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摘 要

在实际系统中，由于传感器的限制和环境的影响，系统的动态变化常常不能完

全被掌握，获取的信息或测量的数据常常不完善，所以系统操作员并不总是对系统

有完整的了解。但系统的状态信息却非常重要，操作员需要估计系统的状态才能做

出决定，例如故障诊断，反馈控制和隐蔽性分析等系统操作和分析都需要确定系统

的状态。由于其重要性，状态估计问题在离散事件系统中受到了研究者们很多的关

注，这促进了系统状态估计方法的研究。其中可检测性在近年来备受关注，研究者

在可检测性的框架下，以更系统的方式研究了离散事件系统的状态估计问题。可检

测性描述了系统状态能否被确定的能力，具体而言，系统具有可检测性意味着，当

系统运行一段时间后，操作员根据系统产生输出或信号，能够唯一的确定系统的当

前状态和后续状态。

为了对实际系统进行建模和分析，首先要有强有力的离散事件系统建模工具来

描述外界对系统的不同观测行为。其次，通过穷举所有状态的分析方法可能产生状

态爆炸问题，对实际系统并不适用。则设计更为高效、可实现的系统可检测性分析

方法尤为重要。由于可检测性对系统的要求很严格，其可能适用于部分系统，但要

求所有系统达到可检测性要求并不合理。因此，本论文主要研究了基于 Petri网模型

的系统可检测性验证方法，并放宽了可检测性的要求，提出了 C-可检测性概念，给

出了 C-可检测性的形式化定义和验证方法。最后将 C-可检测性性质应用于铁路系

统中，验证了其针对实际系统的有效性。主要的结果如下：

1. 将四种类型的可检测性从有限自动机扩展到标记 Petri网，即在标记 Petri网

中正式定义了强可检测性，弱可检测性，周期性强可检测性和周期性弱可检测性。

2. 提出了一种基于基础可达图的方法（BRG-观测器法）来对标记 Petri网系统

的四种可检测性进行分析。基于基础可达图（basis reachability graph，BRG），该方

法无需枚举与观察结果一致所有标识，只需要求解整数线性方程式即能表达所有的

状态。并且 BRG的状态数已经被其他研究者证明不大于可达图（reachability graph，

RG）的状态数。运用基于 BRG的分析方法，提高了分析效率，避免了可检测性的

状态空间爆炸问题。

3. 在 Petri网框架下，提出了三种新的结构来分析强可检测性和周期性强可检测

性，并且通过检验这些结构中的强连通分量来验证可检测性。其中构造这三种结构

以及计算强连通分量都是多项式复杂度。与目前的其他方法相比，这三种方法具有

更低的算法复杂度。这三种方法不需要计算整个可达空间，也不需要列举与观测一

致的所有状态，对于强可检测性或周期性强可检测性的验证更为高效。
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4. 针对可检测性对于很多系统要求可能太过严格的问题，提出了 C-可检测性性

质，该性质只要求系统的关键状态能够被唯一确定。并且根据要求的严苛程度，将

该性质划分为了强 C-可检测性、弱 C-可检测性、周期性强 C-可检测性和周期性弱

C-可检测性这四类。本论文对这四种 C-可检测性给出了严格的形式化定义，并基于

BRG提出了高效的验证方法。特别是当系统的关键状态由一组广义互斥约束来描述

时，可以通过解决一组整数线性规划问题来验证系统的 C-可检测性。

5. 最后，在标记 Petri网的框架下，为铁路信号系统的状态估计问题提供一个通

用的建模框架，将 C-可检测性应用于铁路信号系统中，验证了其在实际系统的有效

性。无线闭塞中心切换是铁路信号系统的一个重要功能，它影响铁路的运输效率，

可靠性和安全性。本论文以中国列车控制系统中的 RBC切换为例，首先使用标记

Petri网对 RBC切换过程进行建模。然后，运用所提出的方法来分析该切换过程，最

终证明了 RBC切换过程满足强 C-可检测性。

关键词： 可检测性；Petri网；离散事件系统；状态估计；铁路信号系统
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Abstract

