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Abstract
We classify complex surfaces (M, J) admitting Engel structures D which are complex line 
bundles. Namely, we prove that this happens if and only if (M, J) has trivial Chern classes. 
We construct examples of such Engel structures by adapting a construction due to Geiges 
[7]. We also study associated Engel defining forms and define a unique splitting of TM 
associated with D J-Engel.
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1 Introduction

An Engel structure D is a maximally non-integrable 2-plane field on a 4-manifold M, i.e. 
[D,D] = E and [D, E] = TM . These objects were discovered a long time ago [3, 6], and 
recent developments have sparked new interest in the field [4, 16, 20].

Line fields, contact structures, even contact structures, and Engel structures are the only 
topologically stable families of distributions in the sense of Cartan [3]. This means in par-
ticular that they admit Darboux-type theorems, which implies that they do not have local 
invariants. Engel structures are an exceptional family in this list since they only exist on 
4-dimensional (virtually) parallelizable manifolds.

This paper concerns the interplay between Engel structures and complex structures. For 
a given almost complex 4-manifold (M, J) , a J-Engel structure is an Engel structure D such 
that JD = D . These structures have already been studied in the case where J is integrable 
in [22], where Zhao classifies homogeoneous J-Engel structures on complex lie algebras 
of rank 2. Moreover, Zhao discusses the existence of compact quotients by a lattice that 
preserves the J-Engel structure. In this paper, we classify complex surfaces which support 
a J-Engel structure. In particular, we do not restrict to homogeneous J-Engel structures.
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In Zhao’s work, J-Engel structures appear under the name of complex Engel structures. 
We prefer to use the former name in order not to create confusion with holomorphic Engel 
structures [5, 17], which are the analogue of Engel structures in the holomorphic category.

Notice that, if D is J-Engel, then we can find a vector field W tangent D such that {
W, JW, [W, JW], J[W, JW]

}
 is a framing for TM, which implies that the Chern classes of 

(M, J) vanish. The main result in this paper, answering a question in [22], is the following.

Theorem 1.1 A complex surface (M, J) admits a J-Engel structure if and only if c1(M) = 0 
and c2(M) = 0. Equivalently, a complex surface (M, J) admits a J-Engel structure if and 
only if it is minimal and it belongs to one of the following families

• Inoue surfaces;
• Primary Hopf surfaces;
• Secondary Hopf surfaces with trivial first Chern class;
• Hyperelliptic surfaces;
• Kodaira surfaces;
• Complex tori;
• Non-Kähler properly elliptic surfaces.

The strategy of the proof is to use Enriques–Kodaira classification to rule out complex 
surfaces with inadmissible Chern classes. It turns out that all complex surfaces with trivial 
Chern classes are (orientable) mapping tori. This allows us to adapt a construction of Engel 
structures on mapping tori due to Geiges [7], hence proving Theorem 1.1.

Remark 1.2 A statement analogous to Theorem  1.1 holds true when replacing J-Engel 
structure by totally real orientable Engel structure, cf. Remark 3.4.

Towards the end of the paper, we analyse some properties of defining forms associ-
ated with a J-Engel structure and present a list of interesting examples. Two 1-forms � and 
� are said to be Engel defining forms for a given Engel structure D if D = ker � ∩ ker � 
and E = [D,D] = ker � . A pair of defining forms determines a complementary distribution 
R = ⟨T , R⟩ called the Reeb distribution (see [15]). The conformal class of � is uniquely 
determined by D , whereas, in general, the conformal class of � is not. If D is a J-Engel 
structure we do have a natural choice for this conformal class, namely � = �◦J . This in 
turn defines the line bundle Z = ⟨R⟩ uniquely, and hence, we get a splitting of the tangent 
bundle of M into a sum of subline bundles

called the J-Engel framing. We study the case where the flow of the vector field R acts by 
J-Engel isomorphisms and list some geometric examples.

1.1  Structure of the paper

In Sect.  2, we recall some basic facts from the theory of Engel structures. Section  3 
is dedicated to the proof of Theorem  1.1. There we give the details of the classifica-
tion of surfaces with trivial Chern classes, and we construct J-Engel structures on com-
plex mapping tori. In Sect.  4, we study properties of defining forms associated with 

TM = W⊕ JW⊕ JZ⊕ Z
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a J-Engel structure, define the J-Engel framing, and study the case where the flow of 
R acts via J-Engel isomorphisms. Finally, Sect. 5 contains interesting constructions of 
J-Engel structures with a focus on Thurston geometries.

