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Abstract

Two centuries after its first discovery, thermoelectricity, i.e. the
phenomenon of direct conversion of thermal power into electrical power,
has only recently reached the possibility of implementation in a vast
number of practical applications.

This breakthrough was undoubtedly determined by the advent and
diffusion of numerical atomistic simulation techniques, allowing a quick
survey of large classes of materials as possible candidates for the real-
ization of active parts for thermoelectric generators.

To this aim, two classes of materials have been essentially identified,
(I) inorganic thermoelectrics, based on metal alloys, and (II) organic
conductive polymers. The latter ones are well suited for implemen-
tation in a large-scale economy because of their superior mechanical
properties, such as flexibility and low specific weight, as well as sim-
pler synthesis process, as spin coating, and the possibility of tuning
the electrical conductivity through chemical doping.

Among the most common conducting polymers, polyethylenedi-
oxythiophene (PEDOT), the subject of this Thesis work, has clearly
emerged as one of the most promising thermoelectric material.

Despite its wide use, however, an unanimous and well-established
understanding of the link existing between the synthesis process and
the corresponding final thermoelectric properties is still missing and it
is thus an active field of scientific investigation.

The present Thesis represents a part of this research stream, specif-
ically aiming to shed a light on the role and effect of the combinations
of most commonly used polymerizing reagents for PEDOT in deter-
mining the micromorphology and the resulting thermal and electrical
transport properties. In this respect, the description and development
of a new computational algorithm, based on a multiscale approach,
is presented, combining a purely quantum description based on the
Density Functional Theory (DFT) with Classical Molecular Dynamics
(MD).

The comparison of the results obtained by numerical simulation
with the experimental data currently available demonstrates the effec-
tive possibility of including the chemical description of the synthesis
process in the context of an MD simulation, and allows to demon-
strate and quantify the impact of the combination of reagents used
on (i) micromorphological properties, such as chain length distribution
and crystallinity, (ii) thermal transport properties, in particular ther-
mal conductivity, and (iii) carrier transport properties, mainly hole
mobility and conductivity, estimated by Marcus’ theory of electron
transport.
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Chapter 1
Introduction

Since 1977, when iodine-doped polyacetylene was �rst synthesised,4 in-
terest in conjugated polymers and small-molecule organic materials for elec-
tronic and optoelectronic devices has grown exponentially with a large num-
ber of research lines set up in order to synthesise new more suitable materials
and improve the existent ones.

Organic polymers are currently extensively studied as building blocks
for a large number of electronic devices, such as capacitors,28 photovoltaic
cells,37 OLEDs2 and thermoelectric generators.30

All the electronic and optical properties of organic polymers basically
rely on the conjugation length of the constitutive carbon backbone. In other
words, the fact that carbon atoms which constitute the underlying com-
mon structure of organic polymers' chains can be considered as alternatively
bound together by single and double bonds. This topological feature provides
a signi�cant π−π overlap, allowing an sizable delocalisation of electrons oc-
cupying the corresponding energy levels.7,18 This chemical feature allows to
better control both transport and optical properties with respect to systems
characterized by localized σ bonds.22

Among organic polymers, poly(3,4-ethylenedioxythiophene) (PEDOT)
has emerged as one of the most promising one. First synthesized in 1988,34

it has been found to be one of the most promising material for technological
applications because of its high stability at relatively high temperature (since
it can be synthesised and resist even for 6 hours in boiling benzonitrile, '
188°C8) and in presence of humidity,33 a tunable band gap,21 low redox
potential39 and good optical properties in the visible spectrum.27

PEDOT's applications cover nowadays a large class of devices23 and it has
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been proposed as the active part of thermoelectric generators,1,14,20 which
are at the centre of our attention.

Besides a pure academic interest, in fact, the realization of e�cient ther-
moelectric devices could be strategical in the ongoing search of large available
and low-cost sources of energy.

Heat is in fact the �nal form in which all types of energies convert at the
end of any production process of electrical power. For this reason, thermal
energy is available in large amounts therefore any e�cient process of conver-
sion of heat in electricity can potentially have an enormous impact in the
world energy scenario.

In this perspective, thermoelectricity could provide a valuable strategy to
(i) increase conversion e�ciency of existing power plants and (ii) to success-
fully exploit the waste heat produced by green technologies, as photovoltaic
or geothermal sources.

Even if direct heat to electrical power conversion is generally charac-
terised by a poor e�ciency, several research lines were set up and are actually
active in order to (i) realise new materials and ii) optimize the thermoelectric
properties of the existing ones.

Energy conversion e�ciency of heat into electricity is evaluated by means
of the �gure-of-merit ZT , an adimensional parameter �rst introduced in
1949 by the Soviet physicist Abram F. Io�e32 in terms of the operating
temperature T , the electrical conductivity σ, the Seebeck coe�cient S and
the thermal conductivity κ

ZT =
Sσ

κ
T (1.1)

In order to maximise the �gure-of-merit, a electrical conductors are needed
which, at the same time, should be thermal insulators i.e have a low thermal
conductivity. Unfortunately, the most common natural materials which are
good or bad electrical conductors are, respectively, also good or bad thermal
conductors. For this reason, the �gure-of-merit is thus generally so small
that no useful applications for thermoelectricity have been proposed for a
few of decades since thermoelectricity discovery.

The ability of �ne tuning electronic density by physical or chemical dop-
ing, however, has lead to a new interest in thermoelectricity research: a
whole class of materials, organic polymers, has emerged as one of the most
probable candidates for thermoelectric devices realisation.

Organic polymers, as PEDOT, show a very low thermal conductivity
(∼ 0.5 − 1W m−1 K−1 31) at the same time they exhibit an electrical con-
ductivity which can be chemically tuned by doping in order to make them
semi-metallic or almost metallic.17 ZT can thus increase in order to make
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possible many practical applications, which, in the case of PEDOT and its
derivatives, are particularly explored since their synthesis appears to be less
complicated with respect to di�erent conjugated polymers. This had lead
to PEDOT employ in the realization of transport layers38 and hole injection
interfaces5 for electronic devices.

Several research projects have been set up and are still active with the
goal of developing the best procedure to further enhance ZT. In fact, even
if σ can be easily increased by increasing the carrier concentration by dop-
ing, several studies,13,29 have found that the S Seebeck coe�cient shows
an antagonist behaviour with respect σ. Changes induced by free carrier
concentration seems detrimental for S.

A weak dependence of S from carrier mobility, S ∝ µ0.2, has been re-
ported.29 For this reason, since conductivity can be expressed as a product
of mobility µ, carrier charge q and carrier density n

σ = nµq (1.2)

a possible strategy to enhance Seebeck coe�cient, once a proper n value is
�xed by doping, consists in increasing mobility.

This can be achieved by controlling the chain length and the morphology
of the �lm. Large chain lengths are related to an improved charge mobil-
ity3 a�ecting both inter-chain and intra-chain hopping. While intra-chain
mobility is largely a�ected by π orbitals delocalisation along the polymer
backbone, intra-chain mobility is enhanced when π − π∗ stacking between
di�erent chains is largely favoured, a mechanism which can be usually ex-
plained by invoking a percolation-like behaviour of charge carriers.10 Since
intra-chain hopping has been found to be one order of magnitude greater
than inter-chain one,26 the creation of a proper number of percolation paths
is crucial in order to assure a su�ciently high conductivity.

In both cases, interest in polymerisation mechanism should be empha-
sised: the way by which PEDOT chains are formed, in fact, deeply in�uences
the morphology of the �lms and consequently the values of S and σ. An ac-
curate knowledge of this mechanism can thus lead to further investigations
on novel synthesis techniques allowing to achieve higher chain lengths and a
large number of percolation paths. This condition will de�nitely guarantee
a concurrent σ and S increase.

In order to better understand how synthesis and polymerisation take
place, a general overview of the main methods used to synthesize PEDOT is
reported.
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1.1 PEDOT polymerization

PEDOT is usually synthesised in form of thin bluish �lms characterised
by a high conductivity9,24,35 which have been proved9,15 to rapidly vary
during accretion (i.e. polymerization), suggesting that the �lm formation
can be regarded as a process in which �rst the EDOT monomers polymerize
in PEDOT chains which eventually, by coalescence, connect with each other
in a network.9

Four main polymerisation techniques are reported in literature24 in or-
der to grow PEDOT �lms: Chemical polymerisation (CP), electrochemical
polymerisation, Vapour Phase polymerisation (VPP) and oxidative Chemi-
cal Vapor Deposition (CVD).

These techniques mainly di�ers in the environment in which polymerisa-
tion reaction takes place. In CP, all the chemicals involved are in solution.
Since EDOT and PEDOT show a very low solubility in water, hydrophilic
counterions, such as PSS, are usually added in order to obtain a stable sus-
pension. The presence of PSS determines an appreciable modi�cations of the
�lm morphology, which appears to have a granular structure:24 each grain
is formed by an inner PEDOT core, formed by charged (doped) PEDOT
chains, surrounded by an external PSS shell counterbalancing all internal
charge, a con�guration which is usually referred to as phase-segregated.

Even if other counterions can be used in place of PSS, such as tosylate
anions, MD simulations seems to suggest that this structure can be observed
even in these cases.10

Solvents (such as water or acetonitrile) are also involved in EP technique,
which signi�cantly di�ers from CP because oxidative reactions are driven by
a metallic anode which provides the electron subtraction. In this case, the
morphology is a�ected by the electrical connections of PEDOT chains with
the electrode giving rise to a dendritic-like structure instead of a granular
one.24

In VPP and CVD, monomeric EDOT units are not in contact with the
oxidising agent directly in solution which is instead vaporised in a vacuum
chamber on a substrate. The most used oxidising agents are iron(III) salts, as
FeCl3 or iron(III)tosylate which can both deposited on the substrate (VPP)
or vaporised on it (CVD). The second choice is reported to bring to thicker
�lms formation.24

Besides the involved technique, PEDOT polymerisation is essentially ox-
idative, following the general reaction scheme

HXn-1H
+ + HXH+ + B + B' −−⇀↽−− HXnH + BH + BH' (1.3)
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Figure 1.1: Fundamental steps of the chemical pathway for EDOT polymerisation.
Iron(III) cations provide initial EDOT units charging.

where HXnH stands for the olygomer containing n monomeric units (reducing
to the monomer itself for n=1) and B,B' for the chemical species acting as
collectors of terminal hydrogen removed to create a new bond.

The process as reported in literature8 involves three main steps, as de-
picted in Figure 1.1. Starting from EDOT HXn-1H and HXH molecules,
�rst (step 1) charging is achieved by an electron transfer toward an oxidant
agent present in the chemical environment. The resulting two EDOT radical
cations HXn-1H

+ and HXH+ are formed and then (step 2) bind together in
a radical dication, an unstable intermediate reaction. The �rst two steps
should be characterised by a positive reaction energy since in the �rst stage
EDOT's thiophene ring is forced to loss aromaticity and in the second one
two cations must approach in order to make binding possible.

Finally, (step 3) by the release of the two protons in the unstable reac-
tion intermediate, the neutral product HXnH is �nally formed. Decharging
process is assisted by the two molecules B,B' absorbing the hydron cations
produced and thus commonly referred to as �proton scavengers�. Since each
thiophene ring can now regain aromaticity, energitically stabilizing the prod-
uct, this step is probably the one which allows to the overall reaction to
occur.

A charged monomer can eventually react with an olygomer composed by
n− 1 EDOT units (n ≥ 3), provided it has been oxidised in order to achieve
a +e charge. Following with the same mechanism described above, at the
end a neutral olygomer made up of n EDOT units is formed.

Since charging of monomers and olygomers is crucial in order to trigger
the reaction, many oxidant agents have been tested during the time, such as
H2O2

25 and iron(III) salts, especially iron(III)chlorine11 and iron(III)tosylate.
Iron(III) sulfonates, as tosylate, allows the formation of �lms instead of
highly conductive powders such as iron(III)chlorine in boiling benzonitrile.8

Tosylate is currently one of the most used oxidant because it can be easily
dissolved in aliphatic alcohols, mainly buthanol and ethanol, without react-
ing and forming precipitates and forming long pot-life solution.8

While iron(III)chlorine could crystallise during the EDOT polymerisa-
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tion, a�ecting the overall �lm formation,9 tosylate does not show any ten-
dency to create crystalline structures.

Even if VPP technique makes possible to realise PEDOT �lms using
FeCl3 as oxidant, reported conductivity (70 Ω−1cm−1) is usually poor if com-
pared to tosylate-based �lms, unless a base inhibitor as pyridine is used.19

The role of pyridine as a polymerization inhibitor is shown experimentally
by Winther-Jensen et al.36 The authors report36 that monomers can partic-
ipate in acidity-driven reactions resulting in partially conjugated chains.

The introduction of pyridine is therefore motivated with the speci�c aim
of preventing the occurrence of these reactions. It is also stated36 that pyri-
dine is chosen in place of other bases, such as imidazole, both because of its
volatility, su�ciently high to guarantee its subsequent removal, both because
it does not show a tendency to crystallize with tosylate, a process that would
interfere with the polymerization process.

The results obtained are that the increase in pH caused by pyridine
largely a�ects the rate of polymerization.36

This is in agreement with that obtained by de Leeuw et al.6 by means
of an electroplating technique suggesting that as long as the base used, imi-
dazole, is not removed, the polymerization does not take place.

The role of pH was investigated by Reuter et al.16 They report that the
EDOT polymerization process is characterized by a slow phase and a rapid
phase: the slowest phase, as reported, is the one in which the monomers
are oxidized while the rapid phase is represented by the dimerization.16 The
oxidation of the oligomers, on the other hand, is signi�cantly faster than that
of the monomers and is assumed independent of the length of the oxidized
chain.

The acidi�cation of the reaction environment catalyzes the polymeriza-
tion. In particular, the acids lead to an equilibrium reaction in which the
products are dimers or trimers, without further oxidation.16

1.1.1 The role of water

Since pyridine is assumed as reaction inhibitor, both tosylate anion and
water could possibly act as proton scavengers.

The role played by water in the polymerization reaction was extensively
studied by Fabretto et al. using the Vapor Phase Polymerization technique.
In their work,9 water is clearly identi�ed as the proton scavenger but, in dry
phase, pyridine alone is reported to produce �lms with reduced length of the
PEDOT chains.

In Winther work,35 instead, tosylate is recognized as the proton scavenger
for PEDOT polymerization.
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1.2 Open questions

Even if the generally adopted microscopic model is able to capture the
main features of PEDOT polymerization, there are still many open questions
that need to be addressed:

� the identi�cation of the proton scavenger. Referring to the de-
scribed polymerisation process, we found several works in literature re-
porting experimental studies which try to elucidate the identity of the
proton scavenger, supposed to be water9 or tosylate anion.35 However
the exact nature of the proton scavenger is still not clearly identi�ed
in Literature;

� the in�uence of proton scavenger on average chain length and

on chain length distribution. Average chain length could be in
fact crucial in determining many physical properties of interest of the
polymer, such as electrical conductivity. However the reported values
for PEDOT are reported to vary from 7 up to 20 monomeric units,10,24

with no clear evidence showing if and especially how the chain length
could be tuned by acting on the reactant choice or concentration.;

� the impact of chain length distribution on morphology. This
corresponds to explain the in�uence of the scavenger on the �nal mor-
phology, a correlation clearly observed if pyridine is used19,35 and ex-
plained as due by the suppression of acidic unwanted side reactions;

� the impact of morphology and chain length distribution on

thermal and electronic transport properties, as suggested in
Salleo's work,12 in which the role of chains connecting two crystal-
lite separated by an amorphous phase is emphasized. According to the
authors, in fact, this could allow to achieve high electrical conductivity
with no signi�cant increase of thermal transport.

Questions we address are probably very di�cult (if not impossible) to be
answered only by experiments due to the impossibility of disentangling the
contribution of each chemical species in solution since the remotion of even
a single reactant should stop the polymerization process.

A novel computational approach to simulate the polymerization process
was thus developed, as explained in Chapter 3, to address the question on
the identity of the proton scavenger and its in�uence on micromorphology.

Heat and carrier transport properties on each speci�c sample generated
with a unique combination of scavengers were also analyzed in Chapter 4
and 5, respectively.
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1.3 Outline of the Thesis

The work of this Thesis is organized as follows.
In Chapter 2 a brief review of the theoretical methods is provided, the

Density Functional Theory (DFT), the classical Molecular Dynamics (MD)
and the Marcus theory applied to estimate the hopping rates.

In Chapter 3 a novel computational tool, based on a combination of
pure Density Functional Theory calculations and classical Molecular Dy-
namics is described. The present methodology is then used to characterize
the in�uence of reactants used in polymerization on PEDOT chain length
distribution.

In Chapter 4 the PEDOT samples generated "in silico" are characterized
in terms of their thermal transport properties. It is here shown that the
chain length distribution and the degree of crystallinity are related to an
intrinsic anisotropy of the thermal conductivity κ and to modi�cations in
the vibrational frequencies involved.

In Chapter 5 the problem of estimating the electrical conductivity σ for
each sample is addressed in the context of the hopping model in which the
hopping rates are calculated with DFT techniques. Carrier transport appears
to be greatly in�uenced by the choice of reactants, in some cases in a very
non-trivial way.

In Chapter 6, �nally, a resume of the results obtained and the future
perspectives for this work are presented.
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Chapter 2
Methods

2.1 Density Functional Theory (DFT)

2.1.1 Theoretical foundations

Quantum mechanical calculations for thermochemical and for charge
transport properties involving a molecule or an ion can be stated in the
form of resolution of the general time independent Schrödinger equation6

ĤtotΨ = EΨ (2.1)

where Ψ and H are the global wavefunction and the Hamiltonian of the
system formed by all the nuclei and all the electrons constituting the molecule
(ion) at a global energy E.

The Hamiltonian Ĥtot can be written as a function of nuclear RαRαRα and
electronic rnrnrn coordinates as the sum of kinetic, potential and interaction
contributions, namely35

Ĥtot = −~2

2

∑
α

∇2
RαRαRα

Mα
− ~2

2me

∑
n

∇2
rnrnrn +

e2

2

∑
α

∑
β 6=α

ZαZβ
|RαRαRα −RβRβRβ|

+
e2

2

∑
m

∑
n6=m

1

|rmrmrm − rnrnrn|
− e2

∑
α

∑
n

Zα
|RαRαRα − rnrnrn|

(2.2)

where summations on Latin m,n indexes run over the total number of elec-
trons and summations on Greek indexes over the total number of nuclei, each
one with mass Mα and nuclear charge Zα.

In most of the applications, it can safely assumed that the contribution
arising from the motion of nuclei is negligible compared with its electronic
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counterpart. Starting from this assumption, called the Born-Oppenheimer
approximations, the total Hamiltonian takes the form35

Ĥtot = − ~2

2me

∑
n

∇2
rnrnrn +

e2

2

∑
m

∑
n6=m

1

|rmrmrm − rnrnrn|
− e2

∑
α

∑
n

Zα
|RαRαRα − rnrnrn| (2.3)

which di�ers from Eq. 2.2 because no kinetic and no potential contribution
arising from nuclear motion is now present (frozen-nuclei approximation).

Several techniques have been developed in order to solve Eq. 2.3, as
the Hartree-Fock (HF) method, Multi-Con�guration Self Consistent Field
(MCSCF),10,35 Con�guration Interactions (CI),37 but all of them shares a
common issue, the fact that the calculation of the global wavefunction for the
Hamiltonian 2.3 is very di�cult in terms of computational power required
even for very small (∼ 10 atoms) molecules.

This di�cult was overcome by the Density Functional theory developed
by Hohenberg and Kohn16 by radically rethinking the entire approach to the
calculation of quantum properties on the basis of a fundamental key idea
and two powerful theorems, the HK theorems.

The �rst seminal idea, which can be retraced in the work of Fermi and
Thomas,12,19,42 consists in replacing the wavefunction Ψ with the corre-
sponding electron charge density n(rrr) to describe and extract all the prop-
erties of interest.

In the most common cases, in fact, the wavefunction provides an amount
of information redundant35 and excessively high compared to the properties
under examination, as for the calculation of electric dipole moment of a
molecule.

Instead of focusing on a multidimensional function of all the electronic
spatial coordinates of the systems, Fermi and Thomas proposed to start from
the simpler description of an atom in terms of a three dimensional function,
the charge density n(rrr).

Even if the Fermi-Thomas model was very rough and not su�ciently
accurate to predict even very simple properties, as the molecular bonds,41

their key idea was further re�ned in 1964 when Hohenberg and Kohn �-
nally provided the theoretical basis to the actual successful and large scale
implementation.

The �rst HK theorem16,21 states that, given a system of N interacting
particles under the action of an external potential Vext(rrr), the potential
applied is a unique functional of the charge density n(rrr) within an additive
constant.
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The energy of a quantum systems with a given electronic density n(rrr),
usually written in terms of the Hamiltonian and the wavefunction as

E[n(rrr)] = 〈Ψ|Ĥ|Ψ〉 (2.4)

can thus be restated in the form

E[n(rrr)] =

∫
n(rrr)Vext(rrr)drrr + F [n(rrr)] (2.5)

where F [n(rrr)] is the more general form for the arbitrary constant energy
shift.

Referring to Eq. 2.3, the external potential Vext(rrr) can be easily identi�ed
with the last term of the sum

Vext(rrr) = −e2
∑
α

∑
n

Zα
|RαRαRα − rnrnrn|

(2.6)

while the sum of electronic kinetic energy and inter-electronic repulsion con-
stitutes the F [n(rrr)] so called universal functional, since it depends only by
kinetic and repulsion energy of electrons.

The existence of the universal functional, sum of the kinetic T [n(rrr)] and
interaction Eint[n(rrr)] functionals, is assured by the second HK theorem,21

which also states that the global minimum n0(rrr) for the functional in Eq.
2.5 corresponds exactly to the ground state (GS) of the system.

Another important conceptual step in building a computationally acces-
sible technique for quantum mechanical problems was posed by Kohn and
Sham and usually referred to as the Kohn-Sham ansatz (KS ansatz),18 which
consists in rewriting the problem of N interacting particles in an external
potential Vext in terms of a non-interacting gas of N particles in the same ef-
fective potential which reproduce the total e�ect of nuclear and inter-electron
interactions.

