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Abstract: Understanding the composition of human milk (HM) can provide important insights
into the links between infant nutrition, health, and development. In the present work, we have
longitudinally investigated the metabolome of milk from 36 women delivering preterm at different
gestational ages (GA): extremely (<28 weeks GA), very (29–31 weeks GA) or moderate (32–34 weeks
GA) premature. Milk samples were collected at three lactation stages: colostrum (3–6 days post-
partum), transitional milk (7–15 days post-partum) and mature milk (16–26 days post-partum).
Multivariate and univariate statistical data analyses were performed on the 1H NMR metabolic
profiles of specimens in relation to the degree of prematurity and lactation stage. We observed a
high impact of both the mother’s phenotype and lactation time on HM metabolome composition.
Furthermore, statistically significant differences, although weak, were observed in terms of GA when
comparing extremely and moderately preterm milk. Overall, our study provides new insights into
preterm HM metabolome composition that may help to optimize feeding of preterm newborns, and
thus improve the postnatal growth and later health outcomes of these fragile patients.

Keywords: metabolomics; NMR; human milk; preterm infant; gestational age

1. Introduction

Human milk (HM) is the best way to feed a newborn in the first months of life as
it contains a balanced amount of nutrients and bioactive components which guarantee
optimal growth and development of the organs, immune system, and intestinal microbiota.
Furthermore, breastfeeding is associated with several short- and long-term positive health
effects for both infant and mother. Short-term benefits for the infant concern defense
against gastrointestinal and respiratory infections and atopic diseases [1]. Long-term bene-
fits include the reduction of the prevalence of overweight/obesity and type 2 diabetes [1].
Furthermore, the health effects experienced by the mother on a short-term scale include a
decreased risk of iron-deficiency anemia, improvements in mother-baby bonding, and pre-
vention of postpartum hemorrhage. The long-term benefits include decreased risk of breast
cancer, ovarian cancer, type 2 diabetes, hypertension, hyperlipidemia, and cardiovascular
diseases [2].

The composition of HM is influenced by many factors including gestational age (GA),
lactation stage, the mother’s body mass index (BMI), parity number, diurnal variations,
and maternal diet [3,4]. Despite the extended evidence of the inter- and intra-variability of
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HM composition, its dynamic nature, and complexity as well as the potential interactions
among milk components continue to limit our understanding of the functional power of
HM. This knowledge is of relevance in the management of infant feeding and extremely
important in case of fragile subjects such as preterm newborns which, due to their condition
of prematurity, are at high-risk for short and long-term complications [5,6].

In addition to the variability of HM composition in terms of macronutrients, during
the past decade, attention has been turned toward the HM metabolome, that is the pool
of low molecular weight (<1.5 kDa) metabolites associated with gene expression and
protein activity. This class of compounds includes mainly free amino acids, organic acids,
carbohydrates, HM oligosaccharides (HMOs), and other metabolites important for infant
development, such as choline and creatine. Metabolomics studies on HM have pointed
out compositional variations in the metabolome related to such maternal characteristics as
genetics, diet, and lifestyle, as well as gestation age (terms vs. preterm delivery), type of
delivery, lactation time, and geographical location [7–21]. For more detailed information
on this topic, the reader is directed to two recent reviews [22,23]. Nevertheless, despite the
rapid progress in knowledge of HM metabolome composition, its characterization remains
incomplete, and its role in the infant nutrition is not totally understood.

The aim of the present study was to contribute to the advance of biological knowledge
of the composition of the preterm HM metabolome. In particular, by using a metabolomics
approach based on Nuclear Magnetic Resonance (NMR) spectroscopy, we analyzed and
compared the metabolic profiles of HM samples collected in the first month post-partum
from three groups of mothers (n = 36) delivering extremely (n = 14), very (n = 11) and
moderately (n = 11) premature infants. Compositional variability was analyzed in terms of
the degree of prematurity and the lactation stage.

2. Materials and Methods
2.1. Study Population

Thirty-six women delivering preterm infants were recruited at the University, City of
Health and Science of Turin. Informed consent was obtained from all subjects at enrolment.
Mothers with major morbidities (diabetes mellitus, preclampsia or eclampsia) or with
absence or interruption of breastfeeding during newborn admission to the Neonatal Unit
were excluded. This study was conducted in accordance with the declaration of Helsinki
and approved by the local ethics committee (n.0039644).

2.2. Sample Collection

Human milk samples were collected from each mother within the first month of
exclusive breast-feeding at three lactation times. The first sample was colostrum (from 0
to 6 days post-partum), the second was considered transitional (from 7 to 15 days post-
partum) and the third was mature milk (from 16 to 26 days post-partum). Milk was
collected with standard extraction methods before baby feeding by means of an electric
breast pump (Medela Symphony, Baar, Switzerland) at hospital in the morning from one
breast into a sterile polypropylene tube. According to current guidelines and in order to
collect full pumping samples, the extraction session was stopped 2 min after the outflow of
the last drops of milk [24,25]. Samples were stored at −80 ◦C and shipped on dry ice to the
University of Cagliari for NMR analysis.

