental studies on 
the decerebrate animal suggest that extensor rigidity may 
rather emerge from lesions in the pontine and bulbar reticu-
lar formation (Ward 1947).

In humans, there is general agreement that decerebrate 
posturing may emerge from lesions of the brainstem, while 
decorticate posture often follows lesions at the level of 
the cerebral cortex, basal ganglia or thalamus. However, 
frequent clinical, pathological and radiological overlaps 
between these two syndromes are reported (Turazzi and Bri-
colo 1977; Davis and Davis 1982; Klug et al. 1984; Woisch-
neck et al. 2015). These clinical and radiological features 

Table 1  (continued)

Author, year Subjects Field strength Method Results

De Hollander et al. (2017) 14 7 T Task-related fMRI RN activation in stop-and-go trial; increased 
RN activation in failed stop vs go trials

Belkhiria et al. (2018) 22 3 T Task-related fMRI; effective connectivity RN activation in a motor concentration task; 
effective connectivity cerebello-thalamo-
preSMA-RN loop

Cacciola et al. (2019) 100 3 T CSD; probabilistic tractography; connec-
tivity-based parcellation

RN structural connectivity with cerebral 
cortex, DN, IN, ION; connectivity based 
parcellation into two main clusters (Cor-
tex + ION vs IN)
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make very difficult to attribute the presence or absence of 
symptoms (such as flexor or extensor rigidity) to the involve-
ment of specific brain regions.

In addition to the controversial role of mRN and rubro-
spinal tract in decerebrate and decorticate rigidity, early pri-
mate studies have highlighted their possible role in replacing 
the corticospinal tract after pyramidal lesions (Lawrence and 
Kuypers 1968). In primates, when the corticospinal tract is 
damaged, rubrospinal neurons may undergo plastic modi-
fications to rearrange their facilitating effects on both flex-
ors and extensor muscles (Belhaj-Saïf and Cheney 2000). 
Similarly, in rodents the RST is able to compensate the loss 
of motor function following pyramidal tract transection 
at the spinal level (Kennedy and Humphrey 1987); puta-
tive mechanisms of neuronal plasticity, including axonal 
sprouting and collateralization, and the possible role of 
Brain-Derived Neurotrophic Factor (BDNF) in mediating 
these processes, have been extensively studied in murine 
models of spinal cord lesions (see Morris and Whishaw 
(2016) for review). However, these studies are not entirely 
generalizable to the human brain, where mRN is consider-
ably smaller and RST is clearly less developed than in other 
animal species (Nathan and Smith 1982; Patt et al. 1994). 
On the other hand, it is relevant to note that human adult 
rubral neurons have been reported to be immunoreactive 
to BDNF (Fig. 4) (Quartu et al. 2010), thus indicating that 
this neurotrophin may represent the molecular substrate for 
neuroplastic adaptive responses. In addition, it should be 
noted that electrophysiological evidence suggests that mRN 
can be functionally active in the human brain (Rodriguez-
Oroz et al. 2008) and that the recovery of motor functions, 
rather than by mRN and RST alone, may be synergistically 
mediated by both the rubrospinal and rubro-olivary system 
(Kennedy 1990).

In chronic post-stroke patients, structural connectivity 
between primary and supplementary motor cortices and 
RN is significantly correlated with behavioural measures 

of upper extremity functions, suggesting a reorganization 
of the cortico-rubral system in the recovery of upper limb 
motility (Rüber et al. 2012). Increased fractional anisotropy 
in RN, rubrospinal and cortico-RN tracts was found to be 
positively correlated with the level of motor impairment 
in chronic post-stroke patients at different time intervals 
after lesion, likely suggesting structural reorganization and 
plasticity (Yeo and Jang 2010; Rüber et al. 2012; Takenobu 
et al. 2014; Jang and Kwon 2015; Kim et al. 2018). This 
hypothesis is strengthened by fMRI findings of increased 
activation of cerebral cortex, cerebellum and RN that corre-
lated with recovery of motor functions after a treadmill gait 
exercise (Luft et al. 2008). However, further investigations 
are required to confirm RN potential in neurorehabilitation.