In many real-world systems, due to limitations of sensors or constraints of the environ-

ment, the system dynamics is usually not perfectly known. However, the state information of

the system is usually crucial for the purpose of decision making. The state of the system needs

to be determined in many applications such as fault diagnosis, state-feedback control, opacity,

etc. Due to its importance, the state estimation problem has received considerable attention in

the discrete event system (DES) community. Recently, the state estimation problem has been

studied systematically in the framework of detectability. The detectability properties charac-

terize the possibility to determine the current and the subsequent states of a system after the

observation of a finite number of events generated by the system.

To model and analyze practical systems, powerful DES models are needed to describe

the different observation behaviors of the system. Secondly, due to the state explosion prob-

lem, analysis methods that rely on exhaustively enumerating all possible states are not applica-

ble for practical systems. It is necessary to develop more efficient and achievable verification

methods for detectability. Furthermore, since detectability could be too restrictive in real ap-

plications, it may be suitable for some applications but may be too strong in others. Thus, in

this thesis, efficient detectability verification methods using Petri nets are investigated, then

detectability is extended to a more general definition (C-detectability) that only requires that a

given set of crucial states can be distinguished from other states. Formal definitions and effi-

cient verification methods for C-detectability properties are proposed. Finally, C-detectability

is applied to the railway signal system to verify the feasibility of this property. The main

results of this research are listed as below:

1. Four types of detectability are extended from finite automata to labeled Petri nets.

In particular, strong detectability, weak detectability, periodically strong detectability, and

periodically weak detectability are formally defined in labeled Petri nets.

2. Based on the notion of basis reachability graph (BRG), a practically efficient approach

(the BRG-observer method) to verify the four detectability properties in bounded labeled Petri

nets is proposed. Using basis markings, there is no need to enumerate all the markings that are

consistent with an observation, as they can be describe by solving an integer linear equation.

It has been shown by other researchers that the size of the BRG is usually much smaller than

the size of the reachability graph (RG). Thus, the method improves the analysis efficiency and

avoids the state space explosion problem.



Page IV Southwest Jiaotong University Doctor Degree Dissertation

3. Three novel approaches for the verification of the strong detectability and periodically

strong detectability are proposed, which use three different structures whose construction

has a polynomial complexity. Moreover, rather than computing all cycles of the structure at

hand, which is NP-hard, it is shown that strong detectability can be verified looking at the

strongly connected components whose computation also has a polynomial complexity. As a

result, they have lower computational complexity than other methods in the literature. Without

computing the whole reachability space and without enumerating all the markings consistent

with an observation, the three proposed approaches are more efficient for the verification of

strong detectability and periodically strong detectability.

4. Detectability could be too restrictive in real applications since it requires that the

current and the subsequent states always have to be determined without uncertainty. Thus,

detectability is extended to C-detectability that only requires that a given set of crucial states

can be distinguished from other states. Four types of C-detectability are defined in the frame-

work of labeled Petri nets: strong C-detectability, weak C-detectability, periodically strong

C-detectability, and periodically weak C-detectability. Moreover, efficient approaches are

proposed to verify such properties in the case of bounded labeled Petri net systems based on

the BRG. Furthermore, if the crucial states are described by a set of generalized mutual ex-

clusion constraints, then C-detectability properties can be verified by solving a set of integer

linear programming problems.

5. Finally, a general modeling framework of railway systems is presented for the states

estimation using labeled Petri nets. Then, C-detectability is applied to railway signal system-

s to verify its feasibility in the real-world system. The radio block center (RBC) handover

procedure in the railway signal system is an important function of RBC, which affects the

transport efficiency, reliability and safety of railways. Taking the RBC handover procedure in

the Chinese train control system level 3 (CTCS-3) as an example, the RBC handover proce-

dure is modeled using labeled Petri nets. Then based on the proposed approaches, it is shown

that that the RBC handover procedure satisfies strongly C-detectability.