2  Engel structures

In what follows all manifolds are assumed to be closed and smooth, and all distributions 
are assumed to be smooth, if not otherwise stated.

An even contact structure E is a maximally non-integrable hyperplane distribution 
on an even dimensional manifold. Otherwise said, if dim(M) = 2n + 2 , then locally E is 
the kernel of a 1-form E = ker � satisfying � ∧ d�2n ≠ 0 . For dimensional reasons, if E 
is even contact, then there exists a unique line field W such that W ⊂ E and [W, E] ⊂ E . 
We call W the characteristic foliation of E.

An Engel structure D is a smooth 2-plane field on a smooth 4-manifold such that 
E ∶= [D,D] is an even contact structure. One can see that the characteristic foliation W 
of E = [D,D] satisfies W ⊂ D . The flag of distributions W ⊂ D ⊂ E is called the Engel 
flag of D . The existence of this flag gives strong constraints on the topology of the man-
ifold M. If (M,D) is an Engel structure and W ⊂ D ⊂ E is its associated flag, then we 
have canonical isomorphisms

In particular, E is orientable and M is orientable if and only if W is trivial. This implies that 
if M admits an Engel structure, then it admits a parallelizable 4-cover. Notice that, if M is 
orientable and D is orientable, then we can construct a framing TM = ⟨W, X, Y , Z⟩ such 
that W = ⟨W⟩ , D = ⟨W, X⟩ and E = ⟨W, X, Y⟩.

We recall the following characterization of parallelizable 4-manifolds

Theorem 2.1 [9] An orientable 4-manifold is parallelizable if and only if its Euler charac-
teristic �(M), second Stiefel-Whitney class w2(M), and signature �(M) vanish.

It was an open question for a long time whether all parallelizable manifold admit 
Engel structures. This problem was solved positively for the first time in [20]. The later 
works [4, 16] established an existence h-principle and constructed a flexible (in the 
sense of Gromov) family of Engel structures.

Definition 2.2 Let (M4, J) be an almost complex manifold, a J-Engel structure D is an 
Engel structure such that JD = D.

In this paper, we are interested in the study of Engel structures which are complex 
line fields on complex manifolds. Throughout the paper (M, J) will denote a closed four-
manifold M equipped with a complex structure J if not otherwise specified.

The first example of J-Engel structure on a complex surface was constructed by Bry-
ant during the workshop Engel structures in San José in 2017.

Example 2.3 (R. Bryant). Let z, w be holomorphic coordinates on ℂ2 and define

(2.1)det(E∕W) ≅ det(TM∕E) and det(E∕D) ≅ det(D).
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Let ℤ4 act on ℂ4 via

Then, � passes to the quotient M = ℂ2∕ℤ4 = T4 , defining on it an Engel structure 
D = ker�.

3  Proof of Theorem 1.1

We now investigate the topological constraints on (M,  J) given by the existence of a 
J-Engel structure.

Suppose that an almost complex manifold (M, J) admits a J-Engel structure. Since M is 
almost complex, it is orientable, hence Equation (2.1) implies that W is trivial as a bundle. 
Fix a non-vanishing section W ∈ ΓW . Since D is J-Engel, we have that X = JW is tangent 
to D and D = ⟨W, X⟩ . Maximal non-integrability implies that Y = [W,X] is nowhere tan-
gent to D , so that we get the complex framing TM = ⟨W, JW, Y , JY⟩ . This shows that the 
Chern classes of (M, J) are trivial and, in particular, concludes the proof of the necessity in 
Theorem 1.1.

We now prove the converse. In order to list all complex surfaces with trivial Chern 
classes, we make use of Enriques–Kodaira classification which we recall here:

In table kod(M) denotes the Kodaira dimension of the surface M. We can now prove the 
following

Lemma 3.1 If a complex surface (M, J) has c1(M) = 0 and c2(M) = 0 then M is minimal 
and belongs to one of the following families

• Inoue surfaces;
• Hopf surfaces;
• Hyperelliptic surfaces;
• Kodaira surfaces;
• Complex tori;
• Non-Kähler properly elliptic surfaces.

