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SCIENCE

Deep-seated gravitational slope deformations in central Sardinia: insights into
the geomorphological evolution
Valentino Demurtas , Paolo E. Orrù and Giacomo Deiana

Department of Chemical and Geological Sciences, University of Cagliari, Monserrato, Italy

ABSTRACT
In this study, we analyse deep-seated gravitational slope deformations (DSGSDs) in central
Sardinia. The area is characterised by plateaus with a prominent limestone scarp overlying
metamorphites. A comprehensive mapping of structural, karst, fluvial, and slope
morphologies in Pardu and Ulassai valleys is presented herein. The uplift linked to the Plio-
Pleistocene tectonic activity leads to high-slope topography, which favours gravitational
processes, such as DSGSDs and rock-avalanches. Although DSGSD is a common
phenomenon in the relief of the central Mediterranean region, it has never been studied in
Sardinia. We describe the kinematic models and geomorphological evolution of DSGSD in
Sardinia for the first time. The application of light detection and ranging, high-resolution
unmanned aerial vehicle photogrammetry, and geological, structural, and geomorphological
surveys enabled a depth morphometric analysis and the development of interpretative
three-dimensional models. The geo-structural setting and high relief energy associated with
recent upliftment are the major controlling factors of DSGSDs.
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1. Introduction

Deep-seated gravitational slope deformation (DSGSD;
Dramis & Sorriso-Valvo, 1994) is a complex type of
rock slope failure characterised by large dimensions
generated in stone rocks (Dramis et al., 2002).
DSGSDs are characterised by slow movements that
can suddenly accelerate and cause catastrophic col-
lapse of large sections of the deformed slopes (Agliardi
et al., 2020; Crosta & Agliardi, 2003; Nemčok, 1972;
Ostermann & Sanders, 2017; Radbruch-Hall, 1978).
Therefore, this phenomenon represents a major geo-
logical hazard associated with the deformation of
large infrastructures and the generation of secondary
landslides. Although DSGSDs represent a major geo-
logical hazard, information about them is scarce so
far (Soldati, 2013). Advanced technologies in both
remote sensing (e.g. satellite data and space-borne
interferometric synthetic aperture radar) (Frattini
et al., 2018; Mantovani et al., 2016; Novellino et al.,
2021) and proximal sensing such as unmanned aerial
vehicle (UAV; Deiana et al., 2021; Devoto et al.,
2020; Eker & Aydın, 2021) and light detection and
ranging (LiDAR) have enabled a better understanding
of these processes. They are characterised by extre-
mely slow deformation rates (Cruden & Varnes,
1996) and landform assemblages such as double-
crested ridges, trenches, synthetic and antithetic
(uphill-facing) scarps, tension cracks, and convex

(bulged toes) and deep basal shear zones (Agliardi
et al., 2001; Chigira, 1992; Crosta et al., 2013; Mariani
& Zerboni, 2020; Panek & Klimeš, 2016). Shear zones
exhibit the characteristics of cataclastic breccias with
abundant fine matrix (Crosta & Zanchi, 2000) and
thicknesses up to tens of metres (Ostermann & San-
ders, 2017).

In this study, we present three cases of DSGSDs in
Sardinia. The study area is located in Ogliastra (cen-
tral-east Sardinia) in the Pardu River Valley (Figure
1). The area is characterised by wide plateaus, called
Tacchi, with a prominent Jurassic limestone scarp
overlying Palaeozoic metamorphites (Carmignani
et al., 2016; Pertusati et al., 2002).

The major evidence of DSGSDs in the Pardu River
Valley is the presence of large prismatic blocks of
dolomitic Mesozoic slab displaced up to tens of metres
downstream from the initial altitude. The geomorpho-
logical features associated with DSGSDs vary along the
slope. A set of ridge-top trenches, with widths up to
50 m, lengths of hundreds of metres, and depths of
>50 m is present in the plateau edge. The middle
slopes are characterised by tilted blocks, shear zones,
and rockfall deposits. Large block deposits with rock
avalanche features in the foot-slope are associated
with the final-collapse phases of the DSGSDs.

