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Abstract. In this paper we establish a multiplicity result for a class of unilateral, nonlinear,

nonlocal problems with nonsmooth potential (variational-hemivariational inequalities), using the

degree map of multivalued perturbations of fractional nonlinear operators of monotone type, the

fact that the degree at a local minimizer of the corresponding Euler functional is equal one, and

controlling the degree at small balls and at big balls.
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1. Introduction

Over the past few years, nonlocal operators have taken increasing importance, due to the fact that
they appear in a number of applications, in such fields as game theory, finance, image processing,
and optimization, see [2, 7, 9, 41] and the references therein.
One of these operators is the fractional p-Laplacian, a nonlinear and nonlocal operator, that is
defined for any sufficiently smooth function u : RN → R and all x ∈ RN by

(−∆)sp u(x) = 2 lim
ε→0+

∫
RN\Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
dy,

where s ∈ (0, 1), p ∈ (1,∞), in the linear case p = 2 gives to the fractional Laplacian up to a
dimensional constant C(N, p, s) > 0 (see [8, 19]).
In [44] Teng studies hemivariational inequalities driven by nonlocal elliptic operator and he shows the
existence of two nontrivial solutions, by applying critical point theory for nonsmooth functionals, while
in [42] Servadei and Valdinoci prove Lewy-Stampacchia type estimates for variational inequalities
driven by nonlocal operators. In [45] Xiang considers a variational inequality involving nonlocal
elliptic operators, proving the existence of one solution, by exploiting variational methods combined
with a penalization tecnique and Schauder’s fixed point theorem. In [1] Aizicovici, Papageorgiou
and Staicu study the degree theory for the operator ∂ϕ+ ∂ψ, where ∂ϕ is the Clarke generalized
subdifferential of a nonsmooth and locally Lipschitz functional ϕ, and ∂ψ the subdifferential of ψ, a
proper, convex and lower semicontinuous functional, in the sense of convex analysis. They show a
result regarding the degree of an isolated minimizer for Euler functionals of the form ϕ+ ψ. Such
extension allow to study nonlinear variational inequalities with a nonsmooth potential function
(variational-hemivariational inequalities). Such variational-hemivariational inequalities are called
in this way, because in them appear a maximal monotone term which is not in general everywhere
defined (variational inequality), and a nonmonotone, but everywhere defined term (hemivariational
inequality). In the last decade hemivariational inequalities have been actively studied through
employing the techniques of nonlinear analysis (including degree theory and minimax methods),
see [11, 31, 35, 36, 39] and the references therein. Furthermore hemivariational inequalities can be
naturally applied in problems of mechanics and engineering, taking into account more realistic laws
which involve multivalued (nonsmooth potential) and nonmonotone (nonconvex potential) operators,
see [35].
A natural obstacle problem is given by an elastic membrane, with vertical movement u on a domain
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Ω, which is bound to its boundary (u = 0 along ∂Ω) and it is forced to stay below some obstacle
(u ≥ γ). Afterwards, at the equilibrium, everytime the membrane does not come into contact with
the obstacle, the elasticity provides a balance of the tension of the membrane, that, geometrically,
reflects into a balance of the principal curvatures of the surface described by u. At the same time,
whenever the membrane sticks to the obstacle, its principal curvatures are supposed to adapt to
those of γ. In addition, when an external force w appears, the elastic tension of the membrane will
balance up the force. These physical arguments are reflected in the following variational inequality
in the case of Laplacian operator

(1.1)

∫
Ω

∇u(x)(∇v(x)−∇u(x)) dx ≥
∫

Ω

w(x)(v(x)− u(x)) dx

for any test function v, with v ≥ γ and v = 0 along ∂Ω (see [42]). While in the case of p-Laplacian
operator, looking at nonlinear elastic reactions of the membrane, the inequality becomes the following∫

Ω

|∇u|p−2∇u(x)(∇v(x)−∇u(x)) dx ≥
∫

Ω

w(x)(v(x)− u(x)) dx

with p ∈ (1,∞) (see [1, 13,40]). Likewise, one may take into account the long range interactions of
particles, changing the local elastic reaction in (1.1) with a nonlocal one, for example substituting
the Laplacian with the fractional Laplacian, hence (1.1) becomes the following nonlocal variational
inequality∫

R2N

(u(x)− u(y))(v(x)− v(y)− u(x) + u(y))

|x− y|N+2s
dxdy ≥

∫
Ω

w(x)(v(x)− u(x)) dx.

These type of obstacle problems have been intensively investigated in [10,32,43] and in [29,30,42]
for other integrodifferential kernels.
Motivated by the above mentioned works, in this paper we show a multiplicity result for the obstacle
problem at zero driven by the fractional p-Laplacian operator
(1.2)
∫
R2N

(u(x)−u(y))p−1(v(x)−v(y)−u(x)+u(y))
|x−y|N+ps dxdy ≥

∫
Ω
w(x)(v(x)− u(x)) dx for all v ∈W s,p

0 (Ω)+,

w(x) ∈ N(u) = {w̃ ∈ Lp′(Ω) : w̃(x) ∈ ∂j(x, u(x)) for a.e. x ∈ Ω},
(

1
p + 1

p′ = 1
)

u ∈W s,p
0 (Ω)+,

where Ω ⊆ RN , N > 1, is a bounded domain with a C2−boundary ∂Ω, j is a nonsmooth potential
that satisfies suitable assumptions, and W s,p

0 (Ω) is the fractional Sobolev space (that will be defined
later). By ap−1 we mean |a|p−2a for all a ∈ R and denote by p′ the conjugate exponent of p.
Using a combination of degree theory, based on the degree map for specific multivalued perturbations
of (S)+- nonlinear operators (see [1,24]), and variational methods, we are able to prove that problem
(1.2) admits at least two nontrivial solutions.

The paper has the following structure: in Section 2 we collect some basic notions from nonsmooth
critical point theory, as well as some useful results on the degree theory, while in Section 3 we gather
the results concerning the fractional weighted eigenvalue problem. In Section 4 we consider the
obstacle problem at zero and we show our main result.

2. Preliminaries

In this section, we collect some basic definitions and results from nonsmooth and nonlinear analysis,
as well as some useful results on the degree theory, which we will be required for our purposes
(see [1, 3, 14,16,17,21,46]).
Let (X, ‖·‖) be a reflexive Banach space and (X∗, ‖·‖∗) its topological dual. We denote by 〈·, ·〉 the
duality pairing between X∗ and X, and by 2X \ {∅} the family of all nonempty subsets of X.
By Γ0(X) we indicate the cone of all proper (not identically +∞), convex and lower semicontinuous
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functions ψ : X → R ∪ {+∞}.
Let C be a nonempty, closed convex subset of X, the indicator function of C is defined by

iC : X → R ∪ {+∞} iC(u) =

{
0 if u ∈ C,

+∞ if u /∈ C.

If C 6= ∅, then iC ∈ Γ0(X).
Given ψ ∈ Γ0(X), the subdifferential of ψ in the sense of convex analysis is given by the multifunction
∂ψ : X → 2X

∗

∂ψ(u) = {u∗ ∈ X∗ : 〈u∗, v − u〉 ≤ ψ(v)− ψ(u) for all v ∈ X} .

Regarding the properties of the subdifferential of ψ in the sense of convex analysis, we refer the
reader to [33] and the references therein. We stress that if ψ ∈ Γ0(X) is Gâteaux differentiable at
u ∈ X, then ∂ψ(u) = {ψ′(u)}. Moreover we note that the subdifferential in the sense of convex
analysis ∂ψ : X → 2X

∗
of a function ψ ∈ Γ0 (X) is a maximal monotone operator.

If ψ coincides with iC , the indicator function of C ⊆ X, then we obtain a closed convex cone, called
the normal cone to C at u, defined by

∂iC(u) =

{
u∗ ∈ X∗ : 〈u∗, u〉 = σ(u∗;C) = sup

v∈C
〈u∗, v〉

}
.

A function ϕ : X → R is said to be locally Lipschitz, if for every u ∈ X there exist a neighborhood
U of u and L > 0 such that

|ϕ (v)− ϕ (w)| ≤ L ‖v − w‖ for all v, w ∈ U.

For such function ϕ, we define the generalized directional derivative of ϕ at u along v ∈ X in the
following way

ϕ0 (u; v) = lim sup
u′→u,λ→0+

ϕ (u′ + λv)− ϕ (u′)

λ
,

(see [21, Propositions 1.3.7]). The Clarke generalized subdifferential of ϕ at u is the set

∂ϕ(u) = {u∗ ∈ X∗ : 〈u∗, v〉 ≤ ϕ◦(u; v) for all v ∈ X} .