Proof We refer to Table 1 for the invariants of the different classes of surfaces.
We can immediately exclude rational surfaces, Enriques surfaces, K3-surfaces, and 

surfaces of general type, since the Euler characteristic increases under blow-ups and their 
minimal models have positive Euler characteristic.

Ruled surfaces are birationally equivalent to ℂP1 × Σg , where Σg denotes a curve of 
genus g. The hypothesis imply that the signature of M must vanish, hence if M is ruled it 
must be minimal. In this case, though c1(M) ≠ 0.

In all other classes, the only surfaces with c2(M) = 0 are minimal. Notice that, class 
VII surfaces M have b1(M) = 1 , hence c2(M) = 0 implies b2(M) = 0 in this case. It was 
proven that only Hopf surfaces and Inoue surfaces satisfy this condition, see [13, 18]. 
Finally, a Kähler elliptic surface with trivial first Chern class must have Kodaira dimension 

𝜔 = ei(z+z̄)dw − idz

(k1, k2, k3, k4)(z,w) = (z + �k1 + ik2,w + k3 + ik4)
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0. Indeed, if the canonical bundle has a non-vanishing section, then this defines a hypersur-
face dual to the first Chern class, i.e. nullhomologous, contradicting the fact that the Kähler 
class evaluates non-trivially on it.   ◻

All surfaces in the classes listed in lemma have the structure of a mapping torus, i.e. 
they are fibre bundles over S1 . This is clear for hyperelliptic surfaces and tori. It is also 
well known that Kodaira surfaces and non-Kähler properly elliptic surfaces fibre over 
S1 , see e.g. [8, 21]. The same is true for Inoue surfaces, cf. [10], while the statement for 
Hopf surfaces was proven by Kato in [11, 12].

In order to prove Theorem 1.1, it suffices to show that a complex surface with trivial 
first Chern class which fibres over S1 admits a J-Engel structure. This is the content of 
Lemma 3.3, which we state in the more general setting of almost complex manifolds.

Remark 3.2 Notice that, all surfaces in the families listed in Lemma 3.1 have trivial first 
Chern class, except possibly for Hopf surfaces. In this case, indeed, it is unclear if all sec-
ondary Hopf surfaces satisfy c1(M) = 0 , notice that, this is true for primary ones since they 
are diffeomorphic to S1 × S3 (see [11]).

Lemma 3.3 Let (M,  J) be an almost complex 4-manifold such that c1(M) = 0. Moreover, 
suppose that M is diffeomorphic to an orientable 3-manifold bundle over S1, then M admits 
a J-Engel structure.

Proof Let � ∶ M ⟶ S1 be the bundle projection with (oriented) fibre N and denote by 
f ∶ N ⟶ N the monodromy of the bundle. This means that M is the suspension of the 
(orientation preserving) diffeomorphism f ∶ N ⟶ N . The vector field �t on S1 induces 
a nowhere-vanishing vector field V on M which satisfies �∗V = �t . This implies that 
c2(M) = 0 . Since c1(M) = 0 we have a framing of the form TM = ⟨V , JV , X, JX⟩ for some 
vector field X ∈ �(M) . Let n ∈ ℕ and consider the plane field Dn = ⟨An, JAn⟩ where

Using LV�
∗t = 1 and a ∶= LJV�

∗t , we have

An ∶= V +
1

n
sin(n2�∗t) X −

1

n
cos(n2�∗t) JX.

Table 1  Enriques–Kodaira 
classification

kod(M) Class of M c
2

1
(M) c2(M)

Negative Minimal rational surfaces 8, 9 4, 3
Class VII minimal surfaces ≤ 0 ≥ 0

Minimal ruled surfaces of genus g ≥ 1 8(1 − g) 4(1 − g)

Enriques surfaces 0 12
0 Hyperelliptic surfaces 0 0

Kodaira surfaces 0 0
K3-surfaces 0 24
Complex tori 0 0

1 Minimal properly elliptic surfaces 0 ≥ 0

2 Surfaces of general type > 0 > 0
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Hence, if n is big enough Dn is a J-Engel structure.   ◻

This completes the proof of Theorem 1.1. In [7], Geiges exhibited an Engel structure on 
parallelizable manifolds M which are suspensions of a diffeomorphism f ∶ N ⟶ N of a 
3-manifold N. Lemma 3.3 adapts this construction to the J-Engel case.

