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CHAPTER 1 

 

Summary and Aims 

 

The projects of this thesis sits at the intersection between classical 

neuroscience and aspects related to engineering, signals’ and neuroimaging 

processing. Each of the three years has been dedicated to specific projects 

carried out on  distinct datasets, groups of individuals/patients and methods, 

putting great emphasis on multidisciplinarity and international mobility. The  

studies carried out in Cagliari were based on EEG (electroencephalography), 

and the one conducted abroad was developed on functional magnetic 

resonance imaging (fMRI) data. 

The common thread of the project concerns variability and stability of 

individuals' features related primarily to functional connectivity and 

network, as well as to the periodic and aperiodic components of EEG power 

spectra, and their possible use for clinical purposes. 

In the first study (Fraschini et al., 2019) we aimed to investigate the impact of 

some of the most commonly used metrics to estimate functional connectivity 

on the ability to unveil personal distinctive patterns of inter-channel 

interaction.  

In the second study (Demuru et al., 2020) we performed a comparison 

between power spectral density and some widely used nodal network 

metrics, both at scalp and source level, with the aim of evaluating their 

possible association. 

The first first-authored study (Pani et al., 2020)was dedicated to investigate 

how the variability due to subject, session and task affects 

electroencephalogram(EEG) power, connectivity and network features 

estimated using source-reconstructed EEG time-series of healthy subjects. 
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In the study carried out with the supervision of Prof. Fornito 

(https://doi.org/10.1016/j.pscychresns.2020.111202) during the experience at 

the Brain, Mind and Society Research Hub of Monash University, partial least 

square analysis has been applied on fMRI data of an healthy cohort to 

evaluate how different specific aspects of psychosis-like experiences related 

to functional connectivity.  

Due to the pandemic of Sars-Cov-2 it was impossible to  continue recording 

the patients affected by neurological diseases (Parkinson’s, Diskynesia) 

involved in the study we planned for the third year, that should have 

replicated the design of the first first-authored one, with the aim of 

investigate how individual variability/stability of functional brain networks is 

affected by diseases. For the aforementioned reason, we carried out the last 

study on a dataset we finished to record in February 2020. The analysis has 

the aim of investigate whether it is possible by using 19 channels sleep scalp 

EEG to highlight differences in the brain of patients affected by non-rem 

parasomnias and sleep-related hypermotor epilepsy, when considering the 

periodic and aperiodic component of EEG power spectra. 
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CHAPTER 2 

 

Functional Connectivity 

 

Human brain is often considered the most interesting mystery of our times. A 

small complex object of 1,300-1,500 grams, made up of 100 billion neurons, 

each of which develops an average of 100 trillion connections with 

neighbouring cells, from which emerge our entire being in terms of emotions, 

feelings, thoughts and behaviours (Fornito et al., 2016).  We can describe it as 

a network, with complex anatomical and functional characteristics, and the 

way in which its components communicate and are organized in normal 

condition and disease is one of the most important questions of modern 

neuroscience. The recent confluence of neuroscience and network science 

open up fresh possibilities for understanding the brain as a complex system 

of interacting units (Stam, 2014), improving our comprehension of normal 

brain-network organization and of how its architecture dismantles in 

neurological and psychiatric diseases. Network science is based on the 

concept that to understand complex systems we require not only knowledge 

of their elementary components but also of the ways in which these 

components interact, as well as the emergent properties of their interactions 

(Sporns 2010). Complex networks study had a spike over the last decades 

with applications in several fields: biology, physics, social sciences, 

economy  etc.. Even if these areas seem to be  very different from each other, 

all these complex systems can be defined in terms of characteristics  and 

patterns that derive from defined selective interactions and coupling between 

the elements that compose them. The brain is no exception and its integrative 

nature is suitable to be investigated with a complex network approach, 

considering its multiscale arrangement from singular cells and synapsis to 

cognitive systems. Each level of the multiple spatial scale is important, shall 

work with the others and depends mutually from higher and lower levels, 

giving rise through integration to complex  functions as cognition and 

behaviour. 
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Modern network science is a mix of different theories and methods including 

graph theory, statistical mechanics from physics, computer science and 

inferential modeling. The core concept about graph theory is to represent the 

considered network with a set of nodes and connections, that can respectively 

constitute any sort of entity and relationship, allowing us to generalize this 

idea to any kind of complex network (Stam, 2014). Two models introduced at 

the end of the twentieth century, namely the small-world network by Watts 

and Strogatz (Watts and Strogatz, 1998) and the scale-free network by 

Barabási (Barabási and Albert, 1999), set the stage for the interdisciplinary 

applications of network neuroscience. Since its inception the power of the 

network science was represented by the capacity to explain a wide variety of 

phenomena staying relative simple and suited to a deep mathematical 

understanding.  

It is now largely recognized the peculiar architecture of the brain that 

guarantees an equilibrium between segregation and integration of 

information, optimizing the ratio between connection cost and processing 

efficiency (Bullmore and Sporns, 2012). Namely, physiological brain 

networks show small-world typical characteristics combining high clustering 

with short path length, and scale-free features, that imply the existence of a 

subset of highly connected hub nodes, sometimes referred as a ‚rich club‛, 

that manage most of the information flow in the network (Sporns, 2013). 

Physiological brain networks are organized following a hierarchical modular 

structure, with large-scale modules corresponding to major functional 

systems such as motor, sensory and association networks (Meunier et al., 

2010).  The optimal combination of healthy brain characteristics seem to 

emerge during development, to be regulated by genes and influenced by 

aging, and to be strongly related to cognitive function (Stam, 2014).  

This knowledge about the healthy brain has laid the foundation for studies 

concentrated on one of the main open question that network neuroscience is 

trying to address: networks changes in neurological and psychiatric disease. 
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We can derive brain networks from anatomical observations resulting in 

structural networks, or from physiological observations that result in 

functional networks. 

The anatomical connections that link a set of neural elements, namely white 

matter projections that link cortical and subcortical areas, are described by 

structural connectivity (Sporns, 2013). Functional connectivity, on the other 

hand, describes patterns of statistical dependence among neural element, and  

it’s obtained from time series observations (Smith, 2012), that can be derived 

from various techniques: EEG, MEG, fMRI. Although the statistical 

relationship among two neural elements could be taken as a sign of 

functional coupling, the latter doesn’t give us information about causality. It 

is the effective connectivity that focuses on the influence that a node exert 

over another using a network model of causal dynamics (Gao et al., 2011). 

Despite the effective connectivity is very promising most studies on brain 

networks are nowadays conducted on structural or functional connectivity. 

 

Focusing on functional connectivity, the data recorded from the human brain 

must first be processed into a network, starting with the definition of the 

nodes and the edges of the latter. If the empirical data derive from EEG or 

MEG a node can be defined as a channel, a sensor or a source; in case of fMRI 

data a voxel or a group of voxels corresponds to a node. Links can be instead 

defined as a measure of synchronization between two  EEG, MEG or fMRI 

signals. The data can be then represented as a connectivity matrix N-by-N, 

with N constituted by the number of nodes, and each cell of the matrix 

provides information about the presence and strength of any relation (Stam, 

2014). Inconsistent or weak interactions can be removed subjecting 

connection matrices to averaging across imaging runs/individuals or to 

thresholding (Sporns, 2013).The result of this process it’s a network that can 

be analysed with tools and methods of network neuroscience, as graph 

theory. We can define a graph as unweighted, when edges are simply present 

or absent, or as weighted if we assign a weight to each link; likewise  a graph 

is defined as undirected, if links indicate symmetric relationships, or directed 

if links correspond to directed relationships. Basic concepts of graph theory 

include: node degree, the number of links connected to the node; degree 
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distribution, the probability that a randomly chosen node has k degree; 

clustering coefficient of a node, the probability that two neighbours of that 

node are themselves connected; motifs, small subnetworks in which graphs 

can be decomposed; path length (binary graph), the minimum number of 

edges as distance between two nodes; centrality, the importance of a node 

compared to other nodes of the same network, it can be measured by degree, 

closeness centrality, eigenvector centrality and betweenness centrality (Stam, 

2014).  

 

The application of these mathematical concepts and measures allowed the 

definition of a general pattern of the healthy brain, that is characterized by 

high clustering, short path length, hierarchical modularity, scale-free degree 

distribution and a rich club made by hub nodes. A general conclusion that 

can be drown from the multitude of studies about functional changes in 

diseases is that usually network organization of patients affected by 

neurological/psychiatric conditions reflects a deviation from the optimal 

pattern. Remains a challenge to identify the nature of this deviation for single 

pathology, coming up with clinical useful applications, such as the use of 

diagnostic measures or biomarkers in day-to-day medicine. 
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CHAPTER 3 

 

Intra and Inter-subject variability 

 

Each brain seems to possess a set of unique characteristics  that make it 

distinguishable from the multitude of other brains, and at the same time a 

complex batch of common patterns shared with the latter. This concept is 

fascinating and the importance of unveil the subject-specific characteristics of 

human brains has been stressed out in the last few years. Individual 

variability may indeed play an important role in both 

neuroimaging/neurophysiological human brain studies and bio-engineering 

applications. One need only think to biometric systems, computer interfaces 

and to the clinical advantage to have biomarkers specific for diseases. 

Different areas of medicine, first among all psychiatry, lack of diagnostic 

criteria based on  validated biomarkers (Finn and Todd Constable, 2016). 

Filling this gap could mean enable the identification of at-risk individuals for 

prevention and early intervention, or in case of full-blown illness, prediction 

of trajectory and definition of the best strategy for treatment. Therefore 

several studies, using fMRI, EEG and MEG, have been focusing on study 

human brain networks organization and its variability across individuals in 

resting conditions, specific tasks, behaviours and especially in subjects 

affected by neurological or neuropsychiatric (Agosta et al., 2013; Baggio et al., 

2014; de Haan et al., 2012; Delbeuck et al., 2003; Fornito and Bullmore, 2015; 

Olde Dubbelink et al., 2014; Skidmore et al., 2011; Stam, 2010). A crucial point 

that has to be considered trying to define biomarkers is how much of the 

functional connectivity variance is state-related versus trait-related (Finn and 

Todd Constable, 2016; Gratton et al., 2018), because from this depends the 

validity of all measurements about variability. Several connectivity studies, 

carried out using fMRI and MEG, showed that functional familial and 

heritable traits seem to be stable over a long time interval (Demuru et al., 

2017; Miranda-Dominguez et al., 2018). In addition, EEG time-frequency and 

connectivity-based features could be considered as subject-specific 
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fingerprints by which distinguish different individuals, but it’s also true  that 

connectivity-based biometric systems performance varies with the 

connectivity metric and the task, and that the permanence has to be 

evaluated. In other words although there is clear evidence of individual 

variations in functional brain networks,  their stability over-time needs to be 

carefully evaluated to validate the implications of individual approaches to 

neurological and psychiatric illness (Arns, 2012; Finn and Todd Constable, 

2016) and in developing brain (Horien et al., 2019). Different studies were 

conducted using both fMRI, MEG and EEG following this common tread, 

with the aim of investigate to what extent subject-specific features are stable 

over time and different states: Gratton et al (2018), using fMRI, detected 

stable individual characteristics of functional brain networks that are 

modestly influenced by task state and show minimal day-to-day variability; 

likewise Cox et al (2018) detected subject-specific and stable over-time 

network profiles, although should be taken into account that the approach 

used, in specific EEG scalp level analysis, is prone to volume conduction and 

signal leakage problems. It is therefore extremely important to evaluate 

supposed effects of disease on brain networks considering all sources of 

variance, namely the ones linked to the pathology and those related to 

individuality, avoiding results’ misinterpretation. In light of these 

considerations we can say that the nature of functional networks makes them 

promising as biomarkers, but also that the clinical use for high-quality 

personalized medicine approaches depends on how much we are accurate 

studying each subject/patient. Finally we must face the needing of a large 

amount of artifact-free data, considering the variability linked to the 

sampling process.  

The future of medicine seems to be a shift from the traditional patient-control 

comparison to subject-specific analysis, and each step towards the 

understanding of the impact of intra and inter-subject variability brings us 

closer to the use of functional connectivity biomarkers on day-to-day clinic 

decisions. 

 

 

 

https://context.reverso.net/traduzione/inglese-italiano/although+it+should+be+kept+in+mind
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PART II          

EEG: Intra and inter-subject variability 
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Robustness of functional connectivity metrics for EEG-based 

personal identification over task-induced intra-class and inter-

class variations. 
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Abstract 

 

Growing interest is devoted to understanding in which situations and with 

what accuracy brain signals recorded from scalp electroencephalography 

(EEG) may represent unique fingerprints of individual neural activity. In this 

context, the present paper aims to investigate the impact of some of the most 

commonly used metrics to estimate functional connectivity on the ability to 

unveil personal distinctive patterns of inter-channel interactions. Different 

metrics were compared in terms of equal error rate. It is widely accepted that 

each connectivity metric carries specific information in respect to the 

underlying interactions. Experimental results on publicly available EEG 

recordings show that different connectivity metrics define peculiar subjective 

profile of connectivity and show different mechanisms to detect subject-

specific patterns of inter-channel interactions. Moreover, these findings 

highlight that some measures are more accurate and more robust than others, 

regardless of the task performed by the user. Finally, it is important  to 

consider that frequency content and spurious connectivity may still play a 

relevant role in determining subject-specific characteristics. 
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Introduction 

 

The investigation of subject specific human characteristics that can be used to 

develop robust biometric systems still represents a big challenge. In this 

context, growing interest is devoted to understanding how brain signals 

recorded from scalp electroencephalography (EEG) may represent a unique 

fingerprint of individual neural activity. In the last few years a huge number 

of works have investigated the potential role of EEG signal characteristics as 

biometric system (about 300 new papers in the last 10 years). A detailed 

literature overview of the methods proposed so far is therefore quite 

challenging and in any case out of the scope of the present study. 

Nevertheless, some attempts to summarize the state of the art was previously 

proposed in [6,9,19]. In brief, it is possible to consider the approaches 

proposed up until now mainly organized into two fundamental categories: (i) 

task based and (ii) resting-state based EEG analysis. The first category is 

oriented on experimental setups that allow to investigate properties of the 

EEG signal that are strictly related to some specific  stimulus.  Motor (real and 

imagery) tasks [33], visual evoked potentials [2,8,27], auditory stimuli [24], 

imagined speech [4], eye blinking [1] and multiple functional brain systems 

[29] have been proposed so far in order to elicit individual unique responses. 

In contrast, the second category is mainly  oriented  to  detect  characteristic  

patterns of induced brain activity at rest both during eyes-closed and eyes- 

open. In line with the extensive use of tools from modern network science to 

understand brain complex organization [31], measures   of functional 

connectivity [10,14,16,21] and network metrics have been recently proposed 

[7,12] as EEG-based biometric traits. Finally, multimodal approaches based 

on the fusion of EEG and Electrocardiography (ECG) features have been also 

proposed [3,28]. However, it seems still evident that there exists a gap 

between current investigations of EEG signal as neurophysiological marker 
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and its application in personal verification systems. In particular, it is widely 

accepted that different metrics used to assess functional connectivity carry 

specific information with respect to the underlying interactions network [20]. 

Nevertheless, it is still not clear if these metrics convey different subject 

specific information. Following what previously reported in *12,14+, the 

present paper aims to investigate and compare the impact of some of the 

most commonly used techniques to estimate functional connectivity on the 

ability to detect personal unique distinctive features based on inter-channel 

interaction profiles. In order to answer this question, we focused our 

attention on measures based on different properties of the  original signals. In 

particular, the following measures were included in the present study: (i) the 

Correlation Coefficient (CC), representing a sort of (spurious) connectivity 

baseline; (ii) the  Phase  Lag Index (PLI) [32], which quantifies the asymmetry 

of the distribution of phase differences between two signals; (iii) the 

uncorrected Amplitude Envelope Correlation (AEC) and (iv) the corrected 

AEC version (after performing the orthogonalisation of raw signals) [5,17], 

which provides functional coupling estimate without coherence or phase 

coherence; (v) the Phase Locking Value (PLV) [22], which detects frequency-

specific transient phase locking independently from amplitude. Each of the 

proposed metric has different properties and capture different characteristics 

of the EEG signals interaction which will be discussed in this paper. We  

hypothesized that the choice of the metric may have a great impact in unveil 

subject specific pattern of functional interactions, and that advantages and 

disadvantages of each technique should be correctly taken into account when 

interpreting the corresponding results in terms of performance of a EEG 

based biometric system. Finally, although the aim of this study was to 

compare different connectivity metrics without focusing on absolute 

performance of the system, considering that the so called single-run approach 

(within-task design, where the system is tested on a single run) still 

represents   the more important limitation of EEG based biometric systems, 
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we replicated our study using a multi-runs approach (between-task design, 

where the system is tested on multiple and different runs). Despite a within-

task approach would have been adequate to test differences between the 

different connectivity metrics, a between-tasks approach allowed to have a 

more clear idea on the actual performance of the biometric system on possible 

real life applications. 

