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Abstract Software product line (SPL) engineering allows the derivation of
products tailored to stakeholders’ needs through the setting of a large number
of configuration options.

Unfortunately, options and their interactions create a huge configuration
space which is either intractable or too costly to explore exhaustively. Instead
of covering all products, machine learning (ML) approximates the set of ac-
ceptable products (e.g., successful builds, passing tests) out of a training set (a
sample of configurations). However, ML techniques can make prediction errors
yielding non-acceptable products wasting time, energy and other resources.

We apply adversarial machine learning techniques to the world of SPLs and
craft new configurations faking to be acceptable configurations but that are
not and vice-versa. It allows to diagnose prediction errors and take appropriate
actions. We develop two adversarial configuration generators on top of state-
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of-the-art attack algorithms and capable of synthesizing configurations that
are both adversarial and conform to logical constraints.

We empirically assess our generators within two case studies: an industrial
video synthesizer (MOTIV) and an industry-strength, open-source Web-app
configurator (JHipster). For the two cases, our attacks yield (up to) a 100%
misclassification rate without sacrificing the logical validity of adversarial con-
figurations. This work lays the foundations of a quality assurance framework
for ML-based SPLs.

Keywords software product line; configurable system; software variability;
software testing; machine learning; quality assurance

1 Introduction

Testers don’t like to break things; they like to dispel the illusion that
things work. [50]

Software Product Line Engineering (SPLE) aims at delivering massively cus-
tomized products within shortened development cycles [71,29]. To achieve this
goal, SPLE systematically reuses software assets realizing the functionality of
one or more features, which we loosely define as units of variability. Users can
specify products matching their needs by selecting/deselecting the features
and provide additional values for their attributes. Based on such configura-
tions, the corresponding products can be obtained as a result of the product
derivation phase. A long-standing issue for developers and product managers
is to gain confidence that all possible products are functionally viable, e.g., all
products compile and run. This is a hard problem since modern software prod-
uct lines (SPLs) can involve thousands of features inducing a combinatorial
explosion of the number of possible products. For example, in our first case
study (the MOTIV video generator), the estimated number of configurations
is 10314 while the derivation of a single product out of a configuration takes
30 minutes on average. At this scale, practitioners cannot test all possible
configurations and the corresponding products’ qualities.

Variability models (e.g., feature diagrams) and solvers (SAT, CSP, SMT)
are widely used to compactly define how features can and cannot be com-
bined [8,76,15,14]. Together with advances in model-checking, software test-
ing and program analysis techniques, it is conceivable to assess the functional
validity of configurations and their associated combination of assets within a
product of the SPL [22,83,23,28,10,60]. In addition to the validity of configu-
rations, their acceptability with regards to users expectations must be assessed.
We faced this situation in an industrial context: despite significant engineering
effort [39], the MOTIV SPL – used to generate videos that benchmark object
recognition techniques – keeps deriving videos that are typically too noisy or
dark. In that case, both image analysis algorithms and human experts will fail
to recognize anything resulting in a tremendous waste of resources and nega-
tive user experience. To handle this issue, a promising approach is to sample a
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number of configurations and predict the quantitative or qualitative properties
of the remaining products using Machine Learning (ML) techniques [80,74,43,
11,81,62,86,84].

However, we need to trust the ML classifier [7,61] of an SPL in avoid-
ing misclassifications and costly derivations of non-acceptable products. ML
researchers demonstrated that some forged data, called adversarial, can fool
a given classifier [21]. Adversarial machine learning (advML) thus refers to
techniques designed to fool (e.g., [17,16,61]), evaluate the security (e.g., [19])
and even improve the quality of learned classifiers [41]. Even though results
are promising in different contexts, the ML community did not apply advML
techniques in the SPL domain. On the other hand, numerous techniques have
been developed to test or learn software configuration spaces of SPLs, but
none of them considered advML [68]. A strength of advML is that generated
adversarial configurations are crafted to force an ML classifier to make errors,
by either exploiting its intrinsic properties or its insufficient training. Further-
more, since advML operates on the classifier, there is no need to derive and
test additional products of an SPL.

The main idea of this article is to shift ideas and techniques from advML
to the engineering of SPLs or configurable systems. Specifically, the principle
is to generate adversarial configurations with the intent of fooling and im-
proving ML classifiers of SPLs. Adversarial configurations can pinpoint cases
for which non-acceptable products of an SPL can still be derived since the
ML classifier is fooled and misclassifies them. Such configurations are symp-
tomatic of issues stemming from various sources: the variability model (e.g.,
constraints are missing to avoid some combinations of features); the variabil-
ity implementation (e.g., interactions between features cause bugs); the testing
environment (e.g., some products are wrongly tested and should not be con-
sidered as acceptable); or simply the fact that, based on previous observations,
configurations are predicted to meet non-functional requirements while they
actually fail to do so, asking to be fixed.

In this article, our overall goal is to assess how and to what extent advML
techniques can be used for ML-based SPLs. We demonstrate these techniques
in a binary classification setting (acceptable/non-acceptable) where accept-
ability is either defined as combinations of visual properties (MOTIV SPL) or
failed/successful builds. This paper makes the following contributions:

1. the development of two adversarial generators on top of state-of-the-art
attack algorithms (evasion attacks) and capable of synthesizing configura-
tions that conform to logical constraints among options;

2. the usage and applicability of our two generators within two case stud-
ies: an industrial video synthesizer (MOTIV) and an industry-strength,
open-source Web-app configurator (JHipster). The two systems come from
different domains (video processing vs. Web), variability is implemented
differently (Lua code and parameters vs. conditional compilation over dif-
ferent languages), and size of the configuration space differs (10314 vs. 90K
configurations);
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3. the assessment of the effectiveness of the use of adversarial configurations
via two research questions: i) How effective is our adversarial generator to
synthesize adversarial configurations? We answered this question by gen-
erating adversarial configurations and confronting against a random strat-
egy, up to 100% of the generated adversarial configurations conforms to
the variability model and are successfully misclassified; and ii) What is the
impact of adding adversarial configurations to the training set regarding the
performance of the classifier? Based on our results, twenty-five adversarial
configurations are sufficient to affect the classifier performance. We also
provide statistical evidence supporting our results;

4. the public availability of our implementation and empirical results at https:
//github.com/templep/EMSE_2020.

This article is an extension of “Towards quality assurance of software prod-
uct lines with adversarial configurations” published at SPLC 2019 (full paper,
research track) [85]. In this extension, we describe the implementation of a
new adversarial generator for SPLs with a new preprocessing technique on
top of SecML, a Python library that implements state-of-the-art adversarial
algorithms. We broaden the applicability and assessment of the dedicated al-
gorithm we used in our previous work with a new case study (JHipster) in a
different software engineering context.

This new generator produces adversarial configurations up to 50% faster
than our initial algorithm [85]. Overall our empirical assessment suggests that
generating adversarial configurations is effective to investigate the quality of
ML-based SPLs.

The rest of this paper is organized as follows. Section 2 provides background
information about SPL, ML and advML. Section 3 describes how advML can
be used in the context of SPL engineering, including details about algorithms
for generating adversarial configurations. Section 4 introduces our two case
studies, while Section 5 describes research questions and experimental setup.
Sections 6 and 7 describe our empirical results. Sections 8 and 9 present some
potential threats to validity and provide qualitative insights on how SPLs
practitioners can leverage adversarial configurations. Finally, Section 10 covers
related work and Section 11 wraps up the paper.

2 Background

In this section, we introduce the necessary background and concepts of a ma-
chine learning-enabled software product line framework where ML is used to
classify configurations of an SPL [91,53,40,68,86,84,2,6].

2.1 SPL framework

SPL engineering aims at delivering customized products out of software fea-
tures’ values (configurations). Figure 2 illustrates the process with one of the

https://github.com/templep/EMSE_2020
https://github.com/templep/EMSE_2020
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Fig. 1: Simplified MOTIV feature model [38,4]

case studies of this article (i.e., the MOTIV video generator): Products (also
called variants) are videos and have been synthesized out of configuration files
documenting values of features. There are three important steps in the process:
variability modeling, variability implementation, and variant acceptability. We
illustrate these concepts on the MOTIV case study [38,86,4].

Variability modeling. A variability model defines the features and at-
tributes (also called configuration options) of an SPL; various formalisms (e.g.,
feature models [51], decision models) can be employed to structure and encode
information [15,14]. A variability model typically defines domain values for
each feature and attribute. Moreover, as not all combinations of values are
permitted, it is common to write additional constraints regarding features and
attributes (e.g., mutual exclusions between two Boolean features). For exam-
ple, in the feature model depicted Figure 1, we can use either CountrySide,
Dessert, Jungle, SemiUrban, or Moutain to synthesize the Background but not a
combination of them. The way to specify constraints and their expressiveness
depends on the variability model’s semantics [75]. For Boolean feature models,
constraints apply to individual features (mandatory or optional), parent-child
relationships (the selection of a child feature implies the selection of its parent),
group of child features within a variability operator (alternative, optional). Ad-
ditionally cross-tree constraints relate arbitrary features and attributes; there
are expressed textually in the form of logical formulae. For example, enabling
Dessert requires a value of bird_level less than 0.1. A configuration is an assign-
ment of values to every individual feature and attribute. Because of constraints
and domain values, the notions of valid and invalid configurations emerge.
That is, some combinations of values are accepted while others are rejected.
A constraint solver (e.g., SAT, CSP, or SMT solver) is usually employed to
check the validity of configurations and reason about the configuration space
of a variability model. The choice of the solver depends on the nature of the
features (Boolean, numeric, etc.) and the type of constraints (hard or soft)
at hand. Our case studies illustrate this diversity, MOTIV has an attributed
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feature model (depicted Figure 1) for which we enumerate the valid configura-
tions via the Choco CSP solver [38,86,4] while Jhipster’s configurations have
been obtained via a SAT solver [45].

Variability implementation. Configurations are only abstract represen-
tations of variants in terms of the specification of enabled and non-enabled fea-
tures. There is a need to shift from the problem space (configurations) to the
solution space (variants actually realizing the functionality of configurations).
Different variant implementation techniques can be used such as conditional
compilation (#ifdefs or parameters evaluated at runtime). Additionally, one
can use parameters in function calls – related to values of configurations – in
the generator code that ultimately produces a variant. In the MOTIV case
(see Figure 2), the generator is written in Lua and uses different parameters
to execute a given configuration and produce a variant. JHipster uses a ques-
tionnaire to guide users through the choice of options values and then derives
automatically the desired variant (a Web development stack) – Section 4 gives
more details about this subject system.

Variant Acceptability. In some cases, configurations can lead to unde-
sirable variants despite being logically valid within the variability model. For
instance, when considering the MOTIV SPL [39,85], some video variants may
contain too much noise or not enough contrast. Variants can still be gener-
ated but these videos are not exploitable for any object recognition task, since
the non-functional property (here: the visual quality of a video) does meet
expectations. The test oracle is a procedure to determine whether a variant is
acceptable or not in the solution space. In Figure 2, the oracle gives a label
(green/acceptable or red/non-acceptable). Given a large number of variants,
it is unfeasible to ask a human to assess the visual properties of all videos.
Instead, we implemented a C++ procedure for computing these properties.

If a variant is considered non-acceptable by the oracle, then, there is a
difference between the decision given by the solver within the problem space
and the testing oracle within the solution space. Such a mismatch can occur
because of the transformation from the problem space to the solution space:
the variability implementation can be faulty; the oracle can be hard to auto-
mate and thus introduce approximations and/or errors; the variability model
might miss some constraints. Unfortunately, the testing oracle operates over
one variant at a time and cannot compute the subset of acceptable variants.
Furthermore, an exhaustive derivation of all variants is not possible. Hence
an approach followed by many works [91,53,40,68,86,84,2,6] is to use ma-
chine learning (ML) to approximate the set of acceptable variants through the
classification of configurations.