Remark 3.4 Instead of D being complex one can ask the Engel distribution D to be totally 
real, i.e. JD ∩D = 0 . If D is totally real and orientable the analogue of Theorem  1.1 
still holds. In fact, such an Engel structure D = ⟨W, X⟩ is trivial as a bundle, so that 
TM = ⟨W, JW, X, JX⟩ proving that the same restrictions on the Chern classes apply. On 
the other hand, with the notation of Lemma 3.3, the distribution

gives a totally real Engel structure on all complex surfaces M with c1(M) = 0 and 
c2(M) = 0.

4  Engel defining forms

The first author has studied the properties of particular 1-forms � and � such that the inter-
section of their kernels is an Engel structure (see [15]), we now consider these objects in 
the context of J-Engel structures. The results that follow are true also in the case where J is 
non-integrable.

Let D be an Engel structure. If two 1-forms � and � satisfy D = ker � ∩ ker � and 
E = ker � , we say that � and � are Engel defining forms for D . This happens if and only if

A pair of defining forms determines a distribution R = ⟨T , R⟩ transverse to D via

This is called the Reeb distribution associated with � and � . An Engel structure D on an 
orientable manifold M admits Engel defining forms if and only if it is orientable. This is 
the case for J-Engel structures.

JAn = JV +
1

n
cos(n2�∗t) X +

1

n
sin(n2�∗t) JX

1

n
[An, JAn] = −

(
sin(n2�∗t) + a cos(n2�∗t)

)
X

+
(
cos(n2�∗t) − a sin(n2�∗t)

)
JX + O(n−1)

1

n2

[
An,

1

n
[An, JAn]

]
= −

(
cos(n2�∗t) − a sin(n2�∗t)

)
X

−
(
sin(n2�∗t) + a cos(n2�∗t)

)
JX + O(n−1).

D = ⟨V , JV +
1

n
cos(n2�∗t) X +

1

n
sin(n2�∗t) JX⟩

� ∧ d� ≠ 0, � ∧ � ∧ d� ≠ 0, and � ∧ d� ∧ � = 0.

iT (� ∧ d�) = 0, �(T) = 1, �(T) = 0,

iR(� ∧ d�) = 0, �(R) = 0, �(R) = 1.
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A direct calculation proves that if � is a defining form for E , then we can get a pair of 
Engel defining forms for D by setting � = �◦J . Any other choice of � is of the form � � 
for some nowhere vanishing function � , hence the same is true for � = � �◦J . This simple 
observation implies that a J-Engel structure gives a preferred splitting of the tangent bun-
dle, as the following result ensures.

Proposition 4.1 Suppose that D is a J-Engel structure on an almost complex 4-manifold 
(M, J). Let W be the characteristic foliation of D, let � be a defining form for E, � = �◦J, 
and denote by Z = ⟨R⟩. The splitting of the tangent bundle

does not depend on the choice of �. We call it the J-Engel splitting.

Proof All other possible choices of � are of the form �̃� = 𝜆 𝛼 for � nowhere-vanishing 
function. This implies that 𝛽 = 𝜆 𝛽 and 𝛽 ∧ d𝛽 = 𝜆2 𝛽 ∧ d𝛽 , so that 𝜆R̃ = R concluding the 
proof.   ◻

The previous result implies that any isomorphism � ∶ M → M which preserves both the 
Engel structure D and the complex structure J, must also preserve the associated J-Engel 
splitting. We say that a vector field Z is J-Engel if its flow preserves both D and J.

An interesting question in the field is whether every Engel structure admits a 1-param-
eter family of symmetries, i.e. a vector field Z whose flow preserves the Engel structure, 
also called Engel vector field [14, 15]. The following result gives a necessary condition in 
the J-Engel setting.

Lemma 4.2 Suppose that D is a J-Engel structure on an almost complex 4-manifold (M, J). 
Let Z be an Engel vector field transverse to E and such that JZ ∈ ΓE, then Z ∈ ΓZ.

In particular, there exists � and � = �◦J Engel defining forms such that Z = R.