Keywords: Detectability, Petri nets, discrete event systems, state estimation, railway signal

systems
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Sommario

In molti sistemi ferroviari, a causa delle limitazioni dei sensori o dei vincoli ambientali,

la dinamica del sistema è solitamente non perfettamente nota. Tuttavia, la conoscenza dello

stato del sistema è tipicamente cruciale allo scopo di prendere decisioni sul sistema stesso.

Lo stato del sistema necessita di essere determinato in molte applicazioni quali la diagnosi di

guasto, il controllo in retroazione, l’opacità, etc. Data la sua importanza, il problema della

stima dello stato ha ricevuto considerevole attenzione nella comunità dei Sistemi ad Eventi

Discreti. Recentemente è stato studiato con riferimento al problema della detectabilità. La

detectabilità caratterizza la possibilità di determinare lo stato corrente e gli stati successivi di

un sistema sulla base dell’osservazione di un numero finito di eventi generati dal sistema.

Nella modellazione e analisi dei sistemi reali, i modelli ad eventi discreti sono necessari

per descrivere le diverse osservazioni prodotte dal sistema durante la sua evoluzione. Inoltre,

a causa del problema di esplosione dello stato, i metodi di analisi attraverso enumerazione

esaustiva di tutti gli stati possibili non sono applicabili a sistemi di dimensioni reali. è nec-

essario pertanto sviluppare dei metodi piùefficaci per la verifica della detectabilità. Inoltre,

poichéla detectabilità è una proprietà molto restrittiva, questa puòessere utile in alcune ap-

plicazioni ma puòrivelarsi troppo restrittiva in altre. Pertanto in questa tesi, ci si focalizza

dapprima su metodi efficienti di verifica della detectabilità usando le Reti di Petri come mod-

ello di riferimento. Successivamente, si propone una definizione di detectabilità piùgenerale

(C-detectabilità) che fa riferimento ad uno specifico sottoinsieme di stati, imponendo che so-

lo lo stato di tali stati sia perfettamente ricostruito. Alcune proprietà di C-detectabilità sono

dapprima formalizzate, quindi metodi efficienti per la loro verifica sono proposti. Infine, la

C-detectabilità è applicata al sistema di segnaletica ferroviaria per verificare l’ammissibilità

di tali proprietà.

I principali risultati di questa ricerca sono enumerati nei seguenti punti:

1. Le reti di Petri sono un formalismo grafico e matematico applicabile ai sistemi ad

eventi discreti ed hanno un potere di modellazione superiore rispetto agli automi a stati fini-

ti. In questa tesi, vengono riproposte con riferimento alle reti di Petri con etichetta quattro

nozioni di detectabilità precedentemente formalizzate nell’ambito degli automi a stati finiti.

In particolare: la detectabilità forte, la detectabilità debole, la detectabilità periodicamente

forte e la detectabilità periodicamente debole.

2. Basandoci sulla nozione di grafo di base di raggiungibilità (BRG: basis reachability
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graph), viene proposto un metodo efficace nella pratica (metodo BRG-observer) per la verifi-

ca delle suddette proprietà di detectabilità per reti di Petri con etichetta. Grazie alle marcature

di base, non vi è necessità di enumerare tutte le marcature che sono consistenti con una os-

servazione ma è sufficiente risolvere un sistema di equazioni lineari. è stato dimostrato che il

BRG ha solitamente dimensioni molto ridotte rispetto al grafo di raggiungibilità (RG: reacha-

bility graph). Perciòil metodo migliora l’efficacia dell’analisi ed evita problemi di esplosione

dello spazio di stato.

3. Tre nuovi approcci per la verifica della forte detectabilità e della periodicamente forte

detectabilità vengono proposte, basandosi su tre diverse strutture il cui calcolo ha complessità

polinomiale. Inoltre, piuttosto che calcolare tutti i cicli della struttura di riferimento, che

sarebbe NP-hard, si dimostra come la forte detectabilità possa essere verificata guardando

le componenti fortemente connesse il cui calcolo ha anch’esso una complessità polinomiale.