 

Material and methods 

 

EEG dataset 

The analysis was performed using a widely used and freely available EEG 

dataset containing 64 channels scalp EEG recordings from 109 subjects 

including fourteen different runs. The full dataset was created and 

contributed to PhysioNet [15] by the developers of the BCI2000 

instrumentation system. A detailed description of the original system can be 

found in [30] and the access to the raw EEG recordings is possible at the 

following website: https://www.physionet.org/pn4/eegmmidb/. For the 

purpose of the present study our analysis was applied to all the fourteen 

different runs, using 105  out of the 109  subjects, since four of them were 

excluded for differences in EEG acquisition parameters. The fourteen runs are 

organized as follows: 1st and 2nd runs contain eyes-open and eyes close 

resting-state, respectively. The remaining twelve runs consist of three 

different repetitions of four motor tasks: (i) open and close left or right fist; (ii) 

imagine opening and closing left or right fist; (iii) open and close both fists or 

both feet and (iv) imagine opening and closing both fists or both feet. 
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Preprocessing 

As a first step, original raw data undergo a fully automatic algorithm based 

on Independent Component Analysis (ICA) using ADJUST (version 1.1.1) 

[25] which is optimized to detect and remove artifacts as blinks, eye 

movements, and generic discontinuities. Later, artifact-free EEG signals were 

band-pass filtered in the common frequency bands: delta (1–4 Hz), theta (4–8 

Hz), alpha (8–13 Hz), beta (13–30 Hz) and gamma (30–45 Hz). Finally, each 

single EEG recording was organized into five different epochs (without 

overlap) of 12 seconds which guarantee to have a correct estimate of the 

connectivity profiles *11+. As a consequence, our analysis refers to one minute 

EEG signal for each subject and each run, so obtaining an overall of 24.5 

hours of EEG recordings. Fig. 1 shows a schematic representation of the 

different steps involved in the analysis. 

 

Connectivity metrics 

From the preprocessed EEG signals, separately for each subject, each epoch 

and each frequency band, a connectivity matrix was computed. Each single 

entry of the connectivity matrix, which represents the weight of the 

functional interaction, was computed by using a connectivity metric fc 

following the Algorithm 1. 
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Correlation 

The Correlation Coefficient (CC) represents the simpler method to estimate 

statistical relationship between two random variables and it is widely used in 

fMRI studies *13+. However, since scalp EEG signals contain electric fields 

derived from common current sources, CC does not represent the optimal 

metric to estimate functional interactions in this context. In this study, CC 

was mainly applied in order to quantify the possible effect of spurious 

patterns of connectivity on the definition of subject specific EEG traits. 

 

Phase lag index 

The phase lag index (PLI) [31] is a technique that quantify the asymmetry of 

the distribution of phase differences between two signals and removes the 

effect of amplitude information. Furthermore, PLI is less affected by the 

influence of common sources and thus defines more reliable interactions 

between the underlying signals. The PLI  is computed as the asymmetry of 

the distribution of instantaneous phase differences between two signals i, j: 

PLI(i, j) = |〈sign[Δϕ(i, j) (tk )] 〉 | (1) 

where Δϕ(i,j)  is the difference between instantaneous phases of the signals i 

and j, tk  are discrete steps and〈 〉denotes the average over the time t. 

 

Amplitude envelope correlation 

Band limited amplitude envelop correlation (AEC) [5,17], using Hilbert 

transform, was also used in this study. In particular, the envelope is obtained 

by measuring the magnitude of the analytic signal and successively the 
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Pearson’s correlation between envelopes is computed as a metric of 

functional connectivity. 

 

 

 

 

 

 

 

 

 

Fig.  1.   A schematic representation of the different steps involved in the analysis. From upper-left 

to bottom-right the panels represent: original raw  EEG signals, artifact-free EEG traces, band-pass 

filtered signals, FC connectivity matrices for each epoch, FC profiles extracted  from each matrix, 

score matrix derived from Euclidian distance between FC profiles from all the 14 runs / 105 

subjects / 5 epochs and EER matrix reporting the performance for each combination of the 14 

different runs. 

Amplitude envelope correlation, corrected version 

It is well known that signal  components  that  pick  up  the same source at 

different sites (i.e., EEG channels) have an identical phase. In this work, to 

overcome this possible limitation, we used an orthogonalisation procedure 

performed in the spatial domain (by removing the linear regression) before to 

compute the AEC values. In the present paper, the corrected version of AEC 

is reported as AECc. 
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Phase locking value 

The phase locking value (PLV), introduced by [22], allows to detect transient 

phase locking values which are independent of the signal amplitude. The 

PLV therefore represents the absolute value of the mean phase difference 

between the two signals i, j: 

PLV (i,j)  =  
 

 
   ∑ e  j[Δϕ(i,j)(tk)]  

where Δϕ(i,j) is the difference between instantaneous phases of the signals i 

and j, tk  are discrete steps and T is the number of trials. 

 

Features extraction and performance evaluation 

 

The performance obtained by applying the different connectivity metrics 

have been reported in terms of Equal Error Rate (EER). The EER refers to the 

rate at which both acceptance error (that occurs when the system accepts an 

impostor) and rejection error (that occurs when the system rejects a genuine 

match) are equal.   It represents a  quick and efficient way  to  compare the  

accuracy of different systems and it is widely used in evaluating the 

performance of biometric fingerprints. In short, the EER is the point where 

false identification and false rejection rates are equal, thus the lower the EER, 

the better the performance of the system. As previously proposed [12], the 

system performance is based on the computation of genuine and impostor 

matching scores. The scores, computed separately for each frequency band, 

represent the Euclidean distance (d) between each pair of feature vectors. 

The feature vectors are represented by the individual connectivity profiles 

extracted from the upper (or lower) triangular (symmetrical) connectivity 

matrix obtained by using the different metrics. Therefore, each feature vector 
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contains (number of channels)× (number of channels - 1) / 2 elements, where 

each element represents the corresponding connectivity value between a pair 

of EEG channels. Finally, from the matching scores, the similarity scores was 

computed as 1/(1 + d), where d represents the Euclidean  distance.  All  these  

steps  lead  to  a  square  (symmetrical)  score matrix  with  a  number of  rows  

and columns equal to 7350 (14 runs ×  105  subjects   ×  5  epochs).  Finally,  a 

14   ×  14  square matrix, containing the EER values for each combination of 

runs is obtained: in-diagonal values represent between-task performance; 

out-diagonal values represent between-task performance. Fig.1 shows a 

schematic representation of the different steps involved in the analysis. 

 

Results 

 

As a first step, in order to highlight the inherent dissimilarities between the 

different metrics, Fig. 2 shows the global averaged (over epochs and subjects) 

connectivity matrices and corresponding subject’s variance (expressed as 

standard deviation) for the eyes-closed resting-state condition. In other 

words, Fig. 2 shows that, despite the fact that  different  connectivity  metrics  

promise to catch the real underlying connectivity, they define peculiar 

subjective profile of connectivity and show different mechanisms to detect 

subject-specific patterns of inter-channel interactions. Successively, a 

summary of the results (in terms of EER) obtained from the whole analysis, 

for each frequency band and each connectivity metric separately, are 

summarized in Fig. 3. The remaining of the results are organized into two 

main sub-sections.   In the first sub-section, we reported the results derived 

from the within-task approach, the second sub-section contains the results 

from the between-tasks comparison. 
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Fig. 2. Connectivity patterns for each metric and corresponding between subjects variation 

expressed as standard deviation for eyes-closed resting-state run. Each entry represents the global 

average over epochs and subjects. 

 

 

 

 

 

 

 

 

 

 

 

Fig.  3.  Results in terms of EER obtained from the whole analysis, for each frequency band (rows) 

and each connectivity metric (columns). In-diagonal values represent within-task performance; 

out-diagonal values represent between-tasks performance. 
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Within task 

The results from within-task analysis, which represents the best and more 

trivial situation where the performance are evaluated within the same task, 

show the  absolute  higher  performance  in the beta band with an EER = 

0.09% for the PLV connectivity metric. A graphical representation of the 

results is reported in Fig. 3, see in-diagonal values from each single EER 

matrix. The other connectivity metrics performed worse, with the best EER 

ranging  from  26.9% for AECc (beta band) to 0.57% for CC (beta band). PLI 

and AEC best performance were respectively equal to 3.65% (gamma band) 

and 4.94% (beta band). PLV  and CC performed well for all    the frequency 

bands with range from 5.37% (alpha band) to 0.09% (beta band) for PLV and 

from 7.03% (alpha band) to 0.57% (beta  band) for CC, AECc showed the 

worst absolute results, with range from 41.9% (delta band) to 26.9% (beta 

band). For PLI, CC and PLV the results were consistent across tasks since the 

within task analysis that showed the lower performance were still acceptable. 

In details, the corresponding EER were: 8.52% for PLI (gamma band), 3.78% 

for CC (beta band) and 2.37% for PLV (beta band). A summary of the 

performance over the different within-task are included in the Table 1. 

 

Table 1 

Worst (left) and best (right) within-task performance for the 

different connectivity metrics expressed as EER for each 

frequency band. EER values lower than 10% were marked  

as bold. 

 

 

 

 

 AECc PLI CC AEC PLV 

Delta 48.29–41.89 48.90–46.06 9.27–5.91 25.30–15.32 5.65–3.30 

Theta 46.22–43.33 45.25–42.98 8.20–5.01 23.97–17.54 7.34–3.19 

Alpha 42.79–39.38 36.58–33.43 10.17–7.03 24.78–18.67 12.67–5.37 

Beta 36.34–26.86 14.06–8.37 3.78–0.57 10.28–4.94 2.37–0.09 

Gamma         36.71–28.64         8.52−3.65 5.76−1.55         17.90−7.44 2.90–0.58        
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Between tasks 

The results from between-tasks analysis, which represents the more realistic 

and challenging situation  where  the  performance are evaluated between (all 

the) different tasks, show the absolute higher performance in the beta band 

with an EER = 7.38% for the PLV connectivity metric. Fig. 3 shows the 

corresponding pairwise performance in the out-diagonal entries of each 

single EER matrix. The other connectivity metrics performed worse, with the 

best EER ranging from 35.03% for AECc (beta band) to 8.14% for CC (beta 

band). PLI and AEC best performance were respectively equal to 21.89% 

(beta band) and 14.23% (beta band). PLV and CC performed well for all the 

frequency bands with range from 15.00% (delta band) to 7.38% (beta band) 

for PLV and from 19.74% (delta band) to 8.14% (beta band) for CC, AECc 

showed the worst absolute results, with range from 46.05% (delta band) to 

35.03% (beta band). A summary of the performance over all the different 

between-tasks are included in the Table 2. 

Table 2 

Worst (left) and best (right) between-tasks performance for the 

different connectivity metrics expressed as EER for each frequency 

band. EER values lower than 10% were marked as bold. In brackets 

EER values when between-tasks comparison including eyes- closed 

resting-state conditions were excluded from the analysis. 

 

 

 

 

 

 

 AECc PLI CC AEC PLV 

Delta 49.92 (49.48)–46.05 49.88 (49.82)–47.90 32.90 (28.83)–19.74 39.82 (37.22)–29.51 29.12 (25.99)–15.00 

Theta 48.73–45.80 47.11 (46.63)–44.42 28.76 (26.98)–17.88 36.68–25.31 25.90 (24.19)–13.57 

Alpha 47.84 (45.77)–41.67 47.92 (42.86)–37.55 41.88 (26.49)–15.67 41.04 (33.63)–23.60 40.24 (27.58)–12.56 

Beta 43.59 (41.78)–35.03 34.01 (32.13)–21.89 29.96 (19.84)–8.14 30.46 (28.24)–14.23 29.09 (18.69)–7.38 

Gamma 44.40 (44.00)–37.86 37.81 (32.27)–22.53 29.47 (24.30)–12.40 34.93 (32.64)–18.09 27.78 (22.66)–10.29 
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Discussion 

 

The present paper aimed to investigate and compare the impact of common 

metrics used to estimate functional connectivity  on their capacity to detect 

personal distinctive fingerprints. In summary, the results of this study show 

that, as expected, different connectivity metrics, each characterized by 

different mechanisms of functional interaction, define a peculiar subjective 

profile of connectivity. In particular, PLV and CC show excellent 

performance for the within-task approach, PLI and AEC show slightly lower 

performance which is however dependent on the frequency content. AECc, 

which underwent to the orthogonalization procedure  to limit signal leakage, 

shows the worst overall performance even in the more favorable situation 

(single-run approach). Furthermore, despite the inherent complexity which 

characterize a multi-runs approach, where the performance are assessed 

between different tasks, PLV and CC still show interesting (although 

reduced) performance with peak accuracy of 7.38% and 8.14% respectively, 

for the beta band. This last result represents probably the more interesting 

finding of the present study, which shows the robustness of some 

connectivity metrics, namely PLV and CC, to detect individual fingerprints 

even in the more challenging experimental design. The absolute worst 

performance in the case of between-tasks approach, as can be visually seen 

from the Fig. 3 (second row/column) and  as reported in Table 2 in brackets, 

are particularly influenced by the eyes-closed resting-state task, which 

represents the only run where the subjects  were required to close their eyes 

during the  EEG recording. However, in our opinion, two relevant points 

deserve particular attention. The first important point is related to a marked 

association between the frequency content and the ability to discriminate 

among different subjects at least for the metrics which are more robust to 

volume conduction and signal leakage problems. Indeed, for both the 
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experimental designs (within and between-tasks approaches) the best 

performance (lower EER) were obtained for the higher frequency bands (beta 

and gamma). It is interesting to note that this finding represents a 

confirmation of previously reported results using different approaches [7,12]. 

In this context, it is not possible to rule out the hypothesis that muscle 

artifacts, particularly evident at high frequencies [26], may play a key role in 

the definition of distinctive characteristics. The second point is related to the 

different performance obtained using the different class of connectivity 

estimators. It is evident that some of connectivity metrics, namely AECc and 

PLI, give the lower performance even for the higher frequency bands 

(especially evident for the between-tasks approach). This event may be, at 

least in part, due  to the inherent common properties of these two approaches 

that try to limit the signal leakage problem, which probably go to the 

detriment of individual characteristics regressing out subject specific features. 

The other way around, it should be noted that PLV is a connectivity metric 

that is deeply influenced by mechanisms of volume conduction, signal spread 

and common sources. Therefore, caution should be used when interpreting 

the reported results. In particular, it is still possible that the distinctive 

patterns of connectivity, as highlighted by PLV (and CC), may be strongly 

influenced by spurious connectivity values generated by the previously cited 

sources of noise (i.e., volume conduction, signal spread and common 

sources). Despite these limitations, it is surprising that even  in the worst 

scenario, when the subjects are matched during different activities, for some 

connectivity metrics (i.e., CC and PLV) and specific tasks it is still possible to 

observe very interesting performance. Future works should investigate if the 

results reported so far at scalp level still hold when the EEG signals are 

reconstructed (by resolving the inverse problem) at source level where the 

effects due to spurious connections are, at least in part, attenuated [23]. 

Finally, it is important to highlight that, as recently reported [18], EEG based 

biometric systems should be designed also keeping into account their 
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dependence to multiple factors as age, sex, pathology and, more importantly, 

in a multi-sessions scenario, where the variability over-time may play a 

fundamental role. 

 

Conclusions 

 

To sum up, this work suggests that different functional connectivity metrics 

have different mechanism to detect subject specific patterns of inter-channel 

interactions, that it is important to consider the effect of the frequency content 

and that spurious connectivity values may play an important role in this 

context. 
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Abstract 

 

Power spectral density (PSD) and network analysis performed on functional 

correlation (FC) patterns represent two common approaches used to 

characterize Electroencephalographic (EEG) data. Despite the two 

approaches are widely used, their possible association may need more 

attention. To investigate this question, we performed a comparison between 

PSD and some widely used nodal network metrics (namely strength, 

clustering coefficient and betweenness centrality), using two different 

publicly available resting-state EEG datasets, both at scalp and source levels, 

employing four different FC methods (PLV, PLI, AEC and AECC). Here we 

show that the two approaches may provide similar information and that their 

correlation depends on the method used to estimate FC. In particular, our 

results show a strong correlation between PSD and nodal network metrics 

derived from FC methods (pick at 0.736 for PLV and 0.530 for AEC) that do 

not limit the effects of volume conduction/signal leakage. The correlations are 

less relevant for more conservative FC methods (pick at 0.224 for AECC). 