Proof Fix any defining form � for E and consider � = �◦J , so that the Reeb distribution 
R = ⟨T , R⟩ is well defined. To prove the claim, it suffices to show that iZ(� ∧ d�) = 0 that 
is d�(Z,A) = 0 for A ∈ ker � . In fact, since the formula is verified by definition for A = R , 
it is enough to prove it for A ∈ D . Since �(Z) = �(JZ) = 0 by hypothesis, Cartan formula 
gives

where we used the hypothesis LZD ⊂ D.
The proof of the second claim follows by taking the Engel defining forms

  ◻

We now turn back to the case where J is integrable, and describe the interplay between 
J and the Reeb distribution. We fix a framing D = ⟨W, X = JW⟩ and Engel defining forms 
� and � . In the following, we use the notation from [15, Sect. 3] that is c

WX
= �([W,X]) , 

d
XT

= �([X, T]) , d
WR

= �([W,R]) and d
XR
= �([X,R]).

(4.1)TM = W⊕ JW⊕ JZ⊕ Z,

d�(Z,A) = −�([Z,A]) = 0,

�̃� =
1

𝛼(Z)
𝛼 and 𝛽 = �̃�◦J.
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Lemma 4.3 Suppose that D is a J-Engel structure on a complex surface (M, J),  let � be a 
defining form for E, and � = �◦J. Then, the Reeb distribution R = ⟨T , R⟩ satisfies

Proof Suppose that JT = aW + b X + c T + d R for a, b, c, d ∈ C
∞(M) , we have

Now, since J is integrable, we have

which in turn yields

The formula for b is obtained via a similar calculation for �([X,R]) , and the formula for R 
is a consequence of J2 = −id .   ◻

Remark 4.4 Notice that, d�2 = −2d
WR
� ∧ � ∧ d� , this means that, since M is closed, there 

are points where the function d
WR

 vanishes. This implies that the Reeb distribution associ-
ated with the forms in the previous lemma is never J-invariant.

We now study the very special case where there exists a J-Engel vector field Z trans-
verse to E and such that JZ ∈ ΓE . In view of Lemma  4.2, this is the same as saying 
that we have a defining form � such that the flow of R acts by J-Engel isomorphisms. 
This particular instance provides a connection between J-Engel structures and K-Engel 
structures.

A K-Engel structure on M is a triple (D, g, Z) where D is an Engel structure, g a Rie-
mannian metric, and Z a Killing Engel vector field which is orthogonal to E . In order to 
prove that D admits a K-Engel structure, it suffices to exhibit Engel defining forms � and 
� and a framing D = ⟨W, X⟩ such that R commutes with W, X, and T (see [15, Proposi-
tion 7.5]).

Proposition 4.5 Suppose that D is a J-Engel structure on a complex surface (M, J),  and let 
Z be a J-Engel vector field transverse to E and such that JZ ∈ ΓE, then D admits a K-Engel 
structure.

Proof Using Lemma 4.2, we can suppose that � and � = �◦J are Engel defining forms such 
that Z = R . It suffices to find a section W of the characteristic foliation such that R com-
mutes with W, X = JW and T. Our hypotheses ensure that dWR = 0 = dXR so that

JT = R +
d
WR

+ d
XT

c
WX

W +
d
XR

c
WX

JW

JR = −T +
d
XR

c
WX

W −
d
WR

+ d
XT

c
WX

JW.

c = �(JT) = −�(T) = 0 and d = �(JT) = �(T) = 1.

[W, JT] = J[W,T] − J[JW, JT] − [JW,T],

�([W,R]) = �([W, JT − aW − b X]) = �([W, JT])

= �(J[W,T]) − �(J[JW, JT]) − �([JW, T])

= �([W,T]) − �([JW,R + aW + b X]) − d
XT

= a �([W, JW]) − 1 = a c
WX

− d
XT
.
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Since X = JW and LRJ = 0 , we conclude that a
XR
= 0 and b

XR
= a

WR
 . Now, Lemma 4.3 

ensures that

A direct calculation shows

in particular c
TR
= 0 implying d�2 = 0 , so that R is a foliation and hence a

TR
= 0 = b

TR
 (for 

more details see [15, Sect. 3]). Moreover, we have

which implies that we can rescale W so that a
WR

= 0 , hence proving the statement.   ◻

5  Examples of J‑Engel structures

This section is dedicated to constructing explicit examples of J-Engel structures on com-
plex surfaces.