It can be proved that, for closed shell N -electrons structures, replacing
the electronic density n(rrr) with the sum of the square modulus of atomic
orbitals (AO)

n(rrr) = 2

N/2∑
i

|φi|2 (2.7)

allows to write

EKS[n] = 2

N/2∑
i

∫
drrr′φ∗(rrr′)

(
− ~2

2me
∇2

)
φ(rrr′) + EH[n] + Eext[n] + Exc[n]

(2.8)
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The variational principle is applied on Eq. 2.8, using the Lagrange multipli-
ers technique to impose on minimization the constrains due by the orthonor-
mality of φi. For the resulting ΩKS Lagrangian containing the λij Lagrange
multipliers

ΩKS = EKS[n]− 2

N/2∑
i,j

λij

(∫
drrr′φ∗i (rrr

′)φj(rrr
′)− δij

)
(2.9)

the stationary condition
δΩKS[n]

δφ∗j (rrr
′)

= 0 (2.10)

which can be expanded as

δΩKS[n]

δn(rrr′)

δn(rrr′)

δφ∗j (rrr
′)

= 2
δΩKS[n]

δn(rrr′)
φj(rrr

′) = 0 (2.11)

is satis�ed when (
− ~2

2me
∇2
i + VKS(rrr)− εi

)
ψi(rrr) = 0 (2.12)

where ψi is the wavefunction for the ith electron in the potential VKS (Kohn-
Sham potential), containing the functional derivatives of Hartree-Fock1,13,15

(H), external (ext) and exchange-correlation (xc) functionals

VKS =
δEH

δn
+
δEext

δn
+
δExc

δn
(2.13)

Each of the ψi can be regarded as the ith orbital with εi energy occupied
by the corresponding electron and are thus usually known as Kohn-Sham
orbitals.

Since the total electron density can be written as the square modulus of
the normalized orbitals

n(rrr) =
∑
i

|ψi(rrr)|2 (2.14)

the universal functional in Eq. 2.5 assumes the form

F [n(rrr)] = T [n(rrr)] + EH[n(rrr)] + EXC[n(rrr)] (2.15)

where the �rst terms is the functional for kinetic energy

T [n(rrr)] = − ~2

2me

∑
i

〈ψi|∇2|ψi〉 (2.16)
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The kinetic term can further restated in terms of the Kohn-Sham energies
of orbitals εi as

T [n(rrr)] =
∑
i

εi −
∫
drrr′n(rrr′)Vext[n(rrr′)] (2.17)

the second term the usual Hartree-Fock electrostatic energy

EH[n(rrr)] =
1

2

∫∫
drrrdrrr′

n(rrr)n(rrr′)

|rrr − rrr′|
(2.18)

and the last term is the so called exchange-correlation energy since includes
all non-electrostatic contributions, as the exchange interaction.

It can be �nally proved that the Kohn-Sham interaction potential VKS

for the system of non-interacting electrons includes both the external and
the electrostatic (Hartree-Fock) potential

VKS = Vext + VH +
δEXC[n(rrr)]

δn(rrr)
(2.19)

where

VH =

∫
drrr′

n(rrr)

|rrr − rrr′|
(2.20)

The proper form for the exchange-correlation functional EXC[n(rrr)] is crucial
in order to obtain accurate results.

Several approximations have been developed since the introduction of
Kohn-Sham equations. One of the �rst proposed was the Local Density
Approximation33 (LDA) based on the approximation of a system called ho-
mogeneous electron liquid. an in�nite extending ensemble of interacting
electrons with constant �xed density n0. For this system, accurate compu-
tational calculations of exchange-correlation contribution eh

XC(n̄), based on
extrapolation and �tting, are available as function of the density n̄, and are
used in LDA for a non-homogeneous system in the form

ELDA
XC [n] =

∫
drrr′eh

XC(n(rrr′)) (2.21)

where the electron density is calculated for each rrr′ point in the integration
domain.

Starting from LDA and taking into account the spin polarization state,
two separate electron densities n↑(rrr′), n↓(rrr′) are de�ned and used to de�ne
the Local Spin Density Approximation33 (LSDA)

ELSDA
XC [n↑, n↓] =

∫
drrr′eh

XC(n↑(rrr′), n↓(rrr′)) (2.22)
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A more re�ned approximation for the real (and still unknown) form of the
exchange-correlation functional is represented by the family of the General-
ized Gradient Approximations (GGA's),26 collecting all the functionals that
parameterize the exchange-correlation contribution in terms not only of the
local density n(rrr′) but also of its gradient ~∇n(rrr′)

EGGA
XC [n] =

∫
drrr′eXC(n(rrr′), ~∇n(rrr′))n(rrr′) (2.23)

In many cases, the spin polarization is also taken into account and . The
GGA's are thus written as

EGGA
XC [n↑, n↓] =

∫
drrr′eXC(n↑, n↓, ~∇n↑, ~∇n↓)n(rrr′) (2.24)

where in the formulation of eXC are frequently used parameters �tted on
experimental data.

Two examples of GGA functionals are the Becke's exchange functional,
B88,4 explicitly containing the reduced gradient spin density ωs

ωs =
|~∇ns(rrr)|
ns(rrr)

4
3

(2.25)

with s being the index for spin up and spin down, in the general form

EB88
X [n↑, n↓] = ELSDA

X [n↑, n↓]− β
∑
s

∫
drrr′n

4
3
s

ω2
s

1 + 6βωssinh−1(ωs)
(2.26)

with β obtained by �t of Hartree-Fock exchange energies, and the LYP cor-
relation functional of Lee, Yang and Parr20,30

ELYP
c = −a

∫
drrr′

1 + dn

[
n+ bn−

1
3

(
CFn

5
3 − 2tW +

1

9

(
tW +

∇2n

2

)
exp

(
−cn−

1
3

))]
(2.27)

with a, b, c, d �iting parameters, CF a numerical constant and tW the com-
bination of the gradient and the Laplacian of electron density

tW =
1

8

(
|~∇n|
n
−∇2n

)
(2.28)

By properly summing the exchange and the correlation contribution from
GGA and LDA functional, obtaining the so-called hybrid functionals, very
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accurate results can be obtained. One of the most popular hybrid func-
tional, which combines the LDA and B88 exchange contributions with LYP
exchange-functional, is the B3LYP,39 where B indicates the presence of
Becke's functional, LYP denotes the LYP exchange and 3 is the number
of parameters involved

EB3LYP
XC = aEH

X + bEB88
X + (1− a)ELDA

X

+ cELYP
C + (1− c)ELDA

X

(2.29)

with a = 0.20, b = 0.72, c = 0.81 and EH
X the Hartree-Fock exchange

functional.

2.1.2 Basis set

In order to perform a DFT calculation, a set of functions to express the
Kohn-Sham orbitals entering in Eq. 2.12 is required.

Besides the functions used to describe the orbitals, additional require-
ments are needed, mainly dictated by considerations about computational
e�ciency. It is well known since the development of Hartree-Fock the-
ory1,13,15 that, as consequence of adopting the variational principle to solve
Schrödinger equation, the accuracy in energy and quantum properties in-
creases with the number of function in the basis set used to expand the
orbitals. However, this comes with a cost that increases roughly as N4 for
Hartree-Fock method and N3 for DFT,35 where N is the number of function
in the basis set, mainly due by the calculation of the two-electron integrals
in the Self-Consistent Field (SCF) procedure.

Additionally, the functions employed in expansion should have a clear
physical and chemical meaning, in the sense that they would describe as
accurate as possible the correct probability of �nding an electron in each
point of the quantum system.

In order to address to all these requirements, several approaches have
been developed. The most common choice for calculation of quantum proper-
ties of single molecules is represented by the Gaussian-Type Orbitals (GTO),
introduced as computational more a�ordable alternative for Slater-Type Or-
bitals (STO).

The most simple form of GTO is called primitive Gaussian ψ and can be
expressed as

ψ =

(
2α

π

) 3
4
[

(8α)i+j+ki!j!k!

(2i)!(2j)!(2k)!

] 1
2

︸ ︷︷ ︸
normalization constant

xiyjzkexp
(
−α(x2 + y2 + z2)

)
(2.30)
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where α is related with the orbital spatial extension and i, j, k integer coe�-
cients related with the �nal symmetry of the orbital and the orbital angular
momentum L via

L = i+ j + k (2.31)

Following the common notation for hydrogen-like orbitals, if all the indexes
are zero (L = 0) ψ is spherical and referred to as s-type orbital. If only
one index is 1 (L = 1) the orbitals is p-type (with all the three possibilities,
px, py, pz possible), and �nally if the sum of two indexes is 2 (L = 2) the
orbital is d-type.

To reproduce the correct asymptotic decay as (exp(−r)), it is common
practice to sum n primitive Gaussians in a linear combination. This de-
�nes a new basis function φCGTO, which is called Contracted Gaussian-Type
Orbitals (CGTO's) with n degree of contraction, namely

φCGTO =
n∑
i=1

wiψi (2.32)

where wi are the coe�cients entering in the linear combination.
The number of basis function φCGTO used to describe each Atomic Or-

bital (AO) de�nes an important subdivision among the family of GTO. If
exactly one basis function is used to describe an AO, the set is referred to as
single-ζ, while in multiple-ζ basis sets an increasing number of basis function
is used to describe each AO.

For physical-chemistry applications, however, a su�cient increase in ac-
curacy while maintaining a reasonable computational cost is achieved by
increasing the basis function φCGTO per AO only on the subset of func-
tions describing the valence electrons, while the one-to-one correspondence
is conserved for all core electrons.

This subfamily of basis sets are called split-valence basis sets and includes
one of the most common used, are Pople's basis set.11,28

Pople's basis set is characterized by a sequence of number and the �nal
G letter, each number denoting the number of primitive Gaussian function
used for the description of AO. As case of interest, one of the most used basis
set (as described in Chapter 3 and 5 of the present thesis) is 6-311G, where
6 denotes the number of primitive Gaussians (Eq. 2.30) contracted in the
single φCGTO function for the core AO. The three subsequent numbers, 3 1
1, denotes that a triple-ζ valence scheme is adopted, i.e. that each valence
AO is described by three φCGTO, one of each is the contraction of 3 primitive
Gaussians, while the remaining two are made up by 1 primitive Gaussian.
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To increase �exibility and accuracy in determining e�ects related to po-
larization, an extra basis function is added to each AO. Generally, to polarize
a basis function with angular momentum L, a basis functions with angular
momentum L+1 is combined with the pre-existing basis set. Polarization of
s orbital of hydrogen is thus achieved by mixing with a p-type GTO while for
p orbitals of carbon a d-type function is used. In this case, the Pople's basis
set reads as 6-311G(p,d), with d and p indicating the type of polarization
function added to hydrogen and heavy (non-hydrogen) atoms, respectively.

2.1.3 Self Consistent Field procedure in DFT

To �nd the numerical solutions of Eq. 2.12, a proper and iterative
methodology must be set up to calculate the ψi(rrr) Kohn-Sham orbitals.

The most common strategy adopted is the Self Consistent Field (SCF)
procedure, conceptually based on the fact that the energy is a functional of
KS orbitals. The following iterative approach is thus applied

1. an initial trial set of Kohn-Sham orbitals, ψ
(n=0)
i is generated;

2. Kohn-Sham operator ĥ
(n)
KS is constructed using the selected orbital set;

3. solution fo Kohn-Sham equation is obtained by diagonalization of the

resulting matrix, obtaining a new ψ
(n+1)
i set of orbitals;

4. a target properties is calculated (i.e. the total energy). If the devia-
tions of the calculated value at iteration n+1 from the value calculated
at iteration n is below a �xed cut-o�, the procedure is considered con-

verged. Otherwise, the ψ
(n+1)
i set is used as new ψ

(n)
i and steps 2, 3

and 4 are repeated until convergence.

2.1.4 Theoretical background of the solvation problem

In the study of the problem of PEDOT polymerization using ab initio
techniques, particular care should be posed to the fact that the all chemical
processes of interest take place in a solution environment.

For this reason, the determination of accurate and realistic reaction free
energies must include the contribution of microscopical interactions of both
the reactants and products molecules with the surrounding solvent molecules,
a problem which in its more general form can be stated as the search for the
ground state of the total Hamiltonian operator

H(~fi, ~ri) = HM(~fi) +HS(~ri) +H int(fi, ri) (2.33)
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where the superscripts M and S denote the solute and solvent molecules,
respectively, with ri, fi degrees of freedom, the third and �nal term describing
their mutual interaction.

To achieve this goal, several quantum chemistry approaches have been
developed so far starting from the �rst decades of the past century and
progressively re�ned. All these approaches share the common features of
adopting a method to approximate the general Hamiltonian Eq. 2.33. In
fact, in the absence of any approximation, the number of degrees of freedom
of the solvent would be so high to make the problem itself untreatable and,
by the other hand, will provide an amount of information which in itself
is redundant, since the main interest is focused in obtaining an accurate
description of the solute, rather than all the exact con�gurations of the
solvent.

According to the approximation introduced at this initial step, all the
known approaches can be roughly divided in three main classes: implicit,
explicit and mixed solvation models.

In implicit solvation models, usually referred to continuum solvation
models, only the molecule of interest is explicitly simulated while the e�ect
of all the surrounding solvent molecules is described in terms of a continuous
dielectric medium extending, conceptually, to in�nity in all the three dimen-
sions. Under this approximation, the Hamiltonian term HS(~ri) in Eq. 2.33
describing the solvent, simply reduces to a constant and every in�uence of
the medium on the solvated molecules is described in the interaction term,
in which the degree of freedom of the solvent are, at this stage, still present
in the resulting e�ective Hamiltonian, according to23

He�(~fi, ~ri) = HM(~fi) +H int(fi, ri) (2.34)

It is very common literature to refer to the last term in Eq. 2.34 as the solvent
reaction potential V R because it can be seen as a perturbation produced by
dielectric medium acting on the unperturbed solute Hamitonian describing
the quantum mechanical states in vacuo, which can be rewritten in the form

He� = HM
0 + V R (2.35)

The formulation of the problem of solvation in terms of diagonalization of the
e�ective Hamiltonian composed by an unperturbed HM

0 term describing the
solute molecule in vacuo and a solvent reaction potential V R can be viewed
as an application of the mean �eld approximation to the complex character of
solvation. In the perturbation term, in fact, the e�ects of di�erent physical
processes contributing to the solvation of the M molecule of interest can
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be included. These contributions are usually written in a form suitable for
a statistical average by properly using the thermally averaged distribution
function gS(Ω) for the quantity described.

In this perspective, implicit solvation models overcome an aspect which
is, in contrast, common in explicit solvation models, where a convenient
subset of the solvent molecules (usually the nearest to the solute molecules,
konwn as the �rst solvation shell), are explicitly described, posing the prob-
lem to sample and then to average a posteriori the con�guration space de-
scribing the entire simulated aggregate.

In implicit model, instead, the averaging is provided in the evaluation of
the interaction potential V R using the gS(Ω) in a procedure called charging
parameter method ,23 by introducing an adimensional charging parameter
0 ≤ λ ≤ 1 to retrieve the reversible coupling work of the solute M in the
solvent

w =

∫ 1

0
dλ

∫
dΩρS(λ)V R(Ω, λ)gS(Ω, λ) (2.36)

which enters in the general expression23 of the free energy of solvation ∆Gsol

∆Gsol = w +NAkBT

(
(qrotqvib)gas
(qrotqvib)sol

)
−NAkBT

(
(ΛM)gas
(ΛM)sol

)
(2.37)

Historically, according to Tomasi et al.,43 the �rst attempt to �nd a
solution for the solvation problem mainly addressed to the mathematical
formalization and calculation of the electrostatic contribution in V R, which
however, it's not unique.

This formulation of the problem can be explained by considering that
most of the solvation process of interest usually takes place in water, a
strongly polar solvent of huge practical utility as well as biological impor-
tance. Furthermore, the energetic contribution of the pure electrostatic in-
teraction between the solute and the dielectric medium can be relatively
easy understood in a classical macroscopic framework and the problem can
be stated in terms of the mutual in�uence of charge distributions and polar-
izabilities.

By modelling the solute molecule as a charge distribution ρM placed
in a cavity embedded in a dielectric bulk (the solvent environment), the
electrostatic interaction energy can be in fact represented in the form44

WMS =

∫
Ω
ρM(~r)Φ(~r)d3~r (2.38)

where Φ(~r) is the electrostatic reaction potential generated by the dielectric
medium, originated by the presence of the solute charge distribution ρM in
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the volume Ω of the cavity. The reaction potential is calculated by exploiting
the fact that the total potential V (~r), which is the sum of the reaction
potential plus the potential generated by the solute itself, must obey the
non-homogeneous Poisson equation (NPE)22

∇[ε(~r)∇V (~r)] = −4πρM(~r) (2.39)

The equation can be simpli�ed if all the solute distribution charge is con-
tained inside the cavity.

The de�nition itself of a proper cavity, however, is a problem per se and
several approaches have been presented in the literature. One of the prob-
lems is the fact that even if in the large majority of implicit (continuous)
models, the cavity is speci�cally built around the molecule of interest in
order to exactly contain all the charge distribution of the solute, this au-
tomatically exclude any overlap between the solvent and solute electronic
distribution, which in reality exists and originates quantum e�ects of rel-
evance. Their contribution to the solvation process is thus recovered by
adding to the electrostatic term other non-electrostatic terms. The shape it-
self, even if reported in literature to play a role in determining the quality of
the resulting data, is not univocally determined. However, the most common
common approach, as provided in the GEPOL34 algorithm implemented in
Gaussian 16,14 consists in modelling the surface by a series of interlocked
van der Waals spheres. The radii of the spheres are usually, as in SMD
solvation model,25 based both on more sophisticate calculations involving
partial charges (intrinsic Coulomb radii) for which a full explanation is be-
yond the scope of this Thesis. Alternative approaches, based on the use of
an isodensity surface with given threshold are possible but seldom adopted.

When a suitable cavity ful�lling the desired properties is built, in the case
of isotropic solvent (ε(r) = ε) the NPE can be reduced to the two equation
de�ned in two spatial domains

∇2V (~r) = −4πρM inside cavity (ε = 1)

−ε∇2V (~r) = 0 outside
(2.40)

The solution must obey the boundary conditions at in�nity and at the cavity
surface Γ

lim
r→∞

rV (r) = α

lim
r→∞

r2V (r) = β

VΓ,in = VΓ,out(
∂V

∂~n

)
Γ,in

= ε

(
∂V

∂~n

)
Γ,out

(2.41)
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The resolution of the equations Eq. 2.40 represents one of the �nal step to
calculate the electrostatic contribution and can be achieved with a variety
of method sharing a common feature, the non-linearity due by the mutual
dependence of ρM and the corresponding electrostatic reaction potential Φ.
In order to obtain the solution a self-consistent procedure is thus applied,
which justi�es the currently adopted name of self consistent reaction �eld
for the continuum solvation models.

Among these methods, we will focus on the Integral Equation Formalism
Polarizable Continuum Model (IEF-PCM) which we used in Gaussian 1614

suite of programs to calculate estimates of the Free Reaction Energy for
PEDOT polymerization, schematizing the main conceptual steps as reported
in the original exposition of Cancès and Tomasi work.

In IEF-PCM, developed on the same conceptual foundations of the pre-
vious D-PCM model (Dielectric Polarizable Continuum Model), the key idea
is to reproduce the electrostatic reaction potential Φ(r) by constructing on
the cavity surface Γ an auxiliary charge density σ(~s) which must ful�l

Φ(r) =

∫
Γ

σ(~s)

|~r − ~s|
d2s (2.42)

under the previous stated assumption that no charge is present outside the
cavity itself. The use of this de�nition reduces the solution of equations
Eq.2.40 under Eq. 2.41 boundary conditions to the search for a surface
charge distribution self consistent with the total electrostatic potential which
determines precisely its presence on the cavity surface. It can in fact demon-
strated that

σ(~s) =
ε− 1

4πε

∂

∂~n
(VM + Φ)~s,in (2.43)

Computational implementation of Eq. 2.42 is achieved by partitioning the Γ
surface obtained via GEPOL34algorithm in a discrete ensemble of N surface
elements (tesserae) each one characterized by Ak surface area, su�ciently
small to consider σ(~s) constant on the entire element. This leads to the
replacing of integral into discrete summation

Φ(r) '
N∑
i=1

σ(~sk)Ak
|~r − ~s|

=

N∑
i=1

qk
|~r − ~sk|

(2.44)

where qk denotes the charge distributed in the Ak tessera. The set of qk
charges can be determined by an iterative approach which can be summa-
rized in this way. First, using a trial set q00

k (which can be obtained, for
example, from ρ0 arising from a previous DFT calculation in vacuo), a Φ0(r)
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is calculated from Eq. 2.44. By inserting the Φ0(r) in Eq. 2.43, properly
recasted in the form

q0n
k =

ε− 1

4πε
~∇(VM + Φn)~s,in · ~nkAk (2.45)

a new charge distribution is obtained which gives rise to a new q01
k set. By

repeating the cycle for n steps, a �nal set of q0n
k consistent with the n-th

estimate of the potential Φn(r). At this point, the reaction potential is used
iteratively in the e�ective Hamiltonian Eq. 2.35 from which ρ1 is obtained,
and subsequently used for de�ning q10.

Thus, as we can see, the solution of the problem can be obtained by
performing two di�erent SCF cycles, with the cycle for partial charges cal-
culation included in the more general cycle to solve the Hamiltonian Eq.
2.35 performed for a given interaction potential.

The peculiarity of the IEF-PCM in this very general approach to the
solution resides in the inner cycle for partial charge calculation: the e�ect of
each iteration starting from q00 to q0k can in fact be described in a matricial
form7

q0,f = −ΣD−1En (2.46)

where q0,f is a vector containing the qk partial charges, En the corresponding
total electric �eld Ek at each k site. Σ is a diagonal square matrix containing
the Ak tesserae areas tesserae and D a nonsymmetric square matrix with
dimension equal to the number of tesserae, which accounts for geometrical
cavity parameters, including if necessary corrections for the fact that the
charge is not in a single point, and the dielectric constant ε.