If ϕ is continuous and convex, then ϕ is locally Lipschitz and the generalized and convex subdifferen-
tials coincide.
We say that u is a critical point of ϕ if 0 ∈ ∂ϕ(u). The following Lemma states some useful properties
about ∂ϕ, see [21, Propositions 1.3.8-1.3.12].

Lemma 2.1. If ϕ,ψ : X → R are locally Lipschitz continuous, then

(i) ∂ϕ(u) is convex, closed and weakly∗ compact for all u ∈ X;
(ii) the multifunction ∂ϕ : X → 2X

∗
is upper semicontinuous with respect to the weak∗ topology

on X∗;
(iii) if ϕ ∈ C1(X), then ∂ϕ(u) = {ϕ′(u)} for all u ∈ X;
(iv) ∂(λϕ)(u) = λ∂ϕ(u) for all λ ∈ R, u ∈ X;
(v) ∂(ϕ+ ψ)(u) ⊆ ∂ϕ(u) + ∂ψ(u) for all u ∈ X;

(vi) if u is a local minimizer (or maximizer) of ϕ, then 0 ∈ ∂ϕ(u).

In the sequel we focus on the study of critical points of the functional ϕ+ ψ, for this purpose we
mention the following facts (see [28,34]).

Definition 2.2. Let ϕ : X → R be a locally Lipschitz functional and ψ : X → R ∪ {∞} be proper,
convex and lower semicontinuous. We say that u ∈ X is a critical point of ϕ+ ψ if

ϕ0(u; v − u) + ψ(v)− ψ(u) ≥ 0 ∀v ∈ X,

where ϕ0(u; z) is the generalized directional derivative of ϕ at the point u ∈ X in the direction z ∈ X.
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Proposition 2.3. An element u ∈ X is a critical point of ϕ+ ψ if and only if 0 ∈ ∂ϕ(u) + ∂ψ(u),
where ∂ϕ is the Clarke generalized subdifferential and ∂ψ is the subdifferential in the sense of convex
analysis.

Throughout the paper, we denote by ∂ϕ (or ∂ϕ̂) the Clarke generalized subdifferential of ϕ (or ϕ̂,
which will be clear from the context) and by ∂ψ the subdifferential of ψ in the sense of convex analysis.

Now, we introduce the degree map that we will use in the sequel. For a fuller treatment we refer the
reader to [1, 6, 24,33] and the references therein.
Since X is a reflexive Banach space, by the Troyanski renorming theorem (see [21, Theorem A.3.9]),
we can equivalently renorm X in such a way that both X and X∗ are locally uniformly convex
with Fréchet differentiable norms. Therefore, in the following, we suppose that both X and X∗ are
reflexive and locally uniformly convex.
From [33, Theorem 2.46, Proposition 2.70], the duality map F : X → X∗, defined by

F(u) =
{
u∗ ∈ X∗ : 〈u∗, u〉 = ‖u‖2 = ‖u∗‖2∗

}
,

is single-valued, strictly monotone, a homeomorphism and a (S+) operator.
An operator A : X → X∗ satisfies the (S)+-property if for every sequence (un)n ⊆ X such that

un ⇀ u in X and lim sup
n→∞

〈A(un), un − u〉 ≤ 0,

it follows that
un → u in X.

A multifunction G : X → 2X
∗

belongs to class (P ) if it is upper semicontinuous with closed, convex
nonempty values and such that

G(A) =
⋃
u∈A

G(u)

is relatively compact in X∗ for any bounded subset U of X.
Let U be a bounded open subset in X, S : U → X∗ a bounded, demicontinuous operator of type (S)+

and A : D(A) ⊆ X → 2X
∗\ {∅} a maximal monotone operator with 0 ∈ A(0), then for every λ > 0,

the operator S+Aλ is a bounded, demicontinuous operator of type (S)+. For every u∗ /∈ (S+A)(∂U),
deg0(S +A,U, u∗) is defined by

deg0(S +A,U, u∗) = deg(S)+(S +Aλ, U, u
∗)

for all sufficiently small λ > 0, where Aλ(u) = − 1
λF(v − u) is everywhere defined, single valued,

bounded and monotone.
In addition we have a multifunction G in the class (P ), then for u∗ /∈ (S +A+G)(∂U), deg(S +A+
G,U, u∗) is defined by

deg(S +A+G,U, u∗) = deg0(S +A+ gε, U, u
∗)

for ε > 0 small, where gε is a continuous ε−approximate selection of G (see [12, Cellina’s approximate
selection Theorem], [23, Theorem 4.41]).
Concerning the degree maps deg(S)+ and deg0 we refer the reader to [6], while for the degree map deg

we refer to [24]. The degree map preserves the usual properties: normalization, domain additivity,
homotopy invariance, excision and solution property. One of such properties is the homotopy
invariance with respect to a certain class of admissible homotopies. Now we introduce the admissible
homotopies for the maps S, A and G (see [1]).

Definition 2.4. The admissible homotopies for the maps S, A and G are defined in the next way.

• A one-parameter family {St}t∈[0,1] of maps from U into X∗ is a homotopy of class (S)+,

if for any (un)n ⊆ U such that un ⇀ u in X, and for any (tn)n ⊆ [0, 1] with tn → t for
which

lim sup
n→∞

〈Stn(un), un − u〉 ≤ 0,
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we have that un → u in X and Stn(un) ⇀ St(u) in X∗.
• A family {At}t∈[0,1] of maximal monotone maps from X into X∗ such that (0, 0) ∈ GrAt

(graph of At) for all t ∈ [0, 1] is a pseudomonotone homotopy, if it satisfies the following
mutually equivalent conditions

– if tn → t in [0, 1], un ⇀ u in X, u∗n ⇀ u∗ in X∗, u∗n ∈ Atn(un) and

lim sup
n→∞

〈u∗n, un − u〉 ≤ 0,

then (u, u∗) ∈ GrAt and 〈u∗n, un〉 → 〈u∗, u〉;
– (t, u∗) 7→ ξ(t, u∗) = (At + F)

−1
(u∗) is continuous from [0, 1]×X∗ into X, where both

X and X∗ are equipped with their respective norm topologies;

– for every u∗ ∈ X∗, t 7→ ξ(t, u∗) = (At + F)
−1

(u∗) is continuous from [0, 1] into X
endowed with the norm topology;

– if tn → t in [0, 1] and u∗ ∈ At(u), then there exist sequences (un)n and (u∗n)n such that
u∗n ∈ Atn(un), un → u in X and u∗n → u∗ in X∗.

• A one-parameter family {Gt}t∈[0,1] of multifunctions Gt : U → 2X
∗\ {∅} is a homotopy of

class (P ) if (t, u) 7→ Gt(u) is usc from [0, 1]×U into 2X
∗\ {∅}, for every (t, u) ∈ [0, 1]×U ,

Gt(u) ⊆ X∗ is closed and convex and⋃{
Gt(u) : t ∈ [0, 1], u ∈ U

}
is compact in X∗.

Therefore the homotopy invariance of the degree map ”deg”, can be expressed in the following way.
If {St}t∈[0,1] is a homotopy of class (S)+ such that each St is bounded, {At}t∈[0,1] is a pseudomonotone
homotopy of maximal monotone operators with 0 ∈ At(0) for all t ∈ [0, 1], {Gt}t∈[0,1] is a homotopy
of class (P ) and u∗ : [0, 1]→ X∗ is a continuous map such that

u∗t /∈ (St +At +Gt) (∂U)

for all t ∈ [0, 1], then deg(St + At +Gt, U, u
∗
t ) is independent of t ∈ [0, 1]. (This is the meaning of

admissible homotopy for us in this paper.)
Now, we identify another class of pseudomonotone homotopies (see [1, Lemma 15]).

Lemma 2.5. Let A : X → X∗ be a bounded demicontinuous operator of type (S)+ and ψ ∈ Γ0(X).
Then

(t, u) 7→ h(t, u) = A(u) + t∂ψ(u), (t, u) ∈ [0, 1]×X
is a pseudomonotone homotopy.