Some classes admit geometric structures that can be used to produce such examples. 
More precisely, M admits a geometric structure if it is modelled on a simply connected 
manifold X with a transitive action of a Lie group G and a G-invariant metric. A geometric 
complex structure on M is a G-invariant complex structure. In our case, since M is com-
pact, X = M̃ , there is a lattice Γ of G such that M ≅ X∕Γ.

The following theorem of Wall classifies geometric structures on (not necessarily prop-
erly) elliptic surfaces.

Theorem 5.1 [21] An elliptic surface M without singular fibres has a geometric structure 
if and only if its base is a good orbifold1. The geometric structure is determined as follows 

kod(M) Negative 0 1

b1(M) even ℂ × ℂP
1 ℂ2 ℂ × ℍ

b1(M) odd S3 ×ℝ Nil3 ×ℝ ̃SL(2,ℝ) ×ℝ

Moreover, the following result classifies the ones which admit solv geometries.

[W,R] = a
WR
W

[X,R] = a
XR
W + b

XR
X

[T ,R] = a
TR
W + b

TR
X + c

TR
T .

JR = −T −
d
XT

c
WX

JW =∶ −T − aX.

0 = [R, JR] = [T ,R] + [aX,R] = a
TR
W + b

TR
X + c

TR
T + (LRa)X + a a

WR
X,

a
WR

= −LR(ln a)

1 This means that it admits a finite orbifold cover with no cone points (see Section  7 in [21] for more 
details).
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Theorem  5.2 [8] A complex surface is diffeomorphic to a 4-dimensional solvmanifold if 
and only if it is one of the following surfaces: complex torus, hyperelliptic surface, Inoue 
surface of type S0, primary Kodaira surface, secondary Kodaira surface, Inoue surface 
of type S±. And every complex structure on each of these complex surfaces (considered as 
solvmanifolds) is left-invariant.

Moreover, in [8, Sect. 5], Hasegawa gives an explicit construction of the complex struc-
ture on these solvmanifolds. Namely, consider a 4-dimensional simply connected solvable 
Lie group G, so that G∕Γ is a solvmanifold for Γ cocompact lattice. Let � be the Lie algebra 
of G, fix a basis {X1, X2, X3, X4} , and construct an almost complex structure J by defining

The following list gives the left-invariant complex structures in Theorem 5.2

(1) Complex Tori: G = ℝ4 and all brackets vanish.
(2) Hyperelliptic surfaces: all brackets vanish except for 

(3) Primary Kodaira surfaces: G = Nil3 ×ℝ and all brackets vanish except for 

(4) Secondary Kodaira surfaces: G is the maximal connected isometry group of Nil3 and 
all brackets vanish except for 

(5) Inoue surfaces of type S0 : G = Sol4
0
 and all brackets vanish except for 

 where a, b ∈ ℝ∗.
(6) Inoue surfaces of type S+ and S− : G = Sol4

1
 and all brackets vanish except for 

 In this case, there is a family of almost complex structures given by 

 for q ∈ ℝ.
One can verify that the above formulae define integrable almost complex structures.

In the remainder of this section, we give examples of J-Engel structures in each family 
appearing in Lemma 3.1 and point out which of these examples are K-Engel.

5.1  Inoue surfaces

Let us consider first Inoue surfaces of type S0 as solvmanifolds with the Lie algebra 
structure given above. A left-invariant J-Engel structure is given by D = ⟨A, JA⟩ where 
A = X1 + X4 . Indeed, a simple computation yields

JX1 = X2, JX3 = X4.

[X1,X4] = X2, [X2,X4] = −X1.

[X1,X2] = −X3.

[X1,X2] = −X3, [X1,X4] = X2, [X2,X4] = −X1.

[X1,X4] = −aX1 + bX2, [X2,X4] = −bX1 − aX2, [X3,X4] = 2aX3,

[X2,X3] = −X1, [X2,X4] = −X2, [X3,X4] = X3.

JX1 = X2, JX3 = X4 − qX2,
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and these four vectors span the Lie algebra. Notice that [15, Sect. 11] implies that in this 
case, we do not have any geometric K-Engel defining forms.

For Inoue surfaces of type S± , one considers the left-invariant complex plane field 
D = ⟨A, JA⟩ where A = X1 + X4 . The Lie algebra structure then gives

which shows that D is a J-Engel structure.