These findings suggest that the results derived from the two different 

approaches may be not independent and should not be treated as distinct 

analyses. We conclude that it may represent good practice to report the 

findings from the two approaches in conjunction to have a more 

comprehensive view of the results. 
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Introduction 

 

Power spectral density (PSD) and network analysis performed on functional 

correlation (FC) patterns represent two common approaches used to 

characterize Electroencephalographic (EEG) and Magnetoencephalographic 

(MEG) time-series data [1]. The importance of the two different approaches 

for the EEG characterization, in terms of novel insights into neuronal 

mechanisms underlying cognitive processes and potential clinical relevance, 

has been extensively discussed [1,2]. Interestingly, it has been also reported 

that higher brain functions depend upon a balance between local 

specialization and global integration of brain processes [3] and that this 

hypothesis can be investigated by evaluating the correlations between signals 

of brain activity recorded from different areas [4]. In particular, as for the 

relative power of alpha band, it has been shown a strong correlation of this 

feature also with impaired cognition [5]. Despite these two approaches are 

widely used, the possible association between the results derived from their 

application is probably overlooked and may deserve more attention. It is 

important to stress that measures of statistical interdependence between 

M/EEG time-series and the derived network parameters represent a higher 

order analysis compared to the power spectral density and may provide a 

less straightforward interpretation of the underlying brain mechanisms. 

Although few attempts to characterize their association have been performed, 

investigating, for instance, the dependency between patterns of global 

synchrony (phase) and local synchrony (amplitude) [6] on synthetic data, 

usually the two approaches are not analyzed in conjunction and their 

association is generally neglected. Interestingly, more recently [7] it has been 

suggested that time–frequency spectrograms do not merely represent a 

description of local synchrony but also reflect fluctuations in long-range 

connectivity. In this study we aimed to answer the following research 
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questions: (i) is there any association between the features extracted using the 

PSD analysis and those derived by using FC from resting-state time- series 

EEG? (ii) to what extent the two different approaches differ?(iii) is it possible 

to interpret the related findings as completely separated and independent? 

(iv) how the association between the two approaches may depend on the 

specific FC methods? In order to investigate in more details their possible 

relationship, we performed a comparison between PSD analysis and some 

widely used nodal network metrics (namely strength, clustering coefficient 

and betweenness centrality), using two different publicly available resting-

state EEG datasets. To assess potential limitations due to scalp-level analysis 

[8,9], the analysis was further replicated using a source level approach. In 

order to control the possible effects derived from the use of different FC 

methods, which may result from distinct neural mechanisms [10], we 

performed the analysis using four different techniques to estimate patterns of 

phase- and amplitude- based correlation: the Phase locking value (PLV) [11], 

the Phase lag index (PLI) [3], the Amplitude Envelope Correlation (AEC) [12] 

and a corrected version performing a time-domain orthogonalization 

procedure (AECC) [12]. Our analysis was focused on the alpha band since it 

has been previously shown to provide the largest signal to noise ratio and the 

more reliable estimate of FC networks [13]. 

The paper is organized as follows: (i) a Material and Methods section, where 

we have described both the EEG dataset and the techniques used to perform 

the analysis. Furthermore, this section also contains a description of the 

statistical analysis; (ii) a Discussion and results section, where we have 

highlighted the main findings and discussed the contribution of the study; 

(iii) a Conclusion section, where we have summarized the main message of 

the present work. 
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Material and methods 

 

EEG datasets 

Two different EEG datasets were used for  the  analysis.  The first dataset 

(EEG_DS1) is the EEG motor movement/imaginary dataset [14,15] 

(https://www.physionet.org/pn4/eegmmidb/), a freely available set of 64 

channels EEG recordings, consisting of several tasks including one-minute 

eyes-closed resting-state from 109 subjects acquired with a sample frequency 

equals to 160 Hz. The second dataset (EEG_DS2) is another freely available 

set of 64 channels EEG recordings [16,17], consisting of eyes-closed resting- 

state from 12 subjects acquired with an original sample frequency equals to 5 

KHz and successively resampled to 256 Hz. 

All the analysis was performed using five epochs of 12 s *18+ for each subject 

extracted from one-minute of eyes-closed resting state condition and 

successively, ADJUST (version 1.1.1) [19], a fully automatic algorithm based 

on Independent Component Analysis (ICA), was used to detect and remove 

artifacts from the filtered signals. For the first dataset (EEG_DS1) the epoch 

selection was performed considering the whole one-minute recording and 

splitting the signal into five non-overlapping chunks of equal length (12 s). 

We performed the same approach for the second dataset (EEG_DS2), 

repeating the procedure (i.e., splitting the signal into five non-overlapping 

chunks of equal length) using the first one-minute block of the EEG 

recording. All the reported results refer to the investigation of the alpha 

frequency band (8–13 Hz). The band-pass EEG filtering procedure was 

accomplished using the eeg-filt function provided by the EEGLAB toolbox 

(version 13) [20]. In order to evaluate the consistency of our results between 

scalp and source analysis [8], we replicated the analysis at source-level using 
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source-reconstructed time-series obtained by using Brainstorm software 

(version 3.4) [21], using the protocol described by Lai and colleagues [8]. 

Features extraction 

For each subject and each epoch, we have extracted a set of features from the 

EEG time-series. In particular, the relative alpha band power was computed 

for each channel (at scalp level) and for each ROI (at source level) as the ratio 

between the sum of the original PSD (computed using the Welch method in 

Matlab R2017b) over the frequency range in 8–13 Hz and the sum of the 

original PSD over the frequency range in 1–40 Hz (total power). Later, four 

different and common methods to estimate (alpha band) FC patterns were 

used: PLV [11], AEC [12], PLI [3] and AECC [12] (an orthogonalized version 

of AEC). Finally, using the BCT [22], a set nodal network metrics were 

computed from the FC patterns: strength (the sum of weights of links 

connected to the node), clustering coefficient (the fraction of triangles around 

a node) and betweenness centrality (the fraction of all shortest paths in the 

network that contain a given node). All the extracted nodal features were 

represented as feature vectors of 64 (at scalp level) or 68 (at source level) 

entries. For a comprehensive description of the investigated features refer to 

[23]. All the code used to perform the analysis is available at the following 

link: https://github.com/matteogithub/PSD_NET_comparison. 

 

Statistical analysis 

In order to estimate the relevance of the correlations between the extracted 

PSD-based and network-based features, the Spearman’s rank correlation 

coefficient (rho) was computed (using the corr function in Matlab R2017b 

with the Spearman type as parameter) for each comparison at channel level, 

without performing average across subjects, epochs or channels. The 
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Spearman’s rho is equivalent to Pearson’s Linear Correlation Coefficient 

applied to the rankings of the selected values. 

 

Results and discussion 

The results show a clear association between the power analysis, namely the 

alpha relative power content, and the network analysis performed using the 

four different FC methods and computing the three different nodal metrics. 

The level of association varies depending on the specific FC method and on 

the computed nodal metrics, but it is persistent over the three tested 

scenarios: EEG_DS1, EEG_DS2 at scalp level and EEG_DS1 at source level. In 

particular, the association is more evident for the strength and the clustering 

coefficient, whereas it results lower for the betweenness centrality. As shown 

in Fig. 1, for the EEG_DS1, the association results in the range 0.698 – 0.224 

for the strength, with a pick  rho value for the PLV (rho = 0.698). The PLV 

based network metrics confirm a higher association with alpha relative 

power also for the clustering coefficient (rho = 0.736) and for the betweenness 

centrality (rho = -0.344). 

Considering the relative high association between the two approaches, we 

have replicated the whole analysis using a different EEG dataset (EEG_DS2) 

comparable with the previous one (EEG_DS1) in terms of number of channels 

and experimental condition. Even the replication, although with different 

correlation values, show a clear association between the two approaches. As 

shown in Fig. 2, not only the results still show relative high correlation 

values, with highest magnitude of rho equals to 0.493 for the strength and 

0.572 for the clustering coefficient, but even more importantly, the reported 

findings are consistent with the previous analysis in term of the effects due to 

the different FC methods. The lowest level of association was obtained when 

using the AECC methods to extract the FC patterns. 
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Finally, considering the problems related with the not straight- forward 

interpretation of results derived from an EEG scalp level analysis, we have 

further replicated the analysis with source-reconstructed time-series (derived 

from EEG_DS1) using the procedure as described in [8]. Even in this case, as 

shown in Fig. 3, the results are still in line with the previous analysis 

performed at scalp level. In this latter case, where the source-based FC 

patterns should be clearly less affected by volume conduction and signal 

leakage, the differences among the FC methods are even less evident. For 

both the strength and the clustering coefficient, the associations remain 

moderately high, respectively in the range 0.618 – 0.328 and 0.601 – 0.316. 

Despite for PLV the correlation with PSD is not surprising, as already 

reported in previous studies [24,25], the correlation between the power and 

the other FC methods, as for PLI [26], is less straightforward. 

 

 

 

 

 

 

 

 

 

 

  

 

Fig. 1. Scatter plots and correlations between alpha relative power and nodal network 

metrics for all the FC methods using the EEG_DS1 at scalp level. The x axis represents 

the relative power in alpha band and the y axis represents the S, CC and BC respectively 

represent strength, clustering coefficient and betweenness centrality. 
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Fig. 2. Scatter plots and correlations between alpha relative power and nodal network metrics for 

all the FC methods using the EEG_DS2 at scalp level. The x axis represents the relative power in 

alpha band and the y axis represents the S, CC and BC respectively represent strength, clustering 

coefficient and betweenness centrality. 

 

 

 

 

 

 

 

 

Fig. 3. Scatter plots and correlations between alpha relative power and nodal network metrics for 

all the FC methods using the EEG_DS1 at source level. The x axis represents the relative power in 
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alpha band and the y axis represents the S, CC and BC respectively represent strength, clustering 

coefficient and betweenness centrality. 

In brief, the main findings of the present paper may be summarized as 

follows: (i) the results obtained using the two approaches, namely power 

spectral analysis and network analysis derived from the use of FC methods, 

show a clear and evident association between the approaches (ii) as 

highlighted by the statistical analysis this association is not to be negligible; 

(iii) as a consequence the two approaches should not be treated as completely 

independent; (iv) the strength of the association is not independent by the 

specific method used to evaluate the FC between EEG time-series. Although 

having found similar results on the two different datasets, despite the 

difference in the sampling frequency, represents a strength of the analysis, we 

also replicated part of the analysis (namely for the PLI metric) using a sample 

frequency of 160 Hz also for the EEG_DS02. As already reported in a 

previous work [18] the use of a different sample frequency has not shown an 

important impact on the reported findings. 

Finally, the main contribution of this paper can be summarized as a clear 

warning to always assess and report the relationship between the two 

analyses. We suggest that this practice may avoid overestimating and to 

overinterpret their results when treated as separated approaches. More in 

general, despite network tools are easily accessible, widely used and provide 

appealing interpretations, findings derived from their application should be 

interpreted with caution and not translated as a direct consequence of 

functional brain mechanisms and/or alterations, as shown with simple 

simulations [27]. 

Conclusions 

In conclusion, this study suggests that the results derived from the two 

different approaches, PSD and network analysis, may be strongly associated. 

The level of association may depend on the specific FC method used to 
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estimate the patterns of interactions and it is evident at both scalp and source 

level. As a consequence, we think that it would represent a good and 

necessary practice to report the results from the spectral analysis in 

conjunction with those obtained from network analysis. 
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Abstract 

 

Inter-subjects’ variability in functional brain networks has been extensively 

investigated in the last few years. In this context, unveiling subject-specific 

characteristics of EEG features may play an important role for both clinical 

(e.g., biomarkers) and bio-engineering purposes (e.g., biometric systems and 

brain computer interfaces). Nevertheless, the effects induced by multi-

sessions and task-switching are not completely understood and considered. 

In this work, we aimed to investigate how the variability due to subject, 

session and task affects EEG power, connectivity and network features 

estimated using source-reconstructed EEG time-series. Our results point out a 

remarkable ability to identify stable subject features within a given task 

together with striking independence from the session. The results also show a 

relevant effect of task-switching, which is comparable to individual 

variability. This study suggests that power and connectivity EEG features 

may be adequate to detect stable (over-time) individual properties within 

predefined and controlled tasks and that these findings are consistent over a 

range of connectivity metrics, different epoch lengths and parcellation 

schemes. 
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Introduction 

 

During the last few years it has been further recognized and stressed the 

importance to highlight that individual variability may play a relevant role in 

human neuroimaging studies [1,2]. The way in which each brain is unique 

and could be distinguished amidst a myriad of other brains is fascinating but 

unveiling the underlying subject-specific characteristics is crucial for both 

clinical (e.g., biomarkers) and bio-engineering purposes (e.g., biometric 

systems and brain computer interfaces). Recent studies have already high- 

lighted the implications of individual variation for personalized approaches 

to mental illness [3], ADHD [4] and in the developing brain [5]. It has been 

also reported that these functional traits are familial, heritable and stable over 

a long time interval [6,7]. Electroencephalographic (EEG) time-frequency [8] 

and connectivity-based [9–12] features have shown subject-specific 

characteristics comparable in terms of performance to other more common 

fingerprints. Nevertheless, it has been recently shown that the performance of 

the connectivity-based biometric systems varies with the connectivity metric 

and with the specific task and is not yet investigated in terms of permanence 

(i.e., stability over-time) [13]. From this new perspective, with the clear 

evidence that functional brain networks vary across individuals, few studies 

investigated to what extent these subject-specific features are stable over time 

and over different states. Using functional Magnetic Resonance Imaging 

(fMRI), Gratton et al. [14] reported that functional net- works are suited to 

detect stable individual characteristics with  a limited contribution from task-

state and day-to-day variability, thus suggesting their possible utility in the 

personalized medicine approach. Similarly, Cox et al. [15], using EEG scalp 

level analysis, have reported that, despite a shared structure is still 

discernible across individuals, well-defined subject-specific and stable over- 

time network profiles were clearly detectable. 
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In this study we aim to investigate if these subject-specific features are still 

detectable, stable over time and consistent among different tasks using an 

EEG source level approach. This approach should provide a more accurate 

description of the underlying net- work [16] since the connectivity estimates 

should be less prone to volume conduction and signal leakage problems. In 

order to investigate this question we analysed source-reconstructed EEG 

time-series using three different and widely used analyses: Power Spectral 

Density (PSD), Phase Locking Value (PLV) [17] and nodal centrality network 

approaches, namely Eigenvector Centrality (EC). PSD has been shown to 

capture relevant subject-specific information [8] and represents a simple and 

easily interpretable EEG feature. PLV, in combination with weighted 

Minimum Norm Estimator (wMNE) [18], provides a good estimate of the 

functional brain organization in EEG [19] and, despite the PLV is not com- 

pletely independent from the PSD [20], is known to be affected by volume 

conduction and signal leakage, it still performs better than other common 

connectivity metrics in terms of subject authentication [13]. Moreover, as 

previously stated, the PLV was recently used at scalp-level to investigate the 

variability and the stability of large- scale cortical oscillation patterns [15]. 

Finally, it was reported that the EC, which captures more information about 

the network topology then straightforward measure such as the degree, 

represents a promising measure to design of EEG-based biometric systems 

[9]. The analysis was performed on a novel EEG dataset consisting of eleven 

healthy subjects, recorded over two different sessions (after four weeks) and 

performing four different tasks. All the codes are freely available in a Github 

repository at the following link: 

https://github.com/matteogithub/individuality. 
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Material and methods 

 

Dataset 

Fifteen healthy volunteers (7 females, mean age 31.9  ± 3.1 years, range 28–38) 

were enrolled in the present study. Informed consent was obtained prior to 

the recordings and the study was approved by the local ethics committee. 

EEG signals were recorded using a  61 channels EEG system (Brain 

QuickSystem, Micromed, Italy) during four different tasks and repeated over 

two different sessions (the second acquired four weeks later from the first). 

Recordings were acquired in a sitting position in a normal daylight room; a 

dimly lit and sound attenuated room and supine position were avoided to 

prevent drowsiness. Signals were digitized with a sampling frequency of 

1024 Hz with the reference electrode placed in close approximation of the 

electrode POz. The four tasks consisted of: (T1) five minutes eyes-closed 

resting-state, (T2) five minutes eyes-open resting-state, (T3) two minutes 

eyes-closed simple mathematical task and (T4) two minutes eyes-closed 

complex mathematical task. During the simple mathematical task, the 

subjects were asked to perform multiple subtractions, while during the 

complex mathematical task, subjects were asked to perform a series two 

digits multiplications. Three subjects were excluded from the analysis due to 

low quality of the EEG recordings and another one missed the second 

session. 

 

EEG preprocessing 

All the preprocessing steps were performed using the freely available toolbox 

EEGLAB (version 13_6_5b) [21]. The raw EEG signals were re-reference to 

common average reference and band-pass filtered (with fir1 filter type) 
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between 1 and 70 Hz and a notch filter set to 50 Hz was also applied. All the 

recordings were visually inspected and segments with clear artifacts were 

rejected and not further analysed. 