3. Fractional weighted eigenvalue problems

Let Ω ⊆ RN (N > 1), be a bounded domain with a C2−boundary ∂Ω, p > 1 and s ∈ (0, 1) are real
numbers such that N > ps. In this section we focus on the study of the following weighted fractional
eigenvalue problem (see [15,22])

(3.1)

{
(−∆)sp u = λm(x)|u|p−2u in Ω,

u = 0 on Ωc,

where m ∈ L∞(Ω)+, m 6= 0 is a weight function, λ a real parameter and Ωc = RN \Ω. The Dirichlet
boundary condition is given in Ωc and not simply on ∂Ω, accordingly with the nonlocal character of
the operator (−∆)sp . For all 1 ≤ q ≤ ∞, ‖ · ‖q denotes the standard norm of Lq(Ω) (or Lq(RN )),
which will be clear from the context.
As a first step, we fix a functional-analytical framework. For all measurable functions u : RN → R
we set

[u]ps,p =

∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy.
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Then we define the fractional Sobolev spaces (see [19]) as follows

W s,p(RN ) = {u ∈ Lp(RN ) : [u]s,p <∞},

W s,p
0 (Ω) = {u ∈W s,p(RN ) : u(x) = 0 a.e. in Ωc},

this last one is a separable, uniformly convex (hence, reflexive) Banach space, endowed with the

norm ||u|| = [u]s,p. We denote by (W−s,p
′
(Ω), || · ||∗) the topological dual of (W s,p

0 (Ω), || · ||) and

by 〈·, ·〉 the duality pairing between W−s,p
′
(Ω) and W s,p

0 (Ω). The critical exponent is defined as

p∗s = Np
N−ps , and the embedding W s,p

0 (Ω) ↪→ Lq(Ω) is continuous for all q ∈ [1, p∗s] and compact for

all q ∈ [1, p∗s) (in particular, we will use q = p), see [19, Corollary 7.2]. Furthermore, we introduce
the positive order cone

W s,p
0 (Ω)+ = {u ∈W s,p

0 (Ω) : u(x) ≥ 0 for a.e. x ∈ Ω},

which has an empty interior with respect to the W s,p
0 (Ω)− topology.

Remark 3.1. Since W s,p
0 (Ω) is a reflexive Banach space, applying the Troyanski’s renorming

theorem, such space can be equivalently renormed so that both W s,p
0 (Ω) and W−s,p

′
(Ω) are locally

uniformly convex (and thus also strictly convex) and with Fréchet differentiable norms.

The operator (−∆)sp can be represented by the nonlinear operator A : W s,p
0 (Ω)→W−s,p

′
(Ω) defined

for all u, v ∈W s,p
0 (Ω) by

(3.2) 〈A(u), v〉 =

∫
R2N

(u(x)− u(y))p−1(v(x)− v(y))

|x− y|N+ps
dxdy.

Moreover, we define the operators J̃λ,Km : W s,p
0 (Ω)→W−s,p

′
(Ω) by

(3.3) 〈Km(u), v〉 =

∫
Ω

m(x)|u(x)|p−2u(x)v(x) dx, with m ∈ L∞(Ω)+,m 6= 0,

(3.4) 〈J̃λ(u), v〉 = 〈A(u)− λKm(u), v〉, with λ ∈ R,

for any v ∈W s,p
0 (Ω). In the sequel we will change the function m in (3.3) with a suitable function,

but the definition of the operator K(·) remains the same. In the following lemma some important
features of such operators are stated.

Lemma 3.2. The operators A,Km, J̃λ : W s,p
0 (Ω)→W−s,p

′
(Ω), defined above, satisfy the following

properties:

(i) A : W s,p
0 (Ω) → W−s,p

′
(Ω) is a maximal monotone, bounded and continuous operator of

type (S)+,

(ii) Km : W s,p
0 (Ω)→W−s,p

′
(Ω) is a bounded, continuous and compact operator,

(iii) J̃λ : W s,p
0 (Ω) → W−s,p

′
(Ω) is a bounded, continuous operator that satisfies the condition

(S)+ .

Proof. We start proving the first assertion. The operator A is odd, (p − 1)−homogeneous, and
satisfies for all u ∈W s,p

0 (Ω)

〈A(u), u〉 = ||u||p, ||A(u)||∗ ≤ ||u||p−1.

Hence, A is bounded (see [25]). Since W s,p
0 (Ω) is uniformly convex, by [37, Proposition 1.3], A is an

operator of type (S)+. Now we show that A is a continuous operator. In order to do this, we define

a support mapping f(u) = A(u)
||u||p−2 for every u ∈ ∂B1(0) ⊂W s,p

0 (Ω) (for definition and properties we

refer the reader to [18]). Recalling Remark 3.1, we obtain that the norm of W−s,p
′
(Ω) is Fréchet

differentiable and, applying [18, Theorem 1], we obtain that f : ∂B1(0) ⊂ W s,p
0 (Ω) → ∂B1(0) ⊂
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W−s,p
′
(Ω) is continuous. Hence, by definition of f , A is continuous in W s,p

0 (Ω) \ {0}. Indeed, we
suppose that vn = un

||un|| strongly converges to v = u
||u|| in W s,p

0 (Ω). Hence,

A(un) = A(||un||vn) = ||un||p−1A(vn) = ||un||p−1f(vn)→ ||u||p−1f(v)

= ||u||p−1f

(
u

||u||

)
= ||u||p−2f(u) = A(u)

as n goes to infinity. The continuity in the origin is trivial, then A is continuous in the whole space
W s,p

0 (Ω). By [38, Lemma 3.3], A is strictly monotone and by [21, Corollary 1.4.2] it is maximal
monotone.
Now we show the second point. By Schwarz and Hölder inequalities, we get |〈Km(u), v〉| ≤
||m||∞||u||p−1||v||, hence ||Km(u)||∗ ≤ c||u||p−1. Therefore, Km is bounded. Let (un)n ⊂ W s,p

0 (Ω)
be bounded, we may assume, passing to a subsequence, un ⇀ u in W s,p

0 (Ω), un → u in Lp(Ω), hence,
by [5, Theorem 4.9], up to a subsequence, un(x) → u(x) a.e. on Ω and |un(x)| ≤ h(x) a.e. on Ω,
with h ∈ Lp(Ω). Now, applying the dominated convergence Theorem, we obtain that

〈Km(un), v〉 → 〈Km(u), v〉 as n→∞.

Hence, Km is compact. Similarly, we see that Km is also continuous.
Using the previous fact, we get the third assertion. From (i) and (ii) we obtain that J̃λ is a bounded,

continuous operator. Moreover, by [20, Lemma 1.2] and using again (i)-(ii) we get that J̃λ is an
operator of type (S)+. �

Definition 3.3. A function u ∈W s,p
0 (Ω) is called a (weak) solution of (3.1) if for all v ∈W s,p

0 (Ω),
we have

〈A(u), v〉 = λ〈Km(u), v〉.

In an equivalent way, u ∈W s,p
0 (Ω) solves (3.1) if J̃λ(u) = 0 in W−s,p

′
(Ω).

We say that λ is an eigenvalue of (−∆)sp related to the weight m if (3.1) has a nontrivial solution

u ∈W s,p
0 (Ω) \ {0} and such solution u is called an eigenfunction corresponding to the eigenvalue λ.

In the following proposition we focus on the properties of the first eigenpair of (3.1), that will be
required in the sequel to prove our main result (see [15,22]).

Proposition 3.4. Let m ∈ L∞(Ω)+, m 6= 0. The first eigenvalue is given by

λ1(m) = inf
u∈W s,p

0 (Ω)\{0}

||u||p∫
Ω
m(x)|u|p dx

.

Then,

(i) λ1(m) is positive, simple, isolated and it is attained by some positive a.e. eigenfunction
u1 ∈W s,p

0 (Ω) such that
∫

Ω
m(x)|u|p dx = 1;

(ii) if u is an eigenfunction of (3.1) associated with an eigenvalue λ > λ1(m), then u must be
nodal (sign-changing);

(iii) the first eigenfunction satisfies the so-called unique continuation property (u.c.p.) and
hence, we have the strict monotonicity of the map m 7→ λ1(m).

Proof. We refer to [15,22] for the proof of i) and ii).
We show the third point. Let m1,m2 ∈ L∞(Ω)+ be such that m1,m2 6= 0, m1(x) ≤ m2(x) for a.e.
x ∈ Ω, m1 6≡ m2. Let u1 and u2 the first eigenfunctions corresponding to the weights m1 and m2,
respectively. By i) such eigenfunctions are positive a.e., hence u1 and u2 clearly satisfy the u.c.p.
From the definition of λ1, we obtain

λ1(m1) =
||u1||p∫

Ω
m1(x)up1 dx

>
||u1||p∫

Ω
m2(x)up1 dx

≥ λ1(m2),

so λ1(m1) > λ1(m2). �
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When m ≡ 1 we will just write λ1(1) = λ1.