2.2 Machine Learning (ML) Classifier

ML classification. Formally, a classification algorithm builds a function f :
X 7→ Y that associates a label in the set of predefined classes y ∈ Y with
configurations represented in a feature space (noted x ∈ X). With the video
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Fig. 2: Software product line and ML classifier

Fig. 3: Adversarial configurations (stars) are at the limit of the separating
function learned by the ML classifier

generator, only two classes are defined: Y = {−1,+1}, respectively acceptable
and non-acceptable videos. The configuration space X is defined by features
of the underlying feature model (and their definition domain). The classi-
fier f is trained on a data set D constituted of a set of pairs (xti, yti) where
xt ∈ X is a set of valid configurations from the variability model and yt ∈ Y
their associated labels. To label configurations in D, we use an oracle that
decides on the acceptability of a configuration depending on feature values,
such as luminosity and contrast. See Section 4 for implementation details of
the oracle. Once the classifier is trained, f induces a separation in the feature
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space (shown as the transition from the blue/left to the white/right area in
Figure 3) that mimics the oracle: when an unseen configuration occurs, the
classifier determines instantly in which class this configuration belongs to. Un-
fortunately, the separation can yield prediction errors since the classifier is
based on statistical assumptions and a (small) training sample. We exemplify
this in Figure 3 by the separation diverging from the solid black line repre-
senting the target oracle. As a result, two squares are misclassified as being
triangles. Classification algorithms realize trade-offs between the necessity to
classify the labeled data correctly, taking into account the fact that it can be
noisy or biased and its ability to generalise to unseen data. Such trade-offs lead
to approximations that make the classifier “weak” (i.e., taking decisions with
low confidence) in some areas of the configuration space. Comparatively to
other domains such as hiring, loan decisions, healthcare, or security, misclassi-
fying video sequences may not be considered as highly critical: practitioners are
“only” wasting computation time and resources in generating non-acceptable
videos. Yet, approximations and classification errors may have negative finan-
cial and user experience impacts. We notice similar concerns in the case of
JHipster, our second case study (see Section 4). In both cases, the SPLs can-
not be deployed and commercialized as such and further engineering effort is
needed to improve their quality.

3 Adversarial Machine Learning and Evasion attacks

In SPL engineering, ML brings the benefit of partitioning the configuration
space based on a (small) number of assessed variants, which is faster than
running the oracle on every single variant (videos in the MOTIV case, see
Figure 2). However, this gain comes at the cost of approximations made by
the statistical ML classifier. That is, the ML classifier can still make prediction
errors when classifying configurations (see Figure 3). Our idea is to “attack” the
ML classifier through the generation of so-called adversarial configurations able
to fool the ML classifier of an SPL. The objective is to synthesize configurations
for which the ML classifier performs an inaccurate classification. For example,
such adversarial configurations can pinpoint which non-acceptable variants
of an SPL can still be derived since the ML classifier misclassifies them as
acceptable.

In this section, we detail the foundations, algorithms, and processes to
generate adversarial configurations.

3.1 AdvML and evasion attacks

According to Biggio et al. [21], deliberately attacking an ML classifier with
crafted malicious inputs was proposed in 2004. Today, it is called adversarial
machine learning and can be seen as a sub-discipline of machine learning. De-
pending on the attackers’ access to various aspects of the ML system (e.g.,
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access to the data sets or ability to update the training set) and their goals,
various kinds of attacks are available [17,20,16,19,18]. A categorization of such
adversarial attacks can be found in [7,21]. In this paper, we focus on evasion
attacks: these attacks move labeled data to the other side of the separation
(putting it in the opposite class) via successive modifications of features’ val-
ues. Since areas close to the separation are of low confidence, such adversarial
configurations can have a significant impact if added to the training set. To
determine in which direction to move the data such that it reaches the sep-
aration, a gradient-based method has been proposed by Biggio et al. [16].
This method requires the attacked ML algorithm to be differentiable (e.g.,,
algorithms building models for which the classification decision is based on a
confidence metric which is not binary; this is the case for SVMs or Bayesian
predictors which compute a likelihood to belong to a class). One of such dif-
ferentiable classifiers is the Support Vector Machine (SVM), parameterizable
with a kernel function1. Note also that, in the context of this work, we focus
on a binary classification problem, but the framework presented by Biggio et
al. [21] applies in a broader case, including multi-class problems.

3.2 A dedicated evasion algorithm

Algorithm 1 A dedicated algorithm [85] conducting the gradient-descent
evasion attack inspired by [16]
Input: x0, the initial configuration; t, the step size; nb_disp, the number of displacements;
g, the discriminant function
Output: x∗, the final attack point
(1) m = 0;
(2) Set x0 to a copy of a configuration of the class from which the attack starts;
while m < nb_disp do

(3) m = m+1;
(4) Let ∇F (xm−1) a unit vector, normalisation of ∇g(xm−1);
(5) xm = xm−1 − t∇F (xm−1);

end while
(6) return x∗ = xm;

Algorithm 1 presents an adaptation of Biggio et al.’s evasion attack [16],
initially presented at the SPLC 2019 conference [85]. First, we select an initial
configuration to be moved (x0); multiple strategies can be used to select x0, we
will simply use a random strategy selecting one configuration labeled with the
class from which the attack starts. Then, we set the step size (t), a parameter
controlling the convergence of the algorithm. Large steps induce difficulties to
converge, while small steps may trap the algorithm in a local optimum. While
the original algorithm introduced a termination criterion based on the impact
of the attack on the classifier between each move (if this impact was smaller

1 most common functions are linear, radial-based functions and polynomial
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than a threshold ε, the algorithm stopped; assuming an optimal attack), we
chose to set a maximal number of displacements nb_disp in advance and let
the technique run until the end. This allows for a controllable computation
budget, as we observed that for small step sizes the number of displacements
required to meet the termination criterion was too large. The function g is the
discriminant function (i.e., the function that should be differentiable) and is
defined by the ML algorithm that is used. It is defined as g : X 7→ R that
maps a configuration to a real number. Only the sign of g is used to assign
a label to a configuration x. Thus, f : X 7→ Y can be decomposed in two
successive functions: first g : X 7→ R that maps a configuration to a real value
and then h : R 7→ Y with h = sign(g). However, |g(x)| (the absolute value
of g) intuitively reflects the confidence the classifier has in its assignment
of x. |g(x)| increases when x is far from the separation and surrounded by
other configurations from the same class and is smaller when x is close to the
separation.

The term discriminant function has been used by Biggio et al. [16] and
should not be confused with the unrelated discriminator component of gener-
ative adversarial nets (GANs) by Goodfellow et al. [41]. In GANs, the discrim-
inator is part of the “robustification process”. It is an ML classifier striving to
determine whether an input has been artificially produced by the other GANs’
component, called the generator. Its responses are then exploited by the gen-
erator to produce increasingly realistic inputs. In this work, we only generate
adversarial configurations, though GANs are envisioned as follow-up work.

Concretely, the core of the algorithm consists of the while loop that iter-
ates over the number of displacements. Statement (4) determines the direction
towards the area of maximum impact with respect to the classifier (explaining
why only a unit vector is needed). ∇g(xm−1) is the slope of the gradient of
g(xm−1). Since evasion attacks is a technique based on gradient descent, the
direction of interest towards which the adversarial configuration should move
is the opposite of this value. This vector is then multiplied by the step size t
and subtracted to the previous move (5). The final position is returned after
the number of displacements has been reached. For statements (4) and (5) we
simplified the initial algorithm [16]: we do not try to mimic as much as possible
existing configurations as we look forward to some diversity. In an open-ended
feature space, the gradient can grow indefinitely possibly preventing the algo-
rithm to terminate. Biggio et al. [16] set a maximal distance representing a
boundary of the feasible region to keep the exploration under control.

In SPLs, the feasible region is given by valid configurations (defined by,
among others, allowed features’ combinations). However, being able to state
all cross-tree constraints and potential domain values remain difficult. This
task is nonetheless very important for the adversarial attack algorithm. In
this work, we opted for a quite simplistic way of handling constraints. We only
took care of the type of features and attribute values (natural integers, floats,
Boolean). For example, if a constraint forbids a value to go below zero but a
displacement tries to do so, we reset to zero this value (since it is the lower
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bound that this value can take); a similar principle is done for Boolean values
(that can take only values 0 or 1).

Temple et al. [86] studied the possibility to use ML to discover previously
unstated constraints in a VM and add them in the model. These constraints
relate to the definition of acceptable products and the idea of being able to
only derive products that satisfy users’ requirements. This work results in an
automated process to specialize SPLs to meet these requirements. We used
decision trees since they were very well adapted to the context of the study
as they are interpretable and constraints can be retrieved by going through
the structure of the resulting tree. However, in the context of advML, not all
ML models can be used and decision trees are not compatible [21,19,17,16].
Decision trees are highly non-linear and it is not possible to compute gradient
nor confidence due to non-differentiability. To conduct our attack, we choose to
use support vector machines instead. Note that this restriction only applies to
conduct adversarial attacks, when trying to specialize an SPL, any ML model
can be used.

3.3 secML

SecML2 is a Python library that has been developed by researchers from
the Pattern Recognition and Applications Laboratory (PRALab), in Sardinia,
Italy. SecML has been publicly released for the first time the 6th of August
20193. This library gathers different advML techniques and embeds utilities
to create a customized pipeline according to the data to attack, their repre-
sentations, the ML model that is used in the system to attack among other
parameters. SecML was designed as a generic advML library but was not tai-
lored to analyze classifiers for SPLs. An interesting question was about the
effort of adapting secML algorithms in this novel application domain, in par-
ticular regarding constraints. As further motivation, we want to compare how
the original advML algorithm behaves compared to our aforementioned dedi-
cated algorithm [85].

SecML offers different implementations of adversarial attacks4, either poi-
soning the training set, trying to evade the classifier, or even being completely
customized. For each category, different implementations are also proposed.
For instance, regarding evasion attacks, multiple implementations are pro-
vided5, some can hide even more implementations, such as the Cleverhans at-
tack which is based on an external library6 providing even more possibilities7.
Among all of them, CAttackEvasionPGD is probably the most direct imple-

2 https://secml.gitlab.io/index.html
3 Therefore it was not available in our previous SPLC’19 contribution [85]
4 https://secml.gitlab.io/tutorials.adv.html
5 https://secml.gitlab.io/secml.adv.attacks.evasion.html
6 https://secml.gitlab.io/secml.adv.attacks.evasion.html#module-secml.adv.

attacks.evasion.cleverhans.c_attack_evasion_cleverhans
7 https://secml.gitlab.io/tutorials/09-Cleverhans.html

https://secml.gitlab.io/index.html
https://secml.gitlab.io/tutorials.adv.html
https://secml.gitlab.io/secml.adv.attacks.evasion.html
https://secml.gitlab.io/secml.adv.attacks.evasion.html#module-secml.adv.attacks.evasion.cleverhans.c_attack_evasion_cleverhans
https://secml.gitlab.io/secml.adv.attacks.evasion.html#module-secml.adv.attacks.evasion.cleverhans.c_attack_evasion_cleverhans
https://secml.gitlab.io/tutorials/09-Cleverhans.html
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mentation of the algorithm presented in [16], proposing the evasion attack.
Therefore, we focus our attention on this implementation for our experiments.
PGD refers to Projected Gradient Descent which allows limiting the maximum
amount of perturbations that can be applied to a configuration. That is, if a
perturbation would move the configuration outside of the defined boundaries,
it is automatically set back on these boundaries via projection. The maximal
amount of perturbations is defined by the parameter called d_max that we
will set to different values in our experiments (see Section 6 and 7).

3.4 Adversarial pipeline

Figure 4 presents a generic adversarial pipeline. The first step is to prepare the
data that are shared by the original classifier and by the adversarial pipeline.
Data preprocessing is specific to each case and is described in Sections 6 and
7. Generally, an adversarial framework relies on a surrogate classifier that
is learned from the same data when the attacker does not have access to the
target classifier or when the attack cannot be conducted directly. Since there is
evidence that attacks conducted on a specific ML model can be transferred to
others [33,32,24], using a surrogate classifier is a legit approach in a black-box
scenario.

Our experiments are conducted within a white-box scenario: we have access
to all the SPL artifacts including the ML classifier. Therefore, the surrogate
and the original SPL classifiers conflate and, without loss of generality, we can
use a differentiable classifier. Attacks will be conducted and assessed on that
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unique classifier. Once the classifier is learned, we can use our dedicated and
SecML algorithms to generate attacks in a second step. The third step evalu-
ates the effectiveness of generated adversarial configurations forming the test
set. In particular, we check the validity of generated adversarial configurations
and their ability to be misclassfied. This constitutes our first research ques-
tion. Finally, the fourth step learns a new classifier with an augmented training
set composed of the original training set and some adversarial configurations.
Our second research question assesses the positive or negative impact on the
classifier’s accuracy.