For the first time in this setting, we delineated long-
term deformations, such as gravitational slides
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(Zaruba & Mencl, 1982) with lateral spreading (Cru-
den & Varnes, 1996; Jahn, 1964; Pasuto & Soldati,
1996) and sackung kinematics (Bisci et al., 1996; Rad-
bruch-Hall, 1978; Radbruch-Hall et al., 1976;
Zischinsky, 1966, 1969), which involve giant carbonate
blocks, and the underlying foliated metamorphites.
Geomorphological and geological analyses enabled
the identification of various evolutionary stages as fol-
lows: (I) early stage represented by the spreading at the
plateau edges, (II) second stage of the old DSGSDs
located in the middle slope, and (III) third stage corre-
sponding to the final evolution of the deformation
process developed through collapse.

We highlight the occurrence of DSGSDs associated
with the evolution of river slope in the uplift setting
within the low seismic and low tectonic activity
regions of Sardinia. Thus, we analysed the geomor-
phological evolution of the slope, particularly focusing
on the probable and catastrophic evolution of these
processes in an urban setting.

A geomorphological map at a scale of 1:10.000 was
generated showing: (i) the karst morphology on car-
bonate plateaus; (ii) the gravity feature on the edge
plateau linked to the extensional trenches and tilted
blocks; (iii) different landslide deposits on the slopes
(rockfalls, palaeo-DSGSDs, slope debris, and rock ava-
lanches); and (iv) hydrographic elements (e.g. creeks,
canals, and fluvial elbows).

1.1. Geological setting

East-central Sardinia (Italy) is characterised by a Juras-
sic dolomitic plateau (Tacchi) overlying a meta-
morphic Palaeozoic basement, primarily comprising

metasandstone, quartzites, and phyllites (Figure 2)
(Carmignani et al., 2016; Pertusati et al., 2002).

The area is characterised by the Pardu River Valley
in the east and the Barigau River Valley in the south-
west; the central and north-western sectors include
extensive dolomitic plateau called Tacco of Ulassai.
The geological basement comprises Palaeozoic meta-
morphites affected by complex plicative structures
and regional low-grade metamorphism (Carmignani
et al., 2001, 1994; Elter et al., 2004, 2010). The major
Palaeozoic units are the Filladi Grigie del Gennargentu
Formation and Monte Santa Vittoria Formation,
which constitute metarenites, quartzites, shales, and
metavolcanites (Middle Cambrian–Middle Ordovi-
cian) (Meloni et al., 2017; Pertusati et al., 2002; Vai
& Cocozza, 1974). The metamorphic basement sum-
mit has suffered chemical alteration associated with
a warm humid climate during the Permian and Trias-
sic periods (Costamagna & Barca, 2004; Marini, 1984).

An angular unconformity of Mesozoic sedimentary
succession rests on the metamorphic basement. Basal
layers are primarily fluvial sediments of the Genna
Selole Formation (Middle Jurassic), which are overlain
by dolomitic limestones of the Dorgali Formation
(Middle–Upper Jurassic). (Costamagna et al., 2018;
Costamagna & Barca, 2004; Dieni et al., 1983; Pertu-
sati et al., 2002). These Mesozoic deposits are extensive
and decipherable from their plateau morphology. The
Genna Selole Formation (Costamagna, 2015; Dieni
et al., 1983) represents a mixed succession of siliciclas-
tic to siliciclastic–carbonate deposits. The Dorgali For-
mation is represented by dolomitic sequences with
thickness up to tens of metres. The lower part, with
a thickness of approximately 30 m, is affected by
marl intercalations, whereas the upper part is typically

Figure 1. Geographical location and structural features of the study area modified after Deiana et al. (2021): red lines represent
thrust fronts; white lines are the Sardinian–Corse Block translation 30 Ma; yellow line represents the Sardinian–Corse Block trans-
lation 25 Ma (modified after Carminati & Doglioni, 2005); green line represents the Sardinian–Corse Block translation 14 Ma (Gat-
tacceca et al., 2007).
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massive. Mesozoic units are sub-horizontal strata with
an attitude of approximately N90/0–5°, and the pla-
teau edges can reach a dip amount of up to 40° and
direction parallel to the slope owing to the DSGSD.

Quaternary covers, represented by continental
deposits, are primarily colluvial and alluvial deposits.
The most extensive outcrops represent landslide
deposits, including rockfalls, toppling, and collapsed
DSGSDs at the foot-slope of the Tacchi, abundant
on the right slopes of the Pardu and Barigau rivers.
Moreover, terraced alluvial deposits have also been
identified in the downslope.

The rockfalls and toppling landslides have been
characterised by different sedimentological features
based on age. These deposits are associated with rock-
falls affecting the plateau edge wall and the collapse of
some parts of the DSGSDs.