The following result about the degree of the operator J̃λ is fundamental for the sequel, whose proof
closely follows that of [20, Theorem 3.7]. Moreover we point out that J̃λ is a monotone map, so we
can apply the properties of the degree for generalized monotone maps (see [20]).

Proposition 3.5. Let A,Km, J̃λ : W s,p
0 (Ω)→W−s,p

′
(Ω) be defined by (3.2), (3.3), (3.4) and δ > 0.

Then

deg(J̃λ, Br(0), 0) = 1 for λ ∈ (0, λ1(m)),

and

deg(J̃λ, Br(0), 0) = −1 for λ ∈ (λ1(m), λ1(m) + δ).

Proof. From the variational characterization of λ1(m) we have that

〈J̃λ(u), u〉 > 0,

for λ ∈ (0, λ1(m)) and any u ∈ W s,p
0 (Ω) with ||u|| 6= 0. Hence, by [20, Theorem 1.5], the degree

deg(J̃λ, Br(0), 0) is well defined for any λ ∈ (0, λ1(m)) and any ball Br(0) ⊂ W s,p
0 (Ω), moreover,

applying [20, Theorem 1.6], we obtain

(3.5) deg(J̃λ, Br(0), 0) = 1 for λ ∈ (0, λ1(m)).

Now we show that deg(J̃λ, Br(0), 0) = −1 for λ ∈ (λ1(m), λ1(m) + δ). On account of Proposition 3.4
there exists δ > 0 such that the interval (λ1(m), λ1(m) + δ) does not include any eigenvalue for the

problem (3.1). Therefore the degree deg(J̃λ, Br(0), 0) is well defined also for λ ∈ (λ1(m), λ1(m) + δ).

Let us compute Ind(J̃λ, 0) for λ ∈ (λ1(m), λ1(m) + δ). We introduce a function φ : R→ R by

φ(t) =

{
0 if t ≤ k

2δ
λ1(m) (t− 2k) if t ≥ 3k,

for a fixed number k > 0. We note that φ(t) is continuously differentiable, positive and strictly
convex in (k, 3k).
Now we can introduce the functional

Φλ(u) =
1

p
〈A(u), u〉 − λ

p
〈Km(u), u〉+ φ

(
1

p
〈A(u), u〉

)
,

that is Fréchet differentiable and its critical point u0 ∈W s,p
0 (Ω) coincides to a solution of the equation

A(u0)− λ

1 + φ′
(

1
p 〈A(u0), u0〉

)Km(u0) = 0.

Nevertheless, since λ ∈ (λ1(m), λ1(m) + δ), the only nontrivial critical points of Φλ turn up if

(3.6) φ′
(

1

p
〈A(u0), u0〉

)
=

λ

λ1(m)
− 1.

Owing to the definition of φ it follows that 1
p 〈A(u0), u0〉 ∈ (k, 3k) and because of (3.6) and the

simplicity of λ1(m), it deduces that either u0 = −u1 or u0 = u1, where u1 > 0 is the first eigenfunction
(which is not necessarily normed by 1). Therefore, we may conclude that for λ ∈ (λ1(m), λ1(m) + δ)
the derivative Φ′λ has precisely three isolated critical points {−u1, 0, u1} (in the sense of [20, Definition
1.2]).
We now show that Φλ is weakly lower semicontinuous. Indeed, suppose that un ⇀ ũ0 in W s,p

0 (Ω).
Owing to the compactness of Km, we get

(3.7) 〈Km(un), un〉 → 〈Km(ũ0), ũ0〉,

and recalling that lim infn→∞ ||un|| ≥ ||ũ0||, (3.7) holds, and φ is nondecreasing, we obtain

lim inf
n→∞

[
1

p
〈A(un), un〉 −

λ

p
〈Km(un), un〉+ φ

(
1

p
〈A(un), un〉

)]
≥ Φλ(ũ0).
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Furthermore, Φλ is coercive, i.e. lim||u||→∞ Φλ(u) =∞. Indeed, we get

Φλ(u) =
1

p
〈A(u), u〉 − λ1(m)

p
〈Km(u), u〉+

λ1(m)− λ
p

〈Km(u), u〉+ φ

(
1

p
〈A(u), u〉

)
and, by the variational characterization of λ1(m),

(3.8) 〈A(u), u〉 − λ1(m)〈Km(u), u〉 ≥ 0

for any u ∈W s,p
0 (Ω). From (3.8) we have that

λ1(m)− λ
p

〈Km(u), u〉+ φ

(
1

p
〈A(u), u〉

)
≥ λ1(m)− λ

pλ1(m)
〈A(u), u〉+ φ

(
1

p
〈A(u), u〉

)
≥ − δ

pλ1(m)
〈A(u), u〉+

2δ

λ1(m)

(
1

p
〈A(u), u〉 − 2k

)
→∞

for ||u|| → ∞ because of the definition of φ. Therefore we obtain the coercivity. We observe that Φλ
is even, the minimum of Φλ is achieved exactly in two points −u1, u1, while the origin is an isolated
critical point, but it is not a minimum. Indeed, by definition of Φλ and φ, we get that

Φλ(tu1) =

(
1

p
〈A(u1), u1〉 −

λ

p
〈Km(u1), u1〉

)
tp + φ

(
tp

p
〈A(u1), u1〉

)
=
tp

p
(λ1(m)− λ)〈Km(u1), u1〉 < 0 ∀t ∈ (0, t0).

In accordance with [20, Theorem 1.8] we get

Ind(Φ′λ,−u1) = Ind(Φ′λ, u1) = 1.

At the same time, we have 〈Φ′λ(u), u〉 > 0 for any u ∈W s,p
0 (Ω), ||u|| = κ, with κ > 0 large enough.

Indeed

〈Φ′λ(u), u〉 = 〈A(u), u〉 − λ〈Km(u), u〉+ φ′
(

1

p
〈A(u), u〉

)
〈A(u), u〉

= 〈A(u), u〉 − λ1(m)〈Km(u), u〉+ φ′
(

1

p
〈A(u), u〉

)
〈A(u), u〉 − λ− λ1(m)

φ′
(

1
p 〈A(u), u〉

) 〈Km(u), u〉


≥ 2δ

λ1(m)

(
〈A(u), u〉 − λ1(m)

p
〈Km(u), u〉

)
→∞ as ||u|| → ∞.

We again used the variational characterization of λ1(m) and the definition of φ. Then, [20, Theorem
1.6] and 〈Φ′λ(u), u〉 > 0 imply

deg(Φ′λ, Bκ(0), 0) = 1.

We pick κ > 0 so large that ±u1 ∈ Bκ(0). By [20, Theorem 1.7] and Ind(Φ′λ,−u1) = Ind(Φ′λ, u1) = 1,
and deg(Φ′λ, Bκ(0), 0) = 1, we have

(3.9) Ind(Φ′λ, 0) = −1.

Furthermore, by the definition of φ, we have

(3.10) deg(J̃λ, Br(0), 0) = Ind(Φ′λ, 0)

for r > 0 small enough. Then we deduce from (3.9), (3.10), that

Ind(J̃λ, 0) = −1 for λ ∈ (λ1(m), λ1(m) + δ).

It follows from the previous relations that

deg(J̃λ, Br(0), 0) = −1.

�
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4. The obstacle problem at zero

In this section, we study the obstacle problem at 0 and we show that such problem admits at least
two nontrivial solutions. In order to do this, we need to prove some facts about the degree theory,
extending the results proved in the nonlinear local case in [1]. For this purpose, let Ω ⊆ RN be a
bounded domain with a C2−boundary ∂Ω, p > 1 and s ∈ (0, 1) are real numbers such that N > ps,
and recalling (3.2), we can rewrite the obstacle problem (1.2) at 0 in the following way

(4.1)


〈A(u), v − u〉 ≥

∫
Ω
w(x)(v(x)− u(x)) dx for all v ∈W s,p

0 (Ω)+,

w(x) ∈ N(u) = {w̃ ∈ Lp′(Ω) : w̃(x) ∈ ∂j(x, u(x)) for a.e. x ∈ Ω},
u ∈W s,p

0 (Ω)+.