4 Case Studies

4.1 MOTIV video generator

MOTIV is an industrial video generator of which the purpose is to provide syn-
thetic videos that can be used to benchmark computer vision based systems.
Video sequences are generated out of configurations specifying the content of
the scenes to render [86,85]. MOTIV relies on a variability model that doc-
uments possible values of more than 100 configuration options, each of them
affecting the perception of generated videos and the achievement of subsequent
tasks, such as recognizing moving objects. Perception’s variability relates to
changes in the background (e.g., forest or buildings), objects passing in front
of the camera (with varying distances to the camera and different trajectories),
blur and other combinations of elements such as camera movements, ambient
daylight or fog. There are 20 Boolean options, 46 categorical (encoded as enu-
merations) options (e.g., to use predefined trajectories) and 42 real-value op-
tions (e.g., dealing with blur or noise). On average, enumerations contain about
7 elements each and real-value options vary between 0 and 27.64 with a preci-
sion of 10−5. Excluding (very few) constraints in the variability model, we over-
estimate the video variants’ space size: 220 ∗ 746 ∗ ((0− 27.64) ∗ 105)42 ≈ 10314.
Concretely, MOTIV takes as input a text file describing the scene to be cap-
tured by a synthetic camera as well as recording conditions. Then, we run
Lua [46] scripts to compose the scene and apply desired visual effects result-
ing in a video sequence. To realize variability, the Lua code uses parameters
in functions to activate or deactivate options and to take into account values
(enumerations or real values) defined into the configuration file. A highly chal-
lenging problem is to identify feature values and interactions that make the
identification of moving objects extremely difficult if not impossible. Typically,
some of the generated videos contain too much noise or blur. In other words,
they are not acceptable as they cannot be used to benchmark object tracking
techniques. Another class of non-acceptable videos is composed of the ones
in which the same value is given to all pixels of every frame, resulting in a
succession of still images: nothing can be perceived.

Figure 5 shows some examples of non-acceptable videos that can be gener-
ated with MOTIV. On these images, there is noise preventing human beings
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(a) (b) (c)

(d) (e)
Fig. 5: Examples of non-acceptable generated videos

to perceive the background and whether a vehicle is present and their identi-
fications. In addition, for Figures 5a, 5c and 5e, contrast is poor while Figure
5b and 5d present unrealistic colors.

Non-acceptable videos represent a waste of time and resources: 30 minutes
of CPU-intensive computations per video on average, without including the
time to run benchmarks related to object tracking (several minutes depend-
ing on the computer vision algorithm). We therefore need to constraint our
variability model to avoid such cases.

Previous work. We previously used ML classification techniques to predict
the acceptability of unseen video variants [86]. We summarise this process in
Figure 6. We first sample valid configurations using a random strategy (see
Temple et al. [86] for details) and generate the associated video sequences. Our
testing oracle labels videos as acceptable (in green) or non-acceptable (in red).
This oracle implements image quality assessment [35] defined by the authors
via an analysis of frequency distribution given by Fourier transformations.
An ML classifier (in the case of [86], a decision tree) can be trained on such
labelled videos. “Paths” (traversals from the root to the leaves) leading to non-
acceptable videos can easily be transformed into new constraints and injected
in the variability model.

AdvML to the rescue. An ML classifier can make errors, preventing accept-
able videos (false positives) or allowing non-acceptable videos (false negatives).
Most of these errors can be attributed to the confidence of the classifier com-
ing from both its design (i.e., the set of approximations used to build its
decision model) and the training set (and more specifically the distribution of
the classes). Areas of low confidence exist if configurations are very dissimilar
to those already seen or at the frontier between two classes. In the reminder,
we investigate the use of advML to quantify these errors and their impact on
MOTIV SPL and ML classifier.
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Fig. 6: Refining the variability model of the MOTIV video generator via an ML
classifier. In this article and as a follow up of this engineering effort, our goal
is to generate adversarial configurations capable of fooling the ML classifier.

4.2 JHipster

JHipster is an open-source generator for developing Web applications [47].
Started in 2013, the JHipster project is popular with more than 15,000 stars
on GitHub and gathers a strong community of more than 500 contributors
in December 2019. JHipster is used by many companies and governmental or
research organisations worldwide, including Google, Ericsson, CERN or the
Italian Research Council (CNR).

From a user-specified configuration, JHipster generates a complete tech-
nological stack constituted of Java and Spring Boot code (on the server side)
and Angular and Bootstrap (on the front-end side). The generator supports
several technologies ranging from the database used (e.g., MySQL or Mon-
goDB), the authentication mechanism (e.g., HTTP Session or Oauth2 ), the
support for social log-in (via existing social networks accounts), to the use of
microservices. Technically, JHipster uses npm and Bower to manage depen-
dencies and Yeoman8 (aka yo) tool to scaffold the application [73]. JHipster
relies on conditional compilation with EJS9 as a variability realisation mecha-
nism. The mechanism is similar to #ifdef with CPP preprocessor and is applied
on different files written in different languages: Java, JavaScript, CSS, Docker
files, Maven or Gradle files. The build process resolves variability scattered in
numerous files and is quite costly (10 minutes on average per configuration).

Previous work. We previously used JHipster as a case study to benchmark
sampling techniques and assess their bug-finding effectiveness [45,69]. Lessons
learned from our study are that building a configuration-aware testing infras-
tructure for JHipster requires a substantial effort both in terms of human and
computational resources. Specifically, we relied on 8 man-months for building
the infrastructure and 4376 hours of CPU time as well as 5.2 terabytes of disk

8 http://yeoman.io/
9 https://ejs.co/

http://yeoman.io/
https://ejs.co/
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space used to build and run all JHipster configurations. Another lesson is that
our exhaustive exploration of JHipster variants is not practically viable.

AdvML to the rescue. Instead of deriving all variants, one can use ML and
only a sample of configurations to eventually prevent non-acceptable variants
and avoid costly build. Such effort can also be exploited as part of the continu-
ous integration of JHipster. The process of Figure 6, illustrated for MOTIV, is
conceptually similar for JHipster. We have a feature model documenting the
possible configurations and materialized as configuration files. The variants
(or products) are not videos this time, but variants of source code written in
different languages. As an outcome, we can identify features of JHipster that
cause non-acceptable variants (i.e., build failures) and re-inject this knowledge
into the feature model. Build failures can occur in various circumstances such
as: (1) implementation bugs in the artefacts, typically due to a dependency
wrongly specified in a Maven file or due to unsafe interactions between fea-
tures in the Java source code; (2) un-properly building environments in which
some packages or tools are incidentally missing because some combinations
of features were not assessed before. Once the learning process of Figure 6 is
realized, the question arises as to the quality of the ML classifier and the whole
JHipster SPL. Again, we can apply advML.

In this article, we use the version 4.8.2 whose reverse-engineered feature
model is available online10. The feature model allows one to build all JHipster
configurations. Yet, in our sampling we made a few restrictions to focus on
the most relevant ones. In particular, we selected all the testing frameworks
(Gatling, Cucumber, Protractor) in each sampled configuration and avoided
configurations that required Oracle to focus on non-proprietary variants. This
feature model allows 90,210 variants in total.

4.3 Cases Synthesis

Table 1 summarises the main characteristics of the case studies analysed in this
work. We notice that the domain greatly influences constraints stated in the
variability model. While JHipster exhibits a high Cross-Tree Constraints Ratio
(CTCR), proactively preventing the majority of build failures, MOTIV allows
any combination of features, sometimes leading to unacceptable videos (soft
constraints). From an adversarial machine learning perspective, MOTIV raises
the challenge of navigating in a huge variability space with an imperfect oracle
implementing visual perception. JHispter is requiring to handle constraints,
specifically when running an evasion attack, since the risk of generating useless
adversarial configurations is very high if we ignore them.

10 https://github.com/templep/EMSE_2020

https://github.com/templep/EMSE_2020
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Subject Domain Nb.
Fea-
tures

Nb.
Vari-
ants

Feature Type CTCR
(%)

Task

MOTIV Video 108 10314 Boolean, Cate-
gorical, Real

0%
(0/108)

Visual Accept-
ability classifi-
cation

JHipster Web
devel-
opment

58 90210 Boolean 53%
(31/58)

Passed/Failed
build classifica-
tion

Table 1: Case studies’ characteristics. We report for each case the domain,
number of features and variants, the type of features, the Cross-tree constraints
Ratio (CTCR) that is the number of features involved in cross-tree constraints
to the total number of features and finally the goal of the classsification task.

5 Evaluation Overview

In this section, we introduce the research questions related to the use of ad-
vML attacks for SPLs and present how we implemented them. The last part
describes how we preprocessed data and the parameterization of the techniques
used to run our experiments.

5.1 Research Questions

We address the following research questions:
RQ1: How effective is our adversarial generator to synthesize adversarial

configurations? Effectiveness is measured through the capability of our evasion
attack algorithm to generate misclassified configurations:

– RQ1.1: Can we generate adversarial configurations that are wrongly clas-
sified?

– RQ1.2: Are all generated adversarial configurations valid w.r.t. constraints
in the VM?

– RQ1.3: Is using the evasion algorithm more effective than generating ad-
versarial configurations with random modifications?

– RQ1.4: Are attacks effective regardless of the targeted class?

RQ2: What is the impact of adding adversarial configurations to the train-
ing set regarding the performance of the classifier? The intuition is that adding
adversarial configurations to the training set could improve the performance
of the classifier when evaluated on a test set.

We answer these questions for each case study separately in Sections 6
and 7. First, we state the evaluation protocol and then the results to these an-
swers. We answer each question using both techniques presented in Sections 3.2
and 3.3. We also provide statistical evidence on the fact that our results are
significantly different from results without using any advML technique. To do
so, we performed Mann-Whitney tests as detailed in the evaluation protocol
(see Section 5.4)
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5.2 Implementation

We implemented the dedicated algorithm in Python 3 (scripts are available on
the companion website).

MOTIV’s variability model embeds enumerations which are usually en-
coded via integers. The main difference between the two is the logical order
that is inherent to integers but not encoded into enumerations. As a result,
some ML techniques have difficulties to deal with them. The solution is to
“dummify” enumerations into a set of Boolean features, without forgetting
to enforce inherent exclusion constraints of literals from the original enumer-
ations. Conveniently, Python provides the get_dummies function from the
pandas library which takes as input a set of configurations and feature indexes
to dummify.

For each feature index, the function creates and returns a set of Boolean
features representing the literals’ indexes encountered while running through
the set of given configurations: if the get_dummies function detects values
in the integer range [0, 9] for a feature associated to an enumeration, it will
return a set of 10 Boolean features representing literals’ indexes in that range.
The function takes care of preserving the semantics of enumerations. However,
dummification is not without consequences for the ML classifier. First, it in-
creases the number of dimensions: our 46 initial enumerations would map to
145 features that may expose the ML algorithm to the curse of dimensional-
ity [13]; as the number of features increases in the feature space, configurations
that look alike (i.e., with close feature values and the same label) tend to go
away from each other, making the learning process more complex. This curse
has also been recognized to have an impact on SPL activities [31]. Second,
dummification implies that we will operate our attacks in a feature space es-
sentially different from the one induced by the real SPL. Thus, we need to
transpose the generated attacks in the dummified feature space back to the
original SPL one, raising one main issue: there is no guarantee that an attack
relevant in the dummified space is still efficient in the reduced original space
(the separation may simply not be the same). For instance, dummification
will break a categorical feature into multiple independent binary features. The
attack will process each feature individually, it may result that two binary fea-
tures to be activated at the same time as they are considered independently
one from another. The original categorical feature implicitly encodes a de-
pendency between all the available literals not reported by the dummification
procedure and thus both feature space (i.e., before and after the transforma-
tion) are not equivalent. Further efforts are required to ensure these implicit
constraints.

Additionally, exclusion constraints stated in the FM and enumerations be-
come non-correlated after dummification allowing gradient methods to operate
on each feature independently. That is, when transposed back to the original
configuration space, invalid configurations would need to be “fixed”, potentially
putting these adversarial configurations away from the optimum computed by
the gradient method. In the following, we will only perform transformations on
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the initial feature space that can be reversed (e.g., normalize values between 0
and 1) to conduct our evasion attacks, the transition between the two feature
spaces (i.e., initial and after preprocessing) is possible, thus, we do not make
any further distinctions between the two terms since we use them without
making any transformations.

As mentioned in Section 3.2, we conducted attacks on a SVM with a linear
kernel which is a simple classifier (i.e., only linear separation can be created)
but that performs already very well on the classification task for both case
studies. Scripts as well as data used to compare predictions can be found on
the companion webpage.

5.3 Presentation of the results

In sections 6 and 7, we present the results of our experiments for each RQs
stated in Section 5.1. We try to keep the same structure for each addressed RQ,
except for RQ 1.3 which is the comparison to random perturbations and does
not use either of the implementations. First, we describe the preprocessing
applied to the data and the parameterization of the two different implementa-
tions of the evasion attack. Then we address each RQ by describing the intent
and details about how we conducted our experiments and discussing the re-
sults that come with an illustration. Finally, we provide some insights based
on these results. We repeat the same schema for the second implementation.