5.2  Hopf surfaces

Some Hopf surfaces are modelled on G = S3 ×ℝ . We can fix a basis {X1, X2, X3, X4} for 
the Lie algebra � of G for which the only non-zero Lie brackets are

and the complex structure J is given by JX1 = X2 and JX3 = X4 . We denote by 
{a1, a2, a3, a4} the dual basis on the dual Lie algebra.

We can define a left-invariant complex plane field on G by D = ⟨A, JA⟩ with 
A = X1 + X3 . By computing

one sees that D defines a J-Engel structure. In this case, R = X4 is a J-Engel vector field 
such that �(JR) = 0 , so D admits a K-Engel structure, in fact, the Engel defining forms are 
given by � = a4 − a2 and � = �◦J = a3 − a1.

Consider now for n ≥ 2 the subgroup ℤn ⊂ S1 × S3 acting by multiplication on both fac-
tors. Notice that, the J-Engel structure defined above is invariant under the action of ℤn . 
Thus, it provides an example of J-Engel structure on secondary Hopf surfaces of the type 
S1 ×ℤn

S3 . In particular, this construction provides a homogeneous J-Engel structure on 
U(2) for n = 2.

5.3  Hyperelliptic surfaces

Any hyperelliptic surface M is the quotient of the product of two elliptic curves T2

Λ
× T2

Λ̃
 by 

the action of a finite group G (see for instance [1]). More explicitly, we take coordinates 
zj = xj + iyj for j = 1, 2 on ℂ2 , and we denote by � the primitive third root of the identity. 
The admissible finite groups G and their actions were classified in [2] and are listed in 
Table 2.

We see that G acts on T2

Λ
 either by rotations of multiples of the angle �k = 2�∕k , where 

k is the order of the first factor of G (i.e. �k can take the values �, 3�∕2, �∕4, and −�∕3 ), or 
by translation x1 ↦ x1 + 1∕2 . Let nk = 2k + 2 so that

[A, JA] = bX1 + aX2 + 2aX3,

[A, [A, JA]] = 2abX1 + (a2 − b2)X2 − 4a2X3,

[A, JA] = X2 + X3 and

[JA, [A, JA]] = −2X1,

[X1,X2] = X3 [X2,X3] = X1 [X3,X1] = X2.

[A, JA] = X3 − X1 and

[A, [A, JA]] = X2
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We define

where R(�) denotes the rotation matrix of an angle � in the plane (x1, y1) . One can verify 
that this defines a J-Engel structure on ℂ2 (see Sect. 5.5). Moreover, it passes to the quo-
tient T2

Λ
× T2

Λ̃
 and, being invariant with respect to the action of G, it defines a J-Engel struc-

ture on M. Indeed the tangent map to the first generator g ∈ G acts on X as follows

while X is always invariant with respect to the action of the second generator of G.
Alternatively, one can appeal to Theorem  5.2 and construct a left-invariant J-Engel 

structure on the solvable group. An example is given by D = ⟨A, JA⟩ where A = X1 + X4 . 
It is easy to check that

so that D is in fact a J-Engel structure. Let {a1, a2, a3, a4} denote the dual basis on the 
dual Lie algebra, then � = a2 + a3 and � = �◦J = a1 − a4 are K-Engel forms and R = X3 is 
a J-Engel vector field.

5.4  Kodaira surfaces

We can produce explicit J-Engel structures on Kodaira surfaces making use of their struc-
ture of solvmanifold. Let us consider first primary Kodaira surfaces, these are quotients of 
Nil3 ×ℝ by a cocompact lattice. There are no geometric Engel structures on these mani-
folds (see Sect.  3 in [19]), nonetheless, we can give some explicit examples of J-Engel 

(5.1)
nk�

k
= �k + 2�.