 

Source reconstruction 

In order to obtain the source-reconstructed time-series, the Brainstorm 

software (version 3.4) [22] was used to compute the head model with a 

symmetric boundary element method in Open-MEEG [23] based on the 

anatomy derived from the ICBM152 brain (with 15,002 vertices) [24]. It has 

been recently shown that the co-registration performed with a template 

provided consistent relative power, connectivity, and network  estimates  

compared  to  the use of the native MRI [25]. EEG time-series at  source  level 

were reconstructed using whitened and depth-weighted linear L2 minimum 

norm estimate (wMNE) [18,26] and projected onto 68 regions of interest 

(ROIs) as defined by the Desikan-Killiany atlas [27]. For more details about  

the  atlas  visualization,  please  refer to the following link: 

https://surfer.nmr.mgh.harvard.edu/fswiki/ Cortical Parcellation.  

In order to investigate the possible effect of brain parcellation, the analysis 

was replicated using the Schaefer atlas with 17 networks as reported in [28]. 

All the steps were performed using the software Brainstorm [22]. 

 

Features extraction 

After the EEG time-series were reconstructed at source level, in order to 

increase the quality of the analysis, for each subject, each task and each 

session, we selected the best (less contaminated) 10 EEG epochs (segments of 

5 s) ordering all the available epochs on the basis of the three-sigma rule 

(consequently discarding segments presenting values over than 3 standard 
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deviations from the mean) [29]. The analysis was also replicated using three 

different epoch length, respectively 6 s, 2 s and 1 s. Successively, for each 

selected epoch we have extracted three different features vectors, respectively 

for PSD, PLV and EC, representing the individual profiles or subject 

fingerprints. For the PSD analysis, the features vector, for each single epoch, 

was composed of the 272 entries representing the relative power (extracted 

using the Welch method) of alpha (8–13 Hz) and beta (13–30 Hz) frequency 

bands, separately for each of the 68 regions of interest. For the PLV analysis, 

the features vector, for each single epoch and for each frequency band, was 

composed of 2278 entries representing the connectivity profile upper 

triangular of the connectivity matrix, where each entry was computed as: 

                               

PLV xy = 
 

 
   ∑   −i(φx(t)−φy(t))  

 

where T is the epoch length and φ is the instantaneous phase. Furthermore, 

we have replicated the analysis using two other connectivity metrics, the 

amplitude envelope correlation (AEC) approach [34] and the novel and 

revised version of PLV (icPLV) [35], which has been shown to be particularly 

valid to estimate synchronization in the presence of volume conduction or 

source leakage effects. For the network analysis, in order to keep a nodal 

resolution, we have computed the EC, a centrality measure based on the 

spectral decomposition of the weighted connectivity matrix [30]. The EC was 

computed using the Brain Connectivity Toolbox (brain-connectivity-

toolbox.net) [31]. In this latter case the features vector, for each single epoch 

and separately for each frequency band, was composed of 68 entries, each 

representing the centrality value of the corresponding ROI. As a final step,   

in order to estimate the similarity among each pairs of possible observations 

t = 1 

T   T   T   T   T   
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(between-epochs), we computed the Euclidian distance between features 

vectors (individual profiles) independently for PSD, PLV and EC analysis, 

thus obtaining, for each analysis, a square and symmetric matrix of distances, 

with the dimension equals to (number of subjects) * (number of sessions) * 

(number of tasks) * (number of epochs) as shown in Fig. 1. From this 

distances matrix, we have computed the average distances across epochs for 

each of the following six scenarios: (i) within-task, within-session and within-

subject; (ii) between-tasks, within- session and within-subject; (iii) between-

sessions, within-task and within-subject; (iv) between-sessions, between-tasks 

and within- subject; (v) within-task, within-session and between-subjects; (vi) 

all-between. All the code, developed in Matlab, reporting the extraction of the 

profiles and their comparison, is freely available  at the following link in 

Github: https://github.com/matteogithub/ individuality. 

 

 

 

 

 

 

 

 

 

 

Fig. 1. A schematic representation of the first block (one subject) of the matrix containing the 

distances for all the possible investigated scenarios. 
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Statistical analysis 

The statistical analysis was performed by using the non- parametric Kruskal-

Wallis test [32] followed by two-stage linear step-up procedure of Benjamini, 

Krieger and Yekutieli [33] to account for the multiple comparison problem. 

 

Results 

 

PSD 

Results derived from PSD analysis are  shown  in  Fig. 2  and the 

corresponding statistics are summarized in Table 1. The lower distances were 

observed for the within-task, within-session, within-subject scenario (0.95 ± 

0.34) and for the between-sessions, within-task, within-subject scenario (0.87 

± 0.30). The distances increased for the between-tasks scenarios, both for 

within-session (3.06 ± 1.20) and for between-sessions (3.09 ± 1.19).  The  

distances further increased for the between-subjects’ scenarios, both for 

within-session, within-task (3.23 ± 1.00) and for all between (3.59 ± 1.18). 

Values represent mean and standard deviation. 

 

 

 

 

 

 

 

 
 

Fig. 2. Scatterplot of distances obtained 

by using the PSD approach. Bars 

represent median and interquartile 

range. T is for task, Ss for session and Sb 

for subject. 
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Table 1 

Statistical results for PSD analysis 

  

 

. 

 

 

 

 

 

 

 

Statistics refer to non-parametric multiple comparison tests (on mean rank) using the FDR 

correction approach, where w- and b- refer to within and between scenarios respectively. T, Ss and 

Sb refer to task, session and subject. 

 

Connectivity 

Results derived from PLV based analysis in the beta band are consistent with 

those obtained by PSD as shown in Fig. 3 and  the corresponding statistics 

summarized in Table 2. Again, the lower distances were observed for the 

within-task, within-session, within-subject scenario (4.82 ± 0.33) and for the 

between-sessions, within-task, within-subject scenario (4.40 ± 0.34). The 

distances increased for the between-tasks scenarios, both for within-session 

(5.74 ± 0.85) and for between-sessions (5.85 ± 0.96). Finally, the distances 

further increased for the between-subjects’  scenarios, both for within-session, 

within-task (7.07 ± 0.76) and for all between (7.25 ± 0.87).  

 Mean 
rank diff. 

p-value 

w-T/Ss/Sb vs. b-T w-Ss/Sb −873.129 <0.0001 

w-T/Ss/Sb vs. b-Ss w-T/Sb 146.023 0.9056 

w-T/Ss/Sb vs. b-Ss/T w-Sb −907.163 <0.0001 

w-T/Ss/Sb vs. w-T/Ss b-Sb −1033.61 <0.0001 

w-T/Ss/Sb vs. all-b −1209.25 <0.0001 

b-T w-Ss/Sb vs. b-Ss w-T/Sb 887.731 <0.0001 

b-T w-Ss/Sb vs. b-Ss/T w-Sb −34.0341 0.7350 

b-T w-Ss/Sb vs. w-T/Ss b-Sb −160.484 0.0153 

b-T w-Ss/Sb vs. all-b −336.122 <0.0001 

b-Ss w-T/Sb vs. b-Ss/T w-Sb −921.765 <0.0001 

b-Ss w-T/Sb vs. w-T/Ss b-Sb −1048.21 <0.0001 

b-Ss w-T/Sb vs. all-b −1223.85 <0.0001 

b-Ss/T w-Sb vs. w-T/Ss b-Sb −126.450 0.1509 

b-Ss/T w-Sb vs. all-b −302.088 0.0003 

    w-T/Ss b-Sb vs. all-b −175.638 <0.0001  
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The results show a similar pattern, still slightly less marked, also for the alpha 

band as shown in Fig. 4 and the corresponding statistics summarized in Table 

3. In this case, again the  lower distances were observed for the within-task, 

within-session, within-subject scenario (8.25 ± 0.86) and for the between-

sessions, within-task, within-subject scenario (7.55 ± 0.83). The distances 

increased for between-tasks scenarios, both for within-session (9.21 ± 1.26) 

and for between-sessions (9.32 ± 1.27). Finally, the distances further increased 

for the between-subjects’ scenarios, both for within-session, within-task (10.86 

± 2.11) and for all between (11.01 ± 2.16). In order to give a more detailed 

description of the connectivity patterns obtained during the different tasks 

and the different sessions, we have represented the corresponding average 

(the average was computed over epochs and subjects) matrices in Fig. 5. 

 

 

 

  

 

 

 

 

Fig. 3. Scatterplot of beta band distances 

obtained by using the PLV connectivity approach. 

Bars represent median and interquartile range. T 

is for task, Ss for session and Sb for subject. 

Fig. 4. Scatterplot of alpha band distances 

obtained by using the PLV connectivity approach. 

Bars represent median and interquartile range. T 

is for task, Ss for session and Sb for subject. 
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Table 2 

Statistical results for PLV beta band. 

 Mean rank diff. p-value 
w-T/Ss/Sb vs. b-T w-Ss/Sb −317.8 0.0005 

w-T/Ss/Sb vs. b-Ss w-T/Sb 61.03 0.6202 

w-T/Ss/Sb vs. b-Ss/T w-Sb −382.5 0.0004 

w-T/Ss/Sb vs. w-T/Ss b-Sb −1104 <0.0001 

w-T/Ss/Sb vs. all-b −1217 <0.0001 

b-T w-Ss/Sb vs. b-Ss w-T/Sb 378.8 0.0011 

b-T w-Ss/Sb vs. b-Ss/T w-Sb −64.72 0.5198 

b-T w-Ss/Sb vs. w-T/Ss b-Sb −786.1 <0.0001 

b-T w-Ss/Sb vs. all-b −899.3 <0.0001 

b-Ss w-T/Sb vs. b-Ss/T w-Sb −443.6 0.0006 

b-Ss w-T/Sb vs. w-T/Ss b-Sb −1165 <0.0001 

b-Ss w-T/Sb vs. all-b −1278 <0.0001 

b-Ss/T w-Sb vs. w-T/Ss b-Sb −721.4 <0.0001 

b-Ss/T w-Sb vs. all-b −834.6 <0.0001 

    w-T/Ss b-Sb vs. all-b −113.1 0.0017  

 

Table 3 

Statistical results for PLV alpha band. 

 Mean rank diff. p-value 
w-T/Ss/Sb vs. b-T w-Ss/Sb −356.220 0.0001 

w-T/Ss/Sb vs. b-Ss w-T/Sb 165.750 0.1783 

w-T/Ss/Sb vs. b-Ss/T w-Sb −402.515 0.0002 

w-T/Ss/Sb vs. w-T/Ss b-Sb −933.130 <0.0001 

w-T/Ss/Sb vs. all-b −974.344 <0.0001 

b-T w-Ss/Sb vs. b-Ss w-T/Sb 521.970 <0.0001 

b-T w-Ss/Sb vs. b-Ss/T w-Sb −46.2955 0.6452 

b-T w-Ss/Sb vs. w-T/Ss b-Sb −576.910 <0.0001 

b-T w-Ss/Sb vs. all-b −618.124 <0.0001 

b-Ss w-T/Sb vs. b-Ss/T w-Sb −568.265 <0.0001 

b-Ss w-T/Sb vs. w-T/Ss b-Sb −1098.88 <0.0001 

b-Ss w-T/Sb vs. all-b −1140.09 <0.0001 

b-Ss/T w-Sb vs. w-T/Ss b-Sb −530.614 <0.0001 

b-Ss/T w-Sb vs. all-b −571.828 <0.0001 

    w-T/Ss b-Sb vs. all-b −41.2140 0.2530  

 

 

Statistics refer to non-parametric multiple 

comparison tests (on mean rank) using the FDR 

correction approach, where w- and b- refers to 

within and between scenar- ios respectively. T, 

Ss and Sb refer to task, session and subject. 

Statistics refer to non-parametric multiple 

comparison tests (on mean rank) using the FDR 

correction approach, where w- and b- refers to 

within and between scenar- ios respectively. T, 

Ss and Sb refer to task, session and subject. 
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Fig. 5. Average connectivity matrices and glass brains visualization computed using PLV methods 

in alpha band for each task and for both sessions. 

 

Network centrality 

Results derived from the application of EC on PLV based analysis (in the beta 

band) are still consistent with the previous reports, as shown in Fig. 6 and the 

corresponding statistics summarized in Table 4. Again, the lower distances 

were observed for the  within-task, within-session, within-subject scenario 

(0.12 ± 0.01) and for the between-sessions, within-task, within-subject 

scenario (0.11 ± 0.01). The distances increased for the between-tasks scenarios, 

both for within-session (0.14  ±  0.02) and for between-sessions (0.14 ± 0.02). 

Finally, the distances further increased for the between-subjects’ scenarios, 

both for within-session, within-task (0.17 ± 0.03) and for all between (0.17 ± 
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0.03). In the Supplementary material we have also reported the results 

derived from the application of a very common technique used to threshold 

the connectivity matrix, namely the MST, on the EC based on PLV. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Statistical results for Eigenvector Centrality. 

 Mean diff. 
Rank 

p-value 

w-T/Ss/Sb vs. b-T w-Ss/Sb −309.489 0.0007 

w-T/Ss/Sb vs. b-Ss w-T/Sb 935.795 0.4473 

w-T/Ss/Sb vs. b-Ss/T w-Sb −307.186 0.0047 

w-T/Ss/Sb vs. w-T/Ss b-Sb −1084.05 <0.0001 

w-T/Ss/Sb vs. all-b −1134.76 <0.0001 

b-T w-Ss/Sb vs. b-Ss w-T/Sb 403.068 0.0005 

b-T w-Ss/Sb vs. b-Ss/T w-Sb 230.303 0.9817 

b-T w-Ss/Sb vs. w-T/Ss b-Sb −774.561 <0.0001 

b-T w-Ss/Sb vs. all-b −825.269 <0.0001 

b-Ss w-T/Sb vs. b-Ss/T w-Sb −400.765 0.0020 

b-Ss w-T/Sb vs. w-T/Ss b-Sb −1177.63 <0.0001 

b-Ss w-T/Sb vs. all-b −1228.34 <0.0001 

b-Ss/T w-Sb vs. w-T/Ss b-Sb −776.864 <0.0001 

b-Ss/T w-Sb vs. all-b −827.573 <0.0001 

    w-T/Ss b-Sb vs. all-b −50.7081 0.1596  

 

Fig. 6. Scatterplot of alpha band distances 

obtained by using the PLV connectivity 

approach and eigenvector centrality. Bars 

represent median and interquartile range. T 

is for task, Ss for session and Sb for subject. 

Statistics refer to non-parametric multiple 

comparison tests (on mean rank) using the FDR 

correction approach, where w- and b- refers to 

within and between scenarios respectively. T, 

Ss and Sb refer to task, session and subject. 
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Between-tasks comparison 

In order to understand if the reported between-tasks increase of distances 

comes from some specific task-switching (i.e., cognitive effort or eyes-

closed/eyes-open) we further investigate this issue for both PSD and PLV 

beta band. For the PSD analysis, as shown in Fig. 7 the increase of distance in 

the between-tasks scenario mainly comes from the comparison of eyes-closed 

resting-state (T1) with the eyes-closed complex mathematical task (T4) and 

from the comparison of simple mathematical task (T3) with the eyes-closed 

complex mathematical task (T4). The main effect was tested using the 

Kruskall-Wallis approach obtaining a x2 equals 27.2 to and p-value < .0001. 

For the PLV beta band analysis, as shown in Fig. 8 the increase of distance in 

the between-tasks scenario mainly comes from the comparison of eyes-open 

resting-state (T2) with the eyes- closed complex mathematical task (T4). The 

main effect was tested using the Kruskall-Wallis approach obtaining a x2 

equals 17.6 to and p-value equals to 0.004. All these analyses were performed 

in the within-session and within-subject scenario. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Between task comparisons for PSD analysis. T1 refers to eyes-closed resting-state, T2 to 

eyes-open resting-state, T3 to eyes-closed simple mathematical task and T4 to eyes-closed 

complex mathematical task. Bars represent media and interquartile range. 
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Fig. 8. Between task comparisons for PLV beta band analysis. T1 refers to eyes-closed resting-state, 

T2 to eyes-open resting-state, T3 to eyes-closed simple mathematical task and T4 to eyes-closed 

complex mathematical task. Bars represent media and interquartile range. 