5.4 Evaluation protocol

Data collection: Previous work on both case studies [86,44,70] allowed one
to gather a number of configurations (i.e., 90, 210 configurations from JHipster
in its version 4.8.2. and 4, 500 randomly sampled and valid video configurations
for MOTIV). Configurations were sampled, derived (executed or build), and
assessed using a computing grid.

Training and Test sets: In the 4, 500 MOTIV configurations, about 10%
are non-acceptable (see Section 4.1). Because of the vast majority of accept-
able configurations, we are not able to use common ML practices: usually,
the training set is composed of a high percentage (e.g., around 66%) of avail-
able data and is used to train the classifier, and, when few configurations are
available, k-fold cross-validation is used to mitigate the risk of overfitting (in
our case, 4, 500 configurations is an arguably low number to the size of the
variant space). Regarding the number of configurations to put in the training
set, 66% of 4, 500 configurations would reduce the size of the test set in turns
containing very few non-acceptable configurations. In such a setting, because
of the approximations explained in Section 3.3, the classifier can easily learn a
function that will not separate anything while keeping good classification per-
formances since non-acceptable configurations would be considered as “rare
events” in numbers. Because of that, we decided to mitigate this risk by train-
ing a classifier with even fewer configurations but keeping the same ratio of
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non-acceptable configurations (i.e., ≈ 10%) leading us to 500 configurations in
the training set among which around 50 are non-acceptable. Results from [86]
showed good results in terms of classification on both training and test sets
which made us keep this setting.
Now, regarding cross-validation, it is used to validate/select a classifier when
several are created (e.g., when fine-tuning hyper-parameters) but it requires
separating the training set into smaller subsets. With 10% of non-acceptable
configurations some subsets will not contain any of them which is counter-
productive when assessing the ability of a trained classifier to successfully
classify new configurations.

In this setting, the key point is that only about 10% of configurations
are non-acceptable. This is a ratio that we cannot control as it depends on
the targeted non-functional property. However, to reduce imbalance, several
data augmentation techniques exist like SMOTE [27]. Usually, they create
artificial configurations while maintaining the configurations’ distribution in
the feature space. We decided to follow a similar process by computing the
centroid between two configurations (of the same class) and use this point as
a new configuration.

Thanks to the centroid method, we can bring a perfect balance between
the two classes (i.e., 50% of acceptable configurations and non-acceptable con-
figurations). Technically: we compute the number of configurations needed to
have perfectly balanced sets (i.e., for both training and test sets); we select
randomly two configurations from the less represented class and compute the
centroid between them, check that it is a never-seen-before configuration and
add it to the available configurations. The process is repeated until the re-
quired number of configurations is reached. Once a centroid is added to the
set of available configurations, it is available as a configuration to create the
next centroid.

In the following, we present results with both original and balanced data
sets to assess the impact of class representation on adversarial attacks.

On the other hand, JHipster presents about 20, 000 configurations in the
dataset that cannot be built. This represents about nearly 25% of our dataset,
which shows an over-representation of the building class. While other problems
(described later on under the label Feature space structure) remain, this
representation is still an issue and we had to force sets to be perfectly balanced.
Thus, we chose to reduce the training set to 400 configurations. In this training
set, both classes are represented equally (i.e., 200 configurations for each class).
That is, we choose randomly 200 configurations from the ones that build and
200 other configurations from the ones that do not.

Preprocessing:We have applied some preprocessing to both datasets and
configurations’ representations to remove unnecessary features gathered from
our previous study. For instance, for JHipster, we removed logs that were
kept for further studies to retrieve the root causes of bugs. They were stored
as free text which prevented us to have an homogeneous representation of
the configurations in terms of features. Furthermore, error messages from the
logs are not necessary for this study. If a feature only reports one value, it is
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discarded since it will only increase the number of dimensions in the feature
space without adding any information to the classification problem.

Since we use SVMs to conduct evasion attacks, we need to make our fea-
ture space homogeneous in its dimension. Integer values must be scaled-down
between 0 and 1. The same applies to floating-point values. The reason be-
hind this decision is to avoid unbounded values which in turn can result in
bigger importance given to a feature because it is more flexible and can take a
broader range of values. To cope with homogeneous feature spaces, we applied
dummification (see Section 5.2) to categorical features. This way, every single
literal of the feature becomes an independent Boolean feature.

After these preprocessing steps, MOTIV configurations are represented by
about 120 features while JHipster’s configurations contain 47.

Feature space structure: Regarding JHipster, our preliminary study, to
assess that at least one ML model was able to classify configurations between
building or not building, showed that this classification problem is linearly
separable. Even with as few as ≈ 18, 000 configurations (about 20% of available
configurations) in the training set, the classifier as able to perform more than
99% of correct prediction in the test set. Below this number, our tentatives to
learn a classifier with a random selection of configurations have often failed due
to the absence of non-building configurations. With more than 99% accurate
classifications, adversarial attacks were unable to produce any configurations
that were misclassified by the classifier. Besides, unlike the MOTIV case study,
after our feature transformation, JHipster presents numerous dependencies
between the features (i.e., the choice of using a SQL database force to deselect
any other kind of database) making the adversarial attacks unlikely to produce
any valid configurations regarding the associated feature model. We add to
enforce encoded constraints (choices, dependencies stated as constraints in the
FM and upper and lower bounds values) in the FM directly into the attack
procedure. That is, after the last displacement has been performed, we check
that all the constraints are fulfilled and, if not, modify crafted configurations
accordingly. This way, configurations produced by the adversarial procedure
are valid by design. This is also known as the “fix operator” in configuration
optimization [65].

Parameterization of the techniques: We configured the dedicated at-
tack generator with the following settings: i) we set the number of attacks
points to generate 4, 000 configurations for RQ1 with MOTIV and 1, 000 when
dealing with JHipster and, for RQ2, 25 configurations were used for both case
studies; ii) considered step size (t) values are {10−6; 10−4; 10−2; 1; 102; 104;
106}; iii) the number of iterations is fixed to 20, 50 or 100. To mitigate ran-
domness, we repeat ten times the experiments. All results discussed in this
paper can also be found on our companion webpage11.

When using secML, we have parameterized the attack function such that it
can change several features at one time (distance norm is set to “l2” also known
as Euclidean distance), the maximum perturbation value (called d_max here-

11 https://github.com/templep/EMSE_2019

https://github.com/templep/EMSE_2019
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after) is set to {0.1; 0.5; 1.0; 5.0; 10.0} and the upper and lower bounds are set
respectively to 1 and 0. Also, Gradient Descent uses a search grid to find the
best step size as well as the best direction which can be configured by the reso-
lution of the grid. In secML, this parameter is called η that we set to 0.01 since
the order of magnitude of the number of features is 102. To remain consistent
with our dedicated implementation, we apply the same preprocessing on the
configurations (see Section 5.2) and we generate 4000 configurations for RQ1
and 25 configurations when addressing RQ2.

Statistical Evidence: To further support the statistical validity of our
conclusions we applied statistical tests for each research question. We focused
on Mann-Whitney rank sum test [58], which is non-parametric (i.e., it does not
assume a normal distribution for the compared samples) and therefore can han-
dle the non-normality of our sometimes small sample sizes. This test computes
a statistic U , further decomposed in U1 and U2 that intuitively correspond to
the number of wins and losses respectively of all pairwise contests between the
two compared samples. Therefore, 0 < Ui < n1 × n2, i ∈ {1, 2} where n1, n2
are the sizes of each sample and U1 + U2 = n1 × n2. We report min(U1, U2)
referred to as “u-stat”. For this test, we formulate two different hypotheses: the
null-hypothesis (usually called H0) that supposes the two samples follow the
same distributions and the other hypothesis (H1) supposing that they do not.
To reject the null-hypothesis, u-stats are compared to a critical value reported
in a table12: if a u-stat is smaller or equal to the one in the table for the given
sample sizes and confidence levels (in our case α = 0.05), then we can reject
H0, if it is greater then we cannot reject H0. Additionally, two values of u-stat
are remarkable: u-stat = 0, meaning that the distributions are totally differ-
ent, and u-stat = n1×n2

2 meaning that the two distributions are equal. In our
setting, we use a two-tailed test and additionally report the computed p-value
p for significant (we consider our results significant if p ≤ 0.05). We computed
our statistical results using the R statistical environment [72]. The R script to
replicate the analysis can be found on our companion webpage.

6 MOTIV

6.1 RQ1: How effective is our adversarial generator to synthesize
adversarial configurations?

To answer this question, we assess the number of wrongly classified ad-
versarial configurations over 4000 generations and compare them to a random
baseline: to the best of our knowledge, there is no other evasion attack that is
based on a different algorithm than the one presented in [16] to compare to.

12 Such tables can be found easily on the Internet: http://ocw.umb.edu/psychology/
psych-270/other-materials/RelativeResourceManager.pdf

http://ocw.umb.edu/psychology/psych-270/other-materials/RelativeResourceManager.pdf
http://ocw.umb.edu/psychology/psych-270/other-materials/RelativeResourceManager.pdf
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(a) Number of misclassified adversarial con-
figurations (20 displacements)

(b) Number of misclassified adversarial con-
figurations (100 displacements)

Fig. 7: Number of successful attacks on class acceptable; X-axis represents dif-
ferent step size values t while Y-axis is the number of misclassified adversarial
configurations by the classifier. For each t value, results with balanced and not
balanced training set are shown (respectively in blue and orange).

6.1.1 RQ1.1: Can we generate adversarial configurations that are wrongly
classified?

Dedicated implementation
For each run, after nb_disp displacements, the newly created adversarial con-
figuration is added to the set of initial configurations that can be selected to
start an evasion attack. We thus allow previous adversarial configurations to
continue their displacements towards the global optimum of the gradient.

Figure 7 shows box-plots resulting from ten runs for each attack setting.
Both results, when the training set is not balanced (i.e., using the previous
training set containing 500 configurations with about 10% of non-acceptable
configurations) and when it is balanced (i.e., increasing the number of non-
acceptable configurations using the data augmentation technique described
above) are reported.

Both Figure 7a and Figure 7b indicate that we can always achieve 100% of
misclassified configurations with our attacks. Regarding Figure 7a, in the case
of a not balanced dataset, it is easy to attack the most represented class and
the implementation can produce new configurations that are always misclas-
sified (regardless of the value assigned to t). The fact that even the smallest
value of t with 20 displacements can produce 4000 misclassified configurations
suggests that the separation learned by the classifier should be very close to
the configurations of class non-acceptable (where the attacks start). With a
balanced dataset, more points can be selected as a starting point of the at-
tack. Chances to select a starting point that is “far” from the separation are
higher and more displacements are needed to cross the function learned by
the classifier. Figure 7a shows that the displacement step size is not enough
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to produce any misclassified configurations when it is set to a value lower or
equal to 10−4 and the number of displacement is set to 20. When set to 0.01,
some configurations start to be misclassified but it represents less than 50%
of them. With a step size set to 1.0 or above, perturbations are large enough
to produce misclassified ones.

Figure 7b shows the same tendency except that the transition from 0 mis-
classified generations to 4000 appears earlier (i.e., when t is set to or close to
0.01). It is not surprising since, compared to the previous results, the number
of displacements is higher (set to 100).

We do not present figures with the number of displacements set to 50 but
the observations are similar to the ones we just described with Figure 7b.
However, they can be found on the companion webpage.

Table 2 shows U (second row) from the Mann-Whitney test and associated
p-values (third row) when comparing results from both sets (balanced and
unbalanced) for each displacement step size shown in Figure 7a. When the
displacement step size is set to 1 or higher, both attack set-ups achieve a 100%
success rate with no dispersion (illustrated by 50 and NaN values in the table)
and therefore cannot be distinguished. With lower values of displacement step
sizes, the p-values are significant (p << 0.05). Based on our results from
Figure 7a, we can conclude that attacking when classes are not balanced is
easier. Conclusions are similar when considering larger displacement step size
(i.e., 50 and 100) available on the companion page.

10−6 10−4 10−2 1 102 104 106

u-stat 0 0 0 50 50 50 50
p-value 6.39e− 5 6.39e− 5 6.39e− 5 NaN NaN NaN NaN

Table 2: u-statistics and p-values associated with measures from Fig. 7a; n1 =
n2 = 10 for each column, u-statcritical = 23.

Insights: Increasing the number of displacements requires lower step sizes to
reach the misclassification goal but it comes at the cost of more computations.
However, increasing the number of displacements when the step size is already
large ends up in incredibly large displacements which may not be realistic in
some applications or when trying to limit changes applied to configurations.

SecML
Similarly to the previous implementation, after the final perturbation is ap-
plied to a configuration, it is added to the set of available configurations that
may be selected for the next run. The number of displacements is not bounded
directly, thus the number of iterations can vary from one run to another.