We assume the following hypotheses on the nonsmooth potential

(H): j : Ω× R→ R is a function such that j(·, 0) = 0 a.e. on Ω, j(·, t) is measurable in Ω for all
t ∈ R, j(x, ·) is locally Lipschitz in R for a.e. x ∈ Ω. Moreover
(i) |ξ| ≤ a(x)+ c|t|p−1 with a ∈ L∞(Ω)+, c > 0, for a.e. x ∈ Ω, all t ∈ R, and all ξ ∈ ∂j(x, t),

(ii) there exists θ ∈ L∞(Ω)+ such that θ ≤ λ1, θ 6≡ λ1, and

0 6 lim inf
t→+∞

ξ

tp−1
6 lim sup

t→+∞

ξ

tp−1
6 θ(x)

uniformly for a.e. x ∈ Ω and all ξ ∈ ∂j(x, t);
(iii) there exist η, η̂ ∈ L∞(Ω)+ such that λ1 ≤ η, η 6≡ λ1, and

η(x) 6 lim inf
t→0+

ξ

tp−1
6 lim sup

t→0+

ξ

tp−1
6 η̂(x)

uniformly for a.e. x ∈ Ω and all ξ ∈ ∂j(x, t).

Remark 4.1. We denote by λ1 the first eigenvalue of (−∆)sp with Dirichlet conditions in Ω (see

Section 3), hence (H) (ii)-(iii) invoke nonuniform nonresonance conditions at +∞ and at 0+. The
condition at +∞ is from below λ1 and the condition at 0+ is from above with respect to λ1.

Example 4.2. A nonsmooth locally Lipschitz potential satisfying hypotheses (H) is defined as
follows, which for simplicity we dropped the x−dependence:

j(t) =

{
η
p |t|

p − 1
p cos |t|p if |t| ≤ 1,

θ
p |t|

p + η−θ
p −

1
p cos 1 if |t| > 1,

with θ < λ1 < η.

Now we define the integral functional Ĵ : Lp(Ω)→ R by

(4.2) Ĵ(u) =

∫
Ω

j(x, u(x)) dx for all u ∈ Lp(Ω).

From (H) (i) such functional Ĵ is Lipschitz continuous on bounded sets, hence it is locally Lipschitz
(see [21, Theorem 1.3.10]).

Let N : Lp(Ω)→ 2L
p′ (Ω) be defined by

N(u) = {w ∈ Lp
′
(Ω) : w(x) ∈ ∂j(x, u(x)) a.e. on Ω}, u ∈ Lp(Ω).

Let us mention an important result about N , for the proof of the following proposition we refer
to [1, Proposition 3, Corollary 4].

Proposition 4.3. Let (H) (i) hold. Therefore

• N has nonempty, weakly compact and convex values in Lp
′
(Ω) and it is upper semicontinuous

from Lp(Ω) with the norm topology into Lp
′
(Ω) with the weak topology.

• Moreover, N : W s,p
0 (Ω)→ 2W

−s,p′ (Ω) \ {∅} is a multifunction of class (P ).
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For the second point we take into account that W s,p
0 (Ω) is embedded compactly and densely in

Lp(Ω), and Lp
′
(Ω) is embedded compactly and densely in W−s,p

′
(Ω).

Now we can introduce the Euler functional associated to problem (4.1), which is given for u ∈W s,p
0 (Ω)

by

ϕ : W s,p
0 (Ω)→ R ∪ {+∞} ϕ(u) = ϕ̂(u) + ψ(u)

where

ϕ̂(u) =
||u||p

p
−
∫

Ω

j(x, u(x)) dx and ψ(u) = iW s,p
0 (Ω)+(u) =

{
0 if u ∈W s,p

0 (Ω)+

+∞ if u /∈W s,p
0 (Ω)+.

From (H) (i), ϕ̂ is locally Lipschitz (see [21, Theorem 1.3.10]). Furthermore, W s,p
0 (Ω)+ ⊆W s,p

0 (Ω)
is closed, convex, hence ψ ∈ Γ0(W s,p

0 (Ω)).
The next Lemma emphasizes the importance of the hypothesis (H) (ii) (for the proof we refer
to [27, Proposition 2.9]).

Lemma 4.4. Let θ ∈ L∞(Ω)+ be such that θ 6 λ1, θ 6≡ λ1, and ψ ∈ C1(W s,p
0 (Ω)) be defined by

τ(u) = ‖u‖p −
∫

Ω

θ(x)|u|p dx.

Then there exists θ0 ∈ (0,∞) such that for all u ∈W s,p
0 (Ω)

τ(u) > θ0‖u‖p.

The next proposition shows the existence of a minimizer, which belongs to W s,p
0 (Ω)+.

Proposition 4.5. Let (H) (i)-(ii) hold, then there exists u0 ∈W s,p
0 (Ω)+ such that

ϕ(u0) = inf
u∈W s,p

0 (Ω)
ϕ(u).

Proof. By (H) (ii), given ε > 0, there exists Mε > 0 such that for a.e. x ∈ Ω, all t ≥ Mε and all
ξ ∈ ∂j(x, t), we obtain

(4.3) ξ ≤ (θ(x) + ε)tp−1.

Moreover, by (H) (i), we can find βε ∈ L∞(Ω)+ such that for a.e. x ∈ Ω , all t ∈ [0,Mε] and all
ξ ∈ ∂j(x, t), we get

(4.4) |ξ| ≤ βε(x).

By Rademacher’s theorem for a.e. x ∈ Ω, j(x, ·) is differentiable almost everywhere and

d

dr
j(x, r) ∈ ∂j(x, r).

Therefore, for a.e. x ∈ Ω and for all t ≥ 0, we have

j(x, t) =

∫ t

0

d

dr
j(x, r)dr

≤
∫ t

0

[(θ(x) + ε)rp−1 + βε(x)] dr (by (4.3), (4.4))

=
1

p
(θ(x) + ε)tp + βε(x)t.(4.5)
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We stress that ϕ coincides with ϕ̂ for all u ∈W s,p
0 (Ω)+, since ψ(u) = 0. Moreover, by (4.5) we have

for every u ∈W s,p
0 (Ω)+

ϕ(u) =
1

p
||u||p −

∫
Ω

j(x, u(x)) dx

>
‖u‖p

p
−
∫

Ω

(
βε(x)u+ (θ(x) + ε)

|u|p

p

)
dx

>
1

p

(
‖u‖p −

∫
Ω

θ(x)|u|p dx
)
− ‖βε‖∞‖u‖1 −

ε

p
‖u‖pp

>
1

p

(
θ0 −

ε

λ1

)
‖u‖p − c‖u‖ (θ0, c > 0),

where in the final passage we have used Lemma 4.4, and the continuous embedding W s,p
0 (Ω) ↪→ L1(Ω).

If we choose ε ∈ (0, θ0λ1), the latter tends to +∞ as ‖u‖ → ∞, hence ϕ is coercive in W s,p
0 (Ω).

Moreover, recalling the definition of ϕ, the functional u 7→ ‖u‖p/p is convex, hence weakly lower

semicontinuous in W s,p
0 (Ω), while Ĵ is continuous in Lp(Ω), which, by the compact embedding

W s,p
0 (Ω) ↪→ Lp(Ω) and the Eberlein-Smulyan theorem, implies that Ĵ is sequentially weakly continu-

ous in W s,p
0 (Ω). Hence, ϕ is sequentially weakly lower semicontinuous on W s,p

0 (Ω). Therefore, by
the Weierstrass theorem, there exists u0 ∈W s,p

0 (Ω) such that ϕ(u0) = infu∈W s,p
0 (Ω) ϕ(u). �

Remark 4.6. By Proposition 4.5 we observe that u0 is a minimizer of ϕ̂, hence, by Lemma 2.1 (vi)

0 ∈ ∂ϕ̂(u0), i.e. there exists w ∈ N(u0) such that A(u0) = w in W−s,p
′
(Ω). By [27, Definition 2.4]

u0 is a weak solution of (−∆)sp u ∈ ∂j(x, u) in Ω, u = 0 in Ωc. Moreover, exploiting (H) (i) and (iii),
and arguing as in the proof of Proposition 4.8, we deduce that

|ξ| ≤ c1|t|p−1 for some c1 > 0,

for a.a. x ∈ Ω, all t ∈ R and all ξ ∈ ∂j(x, t). Therefore, from [27, Lemma 2.5], we obtain that u0 ∈
L∞(Ω), hence, w ∈ L∞(Ω). By [27, Lemma 2.7] there exist α ∈ (0, s], C > 0 such that u0 ∈ Cα(Ω)
with ||u0||Cα(Ω) ≤ C(1 + ||u0||). In particular, by [26, Theorem 1.1], if p ≥ 2 then u0 ∈ Cαδ (Ω) and it

holds the following estimate ||u0||Cαδ (Ω) ≤ C(1+ ||u0||), where Cαδ (Ω) = {u ∈ Cα(Ω) : u/δs ∈ Cα(Ω)}
with α ∈ (0, 1) and δ(x) = dist(x,Ωc).