2.3. Sample Preparation

Before 1H NMR analysis, milk samples were thawed in ice. An aliquot of 500 µL was
centrifuged at 10,000× g for 30 min at 4 ◦C using Amicon Ultra 0.5 mL 10 kDa spin filters
(Millipore, Billerica, MA, USA) in order to remove residual lipids and proteins. All filters
were extensively washed with distilled water to deprive the membrane of the embedded
glycerol. The procedure was carried out iteratively until control by NMR spectroscopy of
the wash water showed no residual presence of glycerol. Each filtered sample (350 µL) was
mixed with 250 µL of phosphate buffer (0.1 M, pH 7.4) in D2O and 50 µL of 30 mM sodium
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3-trimethylsilyl-(2,2,3,3-2H4)-1-propionate (TSP) internal standard solution (in D2O) and
then transferred into a 5 mm wide NMR tube.

2.4. 1H NMR Spectroscopy and Spectral Processing
1H NMR experiments were performed at 300 K on a Varian UNITY INOVA 500

spectrometer (Agilent Technologies, Inc., Santa Clara, CA, USA), operating at a frequency
of 499.83 MHz. One-dimensional (1D) 1H NMR spectra were obtained using a standard
pulse sequence (1D NOESY) with presaturation during relaxation and mixing time for
water suppression. For each milk spectrum, a total of 128 scans were collected in 64 k data
points over a spectral width of 6000 Hz using a recycle time of 3.5 s and a mixing time of
1 ms. After Fourier transformation with 0.3 Hz line broadening, the spectra were phased
and baseline corrected and the chemical shift scale was set by assigning a value to the
signal of TSP of δ = 0.00 ppm.

NMR spectra were processed using MestReNova, version 14.0 (Mestrelab Research SL,
Santiago de Compostela, Spain) and corrected for misalignments in chemical shift primarily
due to pH-dependent signals. Each spectrum was binned using a constant bin of 0.001 ppm
in the region between 9.00 and 0.75 ppm, excluding peaks from water (4.6−5.2 ppm). The
final data set was composed of 7650 features.

The annotation of the 1H NMR spectra was based on literature data [18,20,26] and
the Human Metabolome Database (https://hmdb.ca, accessed on 7 September 2021). If
available, the spectra of standard compounds recorded using the same experimental
conditions were compared with the experimental data for identification. As a result,
34 metabolites were assigned to the spectra. Their signals were annotated with MSI Level 1
or Level 2 [27] and manually integrated obtaining a data set composed of 44 features.
Probabilistic Quotient Normalization was applied to compensate for dilution effect.

2.5. Statistical Data Analysis

Data of the recruited mothers and neonates were investigated applying one-way
ANOVA for normally distributed data and Fisher’s exact test or the Chi-squared test for
categorical data with two or more than two levels, respectively; tests with p less than 0.05
were considered statistically significant. Normality was assessed using the Shapiro-Wilk
test assuming normally distributed data for p > 0.10.

Exploratory analysis of the metabolomics data was performed by Principal Compo-
nent Analysis (PCA). PCA is able to summarize the structured data variation of correlated,
redundant and noisy data using a small number of score vectors, called principal compo-
nents (PCs), obtained by linear combination of the measured features. As a result, model
interpretation based on suitable plots allows the investigation of complex data structures
of the discovery of patterns in the observations and the relationships between observations
and measured features.

To evaluate the effects of lactation stage and degree of prematurity on the metabolic
content of the milk, we applied both univariate and multivariate data analyses. Specifically,
the lactation stage represented using the post-partum day of milk sample collection (factor
time) and the degree of prematurity (factor prematurity with three levels: extremely, very
and moderately preterm delivery), were codified as quantitative multilevel factors and
by sum coding [28], respectively, and were included in the design matrix of the fixed
effect Xfixed for both univariate and multivariate modelling. In the case of univariate data
analysis, linear mixed effects (LME) modelling for longitudinal data [29] was applied while
controlling for the false discovery rate using the Benjamini-Hochberg procedure [30]. The
following model was considered:

yij = (b0 + u0i) + (b1 + u1i) timeij + b2 prematurityi + εij

where yij is the value of the feature y measured in the milk sample of the mother i collected
at time j, timeij is the post-partum day of sample collection, prematurityi is the degree of
prematurity of the newborn of mother i, bk with k = 0, 1, 2 are the coefficients of the fixed

https://hmdb.ca
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effects, u0i and u1i are the random effects describing the specific-mother effects and εij is
the random error. The model assumes that the growth curves show a similar pattern across
mothers (a linear trend is assumed); however, important individual differences may be
exhibited in both the intercept and the slope, as typically occurs with longitudinal data.

Multivariate data analysis was performed using a new model developed combin-
ing LME and Partial Least Squares regression (PLS2) [31]. This approach is inspired by
APCA+ [32], a multivariate technique useful for investigating data generated considering
independent observations and a well-defined experimental design; unfortunately, this
method is not suitable for longitudinal data as the observations are closely related. Given
the matrix of the measured features, Y, and the design matrix of the fixed effects Xfixed, the
objective is to decompose Y as

Y = Yfixed + Yrandom + F

where the data variation in Yfixed is explained by Xfixed, the data variation in Yrandom is
associated with the random effects described by a suitable design matrix Xrandom, and the
matrix F is the part of Y that is not explained by the design matrices. The idea is to use PLS2
and LME to model Yfixed and Yrandom, respectively. The two-step procedure described in
the Supplementary Materials is used to solve the problem. As a result, the data variation
associated with the fixed effects is modeled by the bilinear form

Yfixed = TPt

where T is the score matrix and P the loading matrix, similarly to PCA. Thus, procrustes
analysis was applied to transform the scores into latent factors. The investigation of
the latent factor space allows the discovery of specific trends and cluster structures be-
tween observations, whereas stability selection based on Variable Influence on Projection
(VIP) [33] permits the identification of the most relevant features. Repeated five-fold cross-
validation and permutation testing was applied in order to highlight over-fitting and assess
model reliability.