Figure 8 shows box-plots resulting of ten runs for each attack setting (i.e.,
with varying values set to d_max). We also show results for both balanced
and non-balanced data sets.
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Fig. 8: Number of successful attacks on class acceptable; X-axis represents
different parameter values of d_max of the secML function while Y-axis is the
number of misclassified adversarial configurations by the classifier.

When the data set is not balanced, similarly to the previous implemen-
tation, all attempts to create a misclassified configuration succeed since the
separation is in favor of the most-represented class.

When the data set is balanced, the behavior showed in Figure 8 is similar to
the previous one. A transition from 500 misclassified generated configurations
to almost 4000 can be seen between d_max set to 0.1 and 0.5. With higher
d_max values, all 4000 generated configurations were misclassified.

Our statistics (available on Table 3) shows that our results are significant
(p << 0.05). Again, with this implementation, we can conclude that attacking
classes is easier when they are imbalanced.

0.1 0.5 1 5 10
u-stat 0 0 12.5 12.5 12.5
p-value 7.49e− 3 7.49e− 3 NaN NaN NaN

Table 3: u-statistics and p-values associated with measures from Fig. 8; n1 =
n2 = 5 for each column, u-statcritical = 2.

Insights: again tuning d_max increases chances to get misclassified con-
figurations when perturbed with evasion attacks. Since d_max represents the
maximum distance up to which a feature can be perturbed, setting it a lower
value decreases the potential number of iterations to get to the final position.
Therefore, to fine-tune this parameter, a good strategy would be to start with
lower values.
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6.1.2 RQ1.2: Are all generated adversarial configurations valid w.r.t.
constraints in the VM?

As discussed in Section 5.2, we have performed some preprocessing on our
data to make the learning with an SVM possible and reliable. This ends up
with features that are either Boolean, either real but bounded between 0 and
1.

Because we check and force feature values to be inside these boundaries
after the last position of a configuration is reached, by design, all the config-
urations are valid w.r.t. this aspect. The only aspect left that may make the
configurations non-valid is the mutual exclusion constraints inherited from
breaking the categories with the dummification process.

Regardless of the implementation that is used or the values given to pa-
rameters, all the generated configurations are valid. Results and scripts of this
experiment can be found on the companion website.

Insights: We can scope parameters such that adversarial configurations are
both successful and valid for either implementations. The way our configu-
rations were preprocessed made it possible to enforce boundary constraints
directly at the end of displacements. Other ways are possible but might re-
quire other mechanisms to check that constraints are verified while allowing
configurations to move further away.

6.1.3 RQ1.3: Is using the evasion algorithm more effective than generating
adversarial configurations with random displacements?

Previous results of RQ1.1 and RQ1.2 show we can craft valid adversarial con-
figurations that can be misclassified by the ML classifier but is our algorithm
better than a random baseline?

The baseline algorithm is based on the dedicated implementation and con-
sists in: i) for each feature, choose randomly whether to modify it; ii) choose
randomly to follow the slope of the gradient or go against it (the role of ‘-’ of
line 5 in Algorithm 1 that can be changed into a ‘+’); iii) choose randomly a de-
gree of displacement (corresponding to the slope of the gradient (∇F (xm−1))
of line 5 in Algorithm 1). Both the step size and the number of displacements
are the same as in the previous experiments.

Figure 9 shows the ability of random attacks to successfully mislead the
classifier. Random modifications are not able to produce more than 2500 con-
figurations that are misclassified (regardless of the number of displacements,
the step size, or whether the training set is balanced or not) which corresponds
to about 60% of the generated configurations. It is a lower number than the
two evasion implementations. The maximum number of misclassified configu-
rations after random modifications starts from step size t = 10, 000 regardless
of the studied number of displacements.

Regarding the validity of generated configurations, here again, the random
version is worse than the other considered implementations. The problem lies
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(a) Number of successful random attacks af-
ter 20 displacements

(b) Number of successful random attacks af-
ter 100 displacements

Fig. 9: Number of successful random attacks on class acceptable; X-axis rep-
resents different step size values t while Y-axis is the number of misclassi-
fied adversarial configurations by the classifier. In red and blue are respective
results with a not balanced and a balanced training set in terms of classes
representation.

in the fact that all features are processed independently from the others re-
sulting in high chances to set to features which are mutually exclusive to 1;
leading to non-valid configurations.

Table 4 shows the u-statistics and p-values when comparing results given
from the RQ1.1 (see Figure 7a) and random perturbations (see Figure 9a)
with balanced classes. For all reported values, the p-values are significant (p
<< 0.05) and U-stats are equal to 0. We conclude that advML techniques are
more efficient in producing new configurations that will be wrongly classified
than using random perturbations. Results are similar when comparing results
from Figure 7b and Figure 9b.

10−6 10−4 10−2 1 102 104 106

u-stat 0 0 0 0 0 0 0
p-value 1.82e− 4 1.82e− 4 1.82e− 4 6.34e− 5 6.34e− 5 6.39e− 5 6.39e− 5

Table 4: u-statistics and p-values associated with measures from Fig. 9a com-
pared with values given in RQ1.1 when classes are balanced; n1 = n2 = 10 for
each column, u-statcritical = 23.

Insights: Previous results show that the effectiveness of evasion attacks
are superior to random modifications since i) evasion attacks can craft con-
figurations that are always misclassified by the ML classifier while less than
2500 over 4000 generations will be misclassified using random modifications;
ii) generated evasion attacks support a larger set of parameter values for which
generated configurations are valid; iii) we were able to identify sweet spots for
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which evasion attacks were able to generate 4000 configurations that were both
misclassified and valid.

6.1.4 RQ1.4: Are attacks effective regardless of the targeted class?

Previously, we generated evasion attacks from the class non-acceptable and
tried to make them acceptable for the ML classifier but is our attack symmet-
ric? Now, we configure both adversarial configuration generators so that they
move configurations from the acceptable class to the class non-acceptable.

(a) Number of successful adversarial attacks
after 20 displacements

(b) Number of successful adversarial attacks
after 100 displacements

Fig. 10: Number of successful adversarial attacks on class non-acceptable; X-
axis represents different step size values t while Y-axis is the number of mis-
classified adversarial configurations by the classifier; In orange and blue are
respectively shown results when the training set is not balanced and when it
is.

Dedicated implementation
Figure 10a shows that, in the case of balanced data sets, all generated con-
figurations are misclassified when step size is set to 1 or higher with 20 dis-
placements while, when this number is 100 (see Figure 10b), the step size can
be set to 0.01 or higher. With t set to 0.01, a transition occurs in Figure 10a
in the number of misclassified configurations from 1800 to 4000. The same
transition probably occurs also in Figure 10b but more abruptly and thus is
hidden between observations made at t = 10−4 and t = 0.01. The fact that
almost or no configurations are misclassified before this threshold comes from
the over-representation of class acceptable. Since there are more configurations
assigned to this class, there are more candidates to start an attack including
configurations that are far away from the separation learned by the classifier.

Table 5 compares results when attacking class acceptable and when attack-
ing class non-acceptable with 20 displacements allowed and when classes are
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balanced. When the displacement step size is set to 1.0 or higher, both achieve
a 100% success rate showing no difference in the results (represented by NaN in
the table). When the displacement step size is set to lower values, p-values are
significant (p << 0.05). We conclude that it is easier to fool the classifier when
starting attacks from the under-represented class (here "non-acceptable", see
RQ1.1).

10−6 10−4 10−2 1 102 104 106

u-stat 0 0 0 50 50 50 50
p-value 1.83e− 4 1.83e− 4 1.82e− 4 NaN NaN NaN NaN

Table 5: u-statistics and p-values associated with measures from Fig. 10a
compared with results from Fig. 7a for displacement step size set to 20;
n1 = n2 = 10 for each column, u-statcritical = 23.

Fig. 11: Number of successful attacks on class non-acceptable; X-axis represents
different parameter values of d_max of the secML function while Y-axis is the
number of misclassified adversarial configurations by the classifier.

SecML
Figure 11 shows the number of misclassified configurations when the evasion
attacks target class non-acceptable. While in the balanced case, results are
similar to the one we described with the dedicated implementation; results for
non-balanced datasets are more interesting. When d_max is set to a value that
is under 10.0, no generated configurations are misclassified13. This is related

13 except when d_max is set to 0.1 and for which we do not have any explanation
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to over-representation issues and as secML implements some mechanisms to
stop computations early, attack configurations do not move away.

From the validity point of view, the same implementations were used as well
as the checking procedure. All generated configurations are valid regardless of
the parameterizations of the implementations or the choice of the implemen-
tation. Results are provided on the companion webpage.

Table 6 reports statistical results when comparing values given in Figure 8
and Figure 11 with balanced classes. Once again, p-values show that our results
are significantly different (p << 0.05). Only the last column shows that results
are the same which translate into a 12.5 u-statistics and a NaN p-value.

0.1 0.5 1 5 10
u-stat 0 0 0 0 12.5
p-value 7.49e− 3 3.98e− 3 3.98e− 3 3.98e− 3 NaN

Table 6: u-statistics and p-values associated with measures from Fig. 8 com-
pared with the ones from Fig. 11; n1 = n2 = 5 for each column, u-
statcritical = 2.

Our generated adversarial attacks are: 100% effective (always misclas-
sified, RQ1.1), do not depend on the target class (RQ1.4), and yield
valid configurations (RQ1.2) if parameterized properly. In contrast, our
random baseline was only able to achieve 62.5% of effectiveness at best
(RQ1.3). The balance in the data sets does not affect these results and
the targeted class affects show the same trends despite small differences
(RQ1.4).

6.2 RQ2: What is the impact of adding adversarial configurations
to the training set regarding the performance of the classifier?

So far, we have only evaluated the impact of generated attacks and how they
are predicted by the classifier. Yet, some ML techniques (e.g., GANs) take
advantage of adversarial instances by incorporating them in the training set
to improve the classifier confidence and possibly performance. In our context,
we want to assess the impact of our attacks when they are included in the
training dataset, especially with less “aggressive” (e.g., small step sizes and a
low number of displacements) configurations of the attacks.

Dedicated implementation
To do so, we allowed 20 displacements to avoid configurations moving too far
from their initial positions but used the same step sizes that we have used
before. For each step size, we generate 25 adversarial configurations (targeting
the acceptable class) that are added all at once in the training set, we retrain
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Fig. 12: Accuracy of the classifier after retraining with 25 adversarial con-
figurations in the training set over a test set of 4000 configurations (7000
configurations when the training set is balanced). In red are results when no
balance are forced in the classes, in blue, both training set and test set are
balanced. The initial accuracy of the classifier is represented by the horizontal
line (90.7661% for the red line and 92.3151% for the blue one). X-axis repre-
sents different step size values t while Y-axis is the accuracy of the classifier
(zoomed between 87% and 100%).

the classifier and evaluate it on the configurations that constitute the initial
test set (without any adversarial configurations in it). Every retraining pro-
cess was repeated ten times to mitigate the effects of the random configuration
selection. We also present results when the training set is balanced, in which
case we have also augmented the test set to bring balance and to follow the
same data distribution. In this case, the test set does not contain 4000 con-
figurations but about 7000 in which 50% of the configurations are considered
acceptable and the remaining are considered non-acceptable.

Figure 12 shows the accuracy of the retrained classifiers over a test set
composed of 4000 configurations for the red part and 7000 configurations for
the blue one.

The initial accuracy of the classifier was 90.7661% over the same 4000
configurations and is shown as the horizontal red line. We make the following
observation: our generated configurations did not have any impact on the
retraining since our boxplots are completely flat and superimposed with the
baseline. We suppose that to have an impact, a larger number of adversarial
configurations would be needed but with the risk of making the prediction
performances of the classifier worse.
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In the case of balanced training and test sets (in blue on Figure 12), results
are completely different. Regardless of the value assigned to t, prediction per-
formances after retraining are above the baseline (i.e., 92.3151%). The gain is
in between +1.5% and +2%. While this gain seems low, we remind that initial
performances were already very high (above 90%) which makes it difficult to
retrieve a huge improvement.

Statistics in Table 7 show that, probably due to the presence of outliers and
large variance in the boxplots of Figure 19, with displacement values lower than
1, results are not necessarily significant while, above, they are (p << 0.05).

10−6 10−4 10−2 1 102 104 106

u-stat 40 30 40 0 0 0 0
p-value 0.69 0.20 0.69 8.46e− 5 8.54e− 5 8.18e− 5 7.59e− 5

Table 7: u-statistics and p-values associated with measures from Figure 12
comparing results from the balanced experiment with associated baseline; n1 =
n2 = 10 for each column, u-statcritical = 23.