1.2. Tectonic and geodynamic settings

The geodynamic setting is associated with the colli-
sional dynamics between the African and European
plates (Figure 1). The structural setting is associated

with the Alpine cycle, which first appeared with a
strike-slip fault in the Oligo–Miocene and in the Plio-
cene and Quaternary with an extensional component
(Carmignani et al., 2001, 2016; Carminati & Doglioni,
2005; Cherchi & Montadert, 1982; Gattacceca et al.,
2007; Gueguen et al., 1997; Oggiano et al., 2009;
Ulzega et al., 2002).

The major features in the study area are the NW–SE
faults on which the Pardu Valley is engraved, and the
secondary fault directions include ENE–WSW and
NNE–SSW (Pertusati et al., 2002).

The Plio-Quaternary tectonic phase is associated
with conspicuous N–S faults (Casula et al., 2001).
These rectilinear and normal faults are also evident
in the continental margin and control its morphology
(Figure 2). In the continental region, these N–S faults
are associated with alkaline basalts with an age of
approximately 3.9 Ma (Lustrino et al., 2007). Quirra
River follows this N–S direction from the south of
the Pardu River capturing elbows and flows in a
straight line for approximately 30 km (Figure 3).

Based on preliminary geodetic data from the Peri-
Tyrrhenian Geodetic Array network, Ferranti et al.

Figure 2. Geolithological sketch map of the study area based on geological data of Autonomous Region of Sardinia. The red boxes
indicate the location of the main map that covers Pardu Valley and the east side of Tacco of Ulassai.
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(2008) revealed the presence of low internal defor-
mation in Sardinia. In Sardinia, seismicity is typically
scattered and sporadic, except for the dozen tremors
detected following the ML4.7 earthquake of 7 July
2011 in the Corsican Sea, which primarily characterises
the edges of the continental lithosphere block. Signifi-
cant seismic events also occurred in the eastern sector,
in particular, three events with a magnitude > 4 (26
April 2000, magnitude ML 4.2 and 4.7, and 18 Decem-
ber 2004,magnitudeML 4.3) located in the central Tyr-
rhenian Sea approximately 60 km east of Olbia in the
Comino depression (Cimini et al., 2016). The most
recent low-magnitude earthquake events were ML 1.8
(Escalaplano, 4 April 2019) andML 1.6 (Perdasdefogu,
14 October 2020) (INGV, 2021).

1.3. Geomorphological setting

The landscape is characterised by sub-horizontal car-
bonate plateaus, separated by deep rectilinear valleys
engraved in the Palaeozoic basement for several hun-
dreds of metres (Maxia et al., 1973; Ulzega & Marini,
1973). Erosion primarily acted on the Oligo–Miocene
strike-slip faults with an increase in the erosive rate
during the Plio-Pleistocene uplift phases (Marini &
Ulzega, 1977). A significant karstic process has acted
on plateau surfaces, comprising ancient palaeoforms
and currently hypogeal and superficial morphologies
(De Waele et al., 2005, 2012). Karst palaeoforms rep-
resented by complex cockpit doline types have been
characterised in the area in a humid and warmmorpho-
climatic setting (Fleurant et al., 2008; Liang & Xu, 2014;
Waltham, 2008). These dolines are separated by residual
reliefs called Fengcong, sorted along themajor structural
features. The hypogean karst enabled the development
of sinkholes, karst springs, cavities, and caves (e.g. Su
MarmuriCave and Is lianas Cave). The combined action
of karst, uplift, river erosion, and gravity has led to the
formation and evolution of numerous hanging valleys
on the plateau surface (Ulzega & Marini, 1973).

The presence of major regional faults has
influenced the watercourses, which maintain a preva-
lent N–S direction in the Pardu River (set on the main
fault), toward the western side of the map, corre-
sponding with the secondary faults. Considering the
descriptive parameters, geometrical conditions, and
longitudinal profile, the evolutionary conditions of
the Pardu Valley are associated with a cycle of under-
developed fluvial erosion, suggesting a relatively
young age of engraving (Marini & Ulzega, 1977;
Maxia et al., 1973; Ulzega & Marini, 1973).

The evolution of Pardu River is closely associated
with that of Quirra River (Palomba & Ulazega, 1984;
Pertusati et al., 2002). Pardu River flows from the
NW toward the SE and then abruptly changes direc-
tion toward the NE. At this point, a capture elbow
adjacent to the present head of the Quirra River is

well developed. The upstream part of Quirra River
flows at an altitude of approximately 200 m higher
than the Pardu River.