Data analysis was performed using in-house R-functions implemented by R 4.0.4
platform (R Foundation for Statistical Computing). The R-functions used in this study are
available on request.

3. Results
3.1. Study Population

The characteristics of the mother and infant population are summarized in Table 1.
Overall, 36 healthy lactating mothers giving birth prematurely between 23 and 33 weeks of
gestation were recruited. According to the degree of prematurity, subjects were grouped
into three groups: extremely, very, and moderately preterm delivery. No significant dif-
ferences among the three groups were observed in the mother’s age and body mass index
(BMI). The only relevant difference was in the delivery mode, which was mainly vaginal
(71%) in the extremely preterm group and cesarian section (82%) in the other two groups.
Regarding the newborns gender, there were 26 female and 18 male newborns with a birth
weight ranging from 500 to 2250 g.

Of the 36 enrolled women, 25 provided three milk samples (colostrum, transitional
milk and mature milk), while seven provided only colostrum and transitional milk,
and four provided transitional and mature milk; 97 human milk samples (32 colostrum,
36 transitional milk and 29 mature milk) were ultimately analysed by 1H NMR spectroscopy.
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Table 1. Descriptive characteristics of mothers and infants, grouped according to the gestational
maturity 1.

Extremely
Preterm
(n = 14)

Very
Preterm
(n = 11)

Moderately
Preterm
(n = 11)

Mothers
Maternal age, y

(ANOVA, p = 0.48) 34.6 ± 5.1 34.6 ± 4.3 35.2 ± 3.4

Maternal BMI, kg/m2

(ANOVA, p = 0.41)
23.4 ± 3.9 22.9± 3.6 24.6 ± 6.9

Type of pregnancy (Singleton/Twins)
(Chi-squared test, p = 0.69) 12/2 9/2 8/3

Mode of delivery (vaginal/casarean
section)

(Chi-squared test, p = 0.006)
10/4 2/9 2/9

Infants
Gender (Male/Female)

(Chi-squared test, p = 0.70) 6/10 6/7 5/9

Birth weight, g
(ANOVA, p = 0.002) 977 ± 233 1382 ± 357 1369 ± 375

Gestational age, wk [min–max] 26 [23–28] 30 [29–31] 33 [32–33]
Milk Samples

Colostrum (3−6 lactation days) 12 9 11
Transitional milk (7−15 lactation days) 14 11 11

Mature milk (16–26 lactation days) 12 8 9
Lewis (Le) and Secretor (Se)

phenotype of mothers 2

(Chi-square test, p = 0.33)
Se+/Le+ 11 9 6
Se−/Le+ 1 1 4
Se+/Le− 2 1 1

1 Continuous normally distributed data are presented as means± standard deviation, whereas categorical data are
presented as the number of occurrences per level. 2 Secretor/Lewis blood group status was estimated according
to the NMR fucosylated oligosaccharide profile of milk.

3.2. Mother Phenotype

Since the fucosylation patterns of HM oligosaccharides (HMOs) are influenced by
the mother’s genotype, visual inspection of the HMOs’ NMR spectral regions allowed
the identification of the phenotypic status of the mother [11,18,34]. In particular, based
on the activity of specific enzymes called fucosyltransferase, involved in HMO synthesis,
mothers can be classified for two types of genes: the secretory gene (Se), which encodes
α1,2-fucosyltransferase (FucT2), and the Lewis gene of blood groups (Le), which encodes
α1,3 (FucT3) and α1,4-fucosyltransferase (FucT4) [35]. The milk from secretor women (Se+)
contains α1-2 fucosylated HMOs; conversely that from non-secretor women (Se−) contains
no or only trace α1-2 fucosylated HMOs. The milk from Lewis-positive women (Le+)
contains α1-4 fucosylated HMOs, while that from Lewis-negative (Le−) women contains
no or minimal amounts of these HMOs. Based on the data in the literature [11,18,34],
monitoring the presence or the absence of specific HMOs NMR peaks allowed us to assign
milk samples to three phenotypes (Figure 1). Twenty-six women (72%) were classified as
Se+/Le+ as their corresponding milk spectra displayed the CH3 signals from α1,2-, α1,3-
and α1,4-linked fucosyl residues (Figure 1A). Four women (11%) were assigned to the
Se+/Le− phenotype, because their milk 1H NMR spectra exhibited the peaks from α1,2-
and α1,3-linked fucosyl residues and lacked the characteristic doublet of α-1,4 residues in
the range δ 5.00–5.05 (Figure 1B). Six women (17%) were classified as Se−/Le+, defined by
lack of NMR signals from α1,2-fucosylated HMOs and the presence of signals from α1,3-
and α1,4-fucosylated HMOs (Figure 1C). The number of phenotypes identified in each
premature delivery group is reported in Table 1.
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Figure 1. Expanses of representative 1D NOESY-presat 1H NMR spectra (500 MHz, 300 K) of preterm
human milk (350 µL of filtered milk, 250 µL of 0.1 M PBS in D2O, pH 7.4 and 50 µL of 30 mM TSP
solution in D2O) of three mother phenotypes: (A) Se+/Le+, (B) Se+/Le−, (C) Se−/Le+. Symbol *
denotes HMOs signals taken into consideration for the identification of phenotype. Key: 1. Fuc CH3