SecML
With 25 adversarial configurations added to the training set, results presented
in Figure 13 are rather different from the other implementation. Considering
the lower red part of the Figure (i.e., without balance), when d_max is set
to 0.1, the predictions of the retrained classifier can gain up to 2% but when
the parameter is set to higher values, the performances drop. It can due to
adversarial configurations going deep inside the other class which might make
ultimately more harm than good.

When data sets are balanced, the prediction performances tend to drop
when d_max is set to 1.0 or lower values. If d_max is set to 5.0 or higher,
performances tend to slightly increase. Again, initial performances are already
high (i.e., above 95%) and we have only added 25 configurations to a train-
ing set containing about 1000 configurations which can limit the impact of
adversarial configurations on the potential improvement of performances.

Table 8 shows results for both retraining (in a balanced setting and im-
balanced setting). In the balanced setting, only the first column shows non-
significant results (p >> 0.05), the remaining columns show a clear confidence
in our results. Our analysis of Figure 13 still holds, we cannot state strongly
that what we observed is true but the fact that the baseline is already high and
that we are able to see variations in our measures suggest that retraining may
still have an impact on the classifier. In the unbalanced setting, only d_max
set to 0.1 provides significant results, other results report non-significant p-
values (p > 0.05). Figure 13 shows that, except when d_max is set to 0.1,
the set of measures are spread above or below the baseline. Sometimes only
outliers are above the red baseline, which may explain such statistics.
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Fig. 13: Accuracy of the classifier after retraining with 25 adversarial con-
figurations in the training set over a test set of 4000 configurations (7000
configurations when the training set is balanced). In red are results when no
balance are forced in the classes, in blue, both training set and test set are
balanced. The initial accuracy of the classifier is represented by the horizontal
line (90.7661% for the red line and 95.1196% for the blue one). X-axis rep-
resents different d_max values while Y-axis is the accuracy of the classifier
(zoomed between 87% and 100%).

0.1 0.5 1 5 10
Balanced classes

u-stat 10 0 0 0 0
p-value 0.66 7.29e− 3 7.49e− 3 7.29e− 3 7.49e− 3

Unbalanced classes
u-stat 0 10 5 5 5
p-value 7.49e− 3 0.66 0.11 0.12 0.12

Table 8: u-statistics and p-values associated with measures from Fig. 13; n1 =
n2 = 5 for each column, u-statcritical = 2.

When data sets are balanced, configurations generated by evasion at-
tacks can be used and added to the training set to improve the predic-
tion performances of the classifier but requires empirical tuning. With
only 25 configurations added, we can improve classifier accuracy by up
to 3%.



34 Paul Temple et al.

7 JHipster

7.1 RQ1: How effective is our adversarial generator to synthesize
adversarial configurations?

7.1.1 RQ1.1: Can we generate adversarial configurations that are wrongly
classified?

Dedicated Algorithm
Similarly to MOTIV, for each of the 10 runs, after nb_disp are performed, the
newly generated configuration is added to the set of configurations that can
be selected to start the next evasion attack giving a chance to the previously
generated configurations to keep being modified and further move towards the
global optimum of the gradient. Figure 14 shows box-plots summarising ten
runs for the different step sizes t values we have considered.

(a) Number of misclassified adversarial con-
figurations (20 displacements)

(b) Number of misclassified adversarial con-
figurations (100 displacements)

Fig. 14: Number of successful attacks on class building ; X-axis represents dif-
ferent step size values t while Y-axis is the number of misclassified adversarial
configurations by the classifier.

Figure 14a and Figure 14b both show that we can always find a set of
parameter values resulting in a misclassification of all generated configurations.
Regarding Figure 14a, all generated configurations become misclassified when
step size t is set to 1.0 or higher. With nb_disp set to 100 (see Figure 14b),
all configurations are misclassified when t is set to 10−2 or higher. Similar
results can be obtained when the number of maximum displacements is set to
50 where all the configurations are misclassified with t set to 10−2 or higher.

Insights: Again, increasing the number of displacements requires lower step
sizes to reach the misclassification goal. However, increasing the number of
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displacements means increasing the number of iterations and the number of
computations.

Fig. 15: Number of successful attacks on class building ; X-axis represents dif-
ferent d_max values while Y-axis is the number of misclassified adversarial
configurations by the classifier.

SecML
Similarly to the previous results, Figure 15 shows that we can find a value
of d_max for which all generated configurations are misclassified (i.e., 1.0 or
above). When d_max is set to 0.1, perturbations are not sufficient for config-
urations to be misclassified. However, when d_max is set to 0.5, some of the
runs end up with all configurations either misclassified or not which suggests
that we spotted the value making the transition between 0 misclassification to
1000.

7.1.2 RQ1.2: Are all generated adversarial configurations valid w.r.t.
constraints in the VM?

As we said previously, because of all the dependencies between individual fea-
tures (e.g., choosing the database), we had to enforce these constraints directly
within the attack (i.e., after the final position of the generated configuration is
reached with the dedicated implementation; after each move of the configura-
tion when using secML) otherwise, all configurations are likely to be non-valid
w.r.t. the underlying variability model. Regardless of the implementations, we
have enforced these constraints stated in the VM leading to valid configura-
tions by design.
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(a) Number of successful adversarial at-
tacks after 20 displacements

(b) Number of successful adversarial at-
tacks after 100 displacements

Fig. 16: Number of successful adversarial attacks on class building ; X-axis
represents different step size values t while Y-axis is the number of misclassified
adversarial configurations by the classifier; In orange and blue are respectively
shown results when the training set is not balanced and when it is.

7.1.3 RQ1.3: Is using the evasion algorithm more effective than generating
adversarial configurations with random displacements?

We have used the same implementation of the random displacements that we
used with MOTIV since the dedicated algorithm is the same. Unsurprisingly,
results with JHipster are similar to the ones retrieved with MOTIV. Figure 16
shows the misclassification results of the generation of randomly perturbed
configurations. In Figure 16a, the best results are retrieved when the step size
t is set to 100 or higher. About half generated configurations are misclassified.
When the number of displacement nb_disp is set to 100 (Figure 16b), the
same conclusions can be drawn.

Table 9 reports u-statistics and p-values when comparing results from Fig-
ure 16a and Figure 14a. When the displacement step size is lower than 1,
p-values are not significant (p > 0.05). Thus, we cannot say that using ad-
versarial machine learning provides better results than random perturbations.
In the meantime, no misclassifications were observed when using either tech-
nique. However, when displacements step size is set to 1.0 or higher, p-values
are significant (p << 0.05) making us conclude that advML are more effective
than random perturbations when these values are used. Statistics comparing
Figure 16b and Figure 14b are available on the companion webpage and lead
us to similar conclusions.

Insights: Compared to results provided by both the dedicated implemen-
tation and the secML implementation, for which we found a configuration of
attacks were all generated configurations were misclassified, we can conclude
that random perturbations are not as efficient with a maximum rate of 50%
of misclassification over all the generations.
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10−6 10−4 10−2 1 102 104 106

u-stat 39 44 43 0 0 0 0
p-value 0.42 0.67 0.62 6.39e− 5 6.39e− 5 6.16e− 5 6.39e− 5

Table 9: u-statistics and p-values associated with measures from Figure 16a
compared from measures from Figure 14a; n1 = n2 = 10 for each column,
u-statcritical = 23.

7.1.4 RQ1.4: Are attacks effective regardless of the targeted class?

As we previously mentioned, the training set is completely balanced which
should not favor the effectiveness of the attack regarding the class that it is
attacking. We change the class from which attacks start (i.e., going from not
building to building) and assess the fact that results are similar to RQ1.1.

(a) Number of misclassified adversarial
configurations (20 displacements)

(b) Number of misclassified adversarial
configurations (100 displacements)

Fig. 17: Number of successful attacks on class not building ; X-axis represents
different step size values t while Y-axis is the number of misclassified adver-
sarial configurations by the classifier.

Dedicated implementation
Figure 17 shows the effectiveness of the attack running with the dedicated
implementation. It shows very similar results compared to Figure 14. In Fig-
ure 17a, starting from a step size t set to 1 and up to 106, all generated
configurations are misclassified. Before that, the means of the box-plots are a
bit higher, around 100 configurations misclassified which is still very low. The
same pattern can be observed in Figure 17b compared to Figure 14b. A gap in
the number of misclassified configurations can be observed when t is set to 0.01
or higher compared to lower values. Despite the fact that the same threshold
can be observed in Figure 14b, the number of generated configurations that
are misclassified in Figure 17b is lower that in the previous case. With t set to
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lower values than 0.01, the number of generated configurations misclassified is
higher than in Figure 14b but still low.

Table 10 compares measures when attacking the building class with attacks
on the not building class. Measures and box-plots showed in Figure 17a and
Figure 14a follow the same tendency. When the displacement set size is set to
1 or higher values, no differences can be observe explaining the reported NaN
values. When set to lower values, while both numbers show low misclassifica-
tion, p-values are significant (p << 0.05). It can be explained by the fact that
Figure 14a show a capability of producing misclassified configurations close to
0 while Figure 17a shows numbers closer to 100. In this case, attacks starting
from the class building may have more chances to succeed.

10−6 10−4 10−2 1 102 104 106

u-stat 0 0 0 50 50 50 50
p-value 1.79e− 4 1.81e− 4 1.79e− 4 NaN NaN NaN NaN

Table 10: u-statistics and p-values associated with measures from Figure 17a
compared to measures from Figure 14a; n1 = n2 = 10 for each column, u-
statcritical = 23.

Fig. 18: Number of successful attacks on class not building ; X-axis represents
different d_max values while Y-axis is the number of misclassified adversarial
configurations by the classifier.

SecML
Figure 18 shows very similar results compared to the ones described in RQ1.1.
A transition from 0 misclassified configuration to 1000 can be seen when
d_max is set to 1.0. However, when d_max is set to 0.5 none of the con-
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figurations are misclassified. When d_max is set to 0.1, sometimes none of the
configurations are misclassified, in some cases, all of them are misclassified.

Table 11 compares results when trying to attack one class or the other with
the secML algorithm. Results do not show significant statistical differences
(p> 0.05). This can be explained by the boxplots that spread from 0 to 1000
but with averages (i.e., colored bar which is supposed to be in the middle of
the box) that are either at 0 either at 1000.

0.1 0.5 1.0 5 10
u-stat 7.5 5 12.5 12.5 12.5
p-value 0.18 0.07 NaN NaN NaN

Table 11: u-statistics and p-values associated with measures from Figure 18
compared from measures from Figure 15; n1 = n2 = 5 for each column, u-
statcritical = 2.

Insights: As expected, since the dataset is balanced, the behavior of both
methods does not drastically change regarding the class to attack.

Here again, with JHipster, the two implementations of the evasion attack
are able to generate configurations that are systematically misclassified
(after tuning the parameters of the implementations).

7.2 RQ2: What is the impact of adding adversarial configurations
to the training set regarding the performance of the classifier?

So far, only the capability of evasion attacks to generate misclassified con-
figurations without affecting the classifier model has been assessed. Now, we
are wondering whether we can include some of these generated configurations
into the training set in order to improve the classification performances of the
model. As stated previously, we include 25 adversarial configurations in the
training set, retrain the classifier, and assess its classification performances on
the initial test set (i.e., without any adversarial configurations in it). Again, to
avoid attacks to be too aggressive which may result in a drop in the accuracy,
we limit the number of displacement for the dedicated implementation to 20.
To mitigate randomness, we repeated the experiment ten times.

Dedicated implementation
As reported in Section 4.2, JHipster is a relevant case to study in this new con-
text because it is completely unrelated to multimedia processing as opposed
to historical usage of advML. JHipster has a complex structure that includes
cross-tree constraints making the feature space hard to define. However, we
needed to reduce drastically the number of configurations in the training set:
for a large number of samples, the classifier was too good and achieved almost



40 Paul Temple et al.

Fig. 19: Accuracy of the classifier after retraining with 25 adversarial configu-
rations in the training set over a test set of about 89, 000 configurations. The
blue line reports the baseline accuracy of the classifier when no adversarial con-
figurations are added to the training set. X-axis represents different step size
values t while Y-axis is the number of misclassified adversarial configurations
by the classifier.

perfect predictions. With about 400 configurations in the training set, Fig-
ure 19 shows that the generated adversarial configurations have no impact on
the accuracy of the classifier after retraining. Regardless of t, all our box-plots
are superimposed to the baseline. Two explanations come to mind: i) 25 might
not be enough to have an impact on the function learned by the classifier, but
adding more adversarial configurations may degrade the performances of the
classifier; ii) the accuracy is too high without any adversarial configurations
and the number of configurations in the test set is too large to capture the
impact of 25 adversarial configurations in the training set.