In IEF-PCM an extensive and crucial use of Green's functions to de-
scribe both the solute and solvent reaction �eld potential makes possible to
determine the matrix elements of ΣD−1 as combinations of the Caldéron
projectors of the Green's functions,7,29 which can be written in the form
reported by Scalmani38

Ŝσ(~s) =

∫
Γ

σ(~s′)

|~s− ~s′|
d2~s′

D̂∗σ(~s) =

∫
Γ

(
∂

∂n̂s

1

|~s− ~s′|

)
σ(~s′)d2~s′

D̂σ(~s) =

∫
Γ

(
∂

∂n̂′s

1

|~s− ~s′|

)
σ(~s′)d2~s′

(2.47)

which are identi�ed as the electrostatic potential, the normal component of
the electric �eld and the integral of the normal �eld evalueated at the surface
of the cavity Γ.38
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It's important to note that, how stated in,7,29 the IEFPCM formally
reduces to the D-PCM approach in the case of isotropic dielectrics but it's
very useful and general if applied to anisotropic and polar and ionic solutions,
where the properties of the dielectric medium are described in terms of a
tensor instead of a scalar.

In the latter more complex cases, it have been demonstrated that the
charge distribution can be obtained from the more general matricial equa-
tion7,29

Aσ = g (2.48)

with the dependence from the electric �eld and potential contained in the g
vector and σ vector containing the charge density at each single tessera. It
also possible and useful to impose appropriate conditions in order to retain
only the dependence from electrostatic potential generated by the solute
molecule VM in g, a choice which leads to a reduction of computational power
required, increased stability in solving implicitly correct the discrepancies
arising from outlying charge.

In conclusion, resolution of Eq, 2.48 represents the most inner cycle for
the two step SCF procedure: after solution for σ are �nd, in fact, it is possible
to evaluate the electrostatic interaction term which is present in Eq. 2.35,
and obtain a new value for VM used to update the g vector until full self
consistency is reached.

The electrostatic contribution to the free energy of solvation (electrostatic
free energy) ∆Gel is �nally calculated as the di�erence44

∆Gele = Gele − E0 (2.49)

where E0 is the ground state energy of the isolated solute in vacuo and Gele

is obtained by constrained minimization, using Lagrange multipliers, of the
functional45

Gele[Ψ] = 〈Ψ|H0 −
Φ

2
|Ψ〉 (2.50)

the factor 1
2 being introduced to take into account only the reversible com-

ponent of the total work done to introduce the solute charge density in the
embedding dielectric, half of which is sent to polarize the dielectric itself and
cannot be recovered by simply removing the charge distribution.

By choosing an appropriate {χ}n basis set, the problem stated in Eq. 2.50
can be converted in the diagonalization of the corresponding Fock matrix.

2.1.5 Non-electrostatic terms

As pointed out in introducing a brief explanation of the electrostatic
contribution calculation resume, the interaction potential is usually seen as
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the sum of di�erent components, re�ecting the main forces involved in the
reversible coupling work of solute and solvent.

It is important, at this point, to premise that it is known in literature that
the partitioning usually done is not a well posed problem from a theoretical
point of view, since several coupling exists between each component and only
the sum of all the contributions give rises to a meaningful state function, a
properties which do not apply to the components taken separately.

However, as clearly stated in Truhlar's work, this does not represent nec-
essarily a great inconvenient from a practical point of view, because many
non electrostatic contribution and the de�nition itself of the cavity can be
adjusted in order to partly re-absorb the missing contribution of the cou-
plings.

This approach has conducted to the formulation of several solvation mod-
els, as the SMD model25 which we used in our study, that can successfully
reproduce experimental data despite the apparent theoretical limits.

The main contribution generally grouped under the label of "non elec-
trostatic terms" and it can be shown that, in a many-body expansion, they
arises from three-body terms in calculation of global interaction energy.43

The most relevant contributions, according to the standard partitioning,23

are

� cavitation energy;

� repulsion energy;

� dispersion energy

The cavitation contribution represents the energy which has to be spend in
order to build the cavity in the dielectric bulk in which the solute molecule
is contained. As stated in Tomasi et al, it can be conceived as the sum of
the work done to create the cavity and the enthalpic variation linked to the
resulting reorganization of the solvent molecules. All the process of cavity
creation is done, according the charging parameter scheme, assuming all
other form of interaction absent.

The repulsion energy can be successively calculated as the correction
energy resulting from requiring the global antisymmetry of the wavefunction
describing the system. This term, always repulsive and decaying as r−12,
arises from the overlap of the solute and solvent wavefunction, correcting an
approximation assumed in the calculation of the electrostatic contributions,
i.e. the complete absence of charge density outside the cavity.

The energy dispersion, �nally, describes the stabilizing e�ects of the for-
mation of instantaneous dipole moments: its contribution is always negative
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as decays as r−6 and in �rst works, as in Pierotti's one,36 it can be estimated
simultaneously with repulsion by using Lennard-Jones potential for take into
account interatomic interactions.

An important characteristic of the non electrostatic terms is the fact
that they can be written in a form which explicitly depends on the solvent
accessible surface (SAS)23 via a set of semi-empirical parameters leading to
values very close to complete the experimental free energies of solvation.

Truhlar's et al SMD model,25 suggested by Gaussian 1614 as the currently
recommended choice for solvation energies calculation, largely exploits the
possibility to �ne tuning non electrostatic contribution related parameter in
order to provide, according to the authors, an approach which can be con-
sidered universal, i.e. suitable to successfully describe solutes both neutral
or charged in terms of easy accessible solvent macroscopic properties.

The model relies on the partition of the solvation free energy in sum

∆Gsol = ∆GENP +GCDS + ∆G0
c (2.51)

where electrostatic e�ects are included in the �rst ∆GENP term (with ENP
acronym to recall the electronic, nuclear and polarization contribution) and
cavitation, repulsion-dispersion and structural solvent modi�cations included
in the second GCDS term, the �nal term taking into account energetic con-
tribution from changes in concentration from gas to liquid phase, if required.

The electrostatic contribution are calculated in the framework of the IEF-
PCM model using a cavity build as overlapping, nuclear-centered spheres
with an optimized radius, depending on the partial charges and called in-
trinsic Coulomb radii.

Non electrostatic term is formulated as combination of surface areas
atom-dependent areas and two set of parameters, atomic and molecular sur-
face tension and include a di�erent set of radii known in literature as Bondi's
radii.

Atomic and molecular and surface tension are expressed as combinations
of several quantities of particular interest. In fact, the atomic surface tension
is written as a combination of the refractive index, Abraham's hydrogen
bond acidity and basicity, while the molecular surface tension is written as
function of the macroscopic surface tension for the solvent-air interface and
the fraction of aromatic carbons and halogens. The coe�cients entering
in the formulation of both these surface tensions are properly �t using a
very large training set of reference solvent and solute mixture, resulting in a
�nal model which posses an average error on solvation energies of few kcal
mol−1.25
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2.2 Classical Molecular Dynamics (MD)

2.2.1 Theoretical background

As described in Section 2.1, DFT has radically modi�ed the last devel-
opment of computational quantum mechanics by allowing the simulation of
larger molecular aggregates with a computational e�ort signi�cantly lower
compared to other Hartree-Fock and post-HF methods.

It is important, however, to clearly note that DFT alone does not repre-
sent the �nal receipt to simulate every kind of system at a quantum mechan-
ical level. The computational e�orts required to simulate larger and larger
systems rapidly increases with the number of atoms and thus the number of
basis function describing the KS operator. For this reason, pure quantum
mechanical simulations are usually limited in time or in the system size, a
circumstance which can represent an issue in the study of complex atomic
structures, as the intricate topology of organic polymers.

A possible way to overcome this intrinsic limitations not only of DFT
but of all ab-initio techniques is provided by Classical Molecular Dynamics
(MD), and have its origins in the same Born-Oppenheimer approximation5

used to simplify Schrödinger equation in the same formulation of DFT.
At a very fundamental level, in fact, Born-Oppenheimer approximation

can be reduce to the statement that electronic and nuclear motion are char-
acterized by completely di�erent timescales, implying that the evolution of
a system in the limit of very long times is usually not in�uenced by the
instantaneous state of the electrons but rather from their average, i.e. time-
averaged, evolution.

The core of Classical MD resides precisely in �nding a proper way to
construct meaningful and useful averages of properties emerging from the
electronic state of each aggregate and include them in a scheme in which
only atomic nuclei are explicitly simulated with trajectories following the
laws of Classical Dynamics.

This approach, in which all quantum mechanical details of the investi-
gated system are not lost but re-summed into simulation speci�c param-
eters, as the bond average lengths and force-constants, allows to signi�-
cantly reduce the computational resources needed to produce realistic and
larger atomic aggregates and makes possible to investigate the behavior at
timescales up to hundred (also thousand) of nanoseconds (∼ 10−7s), several
order of magnitudes above the typical electronic processes times (∼ 10−12s).

Regardless the involved procedure adopted, classical Molecular Dynamics
is based on the assumption that, in a model system with N atoms, the ith
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atom, treated as a point particle, experiences a force ~Fi which is the gradient
of a given potential energy Ui evaluated at the position of the ith particle

~Fi = −~∇Ui (2.52)

From ~Fi the acceleration ~ai is then calculated according to Newton's second
law of dynamics and numerically integrated respect to time t in order to give
the instantaneous velocity ~vi and position ~ri of each atom. The sampling
unit ∆t named timestep is used to discretize the whole simulation time T in
order to numerically solve the Newton's equations.

Several integration schemes are possible to achieve this goal. One of the
most frequently used is the velocity-Verlet algorithm, based on three Taylor
expansions involving the timestep ∆t to update the positions rrri and the
velocities vvvi

rrri(t+ ∆t) = rrri(t) + ∆t ṙrri(t) + (∆t)2 r̈rri(t)

2
+ o((∆t)3)

= rrri(t) + ∆t vvvi(t) + (∆t)2FFF i(t)

2mi
+ o((∆t)3)

(2.53)

vvvi(t+ ∆t) = vvvi(t) + ∆t v̇vvi + (∆t)2 v̈vvi
2

+ o((∆t)3)

= vvvi(t) + ∆t
FFF i(t)

mi
+ (∆t)2 v̈vvi(t)

2
+ o((∆t)3)

(2.54)

To maintain the o((∆t)3) accuracy, the second time derivative of each ve-
locity v̈vvi(t) is calculated in terms of the acceleration v̇vvi using the forward
di�erence

v̈vvi =
v̇vvi(t+ ∆t)− v̇vvi(t)

∆t
+ o((∆t)3) =

1

mi ∆t
(FFF i(t+ ∆t)−FFF i(t)) + o((∆t)3)

(2.55)
Eq. 2.54 is thus restated as

vvvi(t+ ∆t) = vvvi(t) +
∆t

2mi
(FFF i(t+ ∆t) +FFF i(t)) + o((∆t)3) (2.56)

The system made up by the two equations Eq. 2.53 and Eq. 2.56 repre-
sents the core of the velocity-Verlet algorithm, and is computationally imple-
mented using the following cyclic scheme to update positions and velocities.

Given the initial rrri(t), vvvi(t) and the forces FFF i(t)

1. positions are updated to rrri(t+ ∆t) using Eq. 2.53;
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2. the new forces FFF i(t+ ∆t) are calculated as FFF i = −∇∇∇Ui without over-
writing the previous FFF i(t) values;

3. velocities are updated to vvvi(t+ ∆t) using Eq. 2.56.

The cyclic instruction are repeated m times, m being the ratio between the
total simulation time T and the timestep ∆t.

A choice particularly important in the computational setup for MD sim-
ulations is the choice of the timestep ∆t. In order to achieve the highest
possible accuracy, the integration of the motion equation should require a
timestep as little as possible. However, this choice is not computationally
feasible since it would require very long simulation times. By contrast, ex-
cessive large values for ∆t are related to a global numerical instability of the
whole simulation.17 A good criterion9 is represented by taking the largest
vibrational typical frequency νmax of the system and to set ∆t as

∆t <
1

νmax
(2.57)

2.2.2 Force �elds

As clearly expressed in Eq. 2.52, the key ingredient of every Classical MD
simulation is the potential energy Ui calculated at each ith atomic position
resulting from the mutual interactions of the N atoms in the system.

The functional form as well as the parametrization of the overall function
U is referred to as force �eld.

Several interactions are usually considered to describe accurately the be-
havior of large aggregates of atoms, arising not only from pure quantum
mechanical e�ects, as the speci�c characteristic of a chemical bond, but also
by forces which can described classically, as long range Coulombic interac-
tion.

A common practice adopted in the parametrization of all force �elds is
to break down the overall potential energy U as the sum of these di�er-
ent contributions, and distinguishing between short-range and long-range
interactions. Short-range contributions are referred to as bonding terms and
long-range interactions are described as non-bonding. The U functions is
thus written as

U = Ubonded + Unon−bond (2.58)

The Ubond term can be written as the sum of three many-body functions as-
sociated with the properties of the covalent bond between interacting atoms,
namely

Ubonded = Ubonds + Uangles + U torsion (2.59)
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Figure 2.1: Schematic representation of the main terms of AMBER force �eld
(adapted from Ref.31)

where Ubonds, Uangles and U torsion are a 2-, 3- and 4-body functions.
The functional form of the n-body function is used to divide the force

�elds in two main classes, I and II.
In Class I force-�elds, the motion of atoms is treated using the harmonic

approximation. These force �elds, in which the bond and angle term are
quadratic, are frequently used to model organic systems.

In Class II force-�elds, high order to correction to the harmonic ap-
proximation, mainly cubic terms, are introduced to include the e�ects of
anharmonicity.

AMBER8 is a Class I force-�eld, the harmonic approximation is used
to describe the motion of the atoms around their equilibrium positions and
under the in�uence of the bonding, short-range interactions and the three
terms in Eq. 2.59 are written as

Ubonds =

nb∑
i

ki(ri − req
i )2

Uangles =

na∑
i

qi(θi − θeq
i )2

U torsion =

nt∑
i

wi(1 + cos(nφi − φeq
i )) (n integer)

(2.60)

where ki, qi, wi are numerical coe�cients obtained by �tting from experi-
mental data or computational estimates, ri the inter-atomic distance between
two atoms, θi the angle formed by 3 bounded atoms and φ the dihedral angle
between 4 bounded atoms. The sums in Eq. 2.60 run on the total number
of bonds, angles and dihedrals, respectively.
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The n integer entering in torsional contribution accounts for the n-fold
periodicity interaction, re�ecting the intrinsic symmetry in the dihedral an-
gle.

Two long-range non-bonding contribution constitutes the Unon−bond in
Eq.2.58, the electrostatic (Coulombic) potential and the Lennard-Jones en-
ergy

Unon−bond = U elec + ULJ (2.61)

which are calculated in terms of the mutual rij distance between the ith and
the jth atom constituting an unbounded pair as, respectively,

U elec =
∑

non−bond

qiqj
rij

ULJ =
∑

non−bond

4εij

(
σij
r12
ij

− σij
r6
ij

) (2.62)

where qi, qj are the �xed partial charges of the involved atoms and ε, σ the nu-
merical coe�cients accounting for repulsive interaction from exclusion prin-
ciple (∼ r−12) and dispersion (or van der Waals) term (∼ r−6).

2.2.3 Thermostats and barostats

One of the most interesting properties of velocity-Verlet integration scheme
is its symplectic nature, a term describing the fact that the volume of the
N-atom system in phase space is conserved during the dynamical evolution.

As consequence, the total energy E = K + U , the sum of the kinetic K
and potential U energies, is conserved with great accuracy. The properties
of the system arising from statistical averages are thus well-described in the
framework of the microcanonical ensemble, where the total number N , the
volume V and E are �xed at their initial values (for this reason, this ensemble
is also referred to as NVE).

Unfortunately, the NVE ensemble very rarely reproduce the experimental
conditions in which the properties of interest are measured. In these cases.
in fact, one or more intensive thermodynamical properties of the sample are
usually �xed, as the temperature T or the pressure p.

In order to reproduce in classical MD simulations this conditions, a pos-
sible approach is constituted by the introduction of additional terms in the
global Hamiltonian Ĥ, a methodology called extended Lagrangian formal-
ism. These modi�cations to Ĥ implies the introduction of a �ctitious drag
term ξ in Eq. 2.52 to correct the accelerations r̈rri as

r̈rri =
FFF i
mi
− ξ

mi
ṙrri (2.63)
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where the functional form of ξ is derived directly from the corrections applied
to Ĥ.

As case of particular interest, to keep T temperature constant in a N
atom system with V volume (NVT or canonical ensemble), the ξ param-
eter as derived in the formulation of Nosé and Hoover (the so-called NH
thermostat) must obey the di�erential equation

dξ

dt
=

∑
i v

2
i − 3NkBTr
Q

(2.64)

where Tr is the target temperature, vi the modulus of the velocities of the
particles and Q the mass associated with the s additional degree of free-
dom added in Ĥ to describe the heat bath in a system with g independent
momentum-degrees of freedom

Ĥ =
∑
i

ppp2
i

2mis2
+

1

2

∑
i 6=j

Uij +
p2
s

2Q
+ gkBT log(s) (2.65)

In many software suites used for classical MD simulations, as LAMMPS, the
entity of M can be regulated via a damping or relaxation time τ , which is
generally recommended to set at ∼ 100∆t.

The overall Nosé-Hoover dynamics, generating trajectories in accordance
with the canonical distribution for a system at temperature T , results to be
determined by the set of equations involving the generalized momenta and
coordinates pi, qi

ṗi = −∂V (qqq)

∂qi
− pipη

Q

q̇i =
pi
mi

ṗη =

N∑
i=1

p2
i

mi
−NkBT

η̇ =
pη
Q

(2.66)

A signi�cant improvement in accuracies is obtained if the single thermostat
in original NH approach is replaced by a chain of M coupled thermostats,
each one with its own QM inertia. Only the �rst (j=1) thermostat in the
constructed chain interacts directly with the N -particle system, the jth one
(for j > 1) interacting only with its two neighbours j − 1, j + 1 in the chain.

36



It can be shown27 that the dynamical equations for the generalized mo-
menta pi and pη are modi�ed in

ṗi = −∂V (qqq)

∂qi
−
pipη(1)
Q1

ṗη(1) =

N∑
i=1

p2
i

mi
−NkBT −

pη(1)pη(2)
Q2

ṗη(j) =
p2
η(j−1)

Qj−1
− kBT −

pη(j)pη(j+1)

Qj+1
for 1 < j < M

ṗη(M)
=
p2
η(M−1)

QM−1
− kBT

(2.67)

A similar approach can be applied to set constant the system pressure (giving
the NH barostat) allowing to generate results consistent with isothermal-
isobaric ensemble (NPT).

2.3 Marcus theory

The elementary process in which an electron is exchanged between two
distinct molecular aggregates following the basic scheme

D−sol + A+
sol
−−⇀↽−− D+

sol + A−sol (2.68)

is conventionally referred to as electron-transfer reaction between a donor D
and an acceptor A in the common solvent environment.

The construction and rigorous formalization of electron-transfer reactions
in the framework of the Quantum Mechanics is of paramount importance to
understand a very large class of evidences from biochemical, chemical and
physical experiments, a goal which has been successfully achieved mainly by
the Nobel laureate Rudolph Marcus in the past century.

In this Section, the key points and most important ingredient which have
been used in Chapter 5 to estimate the electrical conductivity of realistic PE-
DOT samples are summarized, reminding to the vast literature available2,3, 32

for a deeper understanding.
Referring to Eq.2.68, the starting point for the derivation of Marcus

hopping rate κ, de�ned as the frequency at which each elementary electron
transfer takes place, is the recognition of the importance of �uctuations of
atomic coordinates of the donor and the acceptor molecule as well as the
surrounding solvent molecules.

The energetic balance related to the hopping process of a charge, in fact,
includes not only the individual contribution from the donor and the acceptor

37



Figure 2.2: Schematic representation of the Marcus' parabolae for the general redox
in Eq. 2.6840

but also the non-negligible cost of the reorganization of the orientational
degree of freedom of the solvent molecules, which is particularly important
when the process occurs in a polar solvent as water.

Relying on a speci�c application of BO approximation to the molecular
case, the Franck-Condon principle, the speci�c state of the system in Eq.
2.68 before and after the charge transfer is studied in terms of the nuclear
coordinates qi, implicitly depending on the electronic wavefunction.

To give a visual representation of the method, usually the E(qi) surface,
which is in principle a function of all the N atomic degrees of freedom (in-
cluding the surrounding solvent molecules), is plotted for the special case of
a single variable function Eq, in the form of two displaced parabolae (as in
Fig. 2.2 for the case in Eq. 2.68)

The intersection point between the reactants and products parabolae
determines the overall hopping rate κ, which can be stated in the form24

κ = κ0 exp

(
−∆G†

kBT

)
(2.69)

where κ0 prefactor is determined, essentially, by the overlap of the electronic
wavefunctions of D and A and ∆G† the Gibbs free energy of activation.

For most applications, the hopping rate in Eq. 2.69 reads as24

κ0 =
2π

~
|HAD|2

∑
ω

ζωp(ω) (2.70)

where HAD is the charge transfer integral, ζ the Franck-Condon factor for
the vibrational frequency ω multiplied for its corresponding probability p(ω).

At this point, by treating all the nuclear coordinates qi of the reactants
in terms of harmonic quantum oscillators and the solvent environment ori-
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entational contribution classically, Eq. 2.70 can be recasted24 in the form

κ =
2π

~
|HAD|2√
4πλkBT

exp

(
−(∆G0 + λ)2

4λkBT

)
(2.71)

where ∆G0 is the Gibbs free energy of reaction and λ the reorganization
energy, a contribution associated with transition of each molecules in Eq.
2.68 from one Eqi hypersurface to the other, as explained in detail in Chapter
5.
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Chapter 3
Computational approach to

PEDOT polymerization

3.1 Chapter outline

The conceptual backbone of computational simulations of PEDOT poly-
merization is based on (i) accurate evaluations of the Gibbs free energies
and (ii) a reactive Molecular Dynamics (MD) step in which chain growth
and spatial reorganization take place, eventually in a concurrent dynamic.

In this Chapter data production protocol and validation are presented,
followed by the description of the results and the proposed interpretation.