(δ 1.14–1.30) in: α1,3- and α1,4-linked Fuc residues (δ 1.14–1.19), α1,2-linked Fuc residues (δ 1.19–1.24)
and α1,2-Fuc with α1,4-Fuc and/or α1,2-Fuc with α1,3-Fuc (δ 1.24–1.30); 2. 3′ sialyllactose, 6′

sialyllactose; 3. N-Acetylglucosamine containing oligosaccharides; 4. Fuc H-5 in α1,2-linked Fuc
residues; 5. Fuc H-1 in α1,4-linked Fuc residues; 6. Fuc H-1 in α1,3-linked Fuc residues; 7. Fuc H-1 in
α1,2-linked Fuc residues (LNDFH I, lacto-N-difucohexaoses I); 8. Reducing α-Glc units; 9. Fuc H-1 in
α1,2-linked Fuc residues (LDFT, lactodifucotetraose); 10. Fuc H-1 in α1,2-linked Fuc residues (2′FL,
2′fucosyllactose; LNFP I, lacto-N-fucopentaoses I); 11. Fuc H-1 in α1,3-linked Fuc residues.

3.3. Exploratory Data Analysis

Exploratory data analysis was performed considering the binned spectra. Prior to
performing data analysis, mean centering and Pareto scaling were applied. Outlier detec-
tion was based on principal component analysis (PCA) considering the T2 test and the
Q test. Specifically, each subgroup of samples with the same degree of prematurity and
lactation stage (colostrum, transitional milk, and mature milk) was submitted to PCA and
the statistics T2 and Q were calculated for each sample. No outliers were detected when
assuming a significance level of 0.05.

Due to the presence of multiple intense NMR signals from lactose dominating the
spectrum, the peaks of this carbohydrate resonating between 3.50 and 4.05 ppm and
between 3.26 and 3.34 ppm were excluded. The PCA model with two principal components
showed R2 = 0.50 and Q2 = 0.47 (calculated by five-fold cross-validation based on the
Krzanowski method). Projecting the observations on the plane spanned by the first two
PCs provided the score scatter plot reported in Figure 2. In Figure 2A the observations
are colored according to phenotype, while in Figure 2B they are colored according to
lactation stage. A clear separation among samples of different phenotypes can be observed
in Figure 2A. Specifically, samples from women phenotyped as secretors (Se+) are mainly
distributed on the left part of the plot, while those from non-secretors (Se−) are located on
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the right one. Additionally, within the Se+ group a weak separation of samples is visible
based on the Lewis phenotype, with the Se+/Le− subgroup being slightly shifted toward
the upper left quadrant with respect to the Se+/Le+ subgroup. Accordingly, the analysis of
the PCA biplot indicated that such a score distribution is mainly driven by differences in
the chemical components of the HMOs (Figure S1 in Supplementary Materials). A further
contribution to the score distribution was explained in terms of the lactation stage. Indeed,
a shift of scores from the left bottom side of the plot to the right upper one is visible based
on increasing lactation stage (i.e., from colostrum to mature milk) (Figure 2B). No effect of
the degree of prematurity was revealed.
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Figure 2. PC1 vs. PC2 score scatter plot of the PCA model built with the binned data, colored
according to maternal HMO phenotype (panel (A): Se+/Le+ in white; Se+/Le− in violet; Se−/Le+

in red) and lactation stage (panel (B): colostrum in green; transitional milk in white; mature milk
in blue).

3.4. Studying the Changes in HM Metabolome Due to Degree of Prematurity and Lactation Stage

The exploratory data analysis based on PCA highlighted an important impact of both
lactation stage and the mother’s genetics on the metabolic content of HM. To assess whether
the degree of prematurity influences the variation of the collected data, the experimental
design was explicitly taken into account in data modelling. In the following, 44 features
arising from peak annotation were considered. Data were autoscaled prior to performing
data analysis.

As a first step in data analysis, all the three degrees of prematurity were considered.
Neither univariate nor multivariate data analysis highlighted the prematurity effect as
significant and only the influence of lactation stage on the data was discovered. Specifically,
no features associated with prematurity were selected when controlling the false discovery
rate at level δ = 0.15 by applying linear mixed effects (LME) modelling for longitudinal
data. The multivariate model showed that the prematurity factor was not significant,
being R2

prematurity = 0.41 (p = 0.80) and Q2
prematurity = 0.06 (p = 0.35). On the other hand,

34 features were associated with the time factor on the basis of LME analysis controlling the
false discovery rate at level δ = 0.05 (Table 2). In addition, the multivariate model proved
that lactation stage significantly affected data variation, showing R2

time = 0.74 (p = 0.01) and
Q2

time = 0.46 (p = 0.02). These results agree with those of the above-mentioned exploratory
data analysis based on PCA.
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Table 2. LME modelling results for longitudinal data using the 44 features and all the three degrees
of prematurity.