 

The effect of the connectivity metric 

Although a comprehensive and detailed comparison among different 

connectivity metrics is out of the scope of the present study, in order to 

investigate the effect of the arbitrary choice of connectivity metric we have 

replicated part of the analysis to understand if the reported results still hold 

when a different method to estimate the connectivity is applied. In this 

context, here we report the results obtained using the amplitude envelope 

correlation (AEC) approach [34] and the novel and revised version of PLV 

(icPLV) [35], which has been shown to be particularly valid to estimate 

synchronization in the presence of volume conduction or source leakage 

effects. The results obtained by using these two different approaches are 

reported in Figs. 9 and 10 respectively for the AEC and icPLV approaches. 
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Fig. 9. Scatterplot of beta band distances obtained by using the AEC connectivity approach. Bars 

represent median and interquartile range. 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Scatterplot of beta band distances obtained by using the icPLV connectivity approach. Bars 

represent median and interquartile range. 
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The effect of different atlas 

In this section we report the results obtained using a different atlas, namely 

Schaefer atlas with 17 networks as described in [28], for the PSD (see Fig. 11), 

PLV (see Fig. 12) and EC PLV-based metrics (see Fig. 13). For all the three 

different analyses, the corresponding findings are in line with those obtained 

using the Desikan-Killiany atlas. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Scatterplot of distances obtained by using the PSD approach with the Schaefer atlas. Bars 

represent median and interquartile range. T is for task, Ss for session and Sb for subject. 

 

 

 

 

 



70 
 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Scatterplot of distances obtained by using the PLV approach with the Schaefer atlas in beta 

band. Bars represent median and interquartile range. T is for task, Ss for session and Sb for subject. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Scatterplot of distances obtained by using the EC PLV-based approach with the Schaefer atlas in 

beta band. Bars represent median and interquartile range. T is for task, Ss for session and Sb for subject. 
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The effect of time window 

Although the original epoch length was defined accordingly to a previous 

work which evaluated the effect of epoch length on connectivity and network 

metrics, in this section we report the results obtained using different time 

windows on beta band PLV connectivity profiles. In particular, in Fig. 14 it is 

represented the variability of the reported effects on three different epoch 

length, respectively 6 s (as the main finding), 2 s and 1 s. Although the main 

effects are still visible the intra task condition variability (see interquartile 

ranges) looks to increase as the epoch length decrease. 

 

 

 

 

 

Fig. 14. Scatterplot of distances obtained by using the PLV approach with three different epoch 

lengths: 1 s (left panel), 2 s (middle panel) and 6 s (right panel). Bars represent median and 

interquartile range. T is for task, Ss for session and Sb for subject. 

 

Discussion and conclusions 

In summary, in this  work  we  aimed  to  investigate  how the variability due 

to subject, session and task affects EEG power, connectivity and network 

features estimated using source- reconstructed EEG time-series. Although 

this question was extensively investigated using fMRI [2,6,14], high density 

EEG, which still represents a very important and useful clinical tool, has 

received less attention in this context. Although, numerous studies have 

investigated the possibility to use EEG signals to develop biometric systems, 
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only recently more attention was devoted to the study of subject variability 

and stability over-time and states [15]. 

The results of this study show three  main  relevant  points.  First, as 

expected, for all the different analyses, PSD, PLV and EC based approaches, 

the lower distances were observed in the scenario corresponding to a simple 

between epochs scheme, within the same subject, the same session and the 

same task. It should be highlighted that this also represents the more 

common scenario  in  which  studies  do  not  consider  the  variance  induced 

by subject-specific features, multi-sessions and/or by multi-tasks setup. 

Second, probably the more interesting finding, the distances obtained using 

the between-sessions, within-task, within-subject scenario are comparable 

with the previous one (namely, within-session scenario) for all the performed 

analyses. This finding suggests that the variance due to the session may be 

considered negligible, but we need to highlight that the task design is not 

considering the possible effects due to learning process or memory 

recall/consolidation processes. Third, conversely, the effect due to the task 

(task-switching) is substantial, as also highlighted by  the statistics and 

consistent for all the different analyses (i.e., PSD, PLV in beta and alpha 

bands and EC analysis). Finally, as expected, the distances strongly increase 

in the between-subjects scenario, showing a clear effect due to specific 

subject, thus confirming the importance to address the issue related with the 

variance within a group. 

The reported results support, as recently reported using a scalp-level EEG 

analysis [15], the existence of well-defined subject- specific profiles and that 

these features may be considered stable over a defined and limited time 

range. These results are also in line with the fact that task-invariant subject-

specific features are stronger than task-dependent group profiles. Moreover, 

as reported in the between-tasks effect, it seems that the reported increase of 

distance in this scenario is not merely due to eyes-closed and eyes-open 
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switching. It is interesting to highlight, that the present findings, derived 

from source-reconstructed EEG time-series, are also in line with previous 

outcomes derived from fMRI network analysis. In particular, recently Finn et 

al. [3] have reported that brain functional organization varies between 

individuals, that this variability is robust and reliable and that can be used to 

identify subjects from a large group. Moreover, the authors also report that 

identification is successful across scan sessions and even between task and 

rest conditions. Later, Gratton et al. [14] have reported that functional 

networks, as measured by fMRI, are dominated by common organizational 

principles and stable individual features, with more modest contributions 

from task-state and day-to-day variability. We also would like to highlight 

that our results are based on a very limited set of tasks and therefore are not 

easily generalizable. We are aware that the reported findings would need to 

be replicated in set of EEG recordings that include a large number of subjects 

and tasks. 

Although it is not possible to directly compare the absolute distances derived 

from the different features to understand if any approach outperforms the 

others, it is worth to highlight that the PSD analysis seems to be the most 

sensitive approach  to inter-condition variability as marked by the larger 

mean rank differences for all the different scenarios investigated. This latest 

finding may suggest using this very simple and easily interpretable approach 

to check for the stability over session and task of the EEG signals. 

Finally, the reported findings (derived from source level analysis) are in line 

with the results previously reported at scalp level [10,13]. On the other hand, 

these results also confirm what is generally observable by designing a brain 

computer interface system. In fact, even though it is still remarkable a strong 

effect of task-switching, it is still evident that the individual properties may 

strongly hinder the generalization of the approach (failing to keep a good 

performance across different subjects). It is also of relevance to notice that the 
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results reported using the PLV approach have been confirmed when the 

analysis was replicated using two other connectivity metrics, namely AEC 

and icPLV. In particular, the findings related to this last metric (icPLV), 

which has been shown to be particularly valid to estimate synchronization in 

the presence of volume conduction or source leakage effects [35], suggest that 

the reported effects are not a consequence of possible bias in estimating EEG 

connectivity. As reported, the results obtained on PSD, PLV and EC still hold 

when a different parcellation scheme [28] was used for the analysis. 

In light of what we have shown up to this point, in our opinion, future 

studies should investigate how connectivity and network similarity across 

multiple tasks and sessions varies between different clinical conditions and, 

in particular it would be of relevance to evaluate its association with 

behavior. 

In conclusion, we have shown that source-level EEG analysis confirms that 

PSD, PLV and PLV derived functional brain network, as measured by nodal 

centrality (namely, eigenvector centrality), are stable over-time, dominated by 

individual properties but largely dependent from the specific task. These 

findings may have important implications for both clinical (e.g., biomarkers) 

and bio-engineering applications (e.g., biometric systems and brain computer 

interfaces). 

 

Appendix A. Supplementary data 

Supplementary material related to this article can be found, in the online 

version, at https://doi.org/10.1016/j.bspc.2020.101891. 
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Abstract 

 

Dysfunction of dorsal corticostriatal (CST) circuitry is thought to play an 

important role in psychosis. Here, we use multivariate analysis to 

characterize covariance between CST functional connectivity and psychosis-

like experiences (PLEs) in non-clinical individuals. In 353 healthy adults (155 

males), we use partial least squares (PLS) to identify latent variables (LV) 

describing covariance between seven PLE questionnaire measures and 

functional connectivity estimated between each of six striatal seed regions 

and the rest of the brain using  multiband resting-state fMRI. Hypothesis-

driven PLS of the dorsal caudate (DC) seed identified one significant LV, 

accounting for 23.88% of covariance, with loadings from nearly all PLE 

subscales. Cortical regions implicated in this LV comprise anterior cingulate 

and left dorsolateral prefrontal cortex. Lower connectivity between these 

cortical areas and the DC seed was associated with more severe PLEs. Using 

multivariate modeling, we identified an association between dorsal CST 

connectivity and PLEs in the general community that implicates similar brain 

regions to those identified in patient groups. Our results highlight that the 

severity of both positive/negative symptom-like PLEs is related with 

functional coupling between the DC and dorsolateral PFC (prefrontal cortex), 

suggesting this neural circuit may play a role in mediating risk for general 

psychosis-related psychopathology. 
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Introduction 

 

Psychotic symptoms can vary in severity along a continuum that extends 

from isolated unusual experiences to clinical disorders such as schizophrenia 

(Grant et al., 2018; Kelleher and Cannon, 2011; Poulton et al., 2000; Van Os et 

al., 1999). In the subclinical range, psychosis-like experiences (PLEs) 

(Unterrassner et al., 2017) are thought to represent attenuated forms of typical 

positive symptoms, such as hallucinations and delusions, but they can also 

include negative-like symptoms (Stefanis et al., 2002; Verdoux and van Os, 

2002). PLEs are quite common in the general population, with a prevalence of 

up to 8% (Van Os et al., 2009). People reporting higher levels of PLEs are at 

increased risk of schizophrenia-spectrum  disorders,  suggesting that PLE 

severity   may relate to one’s vulnerability to clinical disorder (Kelleher and 

Cannon,2011). The potential for PLEs to index liability for psychosis has 

driven a growing interest in understanding subclinical symptoms in the 

general community (Ettinger et al., 2014; Grant et al., 2018; Tandon et al., 

2012). Indeed,  the  continuum  model   is  supported  by   behavioral, genetic, 

cognitive, and neuroimaging evidence of continuities between clinical and 

subclinical phenomena (Cannon et al., 2002; Ettinger et al., 2012; Lee et al., 

2012; Poulton et al., 2000; Sabaroedin et al., 2019; Van Os et al., 2009). PLE 

severity in non-clinical samples correlates with variations in the structure and 

function of brain systems implicated in psychotic disorders (e.g., 

frontotemporal, default mode, cingulo-opercular systems)(Ettinger et al., 

2012; Garrity et al., 2007; Satterthwaite et al., 2015; Sheffield et al., 2016), and 

with measures of the integrity of their interconnecting white matter pathways 

(Jacobson et al., 2010; Skudlarski et al., 2013). 

Corticostriatal (CST) circuits have been identified as playing an important 

role in the emergence of psychotic symptoms. These circuits comprise 

topographic connections from prefrontal cortex to striatum, with feedback 
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loops passing through the pallidum and thalamus (Haber, 2016; Simpson et 

al., 2010). Two circuits implicated in psychosis include a ventral limbic 

system, which connects orbitofrontal cortex, medial prefrontal cortex, and 

limbic structures with the ventral striatum, and a dorsal associative system, 

which connects the dorsolateral prefrontal cortex with the dorsal striatum 

(Dandash et al., 2017; Draganski et al., 2008; Grace, 2016; Haber, 2016). The 

function of the striatum is heavily modulated by dopamine, and a series of 

reports indicate that this neurotransmitter is most strongly elevated in the 

dorsal striatum of patients with schizophrenia, their unaffected relatives, and 

individuals with an at-risk mental state (ARMS) for psychosis (Howes et al., 

2009; Huttunen et al., 2008; Fusar-Poli, 2010). Studies of striatal functional 

connectivity have also found decreased functional coupling between the 

dorsolateral prefrontal cortex (PFC) and dorsal striatum in first-episode 

psychosis-patients, their unaffected first-degree relatives, and individuals 

with ARMS (Dandash et al., 2014; Fornito  et al., 2013), as well as in first-

episode mania patients with psychotic symptoms (Dandash et al., 2018). 

These lines of evidence suggest that dorsal CST connectivity may play a 

critical role in the emergence of psychotic symptoms across traditional 

diagnostic categories. Additionally, reduced dorsal CST coupling is 

correlated with the severity of positive and negative symptoms in ARMS 

individuals when the thalamus, rather than striatum, is used as a seed for 

connectivity analysis (Anticevic et al., 2015; Dandash et al., 2014; Fornito et 

al., 2013). 

Complimenting findings in clinical samples, we recently reported evidence 

that functional connectivity of dorsal CST circuits correlated with the severity 

of PLEs in a non-clinical sample of healthy individuals living in the general 

community (Sabaroedin et al., 2019). PLEs were quantified using 12 subscales 

taken from 7 different questionnaires, and principal component analysis 

(PCA) was used to summarize the data, wherein two components described 
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shared variance between measures of (1) PLEs related to positive symptoms; 

and (2) PLEs related to negative symptoms. The analysis revealed that higher 

levels of positive PLEs were associated with lower functional connectivity 

between dorsal caudate and anterior cingulate cortex, and between 

dorsorostral putamen and dorsolateral prefrontal cortex. Although our 

findings in the non-clinical sample support a general involvement of dorsal 

CST circuitry across the psychosis spectrum, the spatial topography of the 

circuits correlating with PLEs diverged from the areas implicated in studies 

of clinical and high-risk groups (Dandash et al., 2017; Fornito et al., 2013; see 

also Figure 3 in Sabaroedin et al., 2019). More specifically, where 

dysconnectivity between the dorsal caudate and dorsolateral PFC has been 

consistently implicated in clinical samples (Dandash et al., 2017, 2014; Fornito 

et al., 2013), positive PLEs in the non-clinical sample were associated with 

functional connectivity between the dorsal caudate and anterior cingulate 

cortex. One potential reason for this discrepancy is that the dimension 

reduction of PLE subscales via PCA in the non-clinical group emphasized 

only common modes of shared variance across measures and may have 

masked correlations between functional connectivity and specific aspects of 

PLEs. 

Here, we apply partial least squares (PLS) analysis to the same cohortstudied 

in Sabaroedin et al. (2019) to uncover latent dimensions describing covariance 

between corticostriatal functional connectivity and the 12 subscales used to 

measure PLEs. This analysis allows a fine-grained examination of the 

covariation between functional connectivity and PLE scores, thus providing a 

more complete picture of the relation between the two. We hypothesized that 

this approach would reveal an association between positive PLE severity and 

functional connectivity between the dorsal caudate and dorsolateral 

prefrontal cortex, thus mapping an association between brain and behavior 

that more closely aligns with the circuit implicated in clinical samples. 
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Materials and methods 

 

Participants 

Data were collected as a part of a larger genetics study that required 

participants to have all four grandparents of European descent. The 672 

participants recruited (274 males;  age range = 18–50 years old, mean [SD] age 

= 23.2 [4.89]) from the general community completed an online battery of 

PLEs measures. All participants had no personal history of psychiatric or 

neurological illness, no significant drug use and were right-handed. Each 

participant voluntarily confirmed his/her willingness to participate, 

providing written informed consent after having been informed of all aspects 

of the study. The study was conducted in accordance with the Monash 

University Human Research Ethics Committee (reference number 

2,012,001,562). A total of 379 participants with complete PLEs measures 

underwent our resting-state fMRI protocol, with data for 353 participants 

(155 males; mean [SD] = 23.4 [5.16]) being retained for final analysis following 

exclusions for imaging artifacts, poor scan quality, and excessive head motion  

(see Sabaroedin  et al., 2019 for details). Here, we present analyses of this final 

sample. 
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Measures of psychosis-like experiences 

Seven psychometrically validated self-report measures of sub- threshold 

psychotic symptoms were used, allowing us to sample a wide range of 

variation in PLEs. The scales included the Community Assessment of 

Psychotic Experience (CAPE)(Mossaheb et al., 2012), four Chapman Scales 

(Chapman and Chapman, 1980) measuring magical ideation (Eckblad and 

Chapman, 1983), perceptual aberration (Chapman et al., 1978), and social and 

physical anhedonia (Chapman et al., 1976), the short-form Oxford Liverpool 

Inventory of Feelings and Experiences (sO-LIFE) (Fonseca-Pedrero et al., 

2015) and the Peters Delusion Inventory (PDI-21)(Peters et al., 2004) (a 

complete description of the above measures can be found in the 

Supplemental Information). The battery produced a total of 272 items 

spanning 12 subscales. These subscales, the questionnaires from which they 

were derived, and descriptive statistics (n = 353) are listed in Table 1. 

 

Neuroimaging data acquisition and pre-processing 

For each participant we acquired multiband resting-state echo-planar images 

(EPI; 620 vol, 754 milliseconds repetition time, 3 mm isotropic voxels) and 

anatomical T1-weighted scans (1 mm isotropic voxels) using 3T Siemens 

Skyra MRI scanner equipped with a 32-channel head coil, located at the 

Monash Biomedical Imaging Facility, Melbourne, Australia. 