A fundamental result for the sequel is a generalization of Amann’s theorem to operators which are
the sum of a Clarke generalized subdifferential and a subdifferential in the sense of convex analysis,
that allow us to know the degree in an isolated local minimum (see [1, Theorem 8]). In order to
do this, it is better clarifying some important facts. First of all, we observe that A is the Fréchet

derivative of u 7→ ||u||p
p , viewed as a functional on W s,p

0 (Ω), moreover we know by Lemma 3.2 that A

is a bounded, (S)+ operator. We set J = Ĵ |W s,p
0 (Ω) and ϕ̂ = ||u||p

p − J , then it makes sense to talk

about the degree of ∂ϕ̂ = A−N with

N = ∂J = ∂Ĵ

(see [21, Proposition 1.3.17], for the last equality). Now we can state the extension of Amann’s
theorem for our problem.

Proposition 4.7. Let ϕ̂ : W s,p
0 (Ω) → R ϕ̂(u) = ||u||p

p − J(u) be locally Lipschitz and ψ ∈
Γ0(W s,p

0 (Ω)), ψ ≥ 0. If u0 ∈W s,p
0 (Ω) is an isolated minimizer of ϕ̂+ψ, then there exists r > 0 such

that

deg(∂ϕ̂+ ∂ψ,Br(u0), 0) = 1.

Now, exploiting the hypothesis (H) (iii), we prove that for small balls the degree map of ∂ϕ̂+ ∂ψ is
equal to −1.

Proposition 4.8. Let (H) hold. Then there exists ρ0 > 0 such that for all 0 < ρ ≤ ρ0, we obtain

deg(∂ϕ̂+ ∂ψ,Bρ(0), 0) = −1.
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Proof. Let m ∈ L∞(Ω)+ be such that η(x) ≤ m(x) ≤ η̂(x) a.e. on Ω. Let look at the homotopy

h : [0, 1]×W s,p
0 (Ω)→ 2W

−s,p′ (Ω) \ {∅} defined by

h(t, u) = A(u)− tN(u)− (1− t)Km(u) + t∂ψ(u).

From Proposition 4.3 and Lemma 3.2 (i)-(ii), we obtain that h1(t, u) = A(u) − (1 − t)Km(u) for
(t, u) ∈ [0, 1] ×W s,p

0 (Ω) is a (S+)− homotopy, h2(t, u) = −tN(u) for (t, u) ∈ [0, 1] ×W s,p
0 (Ω) is a

(P )− homotopy and h3(t, u) = t∂ψ(u) for (t, u) ∈ [0, 1]×W s,p
0 (Ω) is a pseudomonotone homotopy

(see [1]), hence h is an admissible homotopy (see Section 2).
Claim: There exists ρ0 > 0 such that for all t ∈ [0, 1], all 0 < ρ ≤ ρ0 and all u ∈ ∂Bρ(0) ⊆W s,p

0 (Ω)
we get

0 /∈ h(t, u).

By contradiction, we can find (tn)n ⊆ [0, 1] and un ∈ C, n ≥ 1, such that

tn → t in [0, 1], ||un|| → 0

and

(4.6) 0 ∈ A(un)− tnN(un)− (1− tn)Km(un) + tn∂ψ(un), n ≥ 1.

We set

vn =
un
||un||

, n ≥ 1,

hence, passing to a suitable subsequence, we can deduce that

vn ⇀ v in W s,p
0 (Ω), vn → v in Lp(Ω) and vn(x)→ v(x) a.e. in Ω,

hence v ≥ 0 a.e. in Ω.
From (4.6), we have that there exists wn ∈ N(un) such that

−A(un) + tnwn + (1− tn)Km(un) ∈ tn∂ψ(un),

therefore,

〈A(un), v̄ − un〉 − tn
∫

Ω

wn(v̄ − un) dx− (1− tn)

∫
Ω

m|un|p−2un(v̄ − un) dx ≥ 0.

for all v̄ ∈W s,p
0 (Ω)+. Dividing the last inequality with ||un||p, we have

(4.7) 〈A(vn), v̂ − vn〉 − tn
∫

Ω

wn
||un||p−1

(v̂ − vn) dx− (1− tn)

∫
Ω

m|vn|p−2vn(v̂ − vn) dx ≥ 0,

for all v̂ ∈W s,p
0 (Ω)+.

By (H) (iii), there exists δ > 0 such that for a.e. x ∈ Ω, all t with |t| < δ and all ξ ∈ ∂j(x, t), we
obtain

(4.8) |ξ| ≤ (η̂(x) + 1)|t|p−1.

While, from (H) (i), for a.e. x ∈ Ω, and all t ∈ R with |t| ≥ δ and all ξ ∈ ∂j(x, t) we get

(4.9) |ξ| ≤ a(x) + c|t|p−1 ≤
(
a(x)

δp−1
+ c

)
|t|p−1.

The expressions (4.8) and (4.9) imply that for a.e. x ∈ Ω, all t ∈ R and all ξ ∈ ∂j(x, t), we obtain

(4.10) |ξ| ≤ c1|t|p−1 for some c1 > 0.

Therefore, from (4.10), we deduce that
(

wn
||un||p−1

)
n
⊆ Lp

′
(Ω) is bounded and, passing to a subse-

quence, we can state that
wn

||un||p−1
⇀ f0 in Lp

′
(Ω).

For every ε > 0 and n ≥ 1, we define the set

C+
ε,n =

{
x ∈ Ω : un(x) > 0, η(x)− ε ≤ wn(x)

(un(x))p−1
≤ η̂(x) + ε

}
.
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Since ||un|| → 0, we may suppose (at least for a subsequence) that

un(x)→ 0 a.e. on Ω as n→∞.

Hence, by (H) (iii), we get

χC+
ε,n

(x)→ 1 a.e. on {v > 0}.
We observe that ∥∥∥∥(1− χC+

ε,n

) wn(x)

||un||p−1

∥∥∥∥
Lp′ ({v>0})

→ 0,

then

χC+
ε,n

wn(x)

||un||p−1
⇀ f0 in Lp

′
({v > 0)}.

Recalling the definition of the set C+
ε,n, we obtain

χC+
ε,n

(x)
wn(x)

||un||p−1
= χC+

ε,n
(x)

wn(x)

(un(x))p−1
(vn(x))p−1,

therefore

χC+
ε,n

(x)(η(x)− ε)(vn(x))p−1 ≤ χC+
ε,n

(x)
wn(x)

||un||p−1
≤ χC+

ε,n
(x)(η̂(x) + ε)(vn(x))p−1 a.e. on Ω.

Passing to weak limits in Lp
′
({v > 0}) and applying Mazur’s lemma, we have

(η(x)− ε)(v(x))p−1 ≤ f0(x) ≤ (η̂(x) + ε)(v(x))p−1 a.e. on {v > 0}.

Since ε > 0 is arbitrary, we let ε→ 0 and get

(4.11) η(x)(v(x))p−1 ≤ f0(x) ≤ η̂(x)(v(x))p−1 a.e. on {v > 0}.

Further, from (4.10), we get that

(4.12) f0(x) = 0 a.e. on {v = 0}.

Hence, the conditions (4.11) and (4.12) imply that

(4.13) f0(x) = g0(x)|v(x)|p−2v(x) a.e. on Ω,

with g0 ∈ L∞(Ω)+ such that η(x) ≤ g0(x) ≤ η̂(x) a.e. on Ω. In addition, if we set v̂ = v in (4.7),
then since ∫

Ω

wn(x)

||un||p−1
(vn(x)− v(x)) dx→ 0

and ∫
Ω

m(x)|vn(x)|p−2vn(x)(v(x)− vn(x)) dx→ 0,

from (4.7) we deduce

lim sup
n→∞

〈A(vn), vn − v〉 ≤ 0,

then

vn → v in W s,p
0 (Ω)

(We are using the fact that A is a (S)+-map). Hence, if n goes to ∞ in (4.7), we have

〈A(v), v̂ − v〉 − t
∫

Ω

g0|v|p−2v(v̂ − v) dx− (1− t)
∫

Ω

m|v|p−2v(v̂ − v) dx ≥ 0

for all v̂ ∈W s,p
0 (Ω)+. We set

ĝt = tg0 + (1− t)m,
hence we can rephrase the last inequality as

(4.14) 〈A(v), v̂ − v〉 −
∫

Ω

ĝt(x)(v(x))p−1(v̂(x)− v(x)) dx ≥ 0 for all v̂ ∈W s,p
0 (Ω)+.
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Let w ∈W s,p
0 (Ω)+ and set v̂ = v + w, then we can rewrite (4.14) as

〈A(v), w〉 ≥
∫

Ω

ĝt(x)(v(x))p−1w(x) dx for all w ∈W s,p
0 (Ω)+.