Come conseguenza, tale approccio ha una complessità computazionale inferiore rispetto ad

altri metodi proposti nella letteratura. Senza calcolare l’intero spazio di raggiungibilità e

senza enumerare tutte le marcature consistenti con una osservazione, i tre approcci proposti

sono piùefficienti per la verifica della detectabilità forte e periodicamente forte.

4. La detectabilità è una proprietà molto restrittiva poichérichiede che gli stati corrente

e seguenti siano sempre determinati senza incertezza. Pertanto, in questa tesi si generalizza la

definizione di detectabilità introducendo la C-detectabilità che richiede soltanto che un dato

insieme di stati cruciali possa essere distinto dagli altri stati. Vengono definiti quattro tipi di

C-detectabilità nell’ambito delle reti di Petri con etichetta, ossia la C-detectabilità forte, de-

bole, periodicamente forte e periodicamente debole. Inoltre, vengono proposti degli approcci

efficienti per la verifica di tali proprietà nel caso di sistemi di reti di Petri limitati con etichetta

basati sul BRG. Inoltre, se gli stati cruciali sono descritti come un insieme di vincoli di mutua

esclusione generalizzati, le proprietà di C-detectabilità possono essere verificate risolvendo

un insieme di problemi di programmazione lineare intera.

5. Infine, viene considerato un problema di stima di stati cruciali in ambito ferroviario

usando le reti di Petri con etichetta come modello di riferimento. Viene quindi studiato un

problema di verifica della C-detectabilità in sistemi di segnaletica ferroviaria. La procedura di

consegna del centro di blocco radio (RBC: radio block center) è una funzione importante che

ha un impatto significativo nell’efficienza dei trasporti, oltre che nella affidabilità e sicurezza

ferroviarie. Con riferimento alla procedura di consegna RBC del sistema ferroviario cinese,

e in particolare al livello 3 (CTCS-3: Chinese train control system - level 3), viene dapprima

modellata la procedura di consegna RBC usando le reti di Petri con etichetta. Successiva-
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mente, la C-detectabilità del modello rete di Petri della procedura di consegna è verificata

mediante l’approccio proposto.

Keywords: Rilevabilità, reti di Petri, sistemi a eventi discreti, stima dello stato, sistemi di

segnaletica ferroviaria
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Chapter 1: Introduction

1.1 Background and Motivation

In recent years, with the rapid development of science and technology, the size of all

kinds of systems is larger and larger, and the logic of the systems is more and more complex.

Moreover, in many applications, due to the limitations of sensors or the constraints of the

environment, the system dynamics is usually not perfectly known. However, the state infor-

mation of the system needs to be determined for many applications. Thus, state estimation

plays an important role in system design and analysis, and it is one of the central problems

in systems and control theory. Accurate state information of the system is always necessary

for system supervision control [1, 2], fault diagnosis [3, 4] and safety analysis [5, 6]. When

any emergency occurs, knowing whether the system has reached a critical state can help the

operators to respond and deal with it in a timely and correct manner. Timely detection of the

current state of the system can prevent the system from entering a more dangerous situation

and causing greater loss. Furthermore, analyzing the state of system is helpful to determine

whether there are potential risks in the system specification and development process, which

can improve the design of the system and guarantee the safety of the system. Analysis of cru-

cial states of the system is also helpful for fault localization and fault diagnosis. For example,

the state estimation of a train is important, if at some point, two trains have to use the same

railroad. We need to make sure that we can accurately estimate the state of each train (train’s

location) in order to avoid collision.