SecML
Results showed in Figure 20 are very similar to the one described with the
other implementation. With d_max set to 0.1, 0.5, or 1.0, no changes can be
seen compared to the baseline. With d_max set to 5.0, the mean of the box
plot stays at the same level than the baseline but some repetitions succeeded in
improving the accuracy of the classifier up to the level of the baseline reported
with the other implementation14. When d_max is set to 10.0, most of the
executions (since the mean value of the box plot is above the baseline) were

14 Note that the baselines are reported for two different models; secML provides a complete
library which comes with its own framework and pipeline, necessitating to learn a classifier
with this library. The implementation can differ from the ones provided by scikit-learn which
is the other library we have used before using secML.
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Fig. 20: Accuracy of the classifier after retraining with 25 adversarial configu-
rations in the training set over a test set of about 89, 000 configurations. The
blue line reports the baseline accuracy of the classifier when no adversarial
configurations are added to the training set.

able to improve the performances of the classifier up to the same level as the
baseline of the previous experiment.

Table 12 suggests that the impact of retraining the classifier with adversar-
ial examples is significant (p < 0.05) when d_max values is set to 5 or higher.
However, the u-stat suggest that this difference is not big enough to formally
reject the null hypothesis.

0.1 0.5 1.0 5 10
u-stat 50 45 45 25 25
p-value NaN 0.37 0.37 0.01 0.01

Table 12: u-statistics and p-values associated with measures from Figure 20
compared with the baseline; n1 = n2 = 10 for each column, u-statcritical = 23.

Most of our attempts to improve the performance of the classifier failed
since the accuracy remained the same as the baseline accuracy (i.e.,
without adversarial configurations). This may be due to the low number
of adversarial configurations that we added to the training set or it may
be the nature of the classification problem that is too easy and achieving
performance improvements is tricky.
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8 Threats to validity

8.1 Internal threats

Choices of parameter values for our experiments may constitute a threat. The
step size has been set to different powers of 10, we only used 3 different number
of allowed displacements (i.e., 20, 50 and 100). From our perspective, using
step size below 10−6 in a highly dimensional space seems ridiculously small
while, on the contrary, using step size above 106 are tremendously large which
motivates our choice to not going over these boundaries. Still, boundaries
could have been extended which might have affected results regarding RQ2
but also we could have performed more observations by using intermediate
values between every power of tens. We could have provided a finer explanation
of our results but at the cost of unacceptable computation times. Regarding
the number of displacements, we could have used finer-grained values. We
sought a compromise between allowing a lot of small steps and a few big steps.
Regarding the choice of evasion attacks, as presented in Section 2, several
techniques exist. Regarding secML, we set the η parameter to only one value
and used five different values for d_max. While these choices were driven by
the size of the feature space, we would need to evaluate the impact of other
parameterization on the results we can get from attacks. This is left to future
works. All in all, evasion attacks showed interesting results and open new
perspectives that we discuss in the Section 9.

We rely on centroids to deal with class imbalance (see Section 5.4). The
centroid method has pros and cons: centroids are easy and quick to compute,
new configurations tend to follow the same distribution as they result in more
densely populated clusters and on rare occasions, make clusters expand a little
bit. However, new configurations may not be realistic, since they do not provide
so much diversity – centroids, by definition, lie in the middle of the cluster of
points. Since our goal is only to limit imbalance in the available configurations,
this technique is appropriate while maintaining the initial distribution of con-
figurations. However, we are aware that other data augmentation techniques
can be used.

The number of configurations to generate is also arguable. We tried to
choose numbers for RQ1 that were large enough to be meaningful. RQ2 uses
fewer adversarial configurations since, by design, the goal of evasion attacks
is to produce configurations that do not follow the same distribution of data
as the ones gathered by sampling configurations from a FM. Including too
many adversarial configurations would make classification performance to drop
drastically (being the goal of adversarial attacks). We chose 25 configurations
for both our case studies according to the training set sizes and yet, we can
already see an impact on the performances of the classifier.

The quality of the targeted ML classifier is a threat to our experiments. In
particular, a too weak classifier would make numerous predictions errors and
thus dramatically ease the task of putting it in default. On the other end, a
too strong classifier (especially when the all the variants can be enumerated
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in the case of JHipster) is very difficult to attack as exhaustive classification
is possible. Many factors can influence an ML classifier: the underlying ML al-
gorithm, the hyper-parameters or the training set used to train it. To mitigate
this threat, we took many precautions for training an accurate ML classifier
(see Section 5.4). As future work, we plan to investigate whether sampling
strategies (e.g., adversarial training, see Section 9.1, or t-wise, see Section 10)
used to gather the training set can have impact on the quality of the ML
classifier and in turn affect the effectiveness of adversarial configurations.

8.2 External threats

Compared to our previous work [85], we have added an extra case study to our
experiments, it does not seem much but it gives insights on the generalization
capability of the adaptation of adversarial attacks (and in particular evasion
attacks) to the world of SPLs. Also, we chose a configurable system that was
completely uncorrelated to the world of images and multimedia and which
defines more cross-tree constraints than MOTIV, requiring additional effort
to take them into account. Calls to SAT/SMT solvers are unpractical due
to feature heterogeneity and the frequency of validity checks. Benchmarks of
large and real-world feature models can be considered if we are only interested
in sampling aspects [52,82].

We considered accuracy as our main performance measure. Accuracy is the
standard measure used in the advML literature [7,61,17,19,18,41] to assess
the impact of attacks.

SecML is a library gathering multiple implementations of adversarial at-
tacks. In our experiments, we only focused on a single implementation which
can already be parameterized in various different ways; other implementations
also include parameters that need to be set. We decided to keep the imple-
mentation that seems the closest to the initial evasion algorithm (i.e., CEva-
sionAttackPGD) but other provided implementations might be considered and
their results compared to the ones reported in this work.

9 Discussions

Adversarial configurations pinpoint areas of the configuration space where the
ML classifier fails or has low confidence in its prediction. We qualitatively
discuss what the existence of adversarial configurations suggests for an SPL
and how adversarial configurations can be practically used within the two case
studies (MOTIV and JHipster).

9.1 Adversarial training

Developers of MOTIV and JHipster may legitimately want to improve their
ML classifier by making it more robust to attacks (i.e., adversarial configu-



44 Paul Temple et al.

rations). Previous work on advML [21,7,42,34,57] proposed different defense
strategies in presence of adversarial configurations. Adversarial training is a
specific category of defense: the training sample is augmented with adversarial
examples to make ML models more robust. In our case study, it consists of
applying our attack generator and re-inject adversarial configurations as part
of the original training set.

We saw in RQ2 that, when adversarial configurations are introduced in the
training set, even moderately aggressive attacks may improve the ML classi-
fier performance but also decrease it in some settings (notably with SecML
on MOTIV). Indeed, we acknowledge that our adversarial generators have
simply not been designed for this defensive task and rather excel in triggering
misclassifications. It opens two perspectives. The first is to apply other, more
effective defense mechanisms (such as manifold projections, stochasticity, or
prepossessing [21,7,42,34,57]). The second and most promising perspective
is to adapt adversarial ML knowledge with “friendly” rather than malicious
attacks. That is, instead of only fooling the ML classifier, an additional objec-
tive would be to generate configurations as part of the training set that can
improve its learning accuracy.

9.2 Improvement of the testing oracle

MOTIV. The labeling of videos as acceptable/non-acceptable is approximated
by the ML classifier. If the testing oracle is not precise enough, it is likely
that the approximation performs badly. In the MOTIV case, oracles are an
approximation of the human perception system which in turn could be seen as
an approximation of the real separation between acceptable images and non-
acceptable ones regarding a specific task. Object recognition should potentially
work on an infinite number of input images which makes the construction
of a “traditional” oracle (a function that is able to give the nature of every
single input) challenging. Testing oracles for an SPL are programs that may
fail on some specific configurations. Adversarial configurations can lead to
“cases” (videos) for which the oracle has not been designed and tested. Such
configurations may thus provide insights to improve such oracles.

Specifically, MOTIV’s developers can revise the visual assessment proce-
dure to determine what a video of sufficient quality means [35,86]. Adversarial
configurations can help in understanding the limits of the procedure over spe-
cific videos. The examples presented in Figure 5, page 14 are not resulting
from attacks but were allowed by the MOTIV generator. In these examples,
we were able to see that colors were not natural and thus need to be con-
strained. Another way to see it is that the testing oracle failed to detect these
colors were unnatural. The oracle that was used in [86] focused only on avoid-
ing too much blur or noise in images. It did not care about the realism of the
colors, thus, to avoid these examples later, a new oracle could be developed
to check automatically the range of values of features defining colors and inte-
grated into the process. Based on the review of problematic cases, MOTIV’s
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developers can evolve the oracle or its parameters’ value. The oracle relies on
a Fourier transformation to assess the visual properties of an image. In the
Fourier space, frequencies are represented as circles centered in the middle of
the image. The oracle computes the distribution of frequencies from the cen-
ter of the image (in the Fourier space) to the edges. Then this distribution
is compared to a model of perfect homogeneous distribution (representing an
ideal image). The allowed deviation from the ideal distribution is controlled
by a threshold. Adversarial configurations exhibit important deviations from
the ideal and can be exploited to set up this threshold more finely. An open
problem is to find a way to control adversarial displacements such that we are
able to ensure that the generated adversarial configurations are diverse enough
to cover different visual cases. This level of control is left for future work.

JHipster. In a previous endeavor with JHipster, we learned that building a
configuration-aware testing infrastructure requires a substantial effort in terms
of human resources (8 man-months) [45]. Specifically, we spend significant time
in engineering the right testing oracle to avoid false-positive failures e.g., con-
figurations that do not build because the testing environment has not been
properly set up. Adversarial configurations can serve as new cases for inves-
tigating the quality of the testing environment. Overall, we recommend using
adversarial configurations early in the quality assurance process of JHipster.
It can help developers to debug and fix the testing environment by focusing
on (potentially) problematic cases. This requires to model characteristics of
the environment as part of the variability model.

9.3 Improvement of the variability model

While generating adversarial configurations, SPL practitioners can gain in-
sights into whether the feature model is under or over-constrained. Looking
at modified features of adversarial configurations (see RQ2 ), practitioners can
observe that the same patterns arise involving some features or combinations
of features. Such behavior typically indicates that constraints are missing –
some configurations are allowed despite they should not be but it was never
specifically defined as such in the variability model. Conversely, adversarial
configurations can also help to identify which constraints can be relaxed. Some
constraints may be an over-approximation of what was really expected. In this
case, some configurations are wrongly forbidden as they would provide ac-
ceptable performances if they were tested. Evasion attacks may provide such
configurations, starting from valid and acceptable configurations and moving
towards a priori non-acceptable configurations. Because of the use of evasion
attacks, resulting configurations may, in fact, be acceptable and valid and thus
should not be forbidden in the variability model. A careful analysis of resulting
configurations, by experts, is needed to ensure (or not) that they are really
non-acceptable.

In the MOTIV case, one can envision to synthesize constraints and re-
inforce the variability model. Two strategies are conceivable for synthesizing
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constraints: (1) out of adversarial configurations by mining (combinations of)
features that are frequently present; (2) out of the new ML classifier, retrained
with adversarial configurations, if the underlying ML model is interpretable.
Right now, we cannot rely on decision trees since evasion attacks are harder
to implement for such ML models (see Section 3). We leave as future work the
investigation of the two strategies and current limitations.

In the JHipster case, the reverse-engineering feature model was validat-
ing that every allowed configuration was indeed supported by the JHipster
configurator [45]. We therefore had an “exact” approach to create a correct
variability model and advML is unhelpful. It is in contrast to the MOTIV
case, mainly because the configuration space contains less valid configurations
(only thousands of configurations compared to the 10314 configurations).

9.4 Improvement of the variability implementation

Features ofMOTIV are implemented in Lua [46]. An incorrect implementation
can be the cause of non-acceptable configurations either because of bugs in
individual features or undesired feature interactions. In the case of MOTIV,
even if some variability-related bugs may exist, especially generating video
sequences out of scene content descriptions (i.e., configurations), we rather
considered that the cause of non-acceptable videos was due to the variability
model and that the solution was to add constraints preventing them.

JHipster has a diverse stack of technologies and finding which of them are
the source of bugs and issues is not trivial. Previous work demonstrated that
it was possible with relatively few configurations (1% of the total number of
configurations) to cover all interaction bugs. The role of adversarial configura-
tions as a bug-finding sampling technique is worthy of future analyses. From
this perspective, interesting future work is to compare adversarial configura-
tions with sampling strategies developed in the SPL testing community (see
Section 10).