Integrated Region 1

(ppm) Annotation 2 Coefficient 3 p[time] 4 BH 5 R2
total

6

4.051–4.077 myo-inositol −2.5 × 10−2 8.5 × 10−11 1 6.6 × 10−1

4.632–4.650 glucosyl moiety −1.3 × 10−2 9.2 × 10−9 1 9.7 × 10−1

4.515–4.548 galactose moiety in
α1,2-linked Fuc −4.3 × 10−2 1.5 × 10−8 1 8.1 × 10−1

4.203–4.274 α1,2-linked Fuc residues 7 −6.2 × 10−2 1.9 × 10−8 1 8.7 × 10−1

5.304–5.336 α1,2-linked Fuc residues 8 −5.2 × 10−2 2.6 × 10−8 1 8.9 × 10−1

4.278–4.322 α1,2-linked Fuc residues −1.7 × 10−2 4.8 × 10−8 1 9.7 × 10−1

1.215–1.294 CH3 in Fuc(α1-2) 9 −2.6 × 10−1 1.2 × 10−7 1 8.9 × 10−1

5.220–5.254 lactose 5.1 × 10−2 2.1 × 10−7 1 8.6 × 10−1

3.274–3.322 lactose 8.3 × 10−2 3.8 × 10−7 1 8.2 × 10−1

3.190–3.198 choline −6.6 × 10−3 4.4 × 10−7 1 7.1 × 10−1

3.033–3.055 creatine and creatinine −2.7 × 10−3 8.6 × 10−7 1 2.9 × 10−1

5.181–5.210 glucosyl moieties −1.6 × 10−2 1.8 × 10−6 1 8.8 × 10−1

1.467–1.498 alanine 6.2 × 10−3 3.1 × 10−6 1 5.1 × 10−1

0.926–0.941 pantothenate −4.8 × 10−3 8.1 × 10−6 1 3.9 × 10−1

3.001–3.015 U −8.9 × 10−4 2.0 × 10−5 1 6.1 × 10−1

3.455–3.522 U −3.9 × 10−2 2.1 × 10−5 1 7.1 × 10−1

2.397–2.485 glutamine 5.7 × 10−3 2.1 × 10−5 1 5.4 × 10−1

2.648–2.703 citrate −4.6 × 10−2 2.2 × 10−5 1 5.7 × 10−1

3.226–3.237 GPC 5.0 × 10−2 2.4 × 10−5 1 2.8 × 10−1

2.750–2.793 3′SL −4.8 × 10−3 3.7 × 10−5 1 8.2 × 10−1

2.518–2.703 10 citrate −8.7 × 10−2 4.1 × 10−5 1 5.7 × 10−1

2.518–2.574 citrate −4.1 × 10−2 8.5 × 10−5 1 5.8 × 10−1

2.331–2.385 glutamate 1.9 × 10−2 1.2 × 10−4 1 5.5 × 10−1

4.133–4.155 galactose moiety −1.6 × 10−2 1.4 × 10−4 1 9.5 × 10−1

2.015–2.086 N-Acetylglucosammine −1.4 × 10−1 1.9 × 10−4 1 8.4 × 10−1

1.691–1.781 3′SL, 6′SL −1.1 × 10−2 2.8 × 10−4 1 9.0 × 10−1

3.124–3.177 U 2.4 × 10−3 3.7 × 10−4 1 7.9 × 10−1

8.368–8.453 U −4.7 × 10−3 4.3 × 10−4 1 9.7 × 10−1

3.199–3.207 U −6.4 × 10−3 5.5 × 10−4 1 7.5 × 10−1

0.890–0.941 11 pantothenate −1.1 × 10−2 6.4 × 10−4 1 3.9 × 10−1

0.945–0.979 leucine −3.1 × 10−3 4.2 × 10−3 1 3.5 × 10−1

0.890–0.906 pantothenate −5.8 × 10−3 9.6 × 10−3 1 3.9 × 10−1

4.156–4.173 galactose moieties −1.2 × 10−2 1.9 × 10−2 1 8.9 × 10−1

5.277–5.296 α1,2-linked Fuc residues 12 −5.7 × 10−3 2.0 × 10−2 1 6.9 × 10−1

1.315–1.344 threonine −1.5 × 10−2 7.8 × 10−2 0 4.1 × 10−1

3.215–3.225 phosphocholine 2.8 × 10−2 8.4 × 10−2 0 6.9 × 10−1

5.019–5.047 α1,4-linked Fuc residues 2.4 ×10−3 1.3 × 10−1 0 9.3 × 10−1

5.148–5.169 α1,2-linked Fuc residues 13 −1.4 × 10−3 1.9 × 10−1 0 9.6 × 10−1

0.980–1.002 valine −4.3 × 10−4 3.0 × 10−1 0 2.6 × 10−1

1.032–1.057 valine 1.7 × 10−4 5.5 × 10−1 0 4.3 × 10−1

1.138–1.214 CH3 in α1,3-Fuc and α1,4-Fuc −8.5 × 10−3 6.0 × 10−1 0 9.3 × 10−1

0.98–1.057 14 valine −2.7 × 10−4 7.0 × 10−1 0 3.3 × 10−1

5.371–5.415 α1,3-linked Fuc residues 15 −5.5 × 10−4 8.0 × 10−1 0 8.4 × 10−1

5.426–5.468 α1,3-linked Fuc residues 15 −5.2 × 10−5 9.8 × 10−1 0 8.4 × 10−1

1 Integration interval used to quantify the features. 2 Chemical meaning. 3 Coefficient of the fixed effect for
time. 4 p-value. 5 1 if the feature has been selected when controlling the false discovery rate using the Benjamini-
Hochberg (BH) procedure at level δ = 0.05, and 0 if the feature has not been selected. 6 Explained total data
variation. 7 2′FL, LDFT. 8 2′FL, LNFP I. 9 2′FL, LNFP I, LNDFH I, LDFT. 10 Both doublets of citrate. 11 Both
peaks of pantothenate. 12 LDFT; 13 LNDFH I; 14 Both doublets of valine; 15 3FL, LNDFH II, LDFT. Abbreviations:
2′FL, 2′fucosyllactose; 3FL, 3fucosyllactose; GPC, glycero-3-phosphocholine; LDFT lactodifucotetraose; LNDFH I,
lacto-N-difucohesaose I; LNDFH II, lacto-N-difucohesaose II; LNFP I, lacto-N-fucopentaose I; SL: sialyllactose;
U, unknown.
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As a second step in the data analysis, only the two groups with the greatest differences
in the degree of prematurity (i.e., extremely and moderately preterm) were considered. In
that case, new and interesting results were obtained. No statistically significant differences
were observed for mother’s age, BMI, type of pregnancy, or infant gender, while a relevant
difference was observed for both delivery mode and infant birth weight (Table S1 in
Supplementary Materials).