Initially, the computational implementation for Gibbs free energies ∆G
calculations is presented, followed by the results of trial calculations per-
formed to assess the validity of the method.

The ∆G(n) for PEDOT polymerization is then calculated as a function
of the �nal chain length of the product expressed in monomeric units n and
the results are compared with the available experimental data.

The inclusion of ∆G in the polymerization algorithm, which allows to
include the DFT description of the process in the context of a Molecular
Dynamics (MD) simulations is then presented. The computational results
for the characterization of the micromorphologies of the �nal samples and the
comparison of XRD simulated spectra are the topic of the last two sections.

3.2 Ab-initio approach to the polymerization

In order to overcome the problems represented by the energy barriers and
the absence of an experimental information to de�nitely clarify the nature of
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proton scavenger identity, we focused only on the global energetic balance of
the reaction, getting rid of the kinetics (and so long, of the barriers, which
are however still important): in other term, we focused on the stationary
state, assuming that all the barriers are overcome.

By means of DFT calculations, as explained in Section 1.3, we evaluated
the Gibbs Free Energy variation for the reaction previously described and
using di�erent combination of molecules as proton scavengers. In order to
achieve this goal, the Gibbs Free Energy evaluated for each isolated molecule
in vacuum is corrected by adding additional terms taking into account its
interaction with the solvent, namely the ethanol. Since polymerisation pro-
ceeds spontaneously until ∆G(n) (where n is the EDOT number of unity
which made up the olygomer) maintains a negative value, estimating the
critical nc value at which ∆G(n) is nearest to zero can give an indication
about the maximum chain length.

Studying ∆G(n) for di�erent combinations of proton scavengers allows
also to establish if more scavengers combination are possible (i.e. more than
one choice makes polymerisation energetically favorable), to show how the
chain length could be a�ected by the reactants choice.

3.3 Computational implementation

Standard Gibbs Free energy of a reaction in solution ∆G∗sol can be written
as a sum of three contributions, according to

∆G∗sol = ∆G0 + ∆G0→∗ + ∆Gsol (3.1)

where ∆G0 is the Gas-phase Free Gibbs energy of reaction, ∆G0→∗ is the
thermodynamic correction taking into account the transition from gas-phase
state to standard condition (1M concentration) and �nally ∆Gsol is the sol-
vation Gibbs Free energy arising from solute-solvent interactions for each
reactant and product.

Electronic structure calculations can be successfully exploited to evaluate
the �rst and the last terms of the right member of equation Eq. 3.1 by using
the Gaussian 16 simulation package.9

Starting from the �rst term of summation in Eq. 3.1, as explained in
detail in Ochterski's technical report,22 the evaluation of Gibbs free energy
in vacuo (i.e. assuming the simulated molecule in a gas phase at Standard
Pressure and Temperature conditions, STP1) is based on the applications of
incremental corrections to the pure ab-initio zero-point energy E0 each one
naturally arising from the two main thermodynamic identities for internal

1T=298,15 K, p=1 atm
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thermal energy E and molar entropy smol as obtained by manipulation of
the standard form stated by McQuarrie's textbook.20 The evaluation of the
global q(V, T ) partition function of the simulated molecule

smol =
S

n
= R

(
1 + ln (q(V, T )) + T

(
∂lnq

∂T

)
V

)
E = NkBT

2

(
∂lnq

∂T

)
V

(3.2)

where R and kB are the gas and Boltzmann constant, respectively and N
the number of particles at temperature T in the volume V .

By partitioning q(V, T ) in its translation qt, rotational qr, vibrational qv
and electronic qe contributions as

q(V, T ) = qtqrqvqe (3.3)

the general forms for each contribution to s and E can be eventually ob-
tained.

Referring to the cited work for all the calculations technicalities,22 after
summation of all the contributions arising from translational, rotational,
vibrational motions and from electronic contribution, the overall thermal
energy Etot and molar entropy Stot are combined to obtain the corrections
Hcorr, Scorr to be applied to the zero point energy E0 in order to obtain the
enthalpy H and Gibbs free energy G0 for the simulated molecule. Formally

G0 = E0 +Gcorr

= E0 + (Hcorr − TStot)
(3.4)

where Hcorr, the correction for enthalpy, is given by E0 + kBT .
For the general reaction scheme

A + B −−⇀↽−− C + D (3.5)

the Gibbs free energy variation ∆G0 is evaluated as a di�erence between the
sum of Gibbs Free energies of each product and the sum of those of each
reactant, namely

∆G0 =
∑

products

G0 −
∑

reactants

G0

= G0(C) +G0(D)−G0(A)−G0(B)

(3.6)

It is noteworthy that in the process of calculation of the gas-phase Gibbs free
energy an important role is played by the analysis of vibrational frequencies
required to estimates the vibrational contribution.
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One very important condition to obtain accurate results is that the molec-
ular structure under examination must be in its ground state in order to
exclude the presence of imaginary frequencies, automatically excluded from
the analysis by Gaussian 16 internal routine.9,22

To this aim, in all the structures analyzed, in the present work is assumed
that before every G0 calculation a preliminary geometrical optimization has
been performed at the same level of theory (i.e. same functional and basis
set) used for subsequent vibrational analysis and, by direct inspection, it
has been excluded the existence of imaginary frequencies associated with
the �nal, relaxed structure.

The evaluation of the third term in summation in Eq. 3.1, the solvation
energy ∆Gsol, follows a slightly di�erent protocol.

It is assumed as starting point for each calculation on reactants and
products their speci�c full relaxed in vacuo molecular structure. Gsol for
the speci�ed molecule is then evaluated as the di�erence between the single
point energy calculated in vacuo Ens and the corresponding energy, at �xed
geometry, including the presence of the self-consistent reaction �eld induced
by the implicit solvent Es

Gsol = Es − Ens (3.7)

where in Es both electrostatic and non-electrostatic contributions are in-
cluded via SMD implicit solvent model18 in the context of the Integral
Equation Formalism implemented in Polarizable Continuum Model (IEF-
PCM).4,21

Starting from Gsol, the reaction ∆Gsol is then evaluated as in Eq. 3.6.
Finally, the thermodynamic correction ∆G0→∗ is summed as reported in

Eq. 3.1. The origin of this term resides in the fact that all gas-phase standard
state values (assumed in G0 calculation) describe each molecule entering in
the reaction as an ideal gas at standard conditions (P=1 bar and T=298.15
K), which does not correspond to the actual conditions experienced by the
molecule in solution.

Thus, a correction to convert to a standard state of 1
V ∗ = 1 mol L−1

concentration at p = 1 atm is calculated and added15,26 according to

∆G0→∗ = ∆n RT ln

(
R̃T

pV ∗

)
(3.8)

where ∆n is the di�erence between the sum of moles of products and the sum
of moles of reactants, R and R̃ are the universal gas constant (the product
of Boltzmann and Avogadro constant R = kBNA) must be expressed15 in
J mol−1 K−1 and L atm mol−1 K−1, respectively.
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Table 3.1: Dissociation enthalpies ∆H298 (in kcal mol−1) and entropies S (in
cal mol−1 K−1) for the six acids. The second and third columns report data avail-
able in Gutowski's work12) while the last four columns represent the results of the
performed calculation at B3LYP/6-311G(d,p) and B3LYP/aug-cc-pvdz level.

Acid Ref.12 experiment B3LYP/6-311G(d,p) B3LYP/aug-cc-pvdz
S ∆H298 S ∆H298 S ∆H298

HBr 47 323.53 47.425 324.91 47.419 321.0
HCl 45 333.419 44.605 329.53 44.595 330.1
HI 49 314.313 49.444 316.68 49.444 316.7

H-HSO4 74 312.52 72.725 313.86 72.659 310.4
TfOH 89 305.416 88.23 303.75 88.792 300.5
TsOH 104 n.a. 99.474 320.08 99.474 320.1

3.3.1 Assessment of validity

Before starting calculations on PEDOT's chains, preliminary tests were
performed to check accuracies in evaluating of energies calculated by Gaus-
sian0917 and Gaussian169 suite of programs and to determine the best com-
bination of functional and basis set to be used to obtain computational values
closer to experimental available data.

As �rst test, the enthalpic ∆H298 and entropic S contributions for disso-
ciation of the strong acids listed in Table 3.1 were calculated using Gaussian
169 and compared with the results reported in Gutowski's work,12 where
both DFT-simulated and experimental2,3, 13,16,19 values are available.

In order to calculate the enthalpy at 298K, ∆H298, and the entropy S as-
sociated to the dissociation reaction of each HA strong acids in its conjugated
bases A− and a free proton H+

HA −−⇀↽−− A− + H+ (3.9)

each molecular species entering in Eq. 3.9 was �rst optimized using B3LYP
functional.

To check the in�uence of the basis sets, two separate calculations were
performed using 6-311g(d,p) and aug-cc-pvdz with the same B3LYP func-
tional.

After optimization, the vibrational frequency calculations to obtain the
thermochemistry data were carried on at the same level of theory, obtain-
ing the results reported in the last four columns of Table 3.1, which were
successively compared with the computational estimates for S in Gutowski's
article and the experimental results for ∆H298 there used.
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Figure 3.1: Schematic representation of the protonation of pyridine to pyridonium.
Experimental Gibbs free energy in water solution ∆Gexp = −7.04 kcal mol−1.25

∆Gcalc = −8.80 kcal mol−1 with the adopted computational setup.
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Figure 3.2: Energy Per Monomeric unit as a function of the overall number n of
EDOT monomers in PEDOT olygomers with increasing chain length. Obtained
data trend (green lines) is in fair agreement with data reported in Ref.7 (purple
line).

Both the adopted combinations tested are able to produce ∆H298 values
in good agreement with available experimental data as well as S values in
very good agreement with those reported in literature. In particular, it can
be veri�ed that mean square deviation on the analyzed sample of S amount
to 2.1 cal mol−1 K−1 for both the combinations while deviations for ∆H298

are signi�cantly lower (2.6 kcal mol−1) if 6-311G(d,p) is used compared to
aug-cc-pvdz case (3.6 kcal mol−1).

For this reason, as well as the observed lower computational workload
associated with the use of 6-311G(d,p) basis sets, all the subsequent calcula-
tions (including production data for PEDOT) were performed at B3LYP/6-
311G(d,p) level of theory.

A second set of trial calculations was performed using B3LYP/6-311g(d,p)
on PEDOT chains with chain length up to 10 monomeric units, to obtain
the energy per monomer (EPM) as a function of EDOT number units n

contained in each chain and comparing the resulting trend with data re-
ported in Dkhissi's work7 obtaining a fair agreement As third and �nal set
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of trial calculations to check the accuracy of SMD implicit solvent model, the
Gibbs free energy for the process of protonation of pyridine to pyridonium
in water, as depicted in Fig. 3.1 and compared to the experimental value
∆Gexp = −7.04 kcal mol−1 from Sacconi's work25

After performing the geometrical optimization and frequency calculations
on both the molecular species in Eq. 3.1 (i.e. pyridine and pyridonium)
at B3LYP/6-311g(d,p) level, Gibbs Free energy of the process, including
solvation in water contribution, is estimated in ∆Gcalc = −8.80 kcal mol−1,
in fair agreement with experimental data.

3.4 Thermochemistry data for PEDOT

3.4.1 Computational protocol

In order to take into account the in�uence of proton scavenger used in
PEDOT polymerization on the �nal micromorphology properties, the Gibbs
free energy of reaction for all the six combinations of the three proposed
scavengers (Pyridine Pyr, Tosylate TosOH, and water) was evaluated using
Gaussian 0917 and Gaussian 169 suites of software

HXn−1H+ + HXH+ + 2Pyr −−⇀↽−− HXnH + 2PyrH+

HXn−1H+ + HXH+ + 2TosO− −−⇀↽−− HXnH + 2TosOH

HXn−1H+ + HXH+ + 2H2O −−⇀↽−− HXnH + 2H3O+

HXn−1H+ + HXH+ + Pyr + TosO− −−⇀↽−− HXnH + PyrH+ + TosOH

HXn−1H+ + HXH+ + Pyr + H2O −−⇀↽−− HXnH + PyrH+ + H3O+

HXn−1H+ + HXH+ + H2O + TosO− −−⇀↽−− HXnH + H3O+ + TosOH
(3.10)

where HXnH, with n ≥ 2, is the PEDOT olygomer made up by n monomeric
units.

Each one of the molecular structures entering on Eq. 3.10 was generated
and preliminary optimized in Avogadro14 molecular editor via the built-in
facility, using Universal Force Field UFF.24

Each resulting pre-optimized structure was further relaxed at DFT/B3LYP/6-
311G(d,p) level in order to obtain, after performing vibrational frequen-
cies analysis, the G0 gas-phase Gibbs free energy associated to the speci�ed
molecule. At this stage, the absence of imaginary frequency was veri�ed by
direct inspection of Gaussian output in order to assure the correct relaxation
of the structure in a true local minimum of energy.

Gibbs free energy of reaction in vacuo for each proposed polymerization
scheme was then evaluated according to Eq. 3.6.
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Calculation of the solvation Gibbs free energy Gsol for each chemical
species was performed using as starting point the atomic coordinates relaxed,
as resulting from gas-phase calculations, and repeating the same steps for G0

calculations, i.e. optimization and frequency analysis but now including the
e�ects of solvent environment (assumed to be ethanol) using SMD implicit
solvent model.

The solvation Gibbs Free energy associated to each molecule, Gsol, is
then evaluated as the energy di�erence between the single point energies
estimated in vacuo and in solution.

The free energy data set ∆G(n)∗sol for each scavengers combination, with
2 ≤ n ≤ 16, is �nally calculated according to Eq. 3.1.

3.4.2 Results

The calculated ∆G0 and ∆G(n)∗sol trend for increasing chain lengths n
are depicted in Fig. 3.3a and Fig. 3.3b, respectively.

One of the �rst features which can be clearly observed in Fig. 3.3 is
the large di�erence existing between the values estimated in vacuo and in
solution, proving the impact of the ∆Gsol contribution in determining the
�nal results.

The observed di�erences results in a shift of the values estimated in vacuo
with respect to the ones estimated in solution, the amount of which is clearly
strictly related to the speci�ed combination of scavenger.

Since the polymerization reaction can spontaneously occur only when
∆G∗sol is negative, the position of 0 value is included as reference.

It can be observed that water alone (i.e. the combination of two water
molecules as scavenger) results a poor reactant choice both in vacuo as well
as in solvent ethanol. In the �rst case, no spontaneous polymerization is
allowed, in the second case only dimerization can eventually take place in
ethanol.

The presence of two pyridine molecules or one pyridine and one tosylate
molecules, by contrast, is associated with an energetic trend suggesting that
the accretion of chains is not energetically forbidden even for high molecular
weights. It can be thus hypothesized that a further polymerization could be
in these cases prevented by the local exhaustion of reactants, an hypothesis
which will be tested by accurate polymerization dynamics simulation in the
following part of this chapter.

All the others combinations appear, instead, to lead to spontaneous poly-
merization only for very limited chain lengths, with tosylate+water combi-
nation stopping at 6 monomeric units and pyridine+water or two tosylate
at ∼ 10 m.u.
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Figure 3.3: Gibbs free energies calculated in (a) vacuum and (b) in ethanol (SMD
implicit solvent model). 0 value (dashed black line) is included as reference level.

53



The observed trend of ∆G∗sol is qualitatevely con�rmed by the two work
in literature. Firstly, it is experimentally established6,28 that bases such as
imidazole and pyridine act as inhibitors of the polymerization reaction, by
raising the pH of the reaction environment and preventing activation of un-
wanted reaction channels.29 Among all the combinations, tosylate seems to
give rise to chain lengths that are in the order of 9 monomer units, consis-
tent with the general notion according to which the chains of PEDOT have
a limited length (between 5-15 monomers10)

3.4.3 Interpretation of observations based on Gibbs free en-

ergies

To interpret the observations of the work of Fabretto et al.,8 the trend of
Gibbs free energies in vacuo (Fig.3.3a) could be possibly used as reference.
The experimental conditions described8 can in fact lead to the most probable
conclusion that no solvent is present in the region in which the polymerization
takes place in the vacuum chamber used. In fact, both water and butanol
are eliminated from the substrate and from the experimental chamber, with
the only exception constituted by the case in which the condensation of
the steam is observed. This circumstance, which can be computationally
simulated as polymerization in water solvent, is not meaningful since the
formation of a liquid layer has been experimentally related to the formation
of an inhomogeneous and poorly conductive �lm.8

It should be noted that the enthalpy contribution and the ∆G0 shown
in Fig.3.3a are calculated in STP conditions, while in the experiments8 both
the temperature and the pressure are notably di�erent form STP values,
being the pressure in the range 5 < p < 35 mbar.

In order to take into account the di�erence in pressure and temperature
between the adopted computational setup and the speci�c experimental con-
ditions present in Fabretto's work8 (p = 0.01 atm and T = 50 C) were es-
timated in the speci�c case of dimerization, n = 2. The values appear, for
all the combinations, systematically increased of ∼ 5kcal

mol , a di�erence su�-
ciently small to assume that the trend shown in Fig. 3.3a is still valid under
the experimental conditions described.

From thermodynamics considerations, it is observed that water cannot
spontaneously act directly as proton scavenger, a conclusion not in contrast
with experimental observation8 since polymerization appears to occur in the
presence of water vapor but above the tosylated iron (III) layer.

At the light of the new data provided in Fig.3.3, the tosylate, in the
presence of steam, appears to function not only as oxidizant for the PEDOT
molecules involved but also as a proton scavenger. From the analysis of
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∆G(n) curves, moreover, tosylate appear to be far more e�cient than water
for the latter purpose.

It appears clear that the description strictly faithful to the observed phe-
nomenon can be summarized as follows. In the absence of water and pyridine,
the mixture of EDOT and tosylate is not subject to any macroscopically ap-
preciable reaction. In the presence of water vapor or pyridine, polymerization
takes place.

In this sense, two tosylate molecules have the energy balance more favor-
able to make possible polymerization.

Clearly, even an energetically favored reaction can have a su�ciently high
activation energy to prevent it from taking place, as can be speculated from
the experimental data,8 where the energy barrier for the reaction in which
two tosylate anions are proton scavengers must be signi�cantly high.

Since it is thermodynamically clear that water alone cannot act as a
proton scavenger, it could possibly modify the height of the energy barrier.

At this point we can assume, for example, that the water induces a
geometric distortion of the reaction intermediate which thus achieves a more
favourable geometry from the energy point of view in order to allow the
extraction of the protons.

As can be seen in Fig. 3.3, for chain lengths equal to 10 EDOT units,
the Gibbs free energy is largely negative: the data therefore suggest that
polymerization gives rise to chains of length extremely high.

On the other hand, the �lm formation mechanism brie�y described in
experiment8 allows us to hypothesize that the chain length is limited by
the chain coalescence process, which could compete with the chain growth.
The formation of a conglomerate of chains, in fact, could limit even from a
geometric point of view, the possibility that the ends of the chains grow.

The formation of a green �lm in the presence of pyridine and the ab-
sence of water can be explained on the basis of the energy results. The
green coloration is interpreted by Fabretto et al.,8 on the basis of the spec-
trographic analysis as due to the presence of short chains. If pyridine, like
water, managed to lower the energy barrier allowing the tosylate to act as
proton scavenger, the chains would also be extremely long. The fact that
the chains are short, as shown experimentally, indicates that pyridine cannot
act as a catalyst for the reaction. The tosylate is therefore inert as potential
proton scavenger.

The combination of two pyridines as proton scavenger explains the re-
duced chain length from an energy point of view: ∆G0 reaches zero for
5 < n < 6.
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Figure 3.4: Reaction intermediate structure for the dimerization (n=2) case. It can
be observed the presence of two out-of-plane protons, confering to the molecule a
net +2e charge.

3.4.4 Estimating the height of the barrier

To estimate the height of the barrier, referring to the polymerization
mechanism known from the literature, the energy of the reaction intermediate
for the case of dimerization has been calculated by means of Gaussian: the
structure of the intermediate, with global charge +2, is schematized in Fig.
3.4 It turns out that the di�erence in energy ∆G0 between the molecule
shown in Fig. 3.4 and two EDOTs each with global charge +1 is equal to
220.778kcal

mol .
We observe that in the case of the dimerization in which the two tosylates

act as proton scavengers, the global balance is ∆G(n = 2) = −249.755kcal
mol ,

suggesting that as soon as the tosylate polymerization takes place, it releases
enough energy to allow the remaining tosylate molecules to overcome the
barrier.

The formation of more complex reaction intermediates, which involves
temporary bonds with the proton scavengers considered, is not excluded
as a hypothesis to explain the overcoming of the barrier in the case of 2
pyridines.

3.4.5 Combining reaction's scheme

Polymerisation of EDOT could occur in a solution containing a certain
amount of water: since ∆G∗sol for water-only proton scavengers scheme is al-
ways positive for all olygomers greater than dimer, this means that, provided
all barriers are overcome for su�cient long times, catalysis reaction

HXnH + 2H3O
+ −−⇀↽−− HXn−1H+ + HXH+ + 2H2O (3.11)

is energetically favorable. Provided a su�cient hydronia cations are avail-
able, long chain seem be unstable in solution.
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Figure 3.5: Gibbs Free energy for reaction Eq. 3.13 as a function of n

and normalized for HXnH units' number.

By the other hand, tosylate and pyridine are always present in solution
and Gibbs Free energy analysis has shown that reaction

HXn−1H
+ + HXH+ + Pyr + TosO− −−⇀↽−− HXnH + PyrH+ + TosOH (3.12)

is characterised by a Gibbs Free energy negative for very large value of n.
Hydronia acts thus as a polymerisation limiters.

Assuming, realistically, that hydronia, tosylate and pyridine are present
in solution, we calculated the Gibbs Free energy of reaction

2HXn−1H
+ + 2HXH+ + Pyr + TosO− + 2H2O

−−⇀↽−− 2HXnH + PyrH+ + TosOH + 2H3O
+ (3.13)

and represented, as shown in Fig. 3.5 the Gibbs Free energy of reaction per
HXnH unit for this reaction. In this case we expect that PEDOT polymerisa-
tion proceeds until the energy increase for each HXnH olygomer approaches
to zero. The curve crosses the zero between n = 6 and n = 7 showing that
polymerisation, provided that enough hydronia are presents, stops when a
six m.u. olygomer is formed: this is in agreement with some literature works
which report PEDOT chain's length to be between 5 and 15.