Finally, to complement our overview on the possible 
pathophysiological implications of the human RN, it is 
worth to mention that some lines of evidence suggest the 
involvement of RN in migraine, in keeping with its pos-
sible role in the nociceptive/antinociceptive system. Recent 
pathophysiological theories suggest that migraine may be a 
disorder of the neurovegetative and nociceptive brainstem, 
and that local imbalances in the activity of hypothalamic 
and brainstem circuitry could be implied in the initiation and 
termination of migraine attacks (May 2017). Although the 
involvement of RN in such circuitry in the human brain is yet 
to be clarified, some fMRI studies report intense activation 
and hyperoxia of bilateral RN during both spontaneous and 
visually-triggered migraine (Welch et al. 1998; Cao et al. 
2002; Aurora et al. 2004). More recently, resting-state fMRI 
has been used to study functional connectivity of brainstem 
structures in migraineurs, reporting altered functional con-
nectivity between RN, parietal lobe and cerebellum (Huang 
et al. 2019). Finally, iron accumulation in RN has been 
described in different cohorts of chronic migraineurs (Kruit 
et al. 2009, 2010; Domínguez et al. 2019), despite not con-
sistently replicated by other studies (Tedeschi et al. 2013; 
Palm-Meinders et al. 2017; Skorobogatykh et al. 2019). 
Hence, a better understanding of RN involvement in noci-
ceptive circuits could lead to a better comprehension of its 
role in migraine and other pain-related syndromes.

Conclusion: what we know and what we 
have to learn

The present work aimed at providing a comprehensive 
overview on RN structure and function, connecting the dots 
from animal and human studies, in order to bridge the gap 
between basic and translational research. The path towards 
a better understanding of RN role in the human brain is 
not free from inconsistencies and misunderstandings, and 
many steps still divide us from a complete comprehension. 

Fig. 4  BDNF expression in adult human RN. Human adult midbrain 
from an adult female of 67 years immunostained for BDNF. a Low-
power view photomontage of the right red nucleus. b Higher magnifi-
cation of the area framed in (a). 3 nucleus of oculomotor nerve, SNC 
substantia nigra, compact part. Scale bars: a = 250 μm; b = 50 μm
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However, we believe that some sparse firm points can be 
inferred from our review:

• phylogenetically the RN is likely to be correlated with 
the appearance of limbs or limb-like structures, and it 
plays an important role in the transition from aquatic to 
terrestrial locomotion;

• the primitive RN functionally corresponds to mRN and is 
involved mostly in locomotor functions and in the execu-
tion of simple, stereotyped movements; the pRN devel-
ops later and is probably related to increasing behavioral 
complexity;

• although already present in quadrupedal animals, mRN 
functional specialization for upper limb movements 
becomes more evident with the evolution of bipedalism;

• it is still unclear if mRN undergoes a complete regression 
in the adult human brain, but it is possible that it can play 
a role during human ontogenesis and in the recovery of 
pyramidal lesions;

• functions of pRN are still largely unknown in animal 
models, but it can be hypothesized that they may con-
trol the motor system on a hierarchically higher level, in 
cooperation with the olivo-cerebellar and basal ganglia 
systems;

• a few findings from rat models and human neuroimag-
ing imply a role for RN in mediating antinociceptive 
responses to pain stimulation.

The main uncertainty about human RN is that animal 
findings cannot be fully translated into human research.

In our opinion, determining whether the human RN 
is organized (as in other animal species) in two different 
structurally and functionally dissociable compartments is 
a fundamental issue that needs to be addressed. It is clear 
from animal models that mRN and pRN, despite being prob-
ably part of a strictly interconnected system, play different 
functional roles. While most of traditional basic research 
suggests that only pRN has a functionally relevant role in 
the human brain, clinical and applied neurosciences argue 
against this assumption, suggesting that also the phyloge-
netically older portion of RN may still have a relevant part in 
human physiology and pathophysiology. Hence, as no con-
clusive evidence is provided, we believe that further studies 
in this direction could offer the answers needed to settle the 
debate.

Neuroimaging remains the elective tool for studying, 
in vivo and non-invasively, the human RN in both physi-
ological and pathological conditions, and the advances made 
in the last decade could overcome the intrinsic technical 
limitations that are typical of the earlier studies.

A detailed multi-modal MRI atlas of the human RN 
appears to be the only tool that could help bringing together 
results from histology, high-field MRI, functional and 

structural connectivity. Improvements in neuroimaging of 
the RN could also facilitate our understanding of its role 
in different brain systems, and to clarify how it cooperates 
with other brain functional structures, such as cerebellar 
and cerebral cortex, or the basal ganglia, in the execution 
of complex tasks.

Clinicians may take advantage from basic research to 
understand how RN dysfunction can lead to various symp-
toms. Hence, innovations in the field of basic research may 
pave the way for more detailed insights on the role played 
by RN in the pathophysiology of different brain diseases and 
may help in bridging the gap between basic and translational 
research.

Interest about the RN has decreased in the last twenty 
years. In the present review, we demonstrate that the neuro-
science field has still something interesting to tell about this 
neglected structure. We believe that our review may facili-
tate further research by providing a comprehensive perspec-
tive on human RN, from its phylogenesis and development 
to its pathophysiological implications, and by highlight-
ing lacking or faulty knowledge. We hope this may boost 
a renewed interest towards the RN and act as a trigger for 
further research, in order to better understand its functional 
role in the human brain.
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