9.5 AdvML and taking constraints of the variability model into account

The most significant part of our adaptation of adversarial techniques to SPL
engineering resided in constraint handling. The lack of native support of ad-
vML algorithms may be traced to their original application domain: images.
Data is homogeneous: dimensions are likely to be defined on the same range
of values, all dimensions can be encoded similarly with values used for upper
and lower bounds equal for all dimensions. Additionally, most constraints are
“soft constraints”: a white pixel on a black image does not make it invalid. In
such a domain, the need for advanced constraint solvers does not exist.

In SPLs, constraints are key and we have to deal with heterogeneous fea-
tures which in turn induces constraints during encoding. JHipster has only
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Boolean features but a large number of dependencies expressed as cross-
tree constraints while MOTIV comprises heterogeneous features but few con-
straints. We had to adopt different constraint handling strategies for each case
study.

JHipster. We enforce constraints after each configuration displacement (in-
termediate point in the attack), that is resetting each feature value outside
allowed ranges to a default acceptable one or letting the configuration un-
changed if the configuration is valid. With a high number of constraints, this
solution seemed wiser, as the risk of having to change all the values at the end
of the attack is high, rendering the attack ineffective (since value resets to due
constraints may hamper the relevance of the attack).

MOTIV. The low number of constraints in MOTIV allow for a post-attack
strategy: the chances of having an invalid configuration are lower and it is also
likely that only a few features are violating the constraints. The implications
of changing these values to make them acceptable are limited regarding attack
relevance.

While we believe that the above strategies were both simple and efficient, a
more general and systematic approach relying on top of a SAT/SMT solver is
to be devised. One can consider a variety of intermediate enforcement strate-
gies such as implementing minimal configuration fixes [90].

9.6 Execution time

On one hand, our dedicated algorithm relies on a fixed number of compu-
tations. This allows for predictable yet non-optimal execution time. On the
other hand, SecML optimizes its number of executions but may suffer from
convergence issues. In the following, we discuss the parameters affecting the
performance of both algorithms.

We measured some of the execution time (i.e., when computations are
minimal and when they are maximal). The main parameter to impact compu-
tation time in the dedicated algorithm is the number of displacements allowed
(nb_disp). Setting to larger values will require extra computations to reach
the final position, especially since we did not used any early stopping mecha-
nism. Reported computation times range between 10 minutes when nb_disp
is set to 20 to about 1h15 when it is set to 100 with MOTIV. Even if nb_disp
is not the only parameter impacting the effectiveness of the attacks, setting it
to a larger value increases chances to generate configurations that misclassified
which has to be confronted with the fact that computations are longer.

When using SecML, the η parameter as well as the d_max value can
have big impacts on computation time. d_max sets the maximum amount of
perturbations that can be added to the original configuration; therefore, in
some sense, it could be seen as a combination of the nb_disp and the step size
t of the dedicated implementation. If d_max is set to large values, it meets
that the boundaries to displacements expand, potentially allowing for more
iterations when using the gradient descent approach. On the other hand, η is
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a parameter used in the gradient descent algorithm, it can be viewed as the
resolution of a search grid on which the direction of the gradient is computed.
Higher values will make the resolution coarse while lower values make the
search more fine-grained. A fine-grained search will take more time, computing
for more possibilities at the cost of potentially getting stuck in sub-optimal
spaces while a coarse resolution will be quicker to compute but might miss the
optimal solution. Therefore, there is a trade-off to find. We set the value of η to
0.01 based on the nature and number of features representing our data, it gave
sufficiently good results but it might not the best value. Anyhow, we observed
that η can have a big impact on computation cost. With a default value of
0.001, our computations could last up to 50 minutes while with the chosen
value of 0.01, computation times can be boiled down to about 10 minutes.
The shortest execution time that we have observed was under a minute when
η was set to 0.01 and d_max set to 0.1 with MOTIV.

Finding the optimal values to reach results of good quality at a reason-
able computation cost is a challenge: for SPL practitioners that do not know
very well how advML works or have little experience in tuning their advML
technique.

Finally, reported times can be reduced by reducing the number of config-
urations to generate. In our experiments, they were set to the same amount
regardless of the value assigned with these parameters, we only changed this
number per case study. Computation times were significantly lower when ex-
ecuting attacks on JHipster (aiming to generate 1000 configurations) w.r.t.
MOTIV (needed 4000 configurations).

9.7 White-box or black-box

While the “original” adversarial setting was designed to support malicious sce-
narios (e.g., hackers that would try to outperform the system under attack)
leading to attack models, here we proposed a defensive method that should be
used along with the developer of the SPL system in order to improve knowl-
edge about the SPL but also to improve guidance for users trying to find a
suitable configuration for their task-at-hand. That is, the term “adversarial”
may be disturbing at first glance since our context is different from an intru-
sion detection system that would be attacked by maleficent users. Our method
can leverage some access to typical parts of a SPL such as the configurator
or the underlying variability model. This knowledge of the variability model
is necessary to generate configurations that are valid and recognized by the
classifier and variant generator. In the case where a variability model would
not be available, it is still possible to reverse-engineer it [79,78,56,1,9]. After
that, it is all about configurations. The system can be viewed as a distant
system on which query can be performed about the acceptability of a configu-
ration. Once the query is launched with the configuration, the system tries to
generate it, runs some tests to decide whether it is acceptable and/or asks the
trained classifier to predict its acceptability. Adversarial attacks will leverage
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information given by the answer to the query to build new configurations that
try to evade. In this sense, we do not see this method as white-box but mostly
black-box, opening a broader use.

10 Related Work

Our contribution is at the crossroad of (adversarial) ML, constraint mining,
variability modeling, and testing.

Testing and learning SPLs. Testing all configurations of an SPL is most
of time challenging and sometimes impossible, due to the exponential num-
ber of configurations [87,59,55,12,89,44,69,25,3]. ML techniques have been
developed to reduce cost, time and energy of deriving and testing new con-
figurations using inference mechanisms. For instance, regression models can
be used to perform performance prediction of configurations that have not
been generated yet [80,74,43,11,81,62,68]. In our work, we consider quali-
tative properties (e.g., the presence of bugs in a configuration), address a
statistical classification problem, and target classifiers of an SPL.

Siegmund et al. [82] reviewed ML approaches on variability models. They
propose THOR, a tool for synthesizing realistic attributed variability models.
An important issue in this line of research is to assess the robustness of ML on
variability models. Our work specifically aims to improve ML classifiers of SPL.
None of these bodies of work use adversarial ML neither the possible impact
that adversarial configurations could have on the predictions. Besides, there are
many machine learning-based approaches that seek to mine constraints with
ML [91,53,40,68]. In [86,84,2,6], we rely on supervised ML to discover and
retrieve constraints that were not originally expressed before in a variability
model. We typically used decision trees to create a boundary between the
configurations that should be discarded and the ones that are allowed. Our
work aims to improve such ML-based approaches through the generation of
adversarial configurations.

Sampling configurations. Several sampling strategies have been pro-
posed in the literature about SPLs and configurable systems [87,5,89]. Some
works consider sampling with the specific goal of testing configurations of an
SPL. There is no learning phase and the objective is mostly to find and cover
as many configuration faults (bugs) as possible. For instance, Medeiros et al.
compared 10 sampling algorithms to detect bugs in configurable systems [59].
Varshosaz et al. [89] conducted a survey of sampling for testing configurable
systems. Pereira et al. [5] and Kaltenecker et al. [49] review several sam-
pling strategies in the context of learning performance models of configuration
spaces. Random sampling is used to cover the configuration space uniformly.
Oh et al. [63] rely on binary decision diagrams to compactly represent a con-
figuration space but satisfiability (SAT) solvers can also be used. For instance,
UniGen [26] uses hashing-based functions to synthesize configurations’ sam-
ples in a nearly uniform manner with strong theoretical guarantees. Plazar et
al. [70] showed that state-of-the-art algorithms are either not able to produce
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any sample or unable to generate uniform samples for the SAT instances con-
sidered. When random sampling is not applicable, several alternate techniques
have been proposed typically by sacrificing some uniformity for a substantial
increase in performance. Coverage-based sampling aims to optimize the sam-
ple with regards to a coverage criterion. Many criteria can be considered such
as statement coverage that requires the analysis of the source code. The t-wise
sampling [48,30] strategy selects configurations to cover all combinations of
t selected options. For instance, pair-wise (t=2) sampling covers all pairwise
combinations of options being selected. There are different methods to com-
pute t-wise sampling. Kaltenecker et al. [49] propose distance-based sampling
and diversified distance-based sampling. The idea is to cover the configuration
space by selecting configurations according to a given probability distribution
(typically a uniform distribution) and a distance metric.

Generating adversarial configurations can be seen as a way to sample
the configuration space. A major difference is that adversarial techniques are
specifically designed and crafted to put in trouble an ML classifier, by exploit-
ing its intrinsic properties and possible lacks. We have shown that such con-
figurations can even improve an ML classifier and thus avoid non-acceptable
products of an SPL. It is worth noticing that adversarial configurations can
be symbolically exploited, i.e.,, without having to derive, test, or measure the
additional corresponding products of an SPL.

Adversarial ML can be seen as a set of security assessment and rein-
forcement techniques helping to better understand flaws and weaknesses of
ML algorithms. Typical scenarios which use adversarial learning are: network
traffic monitoring, spam filtering, malware detection [7,17,19,18,16,20] and
more recently autonomous cars and object recognition [92,66,36,64,77,54,37].
In such works, authors suppose that a system uses ML in order to perform a
classification task (e.g., differentiate emails as spams and non-spams) and some
malicious people try to fool such a classification system. These attackers can
have knowledge on the system such as the dataset used, the kind of ML tech-
nique that is used, or the description of data among others. The attack then
consists of crafting a data point in the description space that the ML algorithm
will misclassify. Recent works [41] used adversarial techniques to strengthen
the classifier by specifically creating data that would induce such kind of mis-
classification. In this article, we propose to use a similar approach but adapted
to SPL engineering: adversarial techniques can be used to strengthen the SPL
(including ML classifier, variability model, implementation, and testing oracle
over products). In addition, to broaden the applicability of advML, we have
investigated the specific problem of generating examples (configurations) that
should be both adversarial and conform to the logical constraints of an SPL.
Some approaches such as DeepXplore [67] or DeepTest [88] rely on generative
adversarial networks (GAN) to synthesize new test cases (images) based on
the notion of neuron coverage. This line of work does not specifically gener-
ate adversarial configurations and does not aim to support the engineering of
configurable systems or SPLs.
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To summarize and to the best of our knowledge: on the one hand, numerous
techniques have been developed to test or learn software configuration spaces,
but none of them consider advML. On the other hand, the application and
assessment of advML for engineering SPLs and configurable software systems
have not caught specific attention.

11 Conclusion

Machine learning (ML) techniques are increasingly used in software product
line (SPL) engineering, to cope with the tremendous number of possible con-
figurations that SPL can handle, or for their ability to predict whether a con-
figuration (and its associated program variant) meets quality requirements.

Yet, ML techniques can make prediction errors in areas where the confi-
dence in the classification is low. Adversarial techniques take advantage of this
to create data points that force classification errors.

Our goal was to investigate the relevance of adversarial techniques in an
SPL context. We conducted an empirical assessment on two very different case
studies: a video generator (MOTIV) and full-stack web application configura-
tor and generator (JHipster).

A first lesson learned is that current adversarial techniques require adap-
tation to be usable for SPLs, notably regarding constraints expressed in the
feature models. Enforcing such constraints is key to prevent the generation
of invalid adversarial configurations. We designed ad-hoc solutions to enforce
SPL constraints for our case studies.

The second lesson learned is that adversarial techniques are indeed rele-
vant for SPLs, hereby fulfilling our goal. We demonstrated that our adapted
algorithms lead to valid and misclassified configurations. Additionally, when
included in the training set, few adversarial configurations were sufficient to
affect the prediction performance of the classifier, positively in some attack
settings.

This empirical study is the first step towards a quality assurance and repair
framework for ML-enabled SPLs relying on adversarial machine learning. To
achieve this objective, we envision the following research directions:

1. Investigate how constraint support can be systematized, notably by inte-
grating constraint solvers in SecML;

2. Explore other kinds of adversarial attacks and design them so that they
either have a positive or negative impact on the classifier’s accuracy when
included in the training set;

3. Sampling configurations is already an important step when testing SPLs
and training a ML model, it remains equally important in our framework.
The impact of different sampling strategies should be assessed as a param-
eter of this method with regards to the efficiency to produce adversarial
configurations that are misclassified. A baseline for this comparison could
be the results we showed in this paper.
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4. Finally, consider adversarial configuration generation as a sampling tech-
nique and compare it to well-known sampling techniques (e.g., random,
t-wise).
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