Hence, applying the strong maximum principle [25, Proposition 2.2], we obtain that v > 0 a.e. in Ω.
Let z ∈W s,p

0 (Ω), ε > 0 and consider (v+εz)+ = v+εz+(v+εz)−. We take v̂ = (v+εz)+ ∈W s,p
0 (Ω)+

in (4.14) and we get 〈
A(v)−Kĝt(v), (v + εz)+ − v

〉
≥ 0,

hence

(4.15) 〈A(v)−Kĝt(v), εz〉 ≥ −
〈
A(v)−Kĝt(v), (v + εz)−

〉
.

We observe that

(4.16) −
〈
A(v)−Kĝt(v), (v + εz)−

〉
= −

〈
A(v), (v + εz)−

〉
+

∫
Ω

ĝt(x)v(x)(v(x) + εz(x))− dx

and, since ĝt, v ≥ 0, we have that

(4.17)

∫
Ω

ĝtv(v + εz)− dx ≥ 0.

Now, we want to study the sign of −〈A(v), (v + εz)−〉. In order to do this, we introduce the sets

Ω−ε = {v + εz < 0} and Qε = {(x, y) ∈ Ω× Rε : v(x) + εz(x) < 0 ≤ v(y) + εz(y), v(x) > v(y)}.

By applying definition of A (3.2), we have that

−
〈
A(v), (v + εz)−

〉
= −

∫
R2N

(v(x)− v(y))p−1((v + εz)−(x)− (v + εz)−(y))

|x− y|N+ps
dxdy

=

∫
Ω−ε ×Ω−ε

(v(x)− v(y))p−1(v(x) + εz(x)− v(y)− εz(y))

|x− y|N+ps
dxdy

+

∫
Ω−ε ×(Ω\Ω−ε )

(v(x)− v(y))p−1(v(x) + εz(x))

|x− y|N+ps
dxdy −

∫
(Ω\Ω−ε )×Ω−ε

(v(x)− v(y))p−1(v(y) + εz(y))

|x− y|N+ps
dxdy

+

∫
Ω−ε ×Ωc

(v(x)− v(y))p−1(v(x) + εz(x))

|x− y|N+ps
dxdy −

∫
Ωc×Ω−ε

(v(x)− v(y))p−1(v(y) + εz(y))

|x− y|N+ps
dxdy

=

∫
Ω−ε ×Ω−ε

|v(x)− v(y)|p

|x− y|N+ps
dxdy + ε

∫
Ω−ε ×Ω−ε

(v(x)− v(y))p−1(z(x)− z(y))

|x− y|N+ps
dxdy

+

∫
Ω−ε ×(Ω−ε )c

(v(x)− v(y))p−1(v(x) + εz(x))

|x− y|N+ps
dxdy −

∫
(Ω−ε )c×Ω−ε

(v(x)− v(y))p−1(v(y) + εz(y))

|x− y|N+ps
dxdy

=

∫
Ω−ε ×Ω−ε

|v(x)− v(y)|p

|x− y|N+ps
dxdy + ε

∫
Ω−ε ×Ω−ε

(v(x)− v(y))p−1(z(x)− z(y))

|x− y|N+ps
dxdy

+ 2

∫
Ω−ε ×(Ω−ε )c

(v(x)− v(y))p−1(v(x) + εz(x))

|x− y|N+ps
dxdy

≥ ε
∫

Ω−ε ×Ω−ε

(v(x)− v(y))p−1(z(x)− z(y))

|x− y|N+ps
dxdy + 2

∫
Qε

(v(x)− v(y))p−1(v(x) + εz(x))

|x− y|N+ps
dxdy

= o(1)ε as ε→ 0+.

In the last passage we use the fact that |Ω−ε | → 0 as ε → 0+ for the first integral, while for the
second integral we note that for every (x, y) ∈ Qε

0 < v(x)− v(y) < ε(z(y)− z(x))

and

0 > v(x) + εz(x) ≥ v(x) + εz(x)− (v(y) + εz(y)) = (v(x)− v(y)) + ε(z(x)− z(y)) > ε(z(x)− z(y)).
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Then,
|(v(x)− v(y))p−1(v(x) + εz(x))| ≤ εp|z(x)− z(y)|p,

integrating,∫
Qε

|(v(x)− v(y))p−1(v(x) + εz(x))|
|x− y|N+ps

dxdy ≤ εp
∫
R2N

|(z(x)− z(y)|p

|x− y|N+ps
dxdy = o(ε).

Going back to (4.15), we have that

ε 〈A(v)−Kĝt(v), z〉 ≥ o(1)ε,

hence, taking the limit when ε→ 0, we get

〈A(v)−Kĝt(v), z〉 ≥ 0.

Since z ∈W s,p
0 (Ω) is arbitrary, it follows that A(v)−Kĝt(v) = 0, hence

A(v) = Kĝt(v),

therefore

(4.18)

{
(−∆)sp v(x) = ĝt(x)|v(x)|p−2v(x) in Ω

v(x) = 0 on Ωc.

Since ||v|| = 1, we deduce that v 6= 0 and hence v is an eigenfunction of the weighted eigenvalue
problem (4.18), with weight ĝt ∈ L∞(Ω)+. Exploiting these facts

ĝt(x) ≥ η(x) a.e. on Ω

and
λ1(ĝt) ≤ λ1(η) < λ1(λ1) = 1,

we discover that v cannot be the principal eigenfunction of the weighted eigenvalue problem with
weight ĝt ∈ L∞(Ω)+, hence, v must be nodal, but v ∈ C, a contradiction. Therefore, the claim is
true.
Applying the homotopy invariance property of the degree map, we deduce that

deg(A−N + ∂ψ,Bρ(0), 0) = degS+
(A−Km, Bρ(0), 0)

for all 0 < ρ ≤ ρ0.
But from Proposition 3.5, we know that

deg(S)+(A−mK,Bρ(0), 0) = −1.

Therefore, we get
deg(A−N + ∂ψ,Bρ(0), 0) = −1

for all 0 < ρ ≤ ρ0. �

Analogously, we show a corresponding result for big balls.

Proposition 4.9. Let (H) hold. Therefore there exists R0 > 0 such that for all R ≥ R0, we obtain

deg(A−N + ∂ψ,BR(0), 0) = 1.

Proof. We take into account the homotopy

h(t, u) = A(u)− tN(u) + t∂ψ(u) for (t, u) ∈ [0, 1]×W s,p
0 (Ω).

From Proposition 4.3 and Lemma 2.5, we have that ĥ(t, u) = −tN(u) for (t, u) ∈ [0, 1]×W s,p
0 (Ω)

is a (P )−homotopy and h̃(t, u) = A(u) + t∂ψ(u) for (t, u) ∈ [0, 1]×W s,p
0 (Ω) is a pseudomonotone

homotopy, hence h(t, u) is an admissible homotopy.
Claim: There exists R0 ≥ 0 such that for all t ∈ [0, 1], all R ≥ R0 and all u ∈ ∂BR(0), we have

0 /∈ h(t, u).

By contradiction, we can find (tn)n ⊆ [0, 1] and un ∈W s,p
0 (Ω)+, n ≥ 1, such that

tn → t in [0, 1], ||un|| → ∞ and 0 ∈ h(tn, un), n ≥ 1.
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Hence, there exists wn ∈ N(un) such that

−A(un) + tnwn ∈ tn∂ψ(un), ∀n ≥ 1,

then

(4.19) 〈A(un), v̄ − un〉 − tn
∫

Ω

wn(x)(v̄(x)− un(x)) dx ≥ 0 for all v̄ ∈W s,p
0 (Ω)+.

Set vn = un
||un|| , n ≥ 1 and, passing to a subsequence, we can suppose that

vn ⇀ v in W s,p
0 (Ω), vn → v in Lp(Ω) and vn(x)→ v(x) a.e. in Ω,

hence v ≥ 0 a.e. in Ω. Dividing (4.19) by ||un||p, we have

(4.20) 〈A(vn), v̂ − vn〉 − tn
∫

Ω

wn(x)

||un||p−1
(v̂(x)− vn(x)) dx ≥ 0

for all v̂ ∈W s,p
0 (Ω)+. Using (4.10), we obtain that

(
wn

||un||p−1

)
n
⊆ Lp′(Ω) is bounded, hence, we can

suppose that
wn

||un||p−1
⇀ f∞ in Lp

′
(Ω), as n→∞.