It also presents an over-sized and over-flooded val-
ley with respect to the upstream catchment area.
Moreover, there are various orders of terraces and
deposits in the Pleistocene. This setting indicates
that the Pardu River, previously flowing south along
with the Quirra River, was captured by Pelau River
(De Waele et al., 2012; Palomba & Ulzega, 1984).

Gravity-related mass movements occur along car-
bonate cornices with rockfalls and toppling. We have
focussed on the DSGSDs in this study, as they are
important in the morphological evolution of the car-
bonate plateau.

2. Methods

Geological and geomorphological analyses were per-
formed and a 1:10.000 geomorphological map was
generated in accordance with cartographic models in
the literature related to geomorphological mapping
(GNGFG, 1994; ISPRA 2007; ISPRA & AIGEO,
2018; Miccadei et al., 2012; Smith et al., 2011). A
remote sensing survey, accompanied by the interpret-
ation of aerial photos and digital terrain models
(LiDAR data of 1-m cell size, by Autonomous Region
of Sardinia acquired in 2008), and field surveys were
performed to analyse vast areas, including the Tacco
di Ulassai and the Pardu River and Barigau River
valleys.

The main map was created using the ESRI ArcGIS/
ArcMap using the Regional Technical Cartography of
the Autonomous Region of Sardinia at 1:10.000 scale.
We comprehensively analysed three areas with specifi-
cally interesting DSGSD process: Bruncu pranedda,
Scala San Giorgio, and Tisiddu Mountain (Figure 3).

To analyse the DSGSDs at the local scale, we used
high-resolution digital elevation models (DEMs)
acquired via structure for motion from a UAV. Struc-
tural and geomorphological field mapping surveys
were performed at a 1:200 scale for each landslide,
thereby enabling the creation of a geological 3D
model of the slope deformations (Clapuyt et al.,
2016; Eker & Aydın, 2021; Peternal et al., 2017; Valk-
aniotis et al., 2018). Briefly, 100 structural survey
stations were set in the metamorphic basement and
in the Mesozoic units using geological compass. Struc-
tural data were processed using Rocscince Dips.

The aerial surveys were performed usingUAVs (DJI
Phantom 4) flying at altitudes of 50–60 m above
ground level. The acquired images were analysed and
processed using photogrammetric Agisoft MetaShape
software and constrained by 10–12 ground control
points using GEODETIC LEICA GNSS for each area.
The resulting orthorectified mosaic and DEM (WGS
84 datum and UTM 32N projection) had a cell size of
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5 cm/pixel and were considered sufficiently precise to
be used for the geomorphological analysis. 3D high-
resolutionUAVmodelswere used to develop interpret-
ative superficial models using geomorphological evi-
dence and stratigraphic and structural data of the
DSGSDs. Geological interpretative cross-sections of
geologic features crossing the major DSGSDs were
also generated to define the movement kinematics,
deformative style, and deep geometries of the DSGSDs.

3. Results

3.1. Geomorphological map

The cartographic synthesis was based on the lithologies
on which landforms were highlighted, with distinct
morphogenetic processes and relative chronological
positions.

Geomorphological map shows the lithology from
the Palaeozoic basement to the continental Quatern-
ary covers (Figure 4).

The major physiographic units presented in the
geomorphological map are the Tacco of Ulassai,
Tisiddu Mountain, and the two main valleys, namely
Pardu River and Barigau River valleys. The Ulassai
Plateau, which comprises Mesozoic dolomitic litholo-
gies, is affected by various superficial and under-
ground karst morphologies (De Waele et al., 2012).
A karst palaeo-landscape with a sub-tropical climate
consisting of cockpit and Fengcong was detected
(Fleurant et al., 2008). The latter, characterised by

gentle relief, is aligned in the direction of the Oligo–
Miocene faults. These formations are the major path-
ways of underground waterflows, on which sinkholes
have developed. The plateau surface is affected by
extensive polje-type dolines, which defines an exten-
sive hydrography. The catchment area of the plateau
flows out of the Santa Barbara area, which flows into
the Ulassai stream after an 80-m hydraulic jump
(Lequarci waterfall) (Figure 3).

The edge of the plateau was affected by gravitational
processes at different scales. Moreover, there wide-
spread rockfalls and toppling of various magnitudes
were present. Three orders of landslide deposits were
identified, namely cemented, quiescent, and active.