When the number of hydronia cations in solution are lowered, for example
increasing basicity, an increment in chain is expected because the dominant
reaction scheme goes back to be Eq. 3.12. In other terms, pH incrementation
seems to have as side e�ect the suppression of catalysis reaction in Eq. 3.11
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3.5 Simulating chains growth

3.5.1 Introduction

In this section, we will expose the procedure and results obtained in
simulating the actual process of PEDOT chain growth using a novel compu-
tational protocol.

At the end of the previous section we presented the results of the Gibbs
free energy of reaction of PEDOT synthesis, calculated at a DFT level, which
represent the arrival point of the �rst step performed at the lowest a�ordable
level of theory.

Gibbs free energies, by inclusion of the solvation contributions, calculated
for each reaction stage resumes in a single scalar quantity all the quantum
description of the system. In this chapter we provide the description and
present the result of our computational algorithm properly nesting the in-
formation obtained at the previous stage in the more general framework of
molecular dynamics (MD) simulation, which allows the analysis of large ag-
gregates of atoms (∼ 105 in our simulations) otherwise not tractable in a full
DFT approach.

3.5.2 The algorithm

The essence of the adopted polymerization algorithm is the use of a
probabilistic, Markov based approach to simulate the process by which the
olygomeric units (in the lower limit reducing to a single monomer), aggre-
gates to form larger chains, with a probability p which is directly related
to the microscopic detail of each reactant and embedded speci�cally in the
Gibbs free energy.

Beside the speci�c characteristic, however, the mutual distance of the
reactants also play a signi�cant role in determining the possibility of a new
bond to be created, which in this way can be seen as a function not only
of the speci�c chemical species involved but also as function of the density
and the time of polymerization (or, in an equivalent manner, to the degree
of advance of the polymerization reaction itself).

Moreover, mutual distance is not the only factor in�uencing the reactivity
and probability of aggregation, since the bond formation can be inhibited,
even if distance is short enough, by the steric hindrance, due to the fact that
not all the site of the molecule are active regions in which the bond itself
can be created.

To recover both these dependence, which otherwise would be missed in
the framework of pure probabilistic simulation, we simulate the dynamical
behaviour of the aggregates of molecules in which the process of creation of
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new bonds takes place, by means of the Molecular Dynamics.
As starting point, a collection of N = 104 EDOT monomers in a cu-

bic simulation cell with L = 11.8 nm side is constructed. The number of
monomers is chosen in order to reproduce in the volume of the cell �xed
during the entire simulation, the average mass density ρ corresponding to
the usually adopted concentration of EDOT in experiments.

The EDOT monomers are the only chemical species explicitly described
in the simulation cell, no counterions (as PSS), no proton scavengers and no
solvent molecules being present.

The absence of solvent and counterions is simply motivated by the fact
that their contribution to the process of polymerization is already implicitly
taken into account in the Gibbs free energy of reaction and thus the proba-
bility of creation of a new bond, while the absence of counterions as the PSS
origins from the necessity not only to maintain a reasonable computational
cost but also our interest in precisely isolate the e�ect exerted by the proton
scavengers, more easily feasible if analysis is restricted to pristine EDOT
samples.

The counterions choice, moreover, is not only something univocally de-
termined but also problematic in simulations since several counterions have
been experimented and reported in literature but very little study are present
on their speci�c con�gurations and characteristics. In the case of PSS, to
cite one of the most employed counterion, the presence of very extended
chains and the broad chain distribution causes great problems in including
it in the polymerization scheme designed for the EDOT and maintaining, at
the same time, an a�ordable computational cost.

In any case, it should be underlined that we expect this counterions
to play a role in polymerization mainly because of the steric and spatial
impediments they pose to approaching of reactants, thus limiting the chain
growth process, but which we choose, in a �rst approximation, to neglected.

A preliminary structural minimization followed by thermalization are
performed. Pseudo-dynamic with conjugated gradient and a timestep as
large as 1fs are used for minimization. Thermalization is achieved by using
the Nosé-Hoover thermostat and barostat in the NPT ensemble imposing
T = 300K and atmospheric pressure, with the dynamics simulated with a
0.5fs timestep until convergence to temperature and volume of equilibrium.

When the system is equilibrated, two stages are iteratively repeated, each
one answering to the two interlinked aspect we are interested to simulate, (i)
the probabilistic creation of a bond and (ii) the role of distance and topology,
which we named dynamical and coupling step.

The dynamical step consists in a MD run in which the time evolution
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of the atomic positions and velocities of the system is achieved by solving
the Newton equations of motion using the velocity-Verlet algorithm, with
interatomic forces described via bonding and non-bonding terms of the AM-
BER force�eld, with a 0.5fs timestep and temperature and pressure kept
constant using the Nosé-Hoover thermostat and barostat. In order to avoid
large pressure �uctuations, the relaxation time for the barostat was set to
0.5ps while for thermostat proved to be su�cient.

To provide an accurate description of electrostatic contributions, RESP
(restrained electrostatic potential) atomic partial charges were calculated
using Gaussian 169 and a particle-particle-particle mesh solver for long range
electrostatic interactions and imposing a cut-o� distance of 1.0nm for shorter
range van der Waals interactions.

The dynamical step is followed by the coupling step, in which the bonds
are actually created.

The intermolecular distance d of each couple of fragments which, accord-
ing to the reaction scheme, can be possibly merge to form a larger olygomer
is calculated. No bonds are formed if the distance between the molecules is
larger than the imposed threshold of 3Å.

Conversely, if the molecules approach at a distance below the thresh-
old, in order to take into account the statistical nature of a chemical bond
creation, a probability proportional to the Boltzmann factor containing the
∆Gn free reaction energy

p ∝ exp
(
−∆Gn(B,B')

kbT

)
(3.14)

is calculated if the two molecules approaching are a monomer and an oly-
gomer with n−1 monomeric units. Notice that the Gibbs free energy depends
on the choice of the couple of proton scavenger B,B' adopted.

If the reaction is favourable (∆Gn < 0), the bond is always created by
assuming p = 1 while in the case ∆Gn > 0 we do not exclude a priori the
possibility of formation of a new bond but choose to assign a probability as
lower as the absolute value of the Gibbs free energy increases. Each time a
bond is created, all the bond parameters (such as the angle and diehedral
variables) are properly written in the LAMMPS23 data �le. Their values are
successively relaxed and evolved in time in the subsequent dynamic step.

Polymerization is simulated for each proton scavenger combination by
varying the associated ∆Gn(B,B') for a total of 3 · 106 dynamical steps, cor-
responding to 1.5 ·102ps. It's important to note, however, that this temporal
extension has not relation with the experimental polymerization temporal
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Figure 3.6: Average chain length during MD simulation for the di�erent combina-
tion of scavengers employed.5

extension, since the Markov approach implemented in our algorithm to in-
troduce new bond leads to a dynamics which is for certain verse accelerated
if compared to the real microscopic dynamics.

3.5.3 Results

Average chain length

The evolution of average length of PEDOT chains formed during the
Molecular Dynamics simulations for di�erent combinations of proton scav-
engers are depicted in Fig. 3.6.

The results obtained are consistent with the analysis conducted on the
Gibbs free energies of reactions. A very limited chain growth can be traced in
water scavenged samples, with average chain length of 2−3 monomeric units
rapidly reaching its saturation values, while in pyridine scavenged samples
the maximum average chain length ∼ 20 monomeric units, is achieved after
∼ 106 MD steps.

The chain growth process in samples scavenged using pyridine as one of
the scavengers is limited by the initial concentration of the pyridine itself
rather than energetics, which imposes a maximum number of bonds of 1.1 ·
104 and is evidenced in Fig. 3.6 by the presence of clear plateau perfectly
horizontal.

By contrast, in the case of pure tosylate based samples, the growth ve-
locity, which can be de�ned as the �rst time derivative of the average chain
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Figure 3.7: Chain length distribution at the end of MD simulations for the dif-
ferent combination of scavengers employed. The corresponding dispersity index is
indicated for each distribution.5

length curve, gradually decreases as the polymerization process progresses
but without reaching a plateau, a features which can be explained by the
fact that the reaction, even if energetically favourable, is strongly limited by
the increases distance between the reactants and the drastic diminution of
unreacted monomers after the initial rapid growth.

In the case of tosylate based samples, in fact, the initial concentration of
tosylate anions is su�ciently high to exclude its role in determining the �nal
average chain length, with the concentration of monomers and the polymer-
ization itself, limiting the monomers mobility, to play a crucial role in the
observed drop of the reaction velocity.

Chain length multimodal distribution

A more detailed description of the impact of the proton scavengers choice
on the polymerization can be obtained by the analysis of the chain length
distribution and dispersity index D, de�ned as the ratio between the weight-
average molecular mass Mw and the number-average molecular mass Mn

D =
Mw

Mn

=

∑
i niM

2
i∑

i niMi

∑
i ni∑

i niMi
(3.15)

where ni is the number of molecules with massMi. The index largely deviates
from 1 in all the cases in which sizes of molecules or particles in the considered
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ensemble is far from homogeneity and can be used to evidence the presence
of multiple peaks in a distribution.

The chain length distributions and the corresponding dispersity index for
each investigated combination of scavengers are reported in Fig. 3.7.

It can be observed that in the case of water and water+ tosylate cases, the
samples are characterized by a conspicuous number of unreacted monomers
and the distributions appear as a single and very narrow peak. This samples
are thus composed by an aggregation of short chains, in contrast with the
cases where pyridine and tosylate are present.

In particular, in the cases of pyridine and pyridine+tosylate scavenged
samples, the chain length distribution extend to 40 monomeric units, indi-
cating the presence of very long chains, a data which is consistent with the
trend observed in Gibbs free energies of reaction, always su�ciently negative
to make the polymerization process thermodynamically favourable. The dis-
tributions are very broad and no particular chain length in the range 1− 40
m.u. can be evidenced. Still, as in the water based samples, a signi�cant
fraction of unreacted monomers can be found, a data which support the idea
that the convergence observed in the average chain length time evolution is
dictated by the depletion of the scavenger. As possible experimental test
for this hypothesis, it could be suggested to increase the amount of pyridine
initially present in the starting solution in order to verify if, according to
this explanation, longer chain length could be achieved.

The most interesting case, however, is represented by the pure tosylate
scavenged samples, where the distribution is not only very broad but also
displays the presence of three peaks corresponding to ∼ 12, 21, 35 m.u.

This features, which is somewhat unexpected from the simple analysis of
the free energy of reactions, reveals the existence of a multimodal distribution
in the chain length for pristine PEDOT, a fact which, in our knowledge, as
never be evidenced in literature.

Whit�eld et al.,27 however, evidenced in their review the fact that disper-
sity index can be properly tailored if the polymerization reaction requires an
initiator. Since in our case of study the charged EDOT monomeric units can
be interpreted as the initiator of the reaction, the observed multimodal dis-
tribution can be reasonable seen as a genuine e�ect induced by the tosylate
rather than a mere artefact due to an unphysical condition of polymerization.

Moreover, according to Whit�eld review,27 the presence of a multimodal
chain distribution can greatly impact on the transport properties of the poly-
mer aggregate.
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Figure 3.8: Schematic representation of de�nition of orientation vectors for the
calculation of correlation parameter.5

Morphology and crystallinity

The in�uence of the proton scavenger combination used on the micromor-
phology of the simulated samples was evaluated by de�ning the crystallinity
in terms of a pure geometrical parameter, the correlation of the orientation
of each monomeric unit.

An orientational vector ~si was associated to each i-th thiophenic ring,
with extremal points coinciding with the two carbon at the side of the sulphur
atom (not belonging to the same chain) and the local spatial correlation C(~r)
between the nearest neighbours has been evaluated as

C(~r) =
1

N

∑
|~r−~rj |<r0

|~si(~r) · ~sj(~rj)| (3.16)

where the summation is extended on the monomers inside the sphere centered
in ~r and radius r0 = 5Å and divided for the total number of EDOT units N .

From the same de�nition of Eq. 3.16 it results that in regions char-
acterized by a strong spatial correlation, C(~r) reaches it maximum while
disorder con�guration leads to values approaching zero, and the analysis of
the quantity allows for a visual inspection of the regions with the higher de-
gree of crystallinity (crystallites), where it is expected to found a long range
ordering.

From de�nition Eq. 3.16, the fractional volume occupied by the crystal-
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Figure 3.9: Correlation maps on a slab (1nm thickness) of each PEDOT sample
analyzed, black segments representing the orientation of the monomeric EDOT
units5

lites can be estimated by

vC =
1

Vcell

∫
θ(C(~r)− Cmin) dV (3.17)

where the step function θ is used to restrict the volume integral on the region
characterized by a C(~r) above the threshold Cmin = 6 · 10−4, chosen as half
of the entire range of variation of the parameter in our samples, (1−9) ·10−4.

A section of the correlation maps produced for each sample is shown in
Fig. 3.9, with C(~r) values displayed as a chromatic scale ranging from green
(lowest ordered regions) to dark blue (high ordered regions).

The existence of crystallite domains is clearly visible in tosylate and pyri-
dine based samples, while no relevant long range order seems to exist in pure
water based sample. This data, if interpreted under the light of the chain
length distributions, suggests the concurrent nature of polymerization and
crystallization, since the presence of long PEDOT chains is strictly related
with the emergence of larger crystallite domains.

This dependence is very evident if the fractional volume of crystallites
is plot as a function of the average chain length, as in Fig. 3.10, where two
behaviour distinctly emerges. At lower values of average chain length, a very
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Figure 3.10: Fractional volume of crystallites vC as function of the average chain
length5

sharp increase of vC can be traced, a growth which appears to arrive at a
saturation value of vmax

C ' 50% in the right part of the interval.

XRD and time evolution

The dynamical evolution of micromorphology during the polymerization
has been investigated by analysis of the radial distribution function restricted
to the sulphur atoms gS-S(r) as depicted in Fig. 3.11 for the case of tosylate
scavenged samples, shown as case of study.

Three main peaks have been clearly identi�ed during the entire simula-
tion run and the action of polymerization on their position consists in a shift
toward lower values of r, indicating the formation of more compact structure
inside the sample.

Moreover, a drastic reduction in the intensity of the �rst peaks is ob-
served, which can be interpreted as an e�ect of the reduction of short chains
and unreacted monomers.

As �nal validation of the simulation protocol, XRD spectra have been
simulated using LAMMPS23 and assuming incident wavelength λ = 1.540Å,
following an approach reported in,11 and compared with the experimental
data from Aasmundtveit et al.1 for tosylate scavenged PEDOT sample in
presence of imidazole. The two curve are reported in Fig. 3.12.

The two peaks obtained from simulation (2θ = 11.7 and 2θ = 22.6) are
in good agreement with experiment (2θ = 12.1 and 2θ = 26.21), the main
di�erence in the second peak attributed to π − π stacking and possibly ex-
plained by the presence, in experimental conditions, of intermissing chemical
species not explicitly simulated in our approach. A better agreement emerges

66



Figure 3.11: Time evolution of sulphur-sulphur radial distribution function, vC
and correlation map for tosylate based sample. The arrows in upper panel are
introduced to evidence the variation in the position of the three main peaks during
the polymerization process.5

Figure 3.12: Simulated (black line) and experimental positions1 (red arrows) of
XRD peaks for tosylate scavenged PEDOT sample.
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for the �rst peak which is attributed to lateral in-plane interaction between
adjacent oligomers.

3.6 Conclusions

By including the e�ect of solvent in Gibbs free energy of reactions for
several choice of proton scavengers, it emerged that the best combinations of
proton scavengers to be employed in order to increase the chain length are
pyridine and pyridine+tosylate.

By a novel computational tool which allows to include the information
about the energetic of each choice of reactants in a modi�ed Molecular Dy-
namics simulation, realistic micromorphologies of PEDOT samples were ob-
tained, each one re�ecting the characteristics dictated by the scavengers
involved. In particular, it has been observed that combination containing
tosylate and pyridine are characterized by broader chain length distribu-
tions, extending up to 40 monomeric units in pyridine cases, while water
displayed the poorer performances in terms of volume occupied by crystal-
lites and average chain length of resulting PEDOT sample.

By direct comparison of simulated XRD spectra with experimental po-
sitions of the main peaks associated to PEDOT sample polymerized using
tosylate, it was found a good agreement with the position of the peak as-
sociated with the lateral in-plane interaction between monomeric units and
small di�erences in the peak associated with π − π stacking.

These di�erences, which can be safely attributed to force �eld parametriza-
tion and eventually the presence of intermissing molecules (not explicitly
simulated in our code), do not impact on the assessment of validity of our
polymerization algorithm, which suggest the formation of large crystalline
regions in pyridine and tosylate scavenged samples.

The impact of the resulting di�erent micromorphologies on the thermal
transport properties and electric conductivity will be investigated in Chapter
4 and 5, respectively.
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Chapter 4
Thermal conductivity of

PEDOT

4.1 Introduction

The study of heat propagation in organic polymers is of paramount im-
portance for the realization of e�cient thermoelectric devices, strategical in
the ongoing search of large available and low-cost sources of energy.

Heat is in fact the �nal form in which all types of energies convert at
the end of the process of production of electrical power, thermal energy
is available in so a large amounts that any su�ciently e�cient process of
its conversion in electricity can potentially have an enormous impact in the
world energy scenario, an impact largely in�uenced by the growing awareness
of the risks linked to the use of fossil fuels as a driving force of the modern
economy.

Large e�orts have recently been done in order to increase the e�ciency
of existent thermoelectric generators (TEG), namely roughly described by
the adimensional thermoelectric �gure-of-merit

zT =
σS2

κ
T (4.1)

in which S is the Seebeck coe�cient, κ the overall thermal conductivity and
σ the electrical conductivity, T representing the working temperature.

Organic conductive polymers seems to be the most suitable materials
as constituents of active regions of TEG, since they can achieve by chem-
ical doping relatively high electrical conductivity and Seebeck coe�cients
preserving an intrinsically low thermal conductivity.
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Even if, at the state of the art, zT values are not su�ciently high in order
to make possible a large scale use of organic based TEG, several works have
been devoted to the scope of pushing forward the actual values of zT .

Refering to 4.1, the achievement of higher zT values in semiconductors
junctions, in general, and in organic polymers, in particular, seems to be pos-
sible by signi�cantly increasing the electrical conductivity while a su�ciently
low thermal conductivity is maintained.

Among organic polymers, PEDOT seems to have emerged: it is in fact
characterized by good electrical properties, such as an high hole mobility, air
stability and a simple synthesis process which allow a large scale manufac-
turing.

As many other organic polymers, bulk PEDOT samples, usually synthe-
sized with copolymer blends, also are generally regarded as thermal insu-
lators because they display low thermal conductivities, in the range 0.20 −
0.38Wm−1K−1 according to several experimental and computational values
reported for PEDOT:Tos and PEDOT:PSS samples1�4) .

The presence of such low values of thermal conductivity is crucially deter-
mined by the overall micromorphology of the analysed samples and cannot
be naively explained in terms of sum of the individual thermal conductiv-
ity of each PEDOT chain composing the aggregate. In fact, an individual
polymer chain may have extremely high thermal conductivity, as Crnjar
explained in his work,5 where a systematic computational investigation is
carried on PEDOT simpli�ed geometries. According to this work, the inter-
chains anharmonic interactions play a non negligible contribution in a�ecting
the thermal transport in PEDOT and are directly responsible for the removal
of an anomalous heat transport regime which appears to take place in single
non-interacting chains. In this regime, the thermal conductivity κ appears
to be related with the chain length L with the exponential law

κ ∝ L(0.49±0.02) (4.2)

which is interpreted by authors as the scaling law evidencing the presence of
the anomalous heat transport regime, a link suggested by literature6

This results have its roots in the �rst observations of Fermi, Pasta and
Ulam7 and have been con�rmed by decades of discussion on anomalous heat
conduction in one-dimensional lattices.8 More recently, it was demonstrated
by Zhang et al.9 how temperature-induced morphology modi�cations can
induce signi�cant thermal conductivity variations in single chains and crys-
talline �bers of polyethylene, an e�ect con�rmed in Polyamide 610 by analysis
of Polydispersity Index. A possible explanation of this e�ect, pointing out
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a clear dominance of thermal transport mediated by covalent bonds over
nonbonded, inter-chain interactions (i.e. van der Waals), has been proposed
by Luo et al.11 invoking the increase of sti�ness of polyethylene aggregates
which manifest in the emergence of anisotropy in thermal transport.

Even if this observations mostly came up from simpli�ed models, it is not
far from true to assume as a commonly accepted fact that chain length plays
a central role in determining transport properties of a material, referring to
both thermal and electrical transport.

In the previous chapter it was extensively pointed out how the polymer-
ization conditions, namely the proper choice of reactant (proton scavengers),
greatly a�ect the micromorphology of the resultant pristine PEDOT sam-
ples: particularly e�cient proton scavengers lead in fact to an increase both
in maximum and average chain length. By means of Molecular Dynamics
(MD) simulations it has been observed the impact of this chain distribution
modi�cations on the degree of crystallinity, quanti�ed using the fraction of
volume occupied by crystalline regions surrounded by amorphous interfaces:
as natural extension of that investigation, this Chapter explores the impact of
the proton scavengers induced structure modi�cations on thermal transport
properties. By means of standard molecular dynamics techniques the diag-
onal components of thermal conductivity tensor κκκ will be calculated and a
modal analysis was performed in order to identify the impact of morphology
on the vibrational modes involved.

4.2 Method

4.2.1 Thermal conduction from AEMD simulation

Estimations of thermal conductivity in materials can mainly exploit two
di�erent results from thermodynamics:

1. the relation between the autocorrelation of thermal j current and the
κ thermal conductivity, a special case of Green�Kubo relations arising
from the Fluctuation Theorem

κij =
1

kBT 2V

∫ +∞

0
dt 〈ji(t)jj(0)〉 (4.3)

where i, j denotes the direction along with the thermal current is an-
alyzed during a NVE simulation performed on a sample thermalized
homogeneously at a T temperature;

2. the phenomenological Fourier equation for nonequilibrium, di�usive
heat transport linking the thermal current j arising from an existing
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Figure 4.1: Scheme for AEMD simulation12

temperature gradient ∂T
∂x

jx = −κ∂T
∂x

(4.4)

While the �rst relation requires a well equilibrated system (and so it is usually
referred to as EMD Equilibrium Molecular Dynamics), the estimation of κ
using the Fourier law can be performed in both transient or steady Non
Equilibrium Conditions.