The results of the LME analysis are reported in Table S2 and Figure S2 in the
Supplementary Materials. Despite three features showing p < 0.05 for the prematurity
factor, no signals could be considered significantly affected by the degree of prematurity
when controlling the false discovery rate level at δ = 0.15. Moreover, 33 signals were
significantly affected by time when controlling the false discovery rate level at δ = 0.05.
On the other hand, the multivariate model showed three score components, R2

time = 0.76
(p = 0.01), Q2

time = 0.40 (p = 0.01), R2
prematurity = 0.80 (p = 0.01), Q2

prematurity = 0.43 (p = 0.06).
After post-transformation, two latent factors (F1 and F2) were generated. The related scatter
plot is reported in Figure 3A. The first latent factor, F1, was mainly associated with time,
whereas the second latent factor, F2, was explained by prematurity. In particular, the group
of samples from mothers delivering extremely preterm belonged to the region with negative
values of F2, while the samples of the other group belonged to the region with positive
values, independent of the time. Stability selection based on VIP highlighted 22 features as
relevant (Figure 3B) among which seven were influenced by the degree of prematurity. In
particular, as shown in Figure 4, for both groups, the contents of α1,3-linked Fuc residues
were almost independent of lactation stage, whereas the levels of the 3′SL, choline, myo-
inositol, and glucosyl moieties decreased with time. Furthermore, the concentration of
these metabolites was higher in the samples from mothers delivering moderately preterm
than in those from women delivering extremely preterm at the same lactation stage.
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Figure 3. Multivariate data model of the data set arising from annotated spectra. Panel (A): Latent
factor scatter plot colored according to time; M and E labels indicate milk samples from mothers
delivering moderately and extremely preterm, respectively. Panel (B): Relevance score plot; the
red line indicates the threshold at the level of α = 0.05 used for discovering relevant features. The
meaning of the feature codes is reported in Table S2 in the Supporting Information.
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Figure 4. Scatter plots showing the trends of the sum of the fixed effect part and the random error of
the LME models considering the seven relevant 1H NMR annotated signals influenced by the degree
of prematurity. Red circles represent samples from mothers delivering moderately preterm, black
circles represent samples from mothers delivering extremely preterm, and dashed lines represent the
average behavior over time of the two groups.

4. Discussion

For a preterm (PT) infant, optimal nutrition is a determining condition of a general
and neurological development. Indeed, by losing the terminal part of pregnancy in the
intrauterine environment, PT newborns miss the most critical period of development and
brain growth, and are, thus, at high risk of short- and long-term morbidities as immature
physiology, hypothermia, respiratory distress, apnea, hypoglycemia, and developmental
delays [5]. According to the recommendation of the American Academy of Pediatrics [6],
the postnatal growth of PT infants, referred to anthropometric indices and body compo-
sition, should be the same as a normal fetus of the same gestational age growing in its
mother’s uterus. Currently, the mother’s own milk is considered the “gold standard”
nutrition for feeding pre-term newborns, as fresh human milk (HM) or banked HM cannot
meet nutritional recommendations for these fragile subjects (especially for extremely low
birth weight newborns) [36,37]. Thus, the addition of fortifiers to expressed HM is common-
place to meet recommended intakes, mainly in the form of protein, calcium, phosphorus,
carbohydrate, vitamins, and minerals [38]. The widely used standard fortification method
assumes a uniform composition of HM irrespective of maternal characteristics, gestation,
and day of lactation, and applies a fixed dose of nutrients to milk. This method rarely meets
the recommended intake of nutrients for preterm infants, which can create the conditions
for risk of under- or over-nutrition. Recently, favorable results have been obtained with
individual fortification of HM in an attempt to compensate for the high variability of
expressed breast milk composition [39]. Nevertheless, despite the international nutritional
management recommendations in hospital and after discharge from hospital [40,41], PT
newborn nutrition remains one of the most complex tasks for neonatologists. In this re-
spect, an important support in decision making on optimal infant nutrition arises from
the characterization of HM composition, a fundamental prerequisite for understanding its
biological functions.

In addition to milk macronutrients, in recent years special attention has been paid to an-
other component of HM, called the metabolome, which includes a wide class of low molec-
ular weight (<1.5 kDa) molecules such as carbohydrates, nonprotein nitrogen molecules,
polyamines, HMOs, choline derivatives, organic acids, and some vitamins [22,23]. In par-
ticular, the evidence for inter- and intra-variability of the HM metabolome composition
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associated with both genetic and nongenetic-factors has suggested an important role of
this molecular component in the programming of neonates, with potentially relevant con-
tributions to the growth and neurodevelopmental of infants. Most of the metabolomics
studies on HM so far have been performed on term milk, while a lower number have been
conducted on preterm milk.