Detectability is a property used to investigate the state of the system [7]. The detectabil-

ity properties characterize the possibility to determine the current and the subsequent states

of a system after the observation of a finite number of events generated by the system. As an

important property in the class of state estimation problems, detectability is closely related to

many security/privacy properties, e.g., diagnosability, opacity, observability [8–11]. Although

such properties are significantly different among them, they all characterize the ability of the

system to derive information on the system behavior based on partial information about its

evolution. Therefore, the analysis of some of such properties can be reduced to the analysis of

other properties. As an example, the problem of establishing if certain faulty states have been

reached, can be formulated in terms of a detectability problem [11–13]. Another example is

provided by opacity, which describes the capability of a system to hide its states to an outside
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intruder, namely, the intruder should not be able to realize when certain states, which define

the secret, have been reached [6]. Clearly, if a system is detectable, it is not opaque [9, 10, 14].

Meanwhile, attack detection and identification in cyber-physical systems can be viewed as a

particular application of detectability analysis [15, 16]. Finally, detectability is a property

which reveals to be fundamental in many other practical problems, such as state-feedback

control [1, 2], fault prognosis [17, 18] and predictability [19, 20].

Due to its importance, the detectability problems have been extensively investigated

in discrete event systems (DESs) [7, 21–24]. However, there are still several problems not

addressed:

(1) Most of the literature on detectability is in the framework of finite automata, and

there are only few works based on Petri nets, even if Petri nets have stronger modeling power

than finite automaton. Moreover, the works using Petri nets are all based on the reachability

graph (RG) of the Petri net. However, it is known that the state explosion issue is unavoidable

to construct the RG of large-sized systems.

(2) Although some analysis structures with polynomial complexity have been proposed

as a tool for the verification of detectability in the automata framework, they require the

computation of all cycles of these structures, whose computation complexity is NP-hard. In

other words, the complexity of the l verification method is still very high. Thus, it is necessary

to search for more efficient verification algorithms.

(3) Detectability could be too restrictive in real applications since it requires that the

current and the subsequent states always have to be determined without uncertainty. Imposing

detectability could be too rigorous in many real applications, since it typically requires a huge

number of sensors associated with transitions. To use detectability in these applications, a

more general definition of detectability is needed.

(4) At present, all the works on detectability are focused on theoretical research, not

applied to the real-word system. The railway signal system is a safety-critical system, and its

current state is closely related with its safety. Thus, in this thesis, problems of detectability

verification are investigated in the context of railway signal systems.

Therefore, to solve the above problems, we first study detectability of DESs using Petri

nets where some events are unobservable. More precisely, we first formalize the definitions

of the detectability properties in the Petri net framework and propose solutions to the de-

tectability verification problem. Given a DES that is modeled by a Petri net, the detectability

verification problem consists in determining whether the system satisfies certain detectabil-

ity properties. Then, we extend the detectability to C-detectability that only requires that a
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given set of crucial states can be distinguished from other states. Clearly, detectability is a

special case of C-detectability, where the set of crucial states is equivalent to the whole state

space. The verification problem of C-detectability is investigated. Finally, the C-detectability

is applied to railway signal systems to verify its feasibility.

1.2 Detectability Problem in DESs

Discrete-event systems (DESs) are dynamical systems with discrete state-spaces and

event-driven dynamics [25]. DESs can clearly describe the relationship between the various

parts of the system, and they are extensively used for modeling both logical systems that are

inherently event-driven and symbolic abstractions of continuous/hybrid dynamical systems.

In many situations, the system under consideration can be modeled as a discrete event sys-

tem, such as railway systems [26–29], communication systems [30–32], and manufacturing

systems [33–36]. In the last decades, a very rich literature on DESs has been produced, s-

ince several man-made systems can be efficiently modeled in this framework [7, 25, 37–39].

In particular, a great attention has been devoted to partially observed DESs. Indeed, not all

events occurring in the system can be measured, or their measuring could be too costly or

unreliable. This leads to a series of fundamental problems such as fault diagnosis [40], state-

feedback control under partial state observation [1], opacity [6], etc. This explains why the

state estimation problem under partial observation of the system evolution has been exten-

sively investigated in the DES community [6, 7, 37, 39–41], and a huge number of problem

formulations have been proposed.