The thermal conductivity will be estimated using transient non equilib-
rium conditions using the approach as described below.

4.2.2 Theory for transient analysis

A possible strategy, reported in literature,13 for the evaluation of thermal
conductivity with Molecular Dynamics technique is based on the analysis of
the evolution of the temperature di�erence between two region of the sample,
for which a theoretical solution can be easily found by solving the partial
derivatives heat equation.

By assuming, as in the cases of interest for PEDOT thermal conductivity,
cubic simulation cells with 2l side and cross section Σ = 4l2, an orthonormal
frame of reference is constructed with its origin at the centre of the cell and
the three axes parallel to each side, as depicted in Fig. 4.1. Heat transport
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is studied along the x axis for the subsequent derivation without loss of
generality.

The temperature �eld T (x, y, z, t) describing the temperature of each
point of the sample at each time t is the solution of the general heat equation

∂T

∂t
= α2∇2T (4.5)

where α2 is the thermal di�usivity de�ned as combination of the thermal
conductivity σ, the mass density ρ and the speci�c heat c

α2 =
σ

ρc
(4.6)

Density can be directly evaluated for each sample by using standard molecu-
lar dynamics softwares, as LAMMPS,14 while the speci�c heat can be easily
calculated from Dulong-Petit law for molar speci�c heat capacity provided
that the investigated compound is well above its speci�c Debye's tempera-
ture. In the case of PEDOT, starting from the data reported in literature,
suggesting a Debye temperature below 273K15 or very close to 315K16 in
idealized crystalline structure, it was found that preliminary calculations us-
ing LAMMPS suite and AMBER force �eld17 that this computational setup
correspond to assuming this condition ful�lled in the range of temperature
250−350K investigated, since no signi�cant deviation from the Dulong-Petit
value has been found.

Assuming the periodic boundary conditions

T (x = −l, t) = T (x = l, t)

dT

dx

∣∣∣∣
x=−l

=
dT

dx

∣∣∣∣
x=l

(4.7)

the general solution for the heat equation, i.e. the temperature �eld T (rrr, t) =
T (x, y, z, t) can be obtained by separation of the variables trough the ansatz

T (rrr, t) = φ(rrr)ψ(t) (4.8)

and obtaining
1

ψ

dψ

dt
=
α

φ

2
∇2φ (4.9)

Introducing a scalar λ > 0 variable, the previous equation can be recasted
in the form of a system of two equations{

1
ψ
dψ
dt = −λ

α
φ
2 ∇2φ = −λ

(4.10)
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where the �rst di�erential equation has the solution

ψ(t) = a2e
−λt (4.11)

while the second di�erential equation can be solved by a further separation
of the variables by factorization

φ(rrr) = X(x)Y (y)Z(z) (4.12)

Now, since the heat propagation is studied along the x direction, provided
that the system is su�ciently homogeneous, an hypothesis which can be
tested a posteriori, it can be concluded, by exploiting axial symmetry, that
the product Y (y)Z(z) reduces to a simple multiplicative constant φ0.

The X(x) function can be obtained as solution of

d2X(x)

dx2
+

λ

α2
X(x) = 0 (4.13)

which has general solution

X(x) = c1 sin

(√
λ

α
x

)
+ c2 cos

(√
λ

α
x

)
(4.14)

and thus the temperature �eld assumes the form

T (rrr, t) = e−λt

(
c1 sin

(√
λ

α
x

)
+ c2 cos

(√
λ

α
x

))
(4.15)

where c1 e c2 are rewritten to absorb the constant values of a2, φ0.
It is straightforward to verify that by imposing the periodic boundary

conditions, which restrict the value of λ to the discrete set

λm =
α2π2

l2
m2 (4.16)

the temperature �eld can be written as superposition of Fourier normal
modes

T (rrr, t) =

+∞∑
m=1

e−
α2π2

l2
m2t
(
c1(m) sin

(mπ
l
x
)

+ c2(m) cos
(mπ
l
x
))

(4.17)

where c1(m) and c2(m) are coe�cients �xed by the assigned initial pro�le
T (x, y, z, t = 0).

78



Imposing a step-like temperature di�erence between the left (x < 0) and
right (x > 0) half of the simulation cell described by the equation

T (rrr, t = 0) =
T1 − T2

2
sign(x) +

T1 + T2
2

(4.18)

by equating the 4.17 at t = 0

T (rrr, 0) =
+∞∑
m=1

(
c1(m) sin

(mπ
l
x
)

+ c2(m) cos
(mπ
l
x
))

(4.19)

with the Fourier series expansion of 4.18

T (rrr, 0) =

(
T1 − T2

2

4

π

∞∑
m=0

1

(2m+ 1)
sin
(

(2m+ 1)π

l
x

))
+
T1 + T2

2
(4.20)

the temperature �eld T (rrr, t) can be easily obtained

T (rrr, t) =
T1 − T2

2

+∞∑
m=0

e−
α2π2

l2
(2m+1)2t

(
4

π

1

(2m+ 1)
sin
(

(2m+ 1)π

l
x

))
+
T1 + T2

2

(4.21)
The evolution of the spatially averaged temperature di�erence ∆T between
the two halves of the system results to be

∆T (t) =
1

l

∫ l

0
(T (x, t)− T (−x, t)) dx =

=
8(T1 − T2)

π2

+∞∑
m=0

1

(2m+ 1)2
e−

α2π2

l2
(2m+1)2t

(4.22)

It can be observed that in the asymptotic limit of t→ +∞, the temperature
as described in 4.21 approaches to the average T1+T2

2 for each x value, as ex-
pected for an homogeneous sample, while the spatially averaged temperature
di�erence ∆T (t) in 4.22 approaches zero.

As �nal remark, it can be observed that all the temperature of each point
is determined only by the time and the x coordinate. This is a consequence of
the solution of the heat equation by separation of the variables which implies
no dependence from y and z coordinate or, in other terms, in assuming the
thermal conductivity tensor to be in the diagonal form.

To check the presence of non-negligible o�-diagonal components, the tem-
perature evolution along the axis perpendicular to the initially imposed tem-
perature gradient can be monitored in order to evidence deviations from the
expected isoplanes-pro�le.

No such deviations were detected in all the cases analyzed.
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4.2.3 Computational implementation of transient analysis

All the simulations were performed on the samples produced by the poly-
merization algorithm. The heat transfer dynamics was studied using the
LAMMPS14 package: in all simulations the equations of motions have been
integrated by the velocity-Verlet algorithm with a timestep of 0.5fs. Atomic
bonds have been described using AMBER force �eld:17 pairwise interactions
were computed using the standard Lennard-Jones potential and adding a
Coulombic interaction both within a cuto� radius of 10Å. Long-range inter-
actions (i.e. exceeding cuto� radius) were computed using a particle-particle
particle-mesh solver (pppm) with an accuracy of 10−4kcal mol−1Å−1.

All heat transfer simulations were carried on cubic samples of 118Å per
side in periodic boundary condition along each direction. Each sample con-
tains 104 monomeric units.

In order to create the step-like temperature pro�le along the samples,
two regions, one for each half of the sample, were de�ned and alternately
equilibrated at the target temperature T1 = 350K and T2 = 250K using a
Nosé-Hoover thermostat. During the thermostatation of each cube's half, the
atoms in the other one were kept �xed in order to avoid any heat exchange
during the thermostatting process. After the equilibration of both halves,
the motion of all atoms in the cubic sample was simulated in NVE ensemble
and the temperature of each half has been recorded during all the calculation.

The ∆T (t) data sets sampled were �tted using the series 4.22 with ∆T0 =
T1−T2 and α as �tting parameters. The series have been truncated atm = 20
since in preliminary test performed for each sample found that increasing the
m value up to this limit leads to no increase in the accuracy of obtained κ
values, as depicted in Fig.4.2 for one of the cases examined.

4.2.4 Modal analysis

Thermal conductivity as calculated from transient analysis does not di-
rectly o�ers a mean to deeply investigate the e�ect caused by di�erent chain
length distributions.

This is not a fault of the theory itself but instead a consequence of the
macroscopical character of the Fourier law, which does not require a detailed
knowledge of the mechanism by which, at a more fundamental level, the
energy �ows inside the investigated samples.

For these reasons, even if the analysis of thermal conductivity resulting
from this approach can evidence di�erences between samples scavenged in a
di�erent fashion, an investigation aiming to elucidate the precise role of the
chain length distribution must include a more �ne description of the system,
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Figure 4.2: Thermal di�usivity α2 derived from �tting of 4.22 on transient evolution
obtained for one of the samples analyzed as function of the m cuto� imposed on the
maximum term of the series. Convergence is achieved at m = 20 (relative di�erence
below 0.01%)

at least at the atomic level.
The Green-Kubo Modal Analysis (GKMA)18 can be seen as valuable

tool to achieve this aim, being successfully employed in system in which
translation invariance is partially or completely lacking, and the evaluation
of a phononic group velocity or mean free paths is problematic or impossible,
precluding the application of the standard techniques developed for pure
crystalline systems.

GKMA applications ranges a large variety of non-crystalline systems, as
amorphous carbon,19 interfacial region20 and nanoporous silicon, the latter
being explored by Antidormi et al.,21 whose strategy, hereafter summarized,
inspired and have been applied in this work to reveal the impact of chain
length distribution on PEDOT thermal conductivity by altering the dynam-
ical state of motion of the atoms involved in the thermal energy transfer.

The central quantity of the GKMA is the dynamical matrix,18,21 de-
�ned during a su�ciently long microcanonical simulation run in terms of the
masses and the forces acting on the atoms

Dlα,jβ = − 1
√
mlmj

∂Flα
∂rjβ

(4.23)

where ml is the mass of the lth atom, Flα the α Cartesian component of
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the force acting on the lth atom and rjβ the β Cartesian component of the
displacement of the jth atom.

The diagonalization of the dynamical matrix 4.23 provides a basis set of
3N vectors (with N the total number of atoms) which are the eigenmodes
el,s of the system. This frame of reference, which is strictly related with the
real dynamical status of the system and it is thus not arbitrary as the xyz
reference used for AEMD analysis, can be used to de�ne a heat �ux operator
Qs(t) at the atomic scale associated to each s eigenmode in the form

Qs(t) =
1

Ω

N∑
l=1

[
Elẋl(s, t) +

N∑
k=1

(Flkẋl(s, t)rlk)

]
(4.24)

where Ω is the total volume of the sample, El the total energy of the lth
atom, Flk is the force acting on the lth atom when the kth atom is displaced
and rlk the distance vector between the lth and kth atoms, while ẋl(s, t)
represents the projections of the total velocity vl of the lth atom onto the
eigenvectors of the matrix given in eq.(4.23) according to

ẋl(s, t) = (vl · el,s)el,s (4.25)

The µ cartesian component of the total heat �ux operator qµ(t), enter-
ing in the Green-Kubo autocorrelation formula for each of the Cartesian
component κµν of the thermal conductivity tensor

↔
κ
↔
κ
↔
κ

κµν =
Ω

kBT 2

∫ ∞
0
〈qµ(t) · qν(0)〉 dt (4.26)

can be obtained by summing the corresponding Qµ,s(t) over the entire 3N
set of eigenvectors, as

qµ(t) =
3N∑
s=1

Qµ,s(t) (4.27)

By substitution of 4.27 and 4.24 in 4.26, the average thermal conductivity,
i.e.

κ =
κxx + κyy + κzz

3
(4.28)

can be put in the form

κ =
Ω

3kBT 2

∫ ∞
0

〈
3N∑
s=1

Qs(t) ·
3N∑
s′=1

Qs′(0)

〉
dt (4.29)
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where the contribution the modes involved in heat transport is now clearly
explicit.

The exact impact of every single sth mode on thermal conductivity can
be quanti�ed by de�ning the κs modal contribution as combination of the
total heat �ux operator 4.27 and rewriting 4.29 as

κ =
Ω

3kBT 2

3N∑
s=1

∫ ∞
0
〈Qs(t) · q(0)〉 dt =

3N∑
s=1

κs (4.30)

The eigenvectors obtained by diagonalization of the dynamical matrix
can be used to de�ne another important quantity which describes the spa-
tial extension of the modes involved in the process of heat transfer, the
Participation Ratio (PR).21

For a system composed by N atoms, the PR is de�ned as

PR =
1

N

(∑N
l=1 e

2
l,s

)2
∑N

l=1 e
4
l,s

(4.31)

where el,s are derived from the diagonalization of the dynamical matrix.
The de�nition of PR makes possible to determine the spatial extension of

each of the s modes involved in thermal transport. In fact, if the eigenmode
analyzed involves a large group of atoms, i.e. if the spatial extension of the
eigenmode is large, PR ∼ 1, while in the case of localized modes the PR
is very close to zero and decays as a function of the number of atoms N
involved (PR = O(N−1)).22 Starting from this di�erent behavior, Allen et
al.22 proposed, by studying the paradigmatic case of amorphous silicon, a
classi�cation of extended modes in di�usons, for which the PR quickly decays
to zero, and propagons, characterized by a larger and almost N -insensitive
value of PR.

Finally, in order to better characterize the vibrational modes, it has been
de�ned21 the average coordination number, as the weighted number of bonds
with �rst neighbors involved in a given mode. It is calculated as:

n̄s =

∑N
l=1 nC,l e

2
l,s∑N

l=1 e
2
l,s

(4.32)

where nC,l is the coordination number of the lth atom, and e2l,s is the squared
modulus of its displacement vector.
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Figure 4.3: Evolution of average ∆T along the three directions of a pyridine

sample: smooth lines represent the result of the �tting on simulated data. Semi-log
scale is used.

4.3 Results

4.3.1 Dependence of thermal conductivity κ from adopted

scavenger

The choice of the proton scavenger used in polymerization phase signi�-
cantly impacts on the thermal conductivity of generated samples: as showed
in Figures 4.3 − 4.8, in fact, scavenging a�ects not only the mean values
of thermal conductivity κ̄ but seems also to induce a signi�cant amount of
anisotropy in heat propagation.

This anisotropy induced e�ect appears to be maximal in pyridine scav-
enged samples, in which the drop of ∆T is very di�erent according to the
direction selected while is minimal in water scavenged sampels, where the
time evolution of ∆T appears to be independent from the propagation di-
rection analyzed.

Since the temperature di�erence ∆T pro�les appears to be very noisy
when values fall below ∼ 5K, an ensemble average was performed for each
sample, by varying the initial equilibration times and the resulting κx, κy, κz
values were properly averaged: the results, shown in Fig. 4.9 and reported in
Table 4.1, clearly con�rm the existence of an anisotropy in heat propagation.

Since in the previous chapter was pointed out the in�uence of scavenging
on �nal morphology of pristine PEDOT samples, in particular on average
chain length and cristallyte fraction, and several works showed the impact
of morphology on thermal transport properties, the connection existing be-
tween the proton scavenger used in polymerization and the resulting thermal
conductivity can be explained as due by the modi�cations induced by the
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Figure 4.4: Evolution of average ∆T along the three directions of a pyri-

dine+water sample: smooth lines represent the result of the �tting on simulated
data. Semi-log scale is used.
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Figure 4.5: Evolution of average ∆T along the three directions of a pyri-

dine+tosylate sample: smooth lines represent the result of the �tting on simulated
data. Semi-log scale is used.

Table 4.1: Thermal conductivity κx,y,z values for each sample reported in Fig. 4.9:
all values are expressed in WK−1m−1 unit

sample κx κy κz
pyridine 0.36± 0.01 0.193± 0.005 0.145± 0.005
pyr+wat 0.103± 0.003 0.193± 0.003 0.155± 0.005
tosylate 0.128± 0.005 0.200± 0.008 0.305± 0.008
pyr+tos 0.156± 0.005 0.32± 0.01 0.17± 0.01
tos+wat 0.115± 0.0075 0.1225± 0.0075 0.093± 0.005
water 0.110± 0.003 0.1078± 0.0005 0.113± 0.003
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Figure 4.6: Evolution of average ∆T along the three directions of a tosylate sample:
smooth lines represent the result of the �tting on simulated data. Semi-log scale is
used.
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Figure 4.7: Evolution of average ∆T along the three directions of a tosy-

late+water sample: smooth lines represent the result of the �tting on simulated
data. Semi-log scale is used.
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Figure 4.10: Average κ values of the samples analyzed plotted as a function of
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di�erence in scavenging on the �nal morphology of the samples. To bet-
ter elucidate this dependence, in Fig. 4.10 the κ thermal conductivities
are shown as a function of the average chain length characterizing the cor-
responding sample: the κ values depicted were obtained by averaging all
values arising from each NVE simulation and averaging them regardless the
direction of the heat �ow, the error bar obtained as standard deviation of
the population of spatial averages.

The analysis shows as the average κ thermal conductivity increases as
the average chain length increase until a threshold value of ∼ 15 monomeric
units is achieved: then κ appears to stabilize around ∼ 0.2WK−1m−1.

4.3.2 Longitudinal κ‖ and transversal κ⊥ thermal conductiv-

ities

The analysis reported has been extended in order to clarify two ques-
tions arising from the previous subsection: �rst, since during polymerization
phase, the �nal chain orientation is unrelated to the axis orientation, it can
easily question if previous thermal conductivity estimates are meaningful.
The suggested dependence of κ from chain length can also be studied de-
composing the thermal conductivities along the chain direction.

Referring to the �rst question, even if axis orientation is unrelated to the
chain orientation, estimates of the three components of thermal conductivity
κ are useful in order not only to elucidate the presence of an anisotropic
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Figure 4.11: Graphical representation of the algorithm to �nd the direction of
maximum alignment. In a) a normalized orientational vector is assigned to each
monomeric unit and remapped as depicted in b) in order to generate a �ctitious
mass distribution lying on the surface of a sphere. Inertia tensor is calculated for
this mass distribution in order to give the inertia elipsoid as in sub�gure c).12

thermal transport but are also necessary to extract the mean κ value which
permitted us to show the chain length dependence. Furthermore, even if
samples show anisotropy, it can expected that in very large bulk samples
the presence if di�erent crystallite regions randomly orientated can mask
the presence of anisotropy leading to a global spatially-averaged thermal
conductivity, which still depends on average chain length but not on the
direction of the imposed thermal gradient.

This is also the reason which lead to compute the spatially averaged κ̄
on several samples polymerized with the same scavenger but di�erent initial
conditions in order to obtain a meaningful bulk value for thermal conductiv-
ity.

The adopted analysis protocol, as visually depicted in Fig.4.11 is reported
below.

Starting from a polymerized sample using a speci�c proton scavenger
it has been de�ned an orientation vector for each monomer present in the
sample. The orientation vector is de�ned by the two carbon atoms of the
thiophenic ring, and, as explained in the previous chapter, for the sake of
this study the two carbon atoms are indistinguishable. After normalization,
the representation of all the N orientation vector of the analyzed system in
a reference in which all vector heads are in the origin is equivalent to N
points lying in a sphere of unitary radius. In system characterized by long
range order, it is expected to found all the points crowed around the two
poles of the sphere corresponding to the direction of chain alignment. In
amorphous structure, instead, the distributions of the points on the sphere
is more homogeneous, since no special direction exists in the sample.
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Table 4.2: Eigenvalues εi associated with the three axis of the inertia tensor calcu-
lated for each listed sample: all values are expressed in adimensional units

sample ε‖ ε⊥1 ε⊥2
pyridine 0.82 0.76 0.42
pyr+wat 0.81 0.70 0.49
tosylate 0.83 0.73 0.43
tos+pyr 0.77 0.73 0.50
tos+wat 0.78 0.65 0.57
water 0.70 0.66 0.64

In order to determine the direction along with the largest number of
chains is aligned, a �ctional unitary mass was attributed to each of the N
points and all the components of the inertia tensor of the resulting mass
distribution were computed. The mean direction of preferred alignment can
then easily found by calculating the eigenvalues of the real non-negative
de�ned matrix and looking for its column vector associated with the low-
est eigenvalue: the comparison of eigenvalues magnitude can also provide
a quantitative procedure to evaluate spatial anisotropy, which it has been
graphically inspected analyzing using the projected density maps. The den-
sity maps for the pyridine and water scavenged samples are depicted in Figure
4.12.

The reported density maps clearly suggest, as con�rmed by quantitative
analysis carried on in the previous chapter and by eigenvalues evaluation (see
Table 4.2) the existence of a consistent long range order in pyridine scavenged
samples while water scavenged samples appears to be more amorphous. This
e�ect which is consistent with data obtained for chain length distribution.

After the calculations of the three axis of inertia ellipsoid have been
performed, the inertia and thermal conductivity tensors were simultaneously
diagonalized in order to obtain the values of thermal conductivies along the
three main axis directions. The o�-diagonals entries resulted to be negligible
respect the diagonal κ‖, κ⊥1, κ⊥2 components, which are plotted for each
samples in Fig. 4.13.

The results clearly con�rm the role of chain length in determining the
magnitude of the resulting thermal conductivity: it is in fact shown that
samples characterized by longer chain (pyridine and pyridine+tosylate scav-
enged) exhibit higher in chain thermal conductivities compared to water
scavenged samples, in which κ‖ reaches its minimum, resulting indistinguish-
able from the two κ⊥ components.
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Figure 4.12: Density maps for pyridine (left) and water (right) polymerized samples
projected in xy plane (�rst row), yz (second row) and xz (third row): the existence
of long-range order structure with a preferential alignment direction is clearly visible
in pyridine sample, while water sample appears more amorphous
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12

It is interesting to observe that even if out-of-chain components result
negligible respect to the κ‖ component in high anisotropic samples, a slight
reduction is observed moving from pyridine scavenged samples to the wa-
ter scavenged ones: this could possibly be explained by the fact that in
amorphous-like samples the mean distance between monomeric units of dif-
ferent chains is greater than the corresponding distance in well crystallyzed
samples, resulting in an increase in the interaction of monomers which can
improve thermal transport.