X = �x2 − sin(nk�x2) �x1 + cos(nk�x2) �y1 = �x2 + R(nk�x2)�y1

JX = �y2 + cos(nk�x2) �x1 + sin(nk�x2) �y1 = �y2 + R(nk�x2)�x1 ,

(Tpg)(X(p)) = �x2 + R(�k)R(nk�x2)�y1 = �x2 + R(�k)R(nk�x2)�y1

= �x2 + R(nk�x2 + �k)�y1
(5.1)
= �x2 + R(nk�(x2 + 1∕k))�y1 = X(g(p)),

[A, JA] = X1 and

[A, [A, JA]] = −X2,

Table 2  List of hyperelliptic 
surfaces from [2]

G Lattice Generators of the action

ℤ2 Arbitrary (z1, z2) ↦ (−z1, z2 + 1∕2)

ℤ2 × ℤ2 Arbitrary (z1, z2) ↦ (−z1, z2 + 1∕2)

(z1, z2) ↦ (z1 + 1∕2, z2 + i�2∕2)

ℤ3 ℤ⊕𝜔ℤ (z1, z2) = (�z1, z2 + 1∕3)

ℤ3 × ℤ2 ℤ⊕𝜔ℤ (z1, z2) = (�z1, z2 + 1∕3)

(z1, z2) = (z1 + 1∕2, z2 + i�2∕2)

ℤ4 ℤ⊕ iℤ (z1, z2) = (iz1, z2 + 1∕4)

ℤ4 × ℤ2 ℤ⊕ iℤ (z1, z2) = (iz1, z2 + 1∕4)

(z1, z2) = (z1 + 1∕2, z2 + i�2∕2)

ℤ6 ℤ⊕𝜔ℤ (z1, z2) = (−�z1, z2 + 1∕6)
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structures. Let t be the coordinate on the second factor ℝ and consider the complex plane 
field D = ⟨A, JA⟩ where A = X4 + sin t X1 − cos t X2 . In this case, one gets

A straightforward computation shows that these two vectors, together with A and JA, span 
the Lie algebra, proving that D is a J-Engel structure.

Now for secondary Kodaira surfaces, consider the Lie algebra from Theorem 5.2 and set 
D = ⟨A, JA⟩ where A = X1 + X4 . Here, we see that

which implies that D is a left-invariant J-Engel structure.

5.5  Complex tori

We denote by T4

Λ
 the complex torus obtained by quotienting ℂ2 via the lattice Λ generated 

by the vectors

with �i, �i, �i, �i ∈ ℝ for i = 2, 3, 4 . All left-invariant distributions on ℝ4 are integrable, so 
there can be no geometric Engel structure.

Suppose that Λ is such that �i ∈ ℚ for all i, write �i = pi∕qi . Define the function 
� ∶ ℂ2

⟶ ℝ via

By the hypothesis on Λ , this function passes to the quotient T4

Λ
 . Now consider the vector 

fields

By construction, these are invariant under the action of Λ so that they pass to T4

Λ
 . A direct 

calculation shows that D = ⟨A, JA⟩ is a J-Engel structure.
Observe that the previous example gives an explicit J-Engel structure on a dense set of 

Abelian varieties T4

Λ
 . Since the Engel condition is open under perturbations, we obtain a 

family of J-Engel structures on an open dense set of tori.

5.6  Non‑Kähler properly elliptic surfaces

A properly elliptic surface is an elliptic fibration over a good orbifold (cf [21, p.  139]). 
By Theorem 5.1, we have that all non-Kähler properly elliptic surfaces admit a geometric 
structure of type G = S̃L(2,ℝ) ×ℝ , hence it suffices to produce a left-invariant J-Engel 
structure on this Lie group.

[A, JA] = X3 − sin t X1 + cos t X2 and

[A, [A, JA]] = − cos t X1 − sin t X2.

[A, JA] = −X3 + X1 and

[A, [A, JA]] = −X2,

e1 =

⎛
⎜⎜⎜⎝

1

0

0

0

⎞
⎟⎟⎟⎠
, ei =

⎛
⎜⎜⎜⎝

�i
�i
�i
�i

⎞⎟⎟⎟⎠

�(x1, y1, x2, y2) ∶= 2�q1q2q3x1.

A = �x1 + sin � �x2 − cos � �y2 , JA = �y1 + cos � �x2 + sin � �y2 .
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We can fix a basis {X1, X2, X3, X4} for the Lie algebra � of G for which the only non-
zero Lie brackets are

and the complex structure J is given by JX1 = X2 and JX3 = X4.
We can define a left-invariant complex plane field on G by D = ⟨A, JA⟩ with 

A = X1 + X2 + X3 . By computing

, one sees that D defines a J-Engel structure.

Remark 5.3 The examples provided in this section furnish an alternative proof of Theo-
rem 1.1 for all surfaces in the list except Tori and Hopf surfaces.
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