State estimation is one of the most fundamental problems in DESs [7, 42]. State estima-

tion is a method of estimating the state of a dynamical system based on available measurement

data (the input and output of the system). If state estimation cannot determine in which state

the system is, then it can help us to know the set of all possible states in which the system

may be given current and past observations. In many problems, e.g., supervisory control, fault

diagnosis and opacity analysis, the state information of the system is usually crucial for the

purpose of decision making. However, in many real-world systems, due to the limitations of

sensors or the constraints of the environment, the system dynamics is usually not perfectly

known. Therefore, state estimation is an important issue in the analysis and design of DES,

especially for problems that need to estimate the state of the system based on incomplete ob-

servations. In the context of DESs, due to the application of state estimation in many different

problems, it has been extensively studied [1, 3, 5, 18, 37, 43]. The problem of state estimation

dates back to the study of the property of observability; see, e.g., [37, 44, 45]. In this problem,
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it is assumed that the system’s behavior is only partially-known and we want to infer the state

of the system based on incomplete or imperfect information. State estimation of DES has

also been investigated for different classes of system models including max-plus automata

[46], timed Petri nets [43] and stochastic Petri nets [47]. The state estimation problem is also

closely related to many practical problems, including state feedback control problem [1], fault

diagnosis problem [3, 4], fault prognosis problem [18], state disambiguation problem [2, 48],

information-flow security problem [5, 6], and opacity problem [9].

In the railway signaling system area, the state estimation related problem has also

been extensively investigated based on the DES models, including fault diagnosis [49, 50],

decision-making [51] and supervisory control [29, 52]. In [52], Giua and Seatzu propose

a supervisory control method for railway networks based on Petri nets, and they design a

a controller to ensure safeness and liveness of the railway networks. Based on Petri net-

s, decision-making strategies in fixed-block systems are proposed [49], and diagnosis of the

fixed-block systems [51] and diagnosis of multi-track level crossings [50] are studied. In [53],

the RBC handover procedure is modeled by timed automata, and the safety of the RBC han-

dover procedure is validated. A binary decision diagram-based symbolic supervisor synthesis

method is proposed to ensure time and space efficiency of the high-speed railway station when

dealing with a practical supervisory control problem in [29]. Based on proper state transition

maps and corresponding relation matrices, an approach of traffic state prediction and conflict

detection is proposed in [54].

Recently, the state estimation of DES has been investigated in a more systematic manner

in the context of detectability [7, 21–24, 55–58]. The detectability properties characterize the

possibility to determine the current and the subsequent states of a system after the observation

of a finite number of events generated by the system. Detectability has been studied earlier

in DESs, typically denoted as observability [8, 44, 45]. The observability of the current state

and initial state is discussed in [45], and whether the current state can be determined peri-

odically is investigated in [44]. The notion of detectability was first proposed and studied in

[7] in the deterministic finite automaton framework based on the assumption that the states

and the events are partially observable. Shu et al. [7] defined four types of detectability:

strong detectability, weak detectability, strong periodic detectability, and weak periodic de-

tectability. The four types of detectability are verified using the notion of observer, whose

complexity is exponential w.r.t. the number of states of the system. Polynomial algorithms

based on the notion of detector have been proposed in [23] to check strong detectability and

strong periodic detectability of a given automaton. Checking weak detectability and weak
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periodic detectability is proved to be PSPACE-complete [24] and PSPACE-hard for a very

restricted class of automata [22]. Finally, Shu and Lin [13, 59] extended detectability to de-

layed detectability and developed a polynomial algorithm for its verification. Masopust [22]

shows that even for very simple DESs that do not have trivial-cycles (the simplest deadlock

free DESs), the verification of weak and weak periodic detectability is still intractable.