A total of 620 functional volumes, each with 42 slices, were acquired per 

subject using an interleaved acquisition with the following parameters: 

repetition time (TR) of 754 milliseconds, echo time (TE) of 21 milliseconds, 

flip angle of 50°, multiband acceleration factor of 3, field of view (FOV) of 190 

mm, slice thickness of 3 mm, and 3 mm isotropic voxels. For each subject 

were also acquired anatomical T1-weighted images using a 3-dimensional 

magnetic-prepared rapid gradient echo sequence. For each subject’s T1-
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weighted images, we acquired a total of 192 slices using an ascending 

acquisition with the following parameters: TR of 2300 milliseconds, TE of 2.07 

milliseconds, flip angle of 9°, FOV of 256 mm, and voxel size of 1mm3. 

Table 1.   

PLE subscales and descriptive statistics (n = 353). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PLEs Subscales          Mean                 SD 

CAPE  

     Positive 25.72              4.72 

     Negative 23.99              5.84 

     Depressive 13.84              2.97 

Chapman  

      Magical Ideation 6.11                 4.61 

      Physical Anhedonia 11.81                7.19 

      Perceptual Aberration 5.12                 5.17 

      Revised Social Anhedonia 9.64                 6.78 

sO-LIFE  

      Unusual Experiences 2.89                 2.65 

      Cognitive Disorganization 4.67                 2.92 

       Introvertive Anhedonia 1.69                  1.8 

       Impulsive Non-conformity 3.18                  2.1 

  PDI Total Score             5.32                 3.44 

  
AGE             

 23.4                5.16 

SEX F                      M 

 198                  155 

CAPE: Community assessment of psychotic experiences; Chapman Scales; sO- LIFE: Oxford-

Liverpool inventory of feelings and experiences short form; PDI: Peters delusion inventory. 
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The EPI images were processed using the following steps. First, we 

performed basic pre-processing in FSL FEAT (Woolrich et al., 2001), which 

includes removal of the first four volumes, rigid-body head motion 

correction, 3 mm spatial smoothing, and a highpass temporal filter (75 s cut-

off). Second, artefactual and other noise components were removed from the 

data using FSL-FIX (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014), which 

was trained using an independent dataset of 25 individuals scanned with 

identical imaging parameters. This independent component analysis-based 

denoising approach uses the training data to automatically classify noise 

components (signal contributions from head motion, sources of scanner and 

physiological noise, white matter, cerebrospinal fluid signals) for removal 

from the data. As nuisance regressors, we used i) the time courses of the 

components labelled as noise, ii) 6 standard head motion parameters (3 

rotation, 3 translation) in addition to their squares and derivatives, iii) the 

averaged signal taken from a mask of the entire brain (i.e., a ‚global‛ signal) 

along with the first derivatives and squares of each. The denoised data were 

then spatially normalized to the MNI152 template via ANTs (version 

2.2.0)(Avants et al., 2011) following a three-step method that comprised the 

registration of the mean realigned functional scan to the skull-stripped high 

resolution anatomical scan via rigid-body registration; spatial normalization 

of the anatomical scan to the MNI template via a nonlinear registration; and 

normalization of the functional scan to the MNI template using a single 

transformation matrix that concatenates the transforms generated from the 

precedent steps. The spatially normalized functional images were 

subsequently spatially smoothed with a 6 mm full-width half maximum 

Gaussian kernel using AFNI (version 16). In line with past work (Parkes et 

al., 2018), the data were subjected to rigorous quality control for motion 

artefacts after pre-processing, and residual motion contamination was 

minimal. Full details can be found in Sabaroedin et al. (2019). 
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Definition of seed regions of interest 

As per past work (Dandash et al., 2014; Fornito et al., 2013; Sabar- oedin et al., 

2019) we seeded six striatal regions-of-interest (ROI)(figure SF8) in each 

hemisphere using a 3.5 mm radius spheres, following the method proposed 

by Di Martino et al. (2008). Three ROIs were seeded along a dorsoventral axis 

for the caudate, comprising the dorsal caudate (DC; x = ±  13, y = 15, z = 9), the 

superior ventral  caudate (x = ± 10, y = 15, z = 0), and the inferior ventral 

caudate/nucleus accumbens (x = ± 9,  y  = 9, z = - 8). For the putamen, we 

seeded three ROIs along a similar axis, incorporating the dorso-caudal 

putamen (DCP; x = ± 28, y= 1, z = 3), the dorso-rostral putamen  (DRP; x = ± 

25, y = 8, z = 6), and the ventro-rostral putamen (VRP; x = ± 20, y = 12, z = - 3). 

The dorsal CST seeds incorporate DC, DRP, and DCP. The ventral CST seeds 

encompass the inferior ventral caudate/nucleus accumbens, superior ventral 

caudate, and VRP. We used the mean time series of each region to generate 

seed-related functional connectivity maps. 

 

Functional connectivity analysis 

As described in past work (Dandash et al., 2014; Sabaroedin et al., 2019), 

subject specific first-level analysis was performed using SPM8. For each 

subject, whole-brain functional connectivity maps of each striatal ROI were 

estimated by entering the time series from the six striatal ROIs into a general 

linear model. Left and right hemispheres were modelled separately, yielding 

a pair of functional connectivity maps for each striatal ROI. The 

unthresholded contrast images for both hemispheres were then entered into a 

PLS analysis.  
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PLS analysis 

 

PLS is a multivariate statistical technique that combines PCA-style 

dimensionality reduction with linear regression. First introduced to 

functional neuroimaging by McIntosh et al. (1996), it is well-suited to 

uncovering multivariate associations between brain imaging and behavioral 

measures (Krishnan et al., 2011). The analysis examines the covariation 

among two or more ‚blocks‛  of variables (McIntosh et al.,1996). In our case, 

the blocks represent seed-related functional connectivity and PLEs scores, 

and the final aim is to obtain a new set of variates that represent linear 

combinations of each block’s variables that maximally covary with each 

other. 

In this study we used the Regular Behavior PLS analysis implemented in PLS 

toolbox (McIntosh et al., 1996) written in Matlab (The Math- Works, Inc., 

Natick, Massachusetts, US), to analyze the relationship between the 12 PLEs 

subscales, age and sex, and striatal functional connectivity. We ran a separate 

PLS analysis for each seed region, including the maps for left and right seed-

related FC (functional connectivity) as different conditions (left: condition 1, 

right: condition 2). The PLS approach we used here is outlined in detail in 

(Krishnan et al., 2011; McIntosh et al., 1996). We started with two sets of 

variables, represented respectively by: (i) seed-to-brain functional 

connectivity maps; and (ii) PLE subscale scores, with the nuisance covariates 

age and sex. The sets of variables were organized in two different matrices: X 

for the brain activity and Y for behavioral and demographic data (age and 

sex). The matrix X consists of i observations and j voxels, where each voxel 

encodes functional connectivity with a given seed region. Voxels are ordered 

such that all left hemisphere voxels are listed first, followed by all right 

hemisphere voxels, representing two conditions in the PLS. The matrix Y 

consists of i observations and k behavioural measures and (optionally) 
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nuisance covariates. The two matrices were centered and normalized within 

each condition, and a matrix of correlations was computed separately for 

each condition. The two condition matrices of correlations were combined 

into a single matrix referred as the cross-block correlation matrix R, which 

contains the correlation of each of the j voxels in X with each of the k 

behavioural/demographic measures in Y, within each of the conditions.  

The cross-block correlation matrix R was subjected to a singular value 

decomposition (SVD), which produced a set of independent (orthogonal) 

latent variables (LV) / singular vector pairs. Each pair is associated with a 

singular value that reflects the covariance between the paired LVs (i.e., the 

functional connectivity LV, comprising brain scores, and the PLE, or 

behavioral LV), ranked by the proportion of squared cross-block covariance 

explained. Each LV constitutes a distinct weighted pattern of functional 

connections and PLE subscale scores that covary, in an ideal manner, with 

each other. One member of an LV pair is composed of saliences/weights 

corresponding to each measure in the functional connectivity block, and the 

other member is composed of saliences for each measure in the behavioral 

measures block. Thus, saliences quantify how specific voxels/variables load 

on a given LV. The statistical significance of each LV is determined using 

permutation tests (Krishnan et al., 2011). The resulting p-values quantify the 

fraction of times the permuted singular values exceeded the observed 

singular values. In our study, we used 5000 permutations, performed by 

randomly reordering the rows of the original data matrix X. As our primary 

hypothesis concerned the dorsal caudate, LVs in this analysis were declared 

statistically significant at p < 0.05. All other results were declared significant if 

they survived Bonferroni-correction over the six seeds (p < 0.008).  

We also assessed the reliability of brain saliences (voxel weights on the brain 

LV) via bootstrapping (Krishnan et al., 2011). A total of 1000 bootstrap 

samples were obtained by randomly resampling with replacement the X 
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matrix within each condition. The SVD was then performed on the resampled 

data matrices to generate new saliences (weights) which were projected into 

the space of the original analysis and used to estimate the standard error of 

each weight, representing a measure of stability. For each voxel, we then 

calculate a bootstrap ratio (BSR) by dividing the weight from the singular 

vector by its bootstrap-estimated standard error. The BSR ratio is considered 

equivalent to a z-score when the bootstrap distribution is approximately 

normal (Efron & Tibshirani, 1986), and if the ratio of a salience value to its 

standard error is greater than 2, the salience is considered reliable. The BSR 

ratio results are thresholded, by default, at values corresponding to the 95% 

confidence interval. The resulting voxelwise BSR maps may thus reveal 

voxels in which functional connectivity with the seed region contributed 

strongly and reliably to the multivariate pattern identified in a given LV. 

Permutation testing and bootstrapping ensured robustness and avoided over-

fitting. 

 

 

Results 

We applied PLS to explain the covariance between left and right striatal seed-

related FC and 14 behavioral/demographic measures, comprising 12 PLEs 

subscales, age, and sex. A separate PLS was run for each of the six seeds, with 

hemisphere included as a condition within each analysis (left, condition 1; 

right, condition 2). 

 

Associations between dorsal caudate functional connectivity and PLEs 

Our hypothesis-driven PLS analysis of the DC seed identified LV1 as 

statistically significant, accounting for 23.88% of cross-block covariance, with 
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a singular value of 56.94 and p = .019 (see Supplemental SF1). Fig. 1a shows 

that this LV pair was characterized by uniform loadings across nearly all PLE 

subscales on both left and right DC-related FC, with minimal contributions 

from age and sex. There was some evidence for lower contributions from 

negative PLE scales; namely, the CAPE negative and Chapman social and 

physical anhedonia scales, and sO-LIFE introvertive anhedonia. However, 

the 95% confidence intervals of the correlations between these scales and 

brain scores on LV1 did not cross zero, suggesting that they still make a 

significant contribution. Thus, this LV describes an association between DC-

related FC and general PLE severity. Across all PLE scales, more severe 

experiences were associated with lower brain scores. Example scatterplots for 

two representative positive and negative PLE scales are shown in 

Supplemental Figure SF2. Fig. 1b shows the bootstrap image obtained from 

the PLS analysis, which maps voxels that reliably contribute to the significant 

LV ( see ST1 for cluster sizes and peak coordinates for the maps in panel 1b). 

In other words, this map identifies voxels where functional connectivity with 

the DC seed is associated with the multivariate profile of PLE subscale scores 

shown in Fig. 1a. 

The pattern is strongly expressed in the caudal and rostral anterior cingulate 

cortex, medial prefrontal cortex, left dorsolateral prefrontal cortex and 

dorsomedial thalamus, right pallidum, and posterior right cerebellum. These 

brain regions express a negative correlation between PLEs scores and DC-

related FC; i.e., higher scores on PLE scales are associated with lower FC. This 

pattern is reversed in areas of bilateral occipital and parietal cortex, where 

higher PLEs scores are associated with higher DC-related FC (see Fig. 1, panel 

b). 
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Associations between PLEs and the functional connectivity of other striatal seed 

regions 

No other LVs passed our Bonferroni-corrected threshold for significance (α= 

0.008) when considering the remaining striatal seed regions (i.e., dcPT, drPT, 

vrPT, VSi, VSs). Three LVs, all involving the putamen, surpassed a p<.05, 

uncorrected threshold: two LVs were related to the dcPT seed and one LV 

was related to the vrPT seed. 

The two dcPT-related seeds accounted for 59.5% and 46.7% of the cross-block 

covariance (p = .005 and p = .048, respectively; Figure SF3). The first LV 

shows comparable PLEs loadings across both hemispheres, with a behavioral 

profile characterized by similar loadings across most positive PLEs subscales, 

with attenuated loadings for anhedonia-related and CAPE negative scales 

(Figure SF4, panel a). The bootstrap ratio map revealed reliable contributions 

from dcPT-related FC in anterior and posterior cingulate cortices, dorsolateral 

prefrontal cortex, right superior parietal cortex, visual cortices, pallidum, and 

bilateral cerebellum (Figure SF4, panel b, ST2). LV2 for the dcPT seed 

described a profile in which negative PLEs scales consistently loaded on both 

left and right seed-related FC, whereas positive PLE scales showed smaller 

correlations which were negative in the left and positive in the right 

hemisphere (Figure SF5, panel a). The bootstrap ratio image identified 

reliable contributions from voxels in left medial prefrontal cortex, right 

orbitofrontal cortex, dorsal anterior and ventral posterior cingulate cortex, 

thalamus, sensorimotor cortex, right paracentral  lobule,  and  right  

cerebellum  (Figure SF5, panel b, ST3). 

The vrPT-related LV accounted for 22.5% of the cross-block covariance (p = 

.043; Figure SF6). It was characterized by higher loadings from positive PLEs 

scales, particularly for right-hemisphere seed-related FC (Figure SF7, panel 

a). Voxels contributing reliably to this pattern were located in orbitofrontal 

right cortex, mid-cingulate cortex, medial prefrontal and dorsolateral 
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prefrontal cortices, inferior precentral sulcus and visual and somatosensory 

cortex (see SF7, panel b, ST4). 

 

 

 

 

 

 

 

Fig. 1. Latent variable linking dorsal caudate functional connectivity and PLEs. A: Correlations 

between each PLE subscale, age, sex, and brain scores for LV1 in the PLS of dorsal caudate 

functional connectivity. Error bars represent 95% confidence intervals. The intervals do not cross 

zero for any PLEs scale; therefore, this LV contains significant loadings from all PLEs measures. 

Blue: left DC seed-related FC; Red: right DC seed-related FC. B: Axial slices through the bootstrap 

image showing regions reliably contributing to LV1. Cool colors identify regions where DC-related 

functional connectivity was associated with the multivariate profile depicted in panel A (i.e., 

higher functional connectivity was associated with lower scores); warm colors show the opposite. 

Left hemisphere is on the left. CAPE: community assessment of psychotic experience; sO-LIFE: 

Oxford-Liverpool Inventory of feelings and experiences short-form. PDI: Peters delusion 

inventory. 

 

Discussion 

Corticostriatal abnormalities are apparent from the earliest stages of 

psychosis, with patients, their unaffected-relatives, and ARMS individuals 

showing similar changes, suggesting that dorsal CST dysfunction may 

represent a risk phenotype for psychotic disorders (Dandash et al., 2017; 

Fornito et al., 2013). Dysconnectivity of dorsal CST circuitry also correlates 

with symptom severity in patient groups (Dandash et al., 2014; Fornito et al., 
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2013) and subclinical variation in positive PLEs in a healthy community 

sample (Sabaroedin et al., 2019), although the specific regions implicated in 

the PLE analysis differed from those identified in clinical samples. Here, we 

applied PLS to identify multivariate associations between 12 PLE measures 

and CST FC in a non-clinical sample. We found that functional connectivity 

of the dorsal caudate was associated with PLE severity across both positive-

like and negative-like symptom domains, with PLS identifying a significant 

LV with comparable loadings from all PLE subscales. Critically, the cortical 

regions implicated in this DC-related LV include regions of anterior cingulate 

cortex, as per the results of our prior univariate analysis in this sample 

(Sabaroedin et al., 2019), as well as areas of left dorsolateral PFC, which more 

closely align with areas implicated as dysfunctional in clinical samples. 

Paralleling the clinical findings, lower FC between these cortical areas and the 

DC seed was associated with more severe PLEs in the current study. A 

summary of the anatomical consistency of the circuits implicated in the 

current work and past studies of clinical cohorts is provided in Fig. 2. 