The valley floor of the Pardu River in the upper part
is characterised by a bed set on rock with major erosive
features, whereas in the downstream part near the cap-
ture elbow, alluvial deposits exist with two orders of ter-
races. Downstream of the capture, the river resumes the
erosive character with the valley floor set on the rock.

The legend signifying geomorphology in this study
was conceived to effectively represent the features of the
study area. We highlighted outcropping bedrock lithol-
ogy, tectonic features, superficial deposits, and the distri-
bution of structural, gravitational, and karst landforms.

3.2. Morphostructural setting of DSGSDs

Various areas affected by DSGSDs located at the
edges of the carbonate plateau were identified, with

Figure 3. Three-dimensional (3D) model of Pardu River (Rio Pardu) Valley and Ulassai Plateau. Blue lines represent major hydro-
graphic features, and red areas represent the major DSGSDs. (a) Fluvial capture elbow; (b) Lequarci waterfall. (1) Tisiddu Mountain
DSGSD; (2) Bruncu Pranedda DSGSD; (3) Scala San Giorgio DSGSD.

598 V. DEMURTAS ET AL.



the major ones located on the east side of Tacco di
Ulassai and Tisiddu Mountain. The main structures
that indicate the deep gravity phenomenon were
large and deep extensional trenches which are evi-
dent in the carbonate lithotypes. A complex struc-
tural setting was deciphered based on the analysis
of faults, foliation, and tectonic-gravitational struc-
tures (Figure 5). Trenches had lengths of several hun-
dreds of metres and a decametric opening and depth
(Figure 6).

The Bruncu Pranedda DSGSD depicted two regions
with different settings located in the top and middle
slopes. In the top slope toward the east of the largest
extensional trenches called Pranedda Canyon (Figure
6(A1–A3); Figure 7(A,A1,D)), the rock mass fractur-
ing increased, and the attitude of the Dorgali For-
mation is toward the east, with a dip amount of up
to 40°. In this area, both facies of the Dorgali For-
mation were visible, with the summit comprising
dolomitic banks and the lower part characterised by

Figure 4.Major geological units presented in the main map: Metamorphic basement: (a) altered phyllites; (b) Fractured metasand-
stone and quartzites. Transitional and marine Mesozoic succession: (c) Genna Selole Formation (siliciclastic–carbonate deposits
and clays); (d) Basal facies of Dorgali Formation (layered dolostone and marls); (e) Dolostone of massive Dorgali Formation. Rock-
fall deposits: (f) Cemented; (g) Quiescent; (h) Slope deposits.
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an alternation of well-stratified dolomites and marls.
This subdivision was not observed in the middle
slope (Figure 6(A4)), where basal marly levels do not
appear on the surface. This indicates that the basal
facies (approximately 30 m) were partially covered
by slope deposits; however, they also sank a few metres
inside the fractured and altered Palaeozoic meta-
morphic basement. This can be correlated with the
field observations at the same altitude, with the base-
ment and the massive facies of the Dorgali Formation.

The Scala San Giorgio DSGSD is located north of
Osini Village (Figures 6(B) and 7(C)) and is character-
ised by two major extensional trenches parallel to the
slope that affect the Dorgali Formation with dip
amount up to 20°. All the sequences of the Dorgali
Formation are exposed; however, the Genna Selole
Formation is covered by rockfall deposits.

The Tisiddu Mountain DSGSD in the south of
Ulassai Village is characterised by a highly fractured
segment of the Dorgali Formation located tens of
metres downstream. Only the top massive banks of
dolostones are visible. The basal level was partially
sinking in the metamorphic basement.

Shear zones are located in different geological units
that represent structural weaknesses (Figure 8).

(I) The top of the metamorphites was affected by
sub-horizontal foliation (Figure 5) and advanced
weathering, and the rock exhibited a reddish or whitish
colour. This type of alteration could be linked to the
pre-transgressive Mesozoic period (Marini, 1984); (II)
Genna Selole Formation exhibited plastic clay layers;
(III) basal levels of Dorgali Formation were character-
ised by the alternations of marl and dolomite.