To meet different requirements, the notion of detectability has been studied more exten-

sively. Initially formulated with reference to the current state, the notion of detectability has

been then extended to study initial state estimation [61, 66] and trajectory detection [62]. In

[61], a polynomial algorithm based on the notion of reversed verifier has been proposed to

verify strong I-detectability. The verification algorithm for trajectory detectability requires

polynomial-time using a twin-machine-like construction, while the algorithm for verifying

periodic trajectory detectability has exponential complexity [62]. In [21, 42, 55, 67, 68],

detectability has been investigated in a stochastic setting. For probabilistic finite-state au-

tomata, while checking strong I-detectability is proved to be PSPACE-complete [42], check-

ing A-detectability and AA-detectability are proved to be PSPACE-hard [21] and polynomial

time [67], respectively. The notion of detectability has also been extended to modular DESs

[20, 69], networked DESs [70], and fuzzy DESs [71]. New types of detectability are pro-

posed, including D-detectability [23], and K-detectability [63]. In [72–75], the enforcement

of detectability is studied. We summarize in Table 1-1 a general overview of decidability and

complexity results of detectability published up to date in the literature.

In this thesis, the reference formalism is Petri nets. Petri nets are a graphical and mathe-

matical modeling tool with a higher modeling power than finite state automata. Furthermore,

using structural analysis and algebraic techniques, a series of problems can be solved more

efficiently using Petri nets rather than automata, such as supervisory control [76], fault diag-

nosis [77], opacity [6]. The observability of unlabeled Petri nets was formalized by Giua and

Seatzu [8], including marking observability and strong marking observability. In [65], the au-

thors extend strong detectability and weak detectability in DESs to labeled Petri nets. Strong

detectability is proved to be decidable and checking the property is EXPSPACE-hard, while

weak detectability is proved to be undecidable. Recently, Zhang and Giua [78] investigate

eventual strong detectability and weak approximate detectability on labeled Petri nets. These

approaches are all based on the RG of the Petri net. For bounded labeled Petri nets, since their

RG is a finite automaton, detectability verification problems are clearly decidable. However,

it is known that the state explosion issue is unavoidable to construct the RG of large-sized

systems. Therefore, applying the automaton-based approaches to labeled Petri nets may not



Page 6 Southwest Jiaotong University Doctor Degree Dissertation

Table 1-1 Decidability and complexity results for different detectability verification problems.
Detectability System

model
Decidability Technique Complexity Order Ref.

Strong detectability

Finite-state
automata Decidable

Detector Poly. 𝒪(|𝐸||𝑋|4) [23]
Strong periodic detectability Detector Poly. 𝒪(|𝐸||𝑋|4) [23]

Weak detectability Observer PS-C. 𝒪(|𝐸|2|𝑋|) [24]
Weak periodic detectability Observer PS-C. 𝒪(|𝐸|2|𝑋|) [24]

Strong D-detectability Detector Poly. 𝒪(|𝐸||𝑋|4) [23]
Strong periodic D-detectability Observer PS-C. 𝒪(|𝐸|2|𝑋|) [60]

Weak D-detectability Observer PS-C. 𝒪(|𝐸|2|𝑋|) [60]
Weak periodic D-detectability Observer PS-C. 𝒪(|𝐸|2|𝑋|) [60]

Strong I-detectability Reversed verifier Poly. 𝒪(|𝐸||𝑋|4) [61]
Weak I-detectability Reversed observer - 𝒪(|𝐸|2|𝑋|) [61]

Trajectory detectability Twin-Machine Poly. 𝒪(|𝐸|2|𝑋|5) [62]

Periodic trajectory detectability Observer -
𝒪(|𝐸|2|𝑋|+

|𝐸|2|𝑋|5)
[62]

Strong K-detectability K-detector Poly. 𝒪(|𝐸||𝑋|2𝐾+2
) [63]

(k1,k2)-detectability Two-Way Verifier Poly. 𝒪(|𝐸||𝑋|6) [64]
N-(k1,k2)-detectability Augmented automaton Poly. 𝒪(|𝐸||𝑋|6) [59]

Strong detectability Unbounded
Petri nets

Twin-plant EXPS-H. - [65]
Weak detectability Undecidable - - - [65]

𝐸: the set of events of the automaton system; 𝑋: the set of states of the automaton system.
Poly.: Polynomial time; PS-C.:PSPACE-complete; EXPS-H.: EXPSPACE-hard.

work. In this thesis, we first extend the four detectability notions to labeled Petri nets and then

based on the notion of basis markings, efficient approaches to verifying the four detectability

properties are proposed.