These results suggest that dorsal circuit FC tracks symptom severity across a 

wide spectrum of clinical and subclinical severity, and that the spatial 

correspondence between the specific circuit elements involved is closer than 

suggested in Sabaroedin et al. (2019) analysis. Indeed,  it seems that these 

earlier results, which did not  implicate  dorsolateral PFC, may have been 

driven by the different analysis method used, in which PLE scales were 

subjected to a PCA before being correlated with FC. In this way, the approach 

of Sabaroedin et al. mapped areas associated with common dimensions of 

variance specifically in positive PLE scores. The present findings indicate that 

DC-dorsolateral PFC FC is implicated when considering a dimension of 

variance common across all PLE scales, encompassing both positive-like and 

negative-like symptoms. It may thus be related to a more generalized 

component of schizophrenia risk. Consistent with this view, work in first 
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episode patients has reported that functional connectivity between the DC 

and left dorsolateral PFC is associated with the severity of both positive and 

negative symptoms (Fornito et al., 2013). Given that the LV identified in our 

analysis of DC-related functional connectivity included comparable loadings 

across all scales, it is possible that the multivariate FC profile identified in this 

analysis is associated with a more general psychopathology factor, sometimes 

referred to as the p-factor (Caspi and Moffitt, 2018). A more comprehensive 

investigation of non-psychosis-like symptoms would thus help to determine 

the specificity of our findings. We also found suggestive evidence for 

associations between the FC of other striatal seeds and PLE severity. Again, 

the dorsal circuit was pre- dominant, two LVs were identified for the dcPT 

and only one implicated the ventral system. The associations between 

dorsocaudal putamen FC and PLE severity involved areas that have been 

identified as dysfunctional in patients, such as orbitofrontal cortex and 

thalamus, pallidum, anterior cingulate cortex, and dorsal prefrontal cortex 

(Fornito et al., 2013, 2011, 2008; Haber and Knutson, 2010; Reid et al., 2010; 

White et al., 2010; Woodward and Heckers, 2016) as well as sensorimotor and 

visual cortices. The cortical regions implicated in the vrPT-related 

associations with PLE severity included regions of mid-cingulate cortex, the 

orbitofrontal cortex, medial and dorsolateral prefrontal cortex, and motor 

cortex, which have also been implicated in clinical reports (Abboud et al., 

2017; Asemi et al., 2015; Walther and Strik, 2012). Lower functional 

connectivity between the vrPT and sensorimotor cortices was tied to greater 

severity of both positive and negative-like PLEs; the other areas expressed the 

opposite pattern, such that increased functional connectivity with vrPT was 

associate with higher PLE scores. We note however that these LVs did not 

survive correction for multiple comparisons and require replication. 

Our findings are consistent with a continuum of risk for schizophrenia-like 

symptoms, in which symptom expression, across a broad spectrum of 
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severity, is related to dorsal CST function. Functional coupling between the 

DC and dorsolateral PFC was related to the severity of both positive 

symptom- and negative symptom-like PLEs, suggesting that this neural 

circuit may be tied to risk for general schizophrenia-like psychopathology. 

 

Limitations 

The majority of participants in our sample (~ 90%) had not yet completed the 

peak period of risk for schizophrenia at the time of testing. Given that 

psychotic experiences in early adulthood can predict later  psychopathology  

(Rossler  et  al.,  2007;  Werbeloff  et  al.,  2012), some of the subjects analyzed 

may develop a clinical disorder at a later time. Furthermore, our exclusion of 

individuals with a history of mental health treatment guaranteed that we 

were sampling the subclinical range of symptom expression, but it may 

neglect the more severe end of the PLE spectrum. 

Due to our multivariate approach, we cannot draw inferences about single 

behaviors or voxels, because the optimization in PLS is conducted on the 

entire data matrix rather than individual behavior and voxels. As such, 

interpretation of associations between individual variables is restricted to the 

broader context of the multivariate pattern to which they belong. 
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Fig. 2. Spatial consistency of dorsal corticostriatal circuit involvement across a broad spectrum of 

psychosis severity. The coronal slice on the left shows the location of the dorsal caudate (DC) seed 

region. The cortical surface map on the right depicts the area of dorsolateral prefrontal cortex 

where seed-related functional connectivity correlates with PLE severity in our community sample, 

together with prefrontal areas implicated in past work conducted in patients with first-episode 

psychosis and their first-degree relatives (Fornito et al.,  2013),  ARMS  individuals  (Dandash  et 

al., 2014), first episode mania patients with psychosis (Dandash et al., 2018). The map of positive 

symptoms maps regions associated  with positive symptom severity in first episode psychosis 

patients (Fornito et al., 2013). 
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Abstract 

 

Over the last two decades our understanding of clinical and 

pathophysiological aspects of  sleep-related epileptic and non-epileptic 

paroxysmal behaviours has improved considerably, although it is far from 

complete. Indeed, even though many of Sleep-Related Hypermotor Epilepsy 

(SHE) and of non-rapid eye movement (NREM) parasomnias core 

characteristics have been clarified, some crucial points remain controversial, 

and the overlap of the behavioral patterns among the  disorders represents a 

diagnostic challenge. In this work we focused on nocturnal sleep (videolab-

recording scalp EEG, 19 channels) free of clinical episodes from two groups 

of patients affected respectively by SHE (N = 15) and NREM parasomnias (N 

= 16). We examined N2 and N3 stages of the first part of the night (cycle 1 and 

2), and investigated the existence of differences in the periodic and aperiodic 

component of the EEG power spectra between the two groups using the 

Fitting Oscillations &One Over f (FOOOF) toolbox. The results of this study 

show a significant difference in the gamma frequency band, with an 

increased basic high frequency component in SHE patients, in both N2 (U = 

34, p < 0.001) and N3 stages (U = 24,  p < 0.001) , and a significant higher slope 

for the NREM parasomnias compared with SHE, in N3 stage (U = 57.0, p = 

0.012). We hypothesize that the slope extracted from the aperiodic component 

of the EEG signal may be helpful to distinguish characterize differences 

between subjects affected by NREM parasomnias and those affected by SHE.  
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Introduction  

 

Non-rapid eye movement (NREM) parasomnias are sleep disorders with a 

peculiar association with slow wave sleep (SWS), arising typically from N3 

sleep, and occasionally from N2 sleep. Common during both childhood and 

adulthood, NREM parasomnias are defined as abnormal behaviours and 

physiological events stemming outside of consciousness, and they 

encompass: confusional arousals, sleepwalking and night terrors, also called 

‘disorders of arousal’, as well as lesser-known entities as sleep-related eating 

disorder, sexsomnia and sleep-related violence (Hrozanova et al., 2018; 

Medicine, 2014). Some basic features are shared by all types of NREM 

parasomnias: i) arising of the events in the first part of the night or sleep 

period, ii) unresponsiveness to the environment during the episodes, iii) post-

episodic amnesia for events (full or partial), iv) EEG recordings showing 

simultaneously sleep-like and wake-like features, v) the presence of priming 

and precipitating factors.  The dissociation between self-awareness and 

behaviour is a crucial feature of NREM parasomnias, and different studies 

demonstrated a dissociation among  wakefulness and sleep in different brain 

regions (Januszko et al., 2016; Sarasso et al., 2014; Terzaghi et al., 2012, 2009). 

This key point makes NREM parasomnias particularly fascinating disorders, 

and explains the possibly negative after-effects of the episodes, as 

psychological distress, sleepiness, but especially the risk of injuries to 

themselves and to others, and their potential legal implications. 

One of the most difficult challenges for sleep physicians and epileptologists is 

the differential diagnosis between NREM parasomnias and sleep-related 

hypermotor epilepsy (SHE). The latter, changed its face numerous times: 

mentioned for the first time in 1981 by Lugaresi and Cirignotta (1981) and 

misleadingly defined as Nocturnal Paroxysmal Dystonia (NPD), it was 
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subsequently renamed Nocturnal Frontal Lobe Epilepsy (NFLE) once proved 

the epileptic origin of the syndrome (Tinuper et al., 1990); until 2014, when a 

Consensus Conference helded in Bologna (Italy) renamed it conclusively 

sleep-related hypermotor epilepsy (SHE) (Tinuper et al., 2016; Tinuper and 

Bisulli, 2017). 2014 change of nomenclature was justified by three key points 

on which all experts were in agreement: i) the seizures occurrence in sleep, 

without a specific relationship with the night; ii) the potential onset of the 

seizures from extrafrontal areas; iii) the hyperkinetic nature of SHE seizures. 

SHE seizures may arise in rather unconventional ways, as ambulations, 

complex automatisms or vocalizations, often mistaken for parasomnias; 

likewise some NREM parasomnias may have particularly violent clinical 

features that can be mistaken for SHE seizures (Derry et al., 2006). Moreover, 

classical sleep parameters seem to be broadly unchanged in both SHE and 

NREM parasomnias patients, in contrast with the presence of sleep 

instability, detectable by microstructure analysis, and arousal fluctuations 

(Zucconi and Ferini-Strambi, 2000). It’s often impossible to find evidence of 

any ictal/interictal abnormalities during EEG investigations in SHE patients 

(e.g. when seizures originate from the deep-seated cortex), and even 

detectable epileptic discharge are frequently masked by muscular artefacts 

(Oldani et al., 1998; Provini et al., 1999; Tinuper et al., 2016; Tinuper and 

Bisulli, 2017). Several scalp sleep EEG studies, conducted on NREM 

parasomnia patients, highlighted increased sleep fragmentation and slow 

waves activity (SWA) abnormalities (Desjardins et al., 2017; Januszko et al., 

2016); Castelnovo et al. (2016) demonstrated with an hdEEG study the 

persistence of local sleep differences in EEG SWA power during both NREM, 

REM sleep and wakefulness, even in nights without clinical episodes, and 

they source localized the local SWA decrease mainly to cingulate and motor 

regions supporting the theory that sees the local arousals in these brain areas 

as the source of the NREM parasomnias motor behaviours  (Terzaghi et al., 
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2012). The past findings seem to not make the process towards diagnosis and 

differential diagnosis easier or quicker, and the gold standard remains 

nocturnal video-polysomnography, an expensive, time consuming and 

operator-dependent procedure, in which the video component is essential 

and, in association with the clinical features, allows to formulate the 

diagnosis. 

While the oscillatory component it’s been investigated extensively, no 

attention was reserved to aperiodic component changes in patients affected 

by SHE or NREM parasomnias. The aperiodic 1/f component of neural power 

spectra represents a significant fraction of the spontaneous electrical fields 

potentials of the EEG recordings, and constitutes the arrhythmic and scale-

free (no predominant temporal scale) brain activity (He et al., 2010). Although 

the aperiodic activity is the prevailing one when the oscillatory is absent 

(Schaworonkow and Voytek, 2020), most of the studies are conducted on an 

ex ante basis, defining canonical frequency bands to investigate and ignoring 

the arrhythmic ‚background‛ activity, failing to verify if the power changes 

detected are really driven by the oscillatory component, or are the result of 

the aperiodic signal/a combination of the two (Haller et al., 2018). The 

aperiodic signal may correspond both to neural noise and physiologically 

relevant signals with a functional significance (Haller et al., 2018), and its 

dynamism manifest itself with changes dependent on task demands (He et 

al., 2010), cognitive states (Podvalny et al., 2015), aging (Voytek et al., 2015), 

and diseases (Peterson et al., 2017). The 1/f signal of the power spectrum may 

be characterized in terms of slope, namely the exponential decrease of power 

in a spectrogram as a function of frequency, and offset of the broadband 

power of the signal.  

Here we set out to investigate the classical EEG power spectral features 

regarding the periodic component, but also to extract the features of the 

aperiodic component slope and offset , and evaluate whether it’s possible to 
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highlight significant differences between the two groups of patients, with a 

firm diagnosis respectively of NREM parasomnias or SHE, using 19 channels 

sleep scalp EEG.  

 

Materials and methods  

 

Patients 

After have given written informed consent, according to the Declaration of 

Helsinki, a  total of 15 patients with SHE (5 M, mean ages 32.8±15.3 years) 

and 16 patients with NREM parasomnia (8 M, mean ages 29.5±10.7 years) 

were enrolled at the Sleep Center and the Epilepsy Center of the University of 

Cagliari. The inclusion criteria were diagnosis of SHE or NREM parasomnia 

according to current diagnostic criteria (Tinuper et al., 2016)(Medicine, 2014), 

respectively for the SHE and NREMp group, age ≥18 years, while the 

exclusion criteria for overall populations were the presence of other sleep 

disorders, neurological disease and psychiatric comorbidities, according to 

the DSM V.   

Demographic data, such as age, sex and current therapy were evaluated by 

neurologists experts in sleep medicine ad epilepsy.  

All participants were free from psychotropic medications. The local ethic 

committee approved the study.  

Polysomnographic analysis 

All patients underwent a full-night attended video-polysomnography (vPSG) 

recording at sleep laboratory according to the American Academy of Sleep 

Medicine (AASM) recommendations (Berry et al., 2017) . 
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The following vPSG montage included electroencephalographic leads (10-20 

international system), left and right electrooculography (EOG), chin and 

lower limbs (EMG) channels, electrocardiography, nasal airflow, thoracic and 

abdominal respiratory effort, pulse-oximeter and microphone.  All 

participants were asked to sleep uncovered with allowance of a light sheet for 

comfort, in order to better observe any motor activity. All healthy subjects 

underwent a full-night home-based PSG recording.     

The PSG recordings were scored according to the AASM criteria by 

neurologists experts in sleep medicine. The following sleep data were 

collected: total bedtime (TBT), total sleep time (TST), sleep efficiency (SE), 

wake after sleep onset (WASO), percentage of time in each sleep stage (N1, 

N2, N3, R), number of REM sleep episode, arousal index (AI), periodic limb 

movements index (PLMSi), Apnea-hypopnea index (AHI). 

All video recordings were carefully analyzed by experts in epilepsy and sleep 

medicine in order to detect minor and major events. In SHE patients minor 

events were defined as nose scratching, dystonic posture of feet or hands, 

hyperextension of limbs, rigid posture of upper or lower limbs, myoclonus, 

trunk flexion/extension, paroxysmal arousal, nocturnal wanderings and 

automatisms according to current diagnostic criteria (Tinuper et al., 2016). 

While in NREMp patients simple arousal movements and rising arousal 

movements were identified as minor events according to the latest 

classification (Loddo et al., 2018).  Major events were defined as complex 

hypermotor seizure were considered in the SHE group (Tinuper et al., 2016), 

and as complex arousal with motor behaviors and ambulatory movements 

while in the NREMp group (Loddo et al., 2018). 

Preprocessing 

Original raw data underwent multiple rounds of visual inspections by two 

operators, and 25 epochs of 10 seconds for each of the sleep stages considered 
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(N2-N3) were retained through a process of manual epoching that excluded 

artifacts and generic discontinuities, using the freely available toolbox 

EEGLAB (Delorme and Makeig, 2004). Our analysis refers therefore to 4 

minutes and 10 seconds of EEG signal for each subject and each of the two 

sleep stages, N2 and N3 . 

Features extraction 

We extracted from the epoched signals the features characterizing i) the 

periodic component, namely the relative power of delta (0.5-4 Hz) , theta (4-8 

Hz), alpha (8-12 Hz), sigma (12-16 Hz), beta (16-32 Hz) and gamma (32-45 

Hz) frequency bands; ii) and the aperiodic component, namely the slope and 

the offset. The relative power for each of the five frequency bands was 

computed as the ratio between the absolute band-specific power and absolute 

total power (between 1 and 45 Hz) using the Power Spectral Density estimate 

through Welch's method using MATLAB  (The MathWorks, Inc., Natick, 

Massachusetts,United States, version R2020). The Fitting Oscillations & One 

Over f (FOOOF) toolbox (Haller et al., 2018) were used to compute the slope 

and the offset (https://fooof-tools.github.io/fooof/index.html). 

Statistical analysis 

Based on the characteristics of our data, namely two groups of subjects that 

can be considered as two independent samples and the continuous nature of 

the variables examined, we chose to use the Mann-Whitney U test, often 

considered the non-parametric analogous of T-test, in order to estimate 

whether the two populations of subjects differ, and the actual divergence of 

their medians. In consideration of the small sample size of the groups of 

subjects, we also calculated the effect sizes by means of the biserial rank 

correlation. With this approach, an absolute r value of 0.10 is considered to 

represent a small effect, r = 0.30 represents a medium effect, and r = 0.50 

represents a large effect (Conroy, 2012). The Mann Whitney U test was 
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computed for each frequency band using Jamovi (version 1.1.9.0) available 

from https://www.jamovi.org, after performing average across all channels 

and epochs. 

 We approached the multiple comparison problem lowering the critical value 

of p for significance with the Bonferroni-correction. For the comparison of the 

periodic component, the critical value for an individual test was found 

dividing the familywise error rate (0.05) by the number of the bands (six), the 

results were thus declared significant if they survived Bonferroni-correction 

over the six bands (p = 0.0083). For the comparison of the aperiodic 

component a critical p value of 0.025 was used, because we made only two 

comparisons (offset and slope), for each sleep stage. 

 

 

 

Results 

vPSG features. 

SHE subjects showed significantly lower total sleep time, higher amount of 

stages W and N1 and longer REM sleep latency (p=0.01) compared to subjects 

with NREM-parasomnia. Table 1 summarizes the vPSG parameters of 

subjects with NREM parasomnia and of subjects with SHE.  
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Tab 1. Video-polysomnographic features of NREM-parasomnia patients and SHE patients. 