The present study aimed to deepen knowledge of the metabolome of milk from
mothers with preterm delivery by investigating compositional variability in terms of both
lactation stage over the first month after birth and prematurity degree. It is worth re-
stating that the impact of lactation time on HM has been already investigated in other
metabolomics studies which concluded that significant variations exist in the metabolome
composition over time [15,16,21,26,42]. The influence of prematurity has been previously
pointed out as well, although this was confined to a comparison between full term and
preterm birth [14,15]. Nevertheless, because of different experimental designs, the findings
in the literature remain in some respects inconsistent, thus making direct comparisons
complicated. Compared to the metabolomics literature on preterm HM [15,16,26], our
experimental design is characterized by a higher number of enrolled mothers, a more
complete longitudinal collection of samples (80% of women provided specimens at the
three lactation stages under investigation) and a division of samples into three subcate-
gories according to gestational age (extremely, very and moderately preterm delivery). The
unsupervised analysis of our whole NMR data set captured a principal and remarkable
inter-variability of preterm HM metabolome driven by differences in HMO components
and a secondary significant intra-variability over lactation in the levels of various metabo-
lites. These characteristics are broadly in agreement with ththose reported in the literature.
Indeed, a variability of the NMR spectral profile of metabolome in the first month of
lactation was observed by Spevacek et al. [16] primarily in terms of lactation stage and
secondarily in terms of genetic factors, while no significant difference in clustering between
milk from mothers delivering term and preterm infants was noted. Sundekilde et al. [15]
pointed out a great contribution to HM metabolome variation by both gestational age
(term vs. preterm birth) and lactation stage. Furthermore, over a temporal window of three
months after birth, Andreas et al. [21] evidenced dynamic changes in the levels of various
metabolites in the HM metabolome by using a multiplatform approach.

In this study, we observed a significant temporal change in the levels of certain free
amino acids (FAAs) as the lactation stage progressed from colostrum to mature human
milk. In particular, alanine, glutamate and glutamine significantly increased, while leucine
and aspartate significantly decreased. These findings closely mirror previously published
data [43]. FAAs of HM are more readily absorbed than protein-derived amino acids. Al-
though they comprise approximately 5% of the total AA content in human milk, FAAs
participate in a number of metabolic processes as precursors of the biosynthesis of numer-
ous important biological and physiological compounds [43]. Glutamine and glutamate,
together with taurine, make up 50% of the total FAAs in HM. They are proposed to play an
important role in enhancing immune function. Glutamate is a signaling molecule involved
in sustaining gut barrier function and neuroendocrine reflexes. Furthermore, it is known
as an appetite regulator and may act as a neurotransmitter in the brain. Glutamine is a
nonessential amino acid that supplies ketoglutaric acid for the citric acid cycle and serves
as a brain neurotransmitter. Leucine is an amino acid extensively evaluated for its ability
to enhance muscle protein synthesis in low protein diets, making it an ideal candidate for
stimulating growth of low birth weight infants [44]. A previous characterization of the PT
HM metabolome has indicated no significant changes in most FAAs during the first month
of lactation, while the exception of an increase in alanine [16]. It is likely that the different
result here reported is due to the greater number of HM specimens analyzed in the present
report, allowing for a higher power of statistical analysis.

Furthermore, earlier metabolomics findings have indicated that the levels of most
sugars in the PT milk metabolome vary over lactation [15,16], although no significant
change in the first month postpartum was observed except for the increase of lactose [16].
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In our study, however, in addition to the significant increase in lactose level, we observed a
significant decrease in the content of α1,2-linked fucosyl HMOs and sialyllactoses, while no
significant variations of α1,3- and α1,4-linked fucosyl residues were found. The behavior
of α1,2-fucosylated HMOs suggests a reduced activity of the secretor FucT2 enzyme during
the course of lactation, which is in good agreements with the literature [45,46]. Similarly,
the decreasing trend of sialyloligosaccharide levels during the first month of lactation
parallels that already reported for both preterm [45,46] and term [45–48] milk. In addition,
the absence of a significant variation in α1,4-linked fucosyl HMOs mirrors the data in
the literature [45]. Unlike our findings, in several previous studies [45–50], the level
of α1,3-fucosylated oligosaccharides increased during lactation. Although this contrasts
with our results, it is worth noting that the lack of standardized methods of analysis,
milk collection timing, and sample preparation make it difficult to perform a direct inter-
lab comparison. Therefore, at present, we can only speculate about the cause of the
latter observation.

This study showed a statistically significant time-dependent decrease in choline, myo-
inositol, and pantothenic acid in PT human milk. These metabolites are all important
nutrients and crucial for infant growth and development. Choline plays a significant role
in the continued growth of the brain and in cognitive measures [51]. It is a precursor
of phosphocholine and sphingomyelin, two constitutive membrane phospholipids and
water-soluble metabolites serving as osmoregulation and important methylation processes.
In breast milk, phosphocholine and glycerophosphocholine are the most abundant choline
carriers. The contents of choline compounds in mature breast milk vary considerably among
breastfeeding women independent of the lactating period [52], probably representing one
of the causes of conflicting evidence of the changes over lactation. Myo-inositol is the major
stereoisomer of inositol in the body, with several important roles in the central nervous
system [53]. Furthermore, it is a constituent of a number of inositol-phosphates, glycolipids,
and glycoproteins, components of various membranous structures. Our data agree with
previous publications, which showed that preterm colostrum has higher myo-inositol
concentrations than mature preterm [54,55]. Pantothenic acid (vitamin B5) belongs to the
B vitamin class of organic compounds provided mainly by dietary intake. B vitamins act
as cofactors and coenzymes in several metabolic reactions, such as the citric acid cycle
and one-carbon metabolism and are crucial for a developing infant. Preterm infants, in
particular, are at high risk of vitamin deficiencies due to limited stores at birth, as well
as to increased needs related to their rapid growth and development. To the best of our
knowledge, there is very scarce data on B vitamins in preterm human milk [56–59].