4.3.3 Time evolution of κ during polymerization

The dependence of thermal conductivity from the chain length was also
tested calculating the thermal conductivity on di�erent samples at di�erent
stages of polymerization: the result, shown for each component and aver-
aged in Fig. 4.14, clearly evidences the impact of increasing chain length
on thermal conductivity. In particular, while along the direction of align-
ment of the maximum number of growing chains the increase of κ|| is almost
monotonic, along perpendicular directions could possibly read the signs of
an internal reorganization in packing of the chains leading to sudden drop
in κ⊥ evolution in the last stage.

4.3.4 Modal analysis results

In order to provide additional characterization of the impact of mor-
phological features on the vibrational modes (i.e. heat carriers) involved,
a Green-Kubo modal analysis has been performed. In Fig.4.15 the average
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Figure 4.15: Average monomeric units involved in vibrational modes as function of
the oscillation frequency for wat (purple) and pyr (green) samples12
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Figure 4.16: Estimated Participation Ratio (PR) as function of the frequency for
wat (purple) and pyr (green) PEDOT samples12

weighted coordination number ns (see eq.(4.32)) for pyr and wat samples is
plotted as a function of the frequency ν of the vibrational eigenmodes.

Simulations indicate that the number of monomers involved in each vi-
brational modes in pyr samples is signi�cantly higher compared to the one
of wat samples. This is quite relevant in explaining the higher thermal con-
ductivity corresponding to pyr samples, since the number of units involved
in each vibrational mode is a direct measure of the spatial extent of the
mode. It can be concluded that in pyr samples even low frequency vibra-
tional modes are characterized by an overall extension of about 12 − 15
monomeric units. Therefore, they are more e�ective in the thermal energy
propagation if compared to the case of wat samples, in which the extent of
each vibrational mode is limited to 2 − 3 monomeric units in all the range
of frequency investigated.

By further analyzing the corresponding participation ratio as de�ned in
eq.(4.31) and reported in Fig.4.16, can be observed that in pyr samples the
low frequency modes are more spatially extended compared to the case of
pure wat samples. The participation ratio decays is in fact much slower than
in the case of wat samples, determining a larger e�ciency in propagating
thermal energy. In the case of wat samples, on the other hand, the faster
decay of PR indicates that such vibrational eigenmodes are spatially more
con�ned. This property is detrimental in terms of thermal transport since
eigenmodes above the frequency threshold of ∼ 5 THz cannot e�ciently
sustain extended heat currents along all the sample (Fig.4.17).

Our picture is con�rmed by Fig.4.17 in which the normalized cumulative
thermal conductivity κs (de�ned as in eq.(4.30)) is shown as a function of the
frequency ν of the vibrational modes in the range 0− 10 THz. In both cases
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Figure 4.17: Normalized cumulative conductivity as function of the frequency for
wat (purple) and pyr (green) samples.12

depicted in Fig.4.17 the cumulative thermal conductivity quickly converges
to its �nal value at around 2 THz, however the approach is di�erent: while
in the case of pyr samples the convergence value is reached almost mono-
tonically, in the case of wat samples, after an initial sharp increase, negative
contributions are present in the range 1− 2 THz leading to a decrease of the
cumulative thermal conductivity. This behavior, which is not in contrast
with the de�nition of κs(ν) since the terms involved in Eq.(4.30) can also be
non-positive, reveals the presence of a sharp decrease in the number of modes
involved in heat propagation (the so called propagons)21,23 in the range of
frequency investigated and a corresponding increase in the number of modes
related with a pure di�usion of the thermal energy (di�usons21,23).
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Chapter 5
Charge transport and

conductivity of PEDOT

5.1 Introduction

In the �eld of electronic materials adopting organic molecules as building
blocks for devices, a special role is occupied by intrinsic conducting poly-
mers..

As general common feature, intrinsic conducting polymers are charac-
terized by the presence of sp2 hybridized carbon orbitals which can form π
molecular orbitals.

The peculiarity of π orbitals is the fact that the electrons nominally
occupying them are at average distance larger compared to the electrons in
more localized σ orbitals. This fact allow a conspicuous delocalization and
makes them more suitable to transport the charge along the full extent of
the molecular systems.

Charge transport results particularly e�cient in intrinsic conducting poly-
mers characterized by a quasi-linear carbon backbone. This kind of struc-
tures can be described in terms of two resonance structures in which alter-
nating single and double bonds are present, as the case of polyacetylene and
PEDOT, or in poly-aniline, in which nitrogen is present as well as carbon in
the backbone.

In some situation, as in polyacetylene, however, the inherent symmetry
which arises from resonance is usually broken, an interesting phenomenon
called Peierls instability.1

This e�ect has important e�ects on the electronic structure. In the case
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of poly-aniline, for example, it causes the opening of the HOMO-LUMO gap
preventing the chains to acquire spontaneously a metallic conductive regime,
whereas calculation of symmetric con�guration suggest the overlap between
HOMO-LUMO orbitals.

The formation of defects in the carbon backbone, however, is not always
associated by the widening of HL gap. The addition of speci�c dopants
to intrinsic conducting polymers, in fact, can also causes the introduction of
new intra-gap levels, in strict analogy with the behavior observed in inorganic
semiconductors as silicon.

These levels take origins from the transfer of an electron from the in-
trinsic conducting polymer to the dopant. The positive charge in intrinsic
conducting polymer induces a structural deformation which causes positive
charge localization named as polaron and its new intragap level associated.

The charge transport through polarons is strictly related with an another
import features of the intrinsic conducting polymers involved in determining
the overall electrical conductivity, the chain length.

In fact it can be shown using a very simple model known as the rectangu-
lar box approximation,2 that as the chain length increases the corresponding
HL gap gradually closes, a condition related, by de�nition, with the transi-
tion from insulating to a semi-metallic state.

It is, however, a generally recognized fact3 that many properties can cru-
cially in�uence σ as well as the thermal conductivity κ (analyzed in Chapter
4 of this Thesis): the doping level, the chain length (distribution) and the
spatial organization of the chains, quanti�ed as degree of crystallinity.

The mutual interaction of these factor introduces a degree of complexity
which cannot be simply treated with the applications of the models used
for inorganic semiconductors, since in the latter the periodicity allows, for
some extent, a partial simpli�cation of the quantum mechanical calculations
required. The use of band model for intrinsic conducting polymers, for ex-
ample, is frustrated by the broken of translational invariance.

An interesting insight is provided by the so called hopping models, in
which transport is mainly governed by carrier hopping. The problem of
charge transfer in hopping models is thus reviewed in terms of a percolation
and all computational e�orts are focused on the determination of the speci�c
rate of percolation, or in more technical term, the hopping rate τ−10 .

A theory developed to study the problem of charge transfer in solution,
the Marcus theory, can provide a valuable tool to estimate the actual value
of τ−10 , In addition, a novel combination of the hopping model and Marcus
theory is described in this Chapter together with its application on realistic
micro-morphologies of PEDOT.
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It is important to stress on the "realistic" adjective used. The lack of a
clear, long-range symmetry in organic intrinsic conducting polymers, in fact,
allows a vast panorama of micro-morphologies ranging from pure crystalline
phase to amorphous structures. From a very essential point of view, these
di�erence are due by the spatial organization (or packing) of the constitutive
chains.

This circumstance must not be neglected since the di�erence in inter-
molecular distances causes large e�ects in the overlap of delocalized π or-
bitals, the orbitals mainly involved in charge transport.

5.2 Computational approach

The starting point for the performed analysis is provided by the hopping
rate κ according to Marcus4 formalism

κ =
2π

~
|Hab|2

(4πkBTλ)
1
2

exp

(
−(∆G+ λ)2

4πkBTλ

)
(5.1)

where |Hab|2 is usually referred to as the charge transfer integral, de�ned as
in Baumeier's work,5 critically depending on the overlap between the orbitals
a�ected by the charge transfer process; λ is the reorganization energy, i.e. the
energy associated with the structural relaxation associated with the adiabatic
transition from a neutral to a charged con�guration of the molecules and the
surrounding solvent environment and ∆G is the Gibbs free energy of reaction,
including the solvation process, evaluated for the basic reaction scheme

A+ + B −−⇀↽−− A + B+ (5.2)

as the proper sum of the Gibbs Free energies Gq
X associated with each X

chemical species with q total charge, as

∆GAB = GB+ +GA −GA+ −GB = ∆GB −∆GA (5.3)

All the energies are calculated at a DFT level using the B3LYP/6-311G(d,p)
functional-basis set combination and the SMD solvation model6 to take into
account, implicitly, the e�ect of the surrounding solvent. In coherence with
Chapter 3, ethanol was assumed as implicit solvent.

For this reason, the same summation scheme for the calculation of the
Gibbs free energy as adopted in the Chapter 3 has been used, namely

∆GAB = ∆G0
AB + ∆Gsolv

AB (5.4)

where the superscript "0" references to the values estimated in vacuo while
the symbol "solv" indicates the contribution due to the reorganization of the
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solvent. No further thermodynamic corrections are here required since no
variation of the number of moles is present for the reaction scheme in Eq.
5.2.

In order to simplify the following calculations, it is very useful to rede�ne
the scale of energy used in Eq. 5.1. It is in fact possible to verify that by
de�ning the u energy unit as

u = 4πkBT ' 0.32486 eV (5.5)

the Gibbs free energies of reaction and the reorganization energies can there-
fore be rewritten in the form of adimensional parameters{

λ̃ = u−1λ

∆G̃ = u−1∆G
(5.6)

and the Eq. 5.1 becomes

κ =
|Hab|2

2kBT~
× 1√

λ̃
exp

(
−(∆G̃+ λ̃)2

λ̃

)
=

1

τ0
× f(∆G̃, λ̃)

(5.7)

where τ0 and the function f of the adimensional parameters ∆Ĝ and λ̂ are
de�ned as

τ0 =
2kBT~
|Hab|2

f(∆G̃, λ̃) =
1√
λ̃

exp

(
−(∆G̃+ λ̃)2

λ̃

) (5.8)

It can be clearly observed that an accurate evaluation of the Gibbs free
energy and the reorganization energy is crucial in determining the hopping
rate of the system because of the presence of an exponential dependence in
the parametric function f(∆G̃, λ̃).

In order to better clarify the in�uence of these energies on κ, it is in-
teresting and useful to highlight some properties of the universal f(∆G̃, λ̃)
function by analysing the iso-contours of the its natural logarithm

ln(κ) = −ln (τ0) + ln
(
f(∆G̃, λ̃)

)
(5.9)

which can be rewritten as

ln(κ) = −1

2
λ̃− (∆G̃+ λ̃)2

λ̃
+ constant (5.10)
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It can be preliminary observed that the Eq. 5.10 fails when the reorganiza-
tion energy is zero λ̃ = 0. This circumstance, however, is forbidden from a
physical point of view since the energy di�erence associated with the charge
transfer process in a molecule is always di�erent from zero.

In contrast, for a given value of λ̃, no divergence arises by imposing
a null Gibbs free energy of reaction. The resulting one-variable function,
instead, reaches its maximum when no energy di�erence is present and this
can corresponds, for example, to the case in which the charge transfer process
5.2 takes place between molecules of the same chemical specie, i.e. to the
elemental reaction

A+ + A −−⇀↽−− A + A+ (5.11)

As general rule of thumb, whenever you have an increase in the absolute value
of the Gibbs free energy, ∆G̃, an extreme favourable reaction is occurring if
∆G̃� 0, while ∆G̃� 0 leads to an exponential decay of the hopping rate,
provided that the same or a very similar value of the reorganization energy
is associated with all these mechanisms.

However, it must be stressed that, in realistic models, the reorganiza-
tion energy and the Gibbs free energy are mutually dependent, even if the
functional form of this dependence is di�cult to be identi�ed, since both the
quantities are functions of the overall number of the molecular degrees of
freedom of the involved chemical species in charge transfer.

Finally, it must also be noted that the factorization given in Eq. 5.7 does
not justify, from a rigorous perspective, the possibility to completely separate
calculations for the pre-factor τ0 and for the universal f function. This is
due to the fact that the charge transfer integral in τ0 can be parameterized
in terms of the molecular degrees of freedom a�ecting the reorganization
energy and the reaction energy.

Because of these interconnecting dependencies, the direct application of
Eq. 5.1 to the treatment of charge transport in a complex system (as our
PEDOT sample), shares a common and critical point which was evidenced
in the modelization of the polymerization scheme.

In this case the problem is represented by the complex interconnection
between the basic quantities |Hab|, ∆G and λ in�uencing the overall hopping
rate .

In the speci�c cases of the study of charge transport mechanism in PE-
DOT by direct and recursive application of Eq. 5.1, the �rst crucial choice
operated was a clear separation and treatment of the intra-chain charge
transport, involving monomeric units belonging to the same PEDOT chain,
and the inter-chain transport, in which the unit of charge is transferred from
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a chain to another.
From a rapid analysis of the vast existing literature7�12 it emerges that

the modelization of charge transfer by Eq. 5.1 was applied only in the anal-
ysis of hopping between di�erent molecular units, while no work was found
in literature addressing the problem of intrachain transport by direct appli-
cation of Eq. 5.1.

Intrachain transport is, instead, extensively analyzed in the framework
of valence and conduction band theory requiring, however, a degree of crys-
tallinity of the micromorphology which, in some cases, can often results
unrealistic, even if they can provide interesting insight and an upper limit
to mobilities and electrical conductivities.

Given this state of the art context, it seems interesting and worth of pre-
liminary investigation to probe and verify whether if by assuming as starting
point the micromorphologies generated by a realistic simulation of the poly-
merization, is possible to treat intrachain charge transport in PEDOT in
the framework of Marcus-Abraham-Miller formalism and obtain mobilities
comparable with experimental reported values or, in the worst scenario, at
least con�rming the universally accepted notion that intrachain transport
overwhelms interchain one by one or two order of magnitude.

In the two following section the conceptual and computational protocol
adopted to numerically treat these two di�erent regimes is presented.

5.3 Interchain transport

Modelization of intrachain charge transport in PEDOT chains is achieved
by direct exploitation of Marcus formula Eq.5.1 following an approach in-
spired by Evans'13 and Deng's14 work on charge percolation on amorphous
systems.

Two very general underlying hypothesis are here stated in order to pro-
ceed. First (i) it has been assumed that charge transport in PEDOT is
essentially mediated by holes in HOMO orbitals rather than electrons in
LUMO, an assumption suggested by the fact that PEDOT is usually em-
ployed as an hole transport layer and the commonly used chemical doping
is a p-doping from almost all experimental and technical applications; more-
over, (ii) it is assumed that only the terminal monomeric units represent the
active sites for inter-chain charge transfer by hopping, since in non-terminal
units intra-chain transfer is dominant.

Starting from these assumptions, for each generated PEDOT sample the
terminal monomeric units of each chain were identi�ed and the position of
their centre of mass were collected.

This elaboration makes possible to select all the isolated monomers, all
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Table 5.1: Total number of active monomeric units for hopping interchain transport
calculated from the corresponding chain length distribution nta

sample nta
pyridine 1085
tosylate 1260
water 9395
pyr+tos 1132

the dimers and all the two extremities of each chain made up by N ≥ 3
monomeric units.

The total number na of hopping active sites for each investigated sample
is reported in Table 5.1 as derived from a direct calculation on the corre-
sponding chain length distribution using the formula

nta = NHXH + 2
∑
m≥2

NHXmH (5.12)

In the new simulation de�ned to study interchain transport, all the possible
active sites for hopping are de�ned as combination of two monomers with a
distance between the corresponding centers ri within a cut-o� radius r0. For
each ith couple we estimated the product

κir
2
i Pi (5.13)

where κi is the site-speci�c hopping rate. Pi is the probability of charge
transfer resulting from the occurrence of M available parallel channels and
namely de�ned as

Pi =
κi∑M
j=1 κj

(5.14)

where κi is the hopping rate for the ith transfer site under investigation and
the sum runs over all the concurrent M sites.

By summing over all the total number of active monomeric units and
excluding double summation over the same sites, a hole di�usion coe�cient
according to the Einstein formulation can be determined as13,14

Dh =
1

6

∑
i

κir
2
i Pi (5.15)

and the resulting hole mobility reads as13

µh =
e

kBT
Dh (5.16)
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A critical point in evaluating each individual product 5.13 arises from the
site speci�c nature of this quantity, which would require a speci�c calculation
for each site of ∆G, λ and Hab involved in κi.

This approach results to be computationally very expensive, since it
would require several ab-initio calculations on monomeric couples. An al-
ternative approach is suggested by the fact that both di�usion coe�cient
Dh and hole mobility µh are intrinsically time and spatial averages of the
underlying real time process of charge transfer. This would generate an
over-amount of information compared to the quantities accessible from a
macroscopic and experimental point of view.

In detail, we estimated the transfer integral Hab in a signi�cative ensem-
ble of mutual positions of two monomers. Fixed the position of the �rst
monomeric units at the centre of spherical coordinates system (r, θ, φ), the
second monomeric unit was placed at a distance r ranging from 3 to 10 Å
by also varying the mutual inclination, at �xed distance.

The averaged Hab value of transfer integral was successively calculated
as

〈Hab(r)〉 =

∫
dθ

∫
dφHab(r, θ, φ) (5.17)

and described,15 in terms of a radial exponential decay

〈Hab〉 = H0exp(−βr) (5.18)

and thus
|〈Hab〉|2 = H2

0exp(−2βr) (5.19)

where the two parameters H2
0 and 2β are determined by �tting in H2

0 =

216.43937 eV2 and 2β = 2.351806 Å−1.
It was further found that the simple relation Eq. 5.19 fails for distances

below 2 Å which is expected because at very small intermonomeric sepa-
rations spatial anisotropy is su�ciently high to prevent the assumption of
radial symmetry in the formulation of 〈Hab(r)〉 as function of just r.

This fact does not represent a serious limitation to the present approach
since the presence of monomeric units involved in interchain transport at
such low distance is almost impossible because of steric hindrance. However
this failure at small distances but represents an issue in the case of intrachain
transport.

A similar procedure was performed to estimate the universal function f
depending on ∆G̃ and λ̃, related to the the total length of the chain.

In this case, the chain length distributions (see Chapter 3) can be e�-
ciently exploited in order to estimate the averages.
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By considering the charge transfer process between two olygomers having
m and n monomeric units

HXnH+ + HXmH −−⇀↽−− HXnH + HXmH+ (5.20)

two auxiliary speci�c functions are de�ned as

∆G̃mn = G̃m − G̃n (5.21)

λ̃mn =
1

2
(λ̃m + λ̃n) (5.22)

where each G̃m and λ̃n term is calculated at B3LYP/6-311G(d,p) level and
including reaction solvent �eld with SMD model as, respectively

G̃m = G(HXmH+)−G(HXmH) (5.23)

λ̃m = Eneq(HXmH+)−Eeq(HXmH+) +Eneq(HXmH)−Eeq(HXmH) (5.24)

where neq and eq superscripts in Eq. 5.24 refers to the geometry at which the
energy E of the aggregate is evaluated. More speci�cally, if the molecule is
neutral, "eq" refers to the energy evaluated with molecular geometry relaxed
at the ground state, while "neq" refers to the energy evaluated with the
molecular geometry relaxed in the charged con�guration.

After direct ab initio calculations, reported in Table 5.2, it was found
that Eq. 5.23 and Eq. 5.24 can be described in terms of sum of exponential
as

G̃l = Ae−αl +Be−βl + Ce−γl (5.25)

and
λ̃l = λ1e

−χ1l + λ2e
−χ2l (5.26)

The resulting �tting function, displayed in Fig. 5.1, makes possible to easily
proceed in the averaging.

The averaging process performed can be stated in the general form

〈f(∆G̃, λ̃)〉 =

∫∫
dxidxjf(∆G̃(xi, xj), λ̃(xi, xj))Ω(xi, xj) (5.27)

where Ω(xi, xj) is a suitable probability density function which depends on
the xi and xj lengths of the chains involved. The basic requirement for Ω is
to ful�ll the normalization condition∫∫

dxidxj Ω(xi, xj) = 1 (5.28)
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Table 5.2: Calculated Gn, λn, G̃n and λ̃n for olygomers containing n monomeric
units as resulting from DFT calculations at B3LYP/6-311G(d,p) level including
ethanol solvent through SMD implicit solvent model.6

n Gn(eV) λn(eV) G̃n λ̃n
1 5.776625 1.465760 17.781579 4.511895
2 4.925796 1.191410 15.162561 3.667392
3 4.568686 1.005280 14.063307 3.094448
4 4.354676 0.874406 13.404542 2.691592
5 4.207618 0.777098 12.951869 2.392059
6 4.093014 0.698612 12.599096 2.150464
7 3.965237 0.635507 12.205773 1.956215
8 3.880355 0.582395 11.944490 1.792725
9 3.787900 0.535638 11.659895 1.648798
10 3.749619 0.494634 11.542059 1.522580
11 3.762624 0.458885 11.582091 1.412538
12 3.731435 0.424638 11.486085 1.307119
13 3.651881 0.39386 11.241202 1.21238
14 3.660069 0.366187 11.266406 1.1272
15 3.644008 0.341378 11.216968 1.050828
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Figure 5.1: Calculated G̃n and λ̃n for olygomers with n chain length (black dots)
and the superimposed �t functions (red dashed line)

108



Table 5.3: Calculated γ = 1
2~kBT 〈f(∆G̃, λ̃)〉, interchain di�usion coe�cient Dinter

and mobility µinter for holes in each investigated sample.

sample γ (eV−2ps−1) Dinter(cm2s−1) µinter(cm2V−1s−1)

pyr 7.60193468 0.079906 3.0908
tos 6.05431348 0.11811 4.5687
wat 8.08951238 4.3228 167.20

pyr+tos 6.91424801 0.10544 4.0785

In the case of interchain charge transfer process involving a discrete set of
nta (as in Table 5.1) terminal monomeric units, it is reasonable to write Ω as
the product of the individual probability

Ω(xi, xj) =
ninj
(nta)

2
(5.29)

where ni and nj represents the number of terminations belonging, respec-
tively, to chains with length xi and xj , speci�cally obtained by the chain
length distribution function

ni =

{
N(HXH),

2N(HXiH), i ≥ 2
(5.30)

where N(HXnH), the chain length distribution function, is the number of
chains with n monomeric units.