  NREM Parasomnia 

(n=16) 

Sleep-related 

hypermotor epilepsy 

(n=15) 

Mann-Whitney 

  Median IQR Median IQR U p 

Age, years 30.6 22.9 - 37.7 25.9 21.7 - 52.1 111 0.741 

Total sleep time, min 465.5 423.5 - 503 409 373 - 448 66.5 0.034 

Sleep efficiency, % 89.7 81.1 - 95.7 80 70 - 85.9 74 0.070 

Sleep latency, min 13.5 6.3 - 24-3 22.5 7 - 45 93 0.295 

Arousal index 10.6 7.3 - 14.1 9.6 7.7 - 12.7 96.5 0.363 

WASO 30 12.1 - 64.3 73.5 38 - 126.5 63-5 0.025 

Stage N1, % 7.1 4.1 - 8.9 8.9 6.9 - 14.3 70 0.048 

Stage N2, % 42.3 33.2 - 45.6 37.8 26.7 - 48.8 110.5 0.719 

Stage N3, % 31.4 27.8 - 39.3 2.1 23.6 - 42.8 103.5 0.526 

Stage R, % 18.6 16.5 - 21.9 14.9 6.8 - 22.5 79 0.108 

REM sleep latency, min 87.8 71.1 - 124.4 184.5 92 - 264.5 48 0.004 

REM sleep episodes, number 4 3 - 4.8 4 3-4 91 0.227 

Apnea-hypopnea index 0 0 0 0 114 >0.999 

Periodic leg movements during sleep index 5.1 1.4 - 10 0 0 84.5 0.153 

Minor motor episodes, number 48.5 34.5 -57.8 40 29 - 64 103.5 0.526 

IQR = interquartile range. Significant p values (without Bonferroni correction) are marked in bold.  

 

 

 

Periodic component 

A significant difference between the groups was found for the gamma band 

relative power during N2, as well as during N3 (table 2). No other difference 

survived Bonferroni-correction. The relative power analysis of the gamma 

frequency band, respectively during N2 and N3 sleep stages, are graphically 

shown also in Fig. 1.  
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Fig.1 Scatterplot of the results for the gamma relative power during sleep stages N2 and N3. 

 

Tab. 2. Results of the comparison of the relative power of the different EEG bands found in NREM 

Parasomnia and SHE, during sleep stages N2 and N3. 

 NREM Parasomnia 

(n=16) 

Sleep-related 

hypermotor epilepsy 

(n=15) 

Mann-

Whitney 

Effect size 

Biserial rank 

correlation 

  Median IQR Median IQR p 

N2 sleep stage       

Delta 0.654 0.576 – 0.676 0.616 0.518 – 0.681 0.379 0.192 

Theta 0.178 0.165 – 0.208 0.209 0.162 – 0.254 0.520 0.142 

Alpha 0.089 0.074 – 0.109 0.088 0.071 – 0.123 0.800 0.058 

Sigma 0.054 0.041 – 0.084 0.050 0.045 – 0.076 0.984 0.008 

Beta 0.033 0.021 – 0.050 0.040 0.028 – 0.060 0.379 0.192 

Gamma 0.005 0.003 – 0.007 0.011 0.008 – 0.014 <0.001  0.717 

N3 sleep stage       

Delta 0.860 0.762 – 0.900 0.792 0.749 – 0.854 0.105 0.308 

Theta 0.087 0.080 – 0.116 0.117 0.099 – 0.158 0.093 0.358 

Alpha 0.046 0.026 – 0.070 0.048 0.030 – 0.075 0.401 0.183 

Sigma 0.018 0.011 – 0.026 0.020 0.015 – 0.034 0.281 0.233 

Beta 0.005 0.004 – 0.009 0.009 0.007 – 0.013 0.024 0.475 

Gamma 0.001 0.0006 – 0.002 0.003 0.002 – 0.005 <0.001 0.800 

IQR = interquartile range. Significant p values (after Bonferroni correction) and ‚large‛ effect sizes (≥0.5) 

are marked in bold. 
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Aperiodic component 

No significant differences between NREM parasomnias and SHE subjects 

were found in offset of the power spectrum, both during N2 and N3 stages, 

while a significant higher slope was found for the NREM parasomnias group 

in sleep stage N3 only; see Fig. 2 for a graphical representation of these 

results and table 3 for the corresponding statistics 

 

 

 

 

 

 

 

Fig.2 Scatterplot of the slope (exponent) of the aperiodic component during sleep stages N2 and 

N3.  

 

Tab. 3 Results of the comparison of the offset and slope (exponent) of the EEG power spectrum in 

NREM Parasomnia and SHE, during sleep stages N2 and N3. 

 

 NREM Parasomnia 

(n=16) 

Sleep-related hypermotor 

epilepsy (n=15) 

Mann-

Whitney 

Effect size 

Biserial rank 

correlation   Median IQR Median IQR p 

N2 sleep stage       

Offset 1.91 1.82 – 2.07 1.89 1.57 – 2.07 0.495 0.150 

Slope 2.03 1.90 – 2.17  1.90 1.75 – 2.03 0.163 0.300 

N3 sleep stage       

Offset 2.74 2.55 – 2.86 2.56 2.38 – 2.72 0.101 0.350 

Slope 2.82 2.57 – 2.94 2.54 2.39 – 2.61 0.012 0.525 

IQR = interquartile range. Significant p values (after Bonferroni correction) and ‚large‛ effect sizes (≥0.5) 

are marked in bold. 
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Discussion 

 

Nocturnal video-polysomnography is indispensable for making a precise 

diagnosis on subjects affected by respectively SHE or NREM parasomnias. 

While EEG is in general a tool with optimal accessibility and cost-

effectiveness, a full-night attended vPSG  and the scoring process conducted 

by sleep medicine experts are very expensive and time-consuming 

procedures. Part of the research  on SHE and NREM parasomnias focus  on a 

potential solution to the problem represented by the differential diagnosis, 

with the goal to identify electrophysiological biomarkers specific for disease. 

As much of the studies conducted on clinical and cognitive neuroscience, 

sleep studies focus on the so-called periodic activity, namely the rhythmic or 

oscillatory activity, organized in distinct frequency bands. Therefore, band 

power differences across conditions result to be the most widely studied 

features of the EEG power spectrum, at the expense of the aperiodic 

component. However, in contrast with the traditional view, the 1/f 

component of neural power spectra seems to may represent both background 

noise and physiologically relevant signals, and taking into account that it 

incorporates the oscillatory component, it should be considered to avoid 

misinterpretation of band-limited power differences (Haller et al., 2018). 

Recent experimental findings confirm the dynamism of the aperiodic 

component, showing how its parameters change depending on age and aging 

(Schaworonkow and Voytek, 2020; Tran et al., 2020; Voytek et al., 2015), 

cognitive states (Podvalny et al., 2015) and diseases (Peterson et al., 2017; 

Robertson et al., 2019). Furthermore it was very recently demonstrated that 

the aperiodic component is characterized by strong subject-specific properties 

and its features may help to characterize and make inferences at single 

subject level, with a better performance than classical frequency bands 

(Demuru and Fraschini, 2020). Together this findings suggest the importance 
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to consider the aperiodic component of the EEG power spectra as partly 

independent from oscillations, with its own physiological significance and 

dynamicity, and also the interesting possible use of its features for both 

diagnostic purposes (biomarkers) and bio-engineering clinical applications of 

brain fingerprint. Robertson et al (Robertson et al., 2019) identified for the 

first time differences in the aperiodic components of the EEG power 

spectrum in children with ADHD, proving that the slope is a reliable index of 

an increase in low relative to high frequency power in ADHD. In the light of 

this approach, that emphasizes the clinical utility of quantifying in a more 

comprehensive way features of the EEG power spectrum, we realised the first 

report evaluating spectral slope and offset in subjects affected by SHE and 

NREM parasomnias, with the aim of detect and study the aperiodic features 

looking for possible biomarkers enabling to distinguish them in a systematic 

way. Our results show a significant lower slope in patients affected by sleep-

related hypermotor epilepsy compared with patients affected by non-rem 

parasomnias, with an important difference between the two groups (U = 57.0, 

p = 0.012, Effect size = -1.05). This  preliminary findings suggest that a feature 

extracted from the aperiodic component, namely the slope, seem to convey 

physiological information that  might differ in the long term between the 

groups of patients affected respectively by SHE and NREM parasomnias, 

offering us an electrophysiological biomarker to help discriminate patients 

with an uncertain diagnosis.  

Limitations of this preliminary study are represented by i) a low number of 

subjects enrolled, due to the difficulty of collect, in our catchment area, 

patients with a firm diagnosis and none of the exclusion criteria defined 

(including comorbidities and treatments); ii) the choice to compare two 

groups of patients focusing selectively on differences between the two 

groups, not between each group and healthy controls, searching for a feature 

that make more smooth the differential diagnosis.  
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Next steps include therefore enlarge the number of patients involved and 

extend the study to the healthy controls, already  recorded, to evaluate 

matching or discrepancies with the groups of patients. Our hypothesis is that 

healthy controls may have a closer correspondence with non-rem 

parasomnias patients in terms of slope extracted from the aperiodic 

component of the EEG power spectra. 
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Conclusion and future directions 

 

This multidisciplinary doctoral project has been developed 

combining engineering procedures and concepts about signals and 

neuroimaging processing with classical neurosciences, leading us to 

the final applications on clinical samples. Common denominator 

was represented by the concept of stability and variability of subject 

specific features related to functional connectivity, as well as to the 

periodic and aperiodic component of the EEG power spectra. 

We aimed to investigate i) the impact of some of the most 

commonly used metrics to estimate functional connectivity on the 

ability to unveil personal distinctive patterns of inter-channel 

interaction; ii) the possible association between power spectral 

density and some widely used nodal networks metrics, both at 

scalp and source level; iii) how EEG power, connectivity and 

network features, estimated using source-reconstructed EEG time-

series, are affected by the variability due to subject, session and 

task; iv) how different specific aspects of psychosis-like experiences 

related to functional connectivity; v) differences in the periodic and 

aperiodic component of the EEG power spectra of patients affected 

by sleep-related hypermotor epilepsy and non-rem parasomnias. 

We demonstrated that different connectivity metrics have different 

performance detecting specific pattern of inter-channel interactions 

(Fraschini et al., 2019) and that power spectral density and network 
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analysis are not completely independent (Demuru et al., 2020). Our 

at source-level EEG report (Pani et al., 2020) confirmed the existence 

of well-defined specific profiles that are stable over-time, although 

dependent form the specific task. The findings from our fMRI study 

(https://doi.org/10.1016/j.pscychresns.2020.111202) also suggest that 

the neural circuit linking dorsal caudate to dorsolateral prefrontal 

cortex may be tied to risk for general schizophrenia-like 

psychopathology. Lastly, an evident electrophysiological difference 

was found between the two groups of patients affected by sleep 

disorders. 

Here a summary of our findings:  

 PLV and CC are the most robust connectivity metrics to detect 

individual fingerprints even in the more challenging 

experimental designs (scalp-level analysis). 

 Power spectral density and network analysis show a clear 

association, and the level of the latter depends on the FC 

method used (both scalp- and source-level analysis).  

 PSD, PLV and PLV derived functional brain networks 

(measured by nodal centrality) are stable over-time, 

dominated by individual properties but largely dependent 

from the specific task (source-level EEG analysis). 

 Functional coupling between dorsal caudate and dorsolateral 

prefrontal cortex is related with the severity of psychosis like 

experiences (fMRI analysis). 

https://doi.org/10.1016/j.pscychresns.2020.111202
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 The slope of the aperiodic component of the EEG power 

spectra is significantly lower in patients affected by sleep-

related hypermotor epilepsy compared with non-rem 

parasomnias patients. 

  

Different considerations can be drown from this thesis project, first 

of all that procedures and methodological choices strongly 

influence the output of the analysis, and we need to proceed 

carefully starting with the preliminary design, till results rendering.  

Although functional connectivity can be estimate dependably from 

scalp-level EEG the source-based network representation is a better 

approximation, and the higher the number of the EEG sensors the 

lower the error in electrical source estimation (Lai et al., 2018). That 

is why we decided to not perform the connectivity analysis in our 

last study on sleep disorders, because of the nature of the data: it is 

difficult to make inference on source using 19 channels scalp-EEG 

recordings.  

Furthermore, the choice of the connectivity metric may influence 

the estimate of networks organization, both for the different 

mechanism to detect subject-specific patterns of inter-channel 

interactions, and for the important role that the frequency content 

and the spurious correlations have (Fraschini et al., 2019; Lai et al., 

2018).  
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Also, ROI (regions of interest) selection can critically affect analysis 

results, causing missing of effects (to avoid inflating type I error 

rate) or detection of spurious effects (to avoid inflating type II error 

rate), and the right balance is often hard to find (Brooks et al., 2017; 

Krak et al., 2005).  

Pre-processing is another crucial point, EEG data can indeed be 

altered by various factors and several steps are needed to make 

them ready to analysis. It’s important to notice that the steps 

sequence and the order of pre-processing pipelines influences the 

output of the process and may have a large impact on particular 

portions of the signal (Robbins et al., 2020). Software packages 

coming with EEG systems or running on MATLAB/Phython/R 

platforms (freely available) or even custom-written, can be used, 

what is important is to describe step-by-step and in detail the 

workflow and, where possible, release publicly the code used, in 

order to enable other researchers to reproduce the analysis (Pernet 

et al., 2020). There are steps universally recognised to be valid after 

visual inspection, and it is possible to proceed both manually or 

using different semi/fully automated pre-processing pipelines, but 

the crucial point is the needing of chose a path that takes account of 

data characteristics and analysis nature, leading to more 

meaningful and reproducible results (Pernet et al., 2020). 

 

Secondly, it is extremely important to consider all sources of 

variance of functional brain networks, included those related to 
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individuality, and the approach that considers subjects specific 

features could be in the future a useful tool to prevent 

misinterpretation of clinical studies results. Thinking to patient’s 

follow-up, in a not too distant future, it could be demonstrated that 

monitoring the individual by considering the mean of subjects 

affected by the same pathology is a method not without flaws for 

the accurate evaluation of disease progression/regression, patients’ 

response to the therapy and other clinical relevant factors. It is 

indeed becoming more and more important in a lot of medical 

branches to focus on the individual to guarantee a top-level 

standard of care and offer the best approach to the disease, 

improving treatment choice, quality of life and even survival 

(Krzyszczyk et al., 2018; Rossi et al., 2014). 

We were supposed to verify part of this rationale in the clinical 

study we had planned, but were unable to realise due to the 

pandemic, on neurological patients; we would had evaluated how 

individual variability/stability of functional brain networks is 

affected by diseases, whether individual traits are still detectable in 

different phases of the disease and if they can be used to track the 

patient. Source-reconstructed EEG time-series could be used to 

study singular subjects in a group context and track their features 

over several session and tasks. We believe in the utility of EEG in 

clinical practice, being a powerful and low-cost tool, easy to use for 

trained personnel and practically free from discomfort for patients.  
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Once again is confirmed the importance to identify the deviation 

from the healthy brain connectivity pattern, specific for pathology, 

envisaging clinical useful applications that would enable the 

identification of at-risk individuals for prevention and early 

intervention (Stam, 2014).  

Our results also corroborate the relevance of considering the 

aperiodic component when conducting analysis on the EEG power 

spectra, supporting the idea of its physiological significance, and 

the use of its features as electrophysiological biomarkers (Haller et 

al., 2018; He et al., 2010; Robertson et al., 2019). 

Future steps should be to investigate how connectivity metrics and 

network similarity across tasks and sessions varies between clinical 

conditions, pushing the use of the individual connectivity EEG 

fingerprint beyond the bio-engineering applications towards 

clinical use in personalized medicine.  

It would be also of interest to take advantage of the extremely high 

temporal resolution of the EEG to extend the traditional functional 

network analysis (static approach) to the dynamical functional 

connectivity, considering the additional dimension of time 

development (Hassan and Wendling, 2018, 2015; Mutlu et al., 2012). 

Especially regarding the studies that involved cognitive tasks it 

would be interesting to shift the focus on the evolution of neural 

activity, evaluating how the measures considered change over time, 

tracking sub-second reconfigurations of connectivity patterns 

(Hassan et al., 2015; Li et al., 2020). Furthermore, we think that the 
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interesting results of our study about sleep disorders will open new 

possibilities in this field. Future steps comprise the application of 

the study model, that investigate comprehensively the components 

of the EEG power spectra, to a variety of sleep disorders, searching 

for electrophysiological biomarkers that could change the clinical 

approach to differential diagnosis and hopefully to treatment, 

providing clinicians a tool to evaluate the efficacy of the adopted 

strategy.  
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