For every ε > 0 and n ≥ 1, we define the set

D+
ε,n =

{
x ∈ Ω : un(x) > 0,−ε ≤ wn(x)

(un(x))p−1
≤ θ(x) + ε

}
.

From (H) (ii), we get

χD+
ε,n

(x)→ 1 a.e. on {v > 0}.
We observe that ∥∥∥∥(1− χD+

ε,n
(x)
) wn
||un||p−1

∥∥∥∥
Lp′ ({v>0})

→ 0,

therefore,

χD+
ε,n

(x)
wn

||un||p−1
⇀ f∞ in Lp

′
({v > 0}).

By the definition of D+
ε,n, we get that

χD+
ε,n

(x)(−ε)(vn(x))p−1 ≤ χD+
ε,n

(x)
wn(x)

||un||p−1
= χD+

ε,n
(x)

wn(x)

(un(x))p−1
(vn(x))p−1

≤ χD+
ε,n

(x)(θ(x) + ε)(vn(x))p−1 a.e. on Ω.

Passing to weak limits in Lp
′
({v > 0}) and applying Mazur’s lemma, we have

−ε(v(x))p−1 ≤ f∞(x) ≤ (θ(x) + ε)(v(x))p−1 a.e. on {v > 0}.

Let ε→ 0, we obtain

0 ≤ f∞(x) ≤ θ(x)(v(x))p−1 a.e. on {v > 0}.
While, by (4.10), we obtain that

f∞(x) = 0 a.e. on {v = 0}.

Since Ω = {v > 0} ∪ {v = 0} (recalling that v ∈W s,p
0 (Ω)+), we get

0 ≤ f∞(x) ≤ θ(x)(v(x))p−1 a.e. on Ω,

hence

f∞ = g∞v
p−1 with g∞ ∈ L∞(Ω)+, g∞(x) ≤ θ(x) a.e. on Ω.

Since v ∈W s,p
0 (Ω)+, then in (4.20) we can set v̂ = v to obtain

〈A(vn), vn − v〉 ≤ tn
∫

Ω

wn(x)

||un||p−1
(vn(x)− v(x)) dx,
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therefore
lim sup
n→∞

〈A(vn), vn − v〉 ≤ 0,

and since A is of type (S)+,
vn → v in W s,p

0 (Ω).

If n goes to ∞ in (4.20), we get

(4.21) 〈A(v), v̂ − v〉 ≥ t
∫

Ω

g∞(x)(v(x))p−1(v̂(x)− v(x)) dx, ∀v̂ ∈W s,p
0 (Ω)+.

Set ĝt = tg∞(x). Using the test function v̂ = (v + εz)+ for any z ∈W s,p
0 (Ω) and ε > 0, then, as in

the proof of Theorem 4.8, we have

〈A(v)−Kĝt(v), z〉 ≥ 0,

by the arbitrariety of z, it follows that

A(v) = Kĝt(v),

therefore

(4.22)

{
(−∆)sp v = tg∞(x)|v|p−2v in Ω,

v = 0 on Ωc.

Since ||v|| = 1, we deduce that v 6= 0 and hence v is an eigenfunction of the weighted eigenvalue
problem (4.22), with weight tg∞ ∈ L∞(Ω)+. Recalling the strict monotonicity on the weight of the
principal eigenvalue and since

0 ≤ tg∞ ≤ g∞ ≤ θ,
we obtain

λ1(tg∞) ≥ λ1(g∞) ≥ λ1(θ) > λ1(λ1) = 1.

Then from (4.22) we deduce that v = 0, a contradiction.
Therefore, from the homotopy invariance of the degree map, we obtain that

(4.23) deg(A−N + ∂ψ,BR(0), 0) = degS+
(A,BR(0), 0)for all R ≥ R0.

We take the (S)+−homotopy (see [33, Proposition 4.41])

h1(t, u) = tA(u) + (1− t)F(u) for all (t, u) ∈ [0, 1]×W s,p
0 (Ω).

We have that 〈h1(t, u), u〉 6= 0 for all u 6= 0 and hence, by the homotopy invariance of deg(S)+ , we
have

(4.24) deg(S)+(A,BR(0), 0) = deg(S)+(F , BR(0), 0) = 1.

(The last passage follows from the normalization property). From (4.23) and (4.24), we can state
that

deg(A−N + ∂ψ,BR(0), 0) = 1

for all R ≥ R0. �

Finally, we can formulate our multiplicity result for problem (4.1).

Theorem 4.10. Let (H) hold. Therefore the problem (4.1) admits at least two nontrivial solutions
u0, û ∈W s,p

0 (Ω).

Proof. By Proposition 4.5, there exists u0 ∈W s,p
0 (Ω) such that

(4.25) ϕ(u0) = inf
u∈W s,p

0 (Ω)
ϕ(u).

Since u0 is a minimizer, by applying Proposition 4.7, there exists r > 0 such that

(4.26) deg(A−N + ∂ψ,Br(u0), 0) = 1.

Therefore, (4.26) and Proposition 4.8 imply u0 6= 0. We choose ρ0 > 0 small such that

Br(u0) ∩Bρ0(0) = ∅
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and R0 > 0 large such that

Bρ0(0), Br(u0) ⊆ BR0(0).

Exploiting the additivity of the domain property of the degree map and applying Proposition 4.7,
Proposition 4.8 and Proposition 4.9, we get

deg(A−N + ∂ψ,BR0
(0), 0) = deg(A−N + ∂ψ,Br(u0), 0) + deg(A−N + ∂ψ,Bρ0(0), 0)

+ deg(A−N + ∂ψ,BR0
(0) \ (Br(u0) ∪Bρ0(0)), 0),

therefore

1 = deg(A−N + ∂ψ,BR0
(0) \ (Br(u0) ∪Bρ0(0)), 0).

Hence, by the existence property of the degree map we deduce that there exists

û ∈ BR0
(0) \ (Br(u0) ∪Bρ0(0))

hence û 6= u0, û 6= 0, such that

0 ∈ A(û)−N(û) + ∂ψ(û) = ∂ϕ̂(û) + ∂ψ(û),

namely, there exists w ∈ N(û) such that

−A(û) + w ∈ ∂ψ(û).

From the latter we deduce

〈A(û), v − û〉 −
∫

Ω

w(x)(v(x)− û(x)) dx ≥ 0 for all v ∈W s,p
0 (Ω)+,

hence û ∈W s,p
0 (Ω) is a nontrivial solution of (4.1).

Now we have to show that u0 is a critical point of ϕ and it is a second nontrivial solution of (4.1).
By (4.25), for all λ > 0 and all v ∈W s,p

0 (Ω) one has

0 ≤ ϕ(u0 + λv)− ϕ(u0) = ϕ̂(u0 + λv)− ϕ̂(u0) + ψ(u0 + λv)− ψ(u0)

hence

0 ≤ 1

λ
(ϕ̂(u0 + λv)− ϕ̂(u0)) +

1

λ
(ψ(u0 + λv)− ψ(u0))

≤ 1

λ
[ϕ̂(u0 + λv)− ϕ̂(u0)] + (ψ(u0 + v)− ψ(u0))

(since ψ is convex). When λ goes to 0, we get

(4.27) 0 ≤ ϕ̂0(u0; v) + ψ(u0 + v)− ψ(u0).

Let z ∈W s,p
0 (Ω), we set v = z − u0 in (4.27) and we obtain

(4.28) 0 ≤ ϕ̂0(u0; z − u0) + ψ(z)− ψ(u0).

Therefore, by Definition 2.2, u0 ∈W s,p
0 (Ω) is a critical point of ϕ = ϕ̂+ψ, hence, by Proposition 2.3

0 ∈ ∂ϕ̂(u0) + ∂ψ(u0).

Therefore we can deduce that there exists w ∈ N(u0) such that

−A(u0) + w ∈ ∂ψ(u0),

hence

〈A(u0), v − u0〉 −
∫

Ω

w(x)(v(x)− u0(x)) dz ≥ 0 for all v ∈W s,p
0 (Ω)+.

Consequently u0 ∈W s,p
0 (Ω) is a second nontrivial solution of (4.1). �

Remark 4.11. In the linear case (p = 2), a solution û of problem (1.2) belongs to C(Ω), under the
additional assumptions that Ω satisfies the exterior ball condition and w ∈ N(û) such that w ∈ L2(Ω)
with N < 4s (see [4, Proposition 2.12]). Regularity results of solutions of (1.2) can be obtained by
strengthening the assumptions of w, moreover, in the case of a general obstacle it is necessary that
such obstacle has some regularity properties (see [4, Proposition 2.12] and the references therein).
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