Given the discrete nature of the degree of freedom involved, Eq. 5.27 is
thus calculated in the form of a sum

〈f(∆G̃, λ̃)〉 =
1

(nta)
2

∑
i,j

f(∆G̃ij , λ̃ij)N(HXiH)N(HXjH)ζiζj (5.31)

with ζi = 1 if i = 1 and 2 otherwise.
Resulting γ = 1

2~kBT 〈f(∆G̃, λ̃)〉 for all investigated samples are reported
in Table 5.3 in eV−2ps−1 units.

By introducing Eq. 5.19 in Eq. 5.13 for each ith site of a speci�c sample,
averaged on its speci�c chain length distribution, we obtain

κir
2
i Pi = γH2

0r
2
i exp(−2βri)

(
exp(−2βri)∑
j exp(−2βrj)

)
(5.32)

where summation is restricted on the j sites at a distance below a cuto�
radius r0.
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After summation, inter-chain hole di�usion coe�cient and mobility ac-
cording to Eq. 5.15 and Eq. 5.16, respectively, are determined. Values are
reported in Table 5.3. Among all the values of interchain mobility in Table
5.3, water is characterized by highest value, at least two order of magnitude
above the others, while pyridine is characterized by lowest value.

Very similar values. instead, are present for all the other combination of
scavengers adopted.

5.4 Intrachain transport

The treatment of intrachain charge transport follows the theoretical frame-
work described in the previous section.

Starting from PEDOT olygomer HXnH, the elemental intrachain charge
transfer event consists in a hole moving along the same HXnH molecule from
the mth unit to the subsequent (m+ 1)th one, according the scheme

HX1 . . .X
+
mXm+1 . . .XnH −−⇀↽−− HX1 . . .XmX+

m+1 . . .XnH (5.33)

it is straightforward to verify that, according to the de�nitions Eq. 5.21 and
Eq. 5.22, the Gibbs free energy and reorganization energy associated with
the entire process are

∆G̃mm = ∆G̃intra = 0 (5.34)

λ̃mm = λm (5.35)

The only energy involved in the process is thus the contribution associated
with the reorganization, which is averaged for each sample according its
chain length distribution NHXnH.

In the case of intrachain transport, however, the total sites available for
the charge transfer reads as

n′a =
∑
m≥2

mNHXmH (5.36)

with summation starting from 2 since no intrachain transport can take place
in the isolated monomers.

By rede�ning the probability density function Ω associated with each
chain length distribution, the �nal form of the averaged universal function
f takes the form

〈f(∆G̃, λ̃)〉 =
1

(n′a)

∑
m≥2

f(0, λ̃m)mNHXmH (5.37)
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Table 5.4: Calculated γ = 1
2~kBT 〈f(∆G̃, λ̃)〉, intrachain di�usion coe�cient Dintra

and mobility µintra for holes in each investigated sample.

sample γ (eV−2ps−1) Dintra(cm2s−1) µintra(cm2V−1s−1)

pyr 203.549 147.627 5710.21
tos 170.769 17.0795 660.635
wat 8.08951 0.0147273 0.569653

pyr+tos 251.007 187.115 7237.6

Referring to the inaccuracy of the radial approximation (Eq. 5.19) for short
distances, direct calculations of |Hab(n)|2 for fragments with increasing chain
length n in the range [2:15] monomeric units were performed.

Starting from a optimized chains with length n, two fragments were de-
�ned as the two portions with length n

2 which are separated by a C− C bond
length δ = 1.4144 Å, as resulting from the optimization

The corresponding |Hab(n)|2 was successively averaged according

〈|Hab|2〉 =
1

n′a

∑
m≥2
|Hab(m)|2 mNHXmH (5.38)

assuming for all m ≥ 15 the value found at m = 15.
The resulting values of averaged γ prefactor, mobility and the di�usion

coe�cient for intrachain charge transport are reported in Table 5.4.
As expected, it was found for all the samples but water that intrachain

transport is more e�cient than its interchain counterparts, which thus acts
as the main bottleneck of the overall mobility.

In particular, the presence of pyridine+tosylate is associated with higher
intrachain hole mobilities, followed by the two pyridine combination and the
two tosylate.

5.5 Total average mobility

In order to extract an overall hole mobility for each sample by combining
the intrachain and interchain obtained values, it was found reasonable to
apply the Matthiessen's rule

1

µh
=

1

µintra
+

1

µinter
(5.39)

since the terminal monomeric sites in which charge is transferred by hopping
from one chain to another can be considered, ideally, as a scattering event
perturbing the coherent transport in a long PEDOT chain.
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Table 5.5: Overall hole mobility µh calculated by combining intra- and inter- mo-
bilities using Matthiessen's rule

sample µh(cm2V−1s−1)

pyr 3.089
tos 4.537
wat 0.5677

pyr+tos 4.076

The only exception is constituted by the water samples where interchain
transport (Table 5.3) appears to dominate over its intrachain counterpart
(Table 5.4). Also in this case, however, applicability of Matthiessen's rule was
found plausible, with intrachain charge �ow interfering with pure hopping
interchain transport.

The resulting mobilities, listed in Table 5.5, display a non monotonical
behaviour, which after an initial increase with average chain length, decreases
in the case of pyridine samples, were very long chains (up to 32 m.u.) are
present.

As can be observed by the analysis of the values reported in Table 5.2
and 5.4, this drops is due to the fact that even if intrachain hole transport
monotonically increases with chain length, the hopping rate for interchain
transfer in pyridine is lower compared to the pyridine+tosylate and tosylate
scavenged samples.

This is e�ect is directly connected with two aspects inherent to the mi-
cromorpholgy of the samples, i.e. (i) the large distance between interchain
active sites due the presence of very long chains, which directly a�ects the
magnitude of |Hab(r)|2 ∝ exp(−βr) and (ii) to a signi�cant decrease of the
γ factor due to the speci�c energetic balance of the charge transfer reaction.

Unfortunately, at the best of our knowledge, no systematic experimental
is present in literature describing the exact behaviour of mobility µh as a
function of chain length and all the computational estimates are performed
on very crystalline (and unrealistic) structures, in which an arbitrary unitary
cell is de�ned in order to properly apply the band model.

However, since electrical conductivity can be easily calculated given the
hole density in the sample, in order to test the obtained results, preliminary
calculations have been performed to produce the molecular Total Density of
States (TDOS) (Fig. 5.2) for each PEDOT chain included in the simulation
box.

It is, in fact, reasonable to expect that the presence of very large chains
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Figure 5.2: Calculated TDOS for PEDOT olygomers with 15 (red solid curve) and
2 (blue solid curve) m.u.chain length. Corresponding Fermi-Dirac distributions
(dashed curve) at 300K are superimposed.

in pyridine due to an overall drop of the HOMO-LUMO gap and the shift of
Fermi level as chain length increases (values reported in Table 5.6)

Preliminary calculations show that the estimated intrinsic (thermal ac-
tivated) hole density nh can vary from ∼ 5.6 1010cm−3 to ∼ 2.4 1015cm−3

when average chain length of a monodisperse sample (with an overall number
of 10'000 monomeric units) increases from 5 to 15 monomeric units.

5.6 Intrinsic hole concentrations

The concentration of hole in intrinsic (non doped) PEDOT chains is
evaluated by combining the total density of states (TDOS) gi(E) for each
ith molecule contained in the investigated sample with volume V and the
Fermi-Dirac distribution for hole fh,i(E)

fh,i(E) =
1

1 + exp
(
εF−E
kBT

) (5.40)

which in the more general case are combined according to

nh =
1

V

∑
i

∫ εF

−∞
gi(E)fh,i(E)dE (5.41)
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Table 5.6: HOMO-LUMO gap ∆, Fermi energy εF , distance between HOMO level
and Fermi energy, HOMO and LUMO energies (all in eV units) as functions of the
olygomers chain length n expressed in monomeric units. n = ∞ corresponds to
a dimer simulated in PBC along chain direction. A remarkable reduction can be
observed in transition from n = 2 to n = 15 chain length. All data are calculated
using Gaussian 1616 suite at DFT/B3LYP/6-311G(d,p) level.

n ∆(eV) εF (eV) |εF − EH| (eV) EH(eV) EL(eV)

1 5.7144720 -3.1479350 2.8572360 -6.0051710 -0.2906990
2 4.0661430 -3.0478925 2.0330715 -5.0809640 -1.0148210
3 3.3158160 -2.9804360 1.6579080 -4.6383440 -1.3225280
4 2.9031010 -2.9379175 1.4515505 -4.3894680 -1.4863670
5 2.6471230 -2.9101485 1.3235615 -4.2337100 -1.5865870
6 2.4750660 -2.8894270 1.2375330 -4.1269600 -1.6518940
7 2.3544370 -2.8738215 1.1772185 -4.0510400 -1.6966030
8 2.2655380 -2.8618620 1.1327690 -3.9946310 -1.7290930
9 2.1988150 -2.8520115 1.0994075 -3.9514190 -1.7526040
10 2.1466510 -2.8440795 1.0733255 -3.9174050 -1.7707540
11 2.1057260 -2.8373580 1.0528630 -3.8902210 -1.7844950
12 2.0727450 -2.8317255 1.0363725 -3.8680980 -1.7953530
13 2.0447450 -2.8259435 1.0223725 -3.8483160 -1.8035710
14 2.0235200 -2.8228680 1.0117600 -3.8346280 -1.8111080
15 2.0048260 -2.8192630 1.0024130 -3.8216760 -1.8168500
16 1.9891790 -2.8161195 0.9945895 -3.8107090 -1.8215300
20 1.9454240 -2.8068680 0.9727120 -3.7795800 -1.8341560
22 1.9309740 -2.8036160 0.9654870 -3.7691030 -1.8381290
25 1.9150280 -2.7998880 0.9575140 -3.7574020 -1.8423740
27 1.9069740 -2.7979560 0.9534870 -3.7514430 -1.8444690
32 1.8745110 -2.8145145 0.9372555 -3.7517700 -1.8772590
∞ 1.85347 -2.783405 0.926735 -3.710140 -1.856670
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Table 5.7: Intrinsic hole concentrations nh(λ) at 300K for monodisperse samples
with chain length λ in range 2− 32 monomeric units

λ nh(λ) (cm−3)

1 3.9696675 10−15

2 1.0142062 10−1

3 1.1066254 105

4 2.8127250 108

5 3.1201642 1010

6 7.5572440 1011

7 6.1271810 1012

8 2.7917480 1013

9 9.4906186 1013

10 2.9675626 1014

11 6.7800330 1014

12 7.5894642 1014

13 8.1517738 1014

14 1.2374121 1015

15 1.2342776 1015

16 1.3161294 1015

20 1.8129169 1015

22 2.0311944 1015

25 2.2914507 1015

27 2.5008525 1015

32 2.7501537 1015

with TDOS for each molecule (EDOT olygomer) is extracted through Mul-
tiwfn software17 from single point calculation of orbitals population at DFT
B3LYP/6-311G(d,p) on the geometry optimized at the same level of theory
using Gaussian 16.16

In order to proceed with the integration, a normalized Gaussian broad-
ening function with FWHM= 0.5 eV is assigned at each TDOS peak. The
lowest energy of integration interval is chosen at ∼ 2418.15eV, where Fermi-
Dirac distribution is substantially zero.

Table 5.7 reports our calculations for the intrinsic hole concentrations
for monodisperse samples with chain length n and a total of 104 monomeric
units.

Since data for increasing chain length show an overall convergence be-
haviour, the logarithm of concentrations, log10(nh), were �tted using the
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Figure 5.3: Calculated intrinsic hole concentrations nh (black points) reported in
Table 5.7 and �tted nh(λ) (red dashed line) for pristine monodisperse PEDOT
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decay trial function

f(λ) = A+ b exp(−cλ) + d exp(−sλ) (5.42)

which, as depicted in Fig. 5.3, was found to describe reasonably well the
observed data trend with the values of parameters �xed by the �tting proce-
dure, with a �nal reduced χ2

r = 5.5 10−2 (denoting a remarkable over-�tting)

A = 15.3532± 0.02945

b = −40.5661± 0.9271

c = 1.17079± 0.06273

d = −23.6575± 1.2

s = 0.320407± 0.009025

(5.43)

In the limit of very large chain length λ → ∞, a possible estimate of the
intrinsic hole concentrations results in nh = (2.25− 2.76) · 1015cm−3.

The estimated hole concentrations and the resulting electrical conductiv-
ities due by hole contributions calculated according to the formula

σ = eµhnh (5.44)
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Table 5.8: Intrinsic hole concentrations nh at 300K for the investigated samples,
overall hole mobilities and resulting conductivities

sample nh (cm−3) µh(cm2V−1s−1) σ(Ω−1cm−1)

pyr 1.91032 1015 3.089 9.4544097 10−4

tos 1.54071 1015 4.537 11.199537 10−4

wat 4.34560 105 0.5677 3.9525651 10−14

pyr+tos 1.81038 1015 4.076 11.822728 10−4

for the investigated samples are listed in Table 5.8.
Several interesting results emerge by analysis of reported data.
First, it can be clearly noticed that all the samples are characterized by

very low electrical conductivity, which is something expected in undoped
PEDOT.

Beside this consideration, the huge impact of chain length distribution
on σ, as suggested in the previous Section, is here demonstrated. While
water sample can be in fact considered a pure insulator, all the samples with
a broader chain length distribution and a greater average chain length are
characterized by electrical conductivities with order of magnitude of 10−4 −
10−5 Ω−1cm−1. Such an increase is mainly due to the corresponding increase
of the hole density due to the occurrence of longer chains.

Finally, it can be observed that the increase of hole densities in pyridine
compared to the tosylate case partially compensates the reduction in hole
mobility µh. By direct comparing pyridine with tosylate case, for example,
despite an observed reduction of 31.91% of mobility, the corresponding drop
in electrical conductivity σ amount to 15.58%.

5.7 Extrinsic hole concentrations

Following the computational results in Zozoulenko's work18 indicating
that pristine (i.e. as polymerized) PEDOT samples naturally possess a 33%
hole doping level, a new estimate of electrical conductivity σ was performed
using as starting point the underlying chain length distribution.

The overall hole density Nh is calculated in the doped case as

Nh =
1

V

∑
m≥3

int
(m

3
N(HXmH)

)
(5.45)

where the int function (integer part) is introduced to exactly reproduce the
insertion of 1 hole every three monomeric units in the simulation box with
side l = 118 Å. The calculated hole concentrations and the resulting electri-
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Table 5.9: Extrinsic hole concentrations Nh estimates for the investigated samples,
overall hole mobilities and resulting conductivities

sample Nh (cm−3) µh(cm2V−1s−1) σ(Ω−1cm−1)

pyr 1.99327 1021 3.089 9.86492 102

tos 2.00605 1021 4.537 1.45821 103

wat 3.66396 1020 0.5677 3.33257 10
pyr+tos 1.95492 1021 4.076 1.27666 103

Table 5.10: Comparison with experimental data19

sample σh(Ω−1cm−1) σexp(Ω−1cm−1)

pyr 986.492 191± 17
tos 1458.21 352± 58

pyr+tos 1276.66 128± 4

cal conductivities are presented in Table 5.9.
As in the case of pure intrinsic (thermal activated) data, also in this case

it can be noted that all the polymerized samples are characterized by hole
concentrations of the same order of magnitude (1021) while water-scavenged
sample (almost unpolymerized) concentrations is remarkably lower but still
comparable with pyridine and tosylate cases.

For this reason, mobilities play in extrinsic case a more important role
in determining the electrical conductivity σ, which reaches its maximum in
tosylate-scavenged samples (∼ 1400Ω−1cm−1).

5.8 Comparison with experimental data

The hopping computational model described is still in a very early stage
of development. However, we tried to compare the obtained values for σ and
µh with the experimental data present in literature to verify if the model is
able to recognize at least at a qualitative level, the observed trends.

In the case of the hole mobilities, our data are of the same order of
magnitude with the corresponding experimental values reported.20

For a comparison of electrical conductivity, in Table 5.10 our values of σh
for pyridine, tosylate and pyridine+tosylate samples are compared with the
corresponding experimental data provided by Marquez and Narducci.19 The
experimental samples were generated using the chemical coating polymer-
ization technique. In all the samples, the iron(III) tosylate is simultaneously
used as oxidant for the polymerization and dopant.19 A commercial solu-
tion of iron(III)tosylate in buthanol at 40% w/w, the CLEVIOSTM CB 40,
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was diluted to reach 30% concentration.19 Pyridine is eventually added to
control the reaction kinetics before deposition and successive heating.19

The values reported in Table 5.19 refer, respectively, to samples synthe-
sized using the initial molar ratios

� EDOT: Fe(Tos)3 = 1:2.55, with label "tos" in our Table;

� EDOT: Fe(Tos)3 : pyridine=1:2.55:1.10 ("pyr+tos");

� EDOT: Fe(Tos)3 : pyridine=1:2.55:2.00 ("pyr").

The overall σh absolute values largely overestimate the experimental σexp

data, a circumstance which can possibly related with an overstimate of the
charge carrier density in our calculations. It is however possible to observe
that our calculations as well as the experiments are able to predict the highest
value of σ in tosylate sample.

The emergence of tosylate as the best scavenger for σh can be related to
the observed presence of the peak in chain length distribution discussed in
Chapter 3 and related to the tie chains connecting crystallite proposed by
Salleo21 as the origin of e�cient electronic transport.

As future perspective, a possible strategy to improve the accuracy of
the developed method could be related to the explicit calculation of the
quantities involved in the hopping rate, by avoiding the averaging procedure.
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Chapter 6
Conclusions and future

perspectives

At the end of this Thesis, several conclusions can be stated, answering

to the questions raised in Chapter 1.

The use of a multiscale approach, combining the quantum level informa-

tion of the Gibbs free energies of reactions ∆G with the classical evolution

simulated via Molecular Dynamics, has been proved successful to elucidate

the role of the reactants used in PEDOT polymerization.

In particular, the analysis of the free energies as resulting from DFT cal-

culations, clearly suggested that pyridine and tosylate anions can be identi-

�ed as the proton scavengers.

By contrast, water, which have been proposed as possible proton scav-

enger, according to the performed calculations is very unlikely related to the

process of scavenging. This conclusion does not exclude, however, that water

could possibly play a role in driving the polymerization.

The speci�c chemical species of proton scavenger involved in the poly-

merization was proved crucial in a�ecting the micromorphologies of the in

silico simulated samples.

Starting from a monodisperse distribution of isolated EDOT monomers,

in fact, the adopted polymerization algorithm has produced, after MD sim-

ulation steps, PEDOT samples with completely di�erent morphologies.

These di�erences were quanti�ed by using three main descriptors, (i) the

chain length distribution n(λ), (ii) the volume occupied by the crystallites

VC and (iii) the average chain length 〈λ〉.
It was observed that all the scavenger combinations giving rise to signif-

123



icantly low ∆G of reaction are related with an increase of both 〈λ〉 and VC,
suggesting that the enhance of chain length leads to an increase of the over-

all crystallinity of the samples. In other terms, the performed simulations

suggest that the emergence of long range order phase is crucially determined

by the adopted proton scavenger.

More interestingly, it was found that the increase of the "e�ciency" of

the proton scavenger is linked with a progressive broadening of the chain

length distribution n(λ), with water scavenged-samples characterized by the

narrowest n(λ), while in the case of pyridine n(λ) ranges from 1 up to 32

monomeric units of length. Moreover, by evaluating the Polidispersivity

(PDI), a non trivial behaviour of n(λ) was found in the case of tosylate scav-

enged samples, where a tri-modal distribution was observed. In particular,

the occurrence of one speci�c peak at 13 monomeric units is compatible with

the recent hypothesis of the crucial role played in carrier transport of "tie

chains" responsible for charge transfer between the crystallites.

A direct comparison of the simulated XRD spectrum with the experi-

mental data was used to assess the validity of the computational protocol,

which was able to reproduced the position of the π − π interchain stacking

distance in fair agreement with experiments.

The morphologies resulting from the role of di�erent proton scavengers

were related, as expected, with very di�erent behaviour in terms of both

thermal and charge transport properties.

In particular, we focused on the calculation of: (i) the thermal conduc-

tivity κ, (ii) the hole mobility µh and (iii) the hole contribution to electrical

conductivity σh. σ and κ, in fact, are directly related with the thermoelectric

�gure of merit zT .
In the case of thermal transport, evaluated using classical Molecular Dy-

namics, the role of proton scavenger proved to be crucial in determining

the onset of an anisotropy, which we explained in terms of the chain length

distribution by decomposing the thermal conductivity in a parallel κ|| and
perpendicular κ⊥contribution to the chain directions.

It was found that as the chain length increases, the raise of κ|| is faster
than the one observed for κ⊥, a behavior which was monitored at di�erent

stages of polymerization.

As due to the e�ect of chain length on the thermal conductivity, mor-

phologies generated using pyridine or tosylate molecules as scavengers are

characterized by a higher thermal conductivity than water based samples.

Electronic transport, evaluated in terms of percolation of charge with

hopping rates estimated using Marcus theory, are also largely a�ected by

the morphology.
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The morphologies generated by the combinations of pyridine and pyri-

dine+tosylate show relatively high values of σh, with the highest σ value

reached in the case of tosylate scavenged samples.

Our calculations are able to identify tosylate as the best scavenger in

terms of electronic conductivity σh. This results is con�rmed by the exper-

imental data showing the same preminence of tosylate over other scavenger

choices.

However the overall σh absolute values are largely di�erent from exper-

iment which could be possibly related to the di�culty in estimating and

controlling the charge carrier density, crucial in determining σh.
The next step in order to further characterize the carrier transport prop-

erties will be the explicit calculation of the quantities involved in the hopping

rate by avoiding the averaging procedure.

Furthermore we plan to further re�ne the computational procedure in

order to estimate the Seebeck coe�cient and fully characterize the thermo-

electric zT �gure of merit.

Finally we plan to characterize the micromorphological features of PE-

DOT by exploiting coarse graining approaches using the same polymerization

algorithm.
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