The spectral region δ 3.033–3.055, containing signals from creatine and creatinine,
was found to be negatively correlated with the lactation stage. Visual inspection of NMR
data allowed us to ascribe this result to a decrease in creatine content. This metabolite is
essential for brain metabolism [60]. Similar to choline supply, infants receive their dietary
creatine from the mother’s HM; however, due to low levels in HM, they must rely on
endogenous synthesis [61]. This situation is particularly critical for preterm infants which
become creatine-depleted in the early postnatal period [62].

To the best of our knowledge, no metabolomics studies thus far have examined the
possible effect of GA length on the composition of the PT milk metabolome. Here, we
observed a significant, although weak, impact of GA when comparing the two classes
of samples taken from mothers with extremely and moderately preterm delivery. Our
results showed that the levels of α1,3-linked fucosyl residues, 3′sialyllactoses, choline, myo-
inositol, and glucosyl moieties in the metabolome of moderately preterm milk were higher
than in the extremely preterm group. It is worth noting that these two groups significantly
differ in both GA and in the type of delivery. Indeed, moderately premature infants were
predominantly delivered by cesarean section, while the extremely premature ones were
delivered mainly vaginally. Thus, our data interpretation could be influenced by this
potential confounding factor. In the literature, there are limited data suggesting that mode
of delivery may influence maternal HM composition, and not all of the results provided are
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in agreement. For instance, concerning HMO molecular components, several studies have
not found any association between delivery mode and HMOs composition [63,64]. On
the contrary, other investigations have pointed out significantly higher concentrations of
lacto-N-tetraose and 6′SL (at day 30 post-partum) in women giving birth through C-section
and significantly lower concentrations of some HMOs, including 2′FL, 3′SL, and LNFP III
at day two compared to mothers giving birth by vaginal delivery [49]. Furthermore, a
recent metabolomics investigation on term milk has pointed out significant differences by
country in specific HM metabolites after vaginal or caesarean delivery, ascribed to possible
differences in clinical procedures and antibiotic use [12]. It is worth noting that in our study
the very premature infants were predominantly delivered by cesarean section, as were the
moderately preterm ones. However, when the very preterm delivery group was compared
to the extremely preterm delivery group, we did not observe significant differences due
to prematurity (R2time = 0.72 (p = 0.01), Q2time = 0.37 (p = 0.01), R2prematurity = 0.64
(p = 0.61), Q2prematurity = 0.26 (p = 0.21)). Therefore, the delivery mode might be a
confounding factor in this case; being significantly different for the two groups, we can
affirm that the effect of delivery mode, if one exists, is not strong. Nevertheless, in light of
the above-mentioned data in the literature, we cannot totally rule out a possible impact
of the delivery mode on our findings; thus, in this context, our results are intended to be
hypothesis generating. Although we are currently unable to explain the nature of these
findings, defining the relation between the metabolic differences that we observed and the
prematurity degree is essential for advancing the field of PT infant nutrition research.

We recognize several limitations to our study, first its small sample size and second
its use of a single analytical platform. The exploitation of the combined strengths of 1H
NMR spectroscopy and mass spectrometry can definitely improve the panels of detectable
metabolites and thus provide a better interpretation of the biological function of preterm
milk. The strength of this study is the presence of an almost complete set of samples
collected a three time points and the diversification of specimens according to the degree of
prematurity. We analyzed 97 preterm milk samples, provided by 36 women: 38 samples
from 14 mothers delivering extremely preterm, 28 from 11 women delivering very preterm
and 31 from 11 mothers delivering moderately preterm. To the best of our knowledge, this
is the first metabolomics investigation on preterm HM to adopt this experimental design.
Usually, in metabolomics-based pilot studies where multivariate data analysis approaches
are applied, 10–15 observations for each group of interest are considered suitable to perform
reliable data analysis. In our study, the number of observations at each time point for
each group was in line with that used in other metabolomics pilot investigations [65–67].
Moreover, we applied a randomization test to check for overfitting and rejected the null
hypothesis that metabolite concentration is independent of prematurity and time. As the
p-values were less than 0.10, we can affirm that most likely both time and prematurity
affect the metabolic profile of PT milk and thus we can reasonably affirm that our results
cannot be due to random bias.

5. Conclusions

In this study, we have performed an analysis of the longitudinal composition of
preterm HM metabolome taking into consideration the degree of prematurity as a discrimi-
nant factor. We observed that the more preponderant compositional variations were due
to the mother’s phenotypes and the lactation stage. The major finding of our work is the
evidence of significant, although weak, changes in the content of some metabolites in term
of the GA length when comparing extremely and moderately preterm delivery groups.
This observation raises questions about the biological significance of these differences. Due
to the importance of nutrition in the early period of life of preterm infants, further studies
on a new and larger cohort are warranted in order to validate our findings and to explore
the implications of these differences on the health outcomes of preterm infants as well as
on the optimal nutrition of these vulnerable patients.
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