Geomorphological evidence and stratigraphic and
structural analyses enabled the identification of various
DSGSDs characterised by different kinematics. From
the structural analysis (Figure 5), the major faults
with NW–SE and NE–SW directions were in concor-
dance with the main trenches. The secondary trenches
and the joints did not exhibit a good correlation with
the large-scale structures because they were associated
with the features inside the deformation rockmass. Lat-
eral spreads were developed at the plateau edge due to
the sub-vertical pre-existing fractures (Figure 5). Con-
sequently, there was a predominant horizontal move-
ment associated with vertical fractures in the
carbonate and a zone of ductile basal deformation
that affected the Genna Selole Formation and the sum-
mit, which altered the metamorphites (Bruncu Pra-
nedda top slope and San Giorgio DSGSD). DSGSDs
with a higher vertical shift represented a more
advanced stage with sackung features (Tisiddu Moun-
tain and middle slope of Bruncu Pranedda). A large
part of the deformation affected the Palaeozoic base-
ment, which was evidenced by the sinking of the car-
bonate sequence in the metamorphites.

These DSGSs were associated with numerous rock-
falls and toppling landslides that affect carbonate
walls. Dolomitic blocks with sizes up to 30 m on
each side were identified, moving up to 900 m away
from the detachment points, which were linked to
mega-rockfall events with rock avalanche features
(Figure 6(D)). We also identified mega-blocks of Dor-
gali Formation in the downslope that were associated
with collapsed palaeo-DSGSD.

4. Discussion

Geomorphological data regarding the DSGSD of
Bruncu Pranedda, Scala San Giorgio, and Tisiddu
Mountain were used to generate geological sections
for reconstructing a hypothetical surface of basal rup-
ture and deep geometries (Figure 8).

Geological and geomorphological analyses using
high-resolution topographic data enabled the identifi-
cation of different DSGSD kinematic and evolutionary
models. Based on the collected data, it was possible to
identify three evolutionary stages.

The initial movement stage was characterised by
lateral spread kinematics (Delgado et al., 2011; Dramis

Figure 5. Stereographic projections of tectonic and gravita-
tional structures. (1) Low-angle dip schistosity in the meta-
morphic basement; (2) Dorgali Formation layering. The
larger angles indicate the blocks of the DSGSD; (3) Primary
Cenozoic faults, NW–SE and secondary sub-vertical faults; (4)
Vertical fractures in the Mesozoic units associated with the tec-
tonic structures; (5) Extensional trenches.
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& Sorriso-Valvo, 1994; Fioraso, 2017; Gutiérrez-San-
tolalla et al., 2005; Pánek & Klimeš, 2016; Taramelli
& Melelli, 2008) (Figure 8(1,2a)), with a separation
of the DSGSD from the edge of the plateau. This
occurred via horizontal movement without vertical
sinking.

The stratigraphic setting is characteristic of the
lateral spreads because the Dorgali Formation
(hard formation) rests on the Genna Selole clays
and on an altered and fractured schist basement
(plastic formations). In the carbonate lithologies,
the deformation is brittle and develops with a

Figure 6. UAV images of the DSGSD showing the major geomorphological and structural features. The white dashed lines rep-
resent the major extensional trenches. (A1). Panoramic view of the Ulassai Village. (A2) Bruncu Pranedda DSGSD. (A3) Top slope
sector. (A4) Middle slope sector. (B) San Giorgio DSGSD. (C) Tisiddu Mountain DSGSD. (D) Evidence of collapse deposits of rock
avalanches. Recent collapse near Ulassai Village. (D1, D2) Palaeo-collapses of mega-blocks, 20–40 m for each side.
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major fracture; however, in the basement, it is duc-
tile with a sub-horizontal movement. The basal
sub-horizontal shear zone is primarily located in
the Genna Selole Formation and in the summit
altered metamorphites.

The second stage (Figure 8(2b,3)) is associated with
the deformation pattern of the sackung type (Ambrosi

& Crosta, 2006, 2011; Audemard et al., 2010; Bovis &
Evans, 1996; Coquin et al., 2015; McCalpin & Irvine,
1995; Oppikofer et al., 2017; Soldati et al., 2004),
which can be deduced from the partial sinking of the
DSGSD body inside the Palaeozoic basement. This
stage is the observable downslope of the plateau
edges located in the parts of the Dorgali Formation