Detectability requires that the current and the subsequent states always have to be de-

termined without uncertainty. This requirement is useful in some applications but may be

too strong in others, since it typically requires a huge number of sensors associated with

transitions. As a result, other properties have been defined in the literature that consist in a re-

laxation of detectability. For instance, current-state opacity: a system is current-state opaque

with respect to a given secret 𝑆 (defined as a subset of states) if it is never possible to establish

if the current state is actually in set 𝑆. Compared with detectabilty, current-state opacity only

requires to determine whether the current state is in 𝑆 or not, without precisely reconstruct-

ing the current state. To address such an issue, in this thesis we propose different notions of

detectability. In particular, we formalize the notion of C-detectability, where “C” stands for

“crucial”. C-detectability requires that if the set of markings consistent with a certain obser-

vation contains crucial states, then the crucial state has to be determined uniquely after a finite

number of observations. In other words, we extend detectability to C-detectability that only

requires that a given set of crucial states can be distinguished from the other states. Clearly,

detectability is a special case of C-detectability, where the set of crucial states is equivalent to

the whole state space.
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1.3 Research Contents

In this thesis, we first extend the four detectability notions to labeled Petri nets, and then

based on the notion of basis markings, efficient approaches to verifying the four detectability

properties are proposed. Then, we extend detectability to C-detectability. In more detail,

four types of C-detectability are defined. Based on the notions of basis marking and basis

reachability graph (BRG) [77], efficient approaches to verify the above four C-detectability

properties are proposed. Finally, we apply the C-detectability to the railway signal system to

verify the correctness and effectiveness of the method. The specific content is divided into the

following three parts.

1. Research on detectability verification method based on Petri net. In this part, we

extend four types of detectability from finite automata to labeled Petri nets, which have larger

modeling power than finite automata. Moreover, based on the notion of basis markings, ap-

proaches are developed to verify the four detectability properties in a bounded labeled Petri

net system.

1) Strong detectability, weak detectability, strong periodic detectability, and weak peri-

odic detectability are formally defined in labeled Petri nets.

2) Efficient approaches to verifying the above four detectability properties in bounded

labeled Petri nets are proposed. By constructing the observer of the BRG rather than the RG,

the four detectability properties can be verified.

3) Three efficient approaches are provided for the verification of strong detectability and

strong periodic detectability using three different structures. The three approaches do not

require the calculation of the entire reachability space or the construction of an observer.

Moreover, the construction of the three structures has polynomial complexity.

4) A series of numerical examples are presented to compare the efficiency of the pro-

posed methods.

2. Research on the C-detectability based on Petri nets. In this part, we extend detectabil-

ity to C-detectability that only requires that a given set of crucial states can be distinguished

from other states. We define four types of C-detectability in the framework of labeled Petri

nets. Moreover, we propose efficient approaches to verify such properties in the case of

bounded labeled Petri net systems. Based on the notions of basis marking and BRG, efficient

approaches to verify the above four C-detectability properties are proposed.

1) Strong C-detectability, weak C-detectability, periodically strong C-detectability, and

periodically weak C-detectability are formally defined in labeled Petri nets.
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2) Efficient approaches to verify the above four C-detectability properties in bound-

ed labeled Petri nets are proposed. By constructing the observer of the BRG, the four C-

detectability properties can be checked. By constructing the detector of the BRG, strong

C-detectability and periodically strong C-detectability can be checked more efficiently.

3) Rather than computing all the elementary cycles in the observer [7, 23], which is

NP-hard, we show that