Figure 7. LiDAR 3D model of the DSGSD. (A1) Bruncu Pranedda. (B) Tisiddu Mountain. (C) Scala San Giorgio. (1) High fracturing
area with active extensional trenches. (2) Collapse deposits of rock avalanches. The black dashed lines represent the major exten-
sional trenches. White dashed lines represent the major stratigraphic discontinuity between marine Mesozoic sequence and the
metamorphic basement. (D) UAV 3D model of Bruncu Pranedda. (4) Detachment niche. (5) Transit area. (6) Collapse deposits of
rock avalanches.
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tens of metres away from the original stratigraphic
altitude. They are separated from the plateau by an
extensive transit area characterised by the presence
of slope deposits with limited outcrops of the Palaeo-
zoic basement. This is an advanced stage assimilable at
a sackung landslide and is associated with a major
basal deformation that allows the movement of the
bodies even for several hundreds of metres. The
shear zone is located in the metamorphic basement
with a sub-circular shape.

The third stage is the consequence of the collapse of
the peripheral margins of DSGSDs and is manifested
through rock avalanche deposits (Figure 6(D)).
These deposits, comprising blocks with a size of sev-
eral thousands of cubic metres, cover the most recent
slope deposits and represent one of the major evidence
for present movements of the DSGSDs. In fact, rock
avalanche deposits have been found to exhibit sedi-
mentological and geomorphological characteristics of
a very recent event. The evidence of current activity
is demonstrated by the detachment of a rock ava-
lanche which occurred in November 2014, involving
a total volume of rock more than 1500 m3.

The type and evolutionary characteristics of rock-
falls and rock avalanches represent high risk factors
in some sectors of the inhabited centre below; a moni-
toring network is being created based on satellite and
geotechnical technologies with the aim of developing
an early warning system.

5. Conclusions

A kinematic model and geomorphological evolution
characteristics of DSGSD in Sardinia were described
for the first time in this study. The study highlighted
an extremely young territory conformation, associated

with the Neogene and Quaternary geodynamic events,
implying a series of problems related to the slope pro-
cess. The causes of the DSGSDs are associated with the
structural characteristics of the area and the Neogene
and Quaternary geomorphological evolution of the
river valley associated with the recent uplift. In the
main map, a comprehensive mapping of structural,
karst, fluvial, and slope morphologies in Pardu and
Ulassai valleys is presented.

The predisposing factors of DSGSDs can be ident-
ified in the following points:

1. The tectonic history of the slope with a passive
influence has been caused by a major uplift associ-
ated with the Neogene and Quaternary geody-
namic events. The upliftment has increased the
erosion rates, thereby leading to the deepening of
the valleys and detente of the slopes. The energy
of the relief of the slopes is the decisive morpho-
logical element which initiates the DSGSDs; in
the cases studied, it is higher than 650 m.
– Cenozoic tectonics have also conferred the

structural conditions that predisposed the develop-
ment of DSGSD, particularly in the Dorgali For-
mation. In fact, the major DSGSD trenches are
evidently parallel to the major faults and primarily
parallel to that of Pardu Valley in the NW–SE direc-
tion, on which the slope is also set

– The lithostratigraphic conditions are rep-
resented by the Mesozoic units on the foliated
and altered metamorphic basement.

The initiation of rapid catastrophic processes such
as rock avalanche is associated with the accelerations
of DSGSDs. These accelerations are linked to seismic
activities and extreme rainfall events. The latter

Figure 8. Interpretative geological cross-sections. (1) Scala San Giorgio, (2a) Bruncu Pranedda lateral spread; (2b) Bruncu Pranedda
sackung; (3) Tisiddu Mountain sackung. (a) Metamorphic basement; Dorgali Formation over Genna Selole (orange). (c) Hypothe-
tical shear zone, (d) active extensional trenches, (e) trench rockfall deposits.
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cause the hydration of the rocks in the shear zones,
thereby decreasing the geomechanical characteristics.

High-resolution topographic data and geological
and geomorphological field surveys enabled the
identification of three evolutionary stages of DSGSD.

– The first stage preceding the capture of the Rio
Pardu by the Rio Pelau associated with the uplift
and the Plio-Quaternary tectonics.

– The second phase associated with a major erosive
activity following the capture of the Rio Pardu
which triggered the oldest DSGSDs with sackung
features.

– The present evolution of plateau edges through lat-
eral spread DSGSDs and rock avalanches.

Software

The map was digitised using ESRI ArcGIS ® 10.6 soft-
ware. UAV photogrammetry data were processed by
Agisoft Metashape Professional ®. The digital terrain
models were generated using the Global Mapper ®
21.0. Geological sections were created using Adobe
Illustrator ® CC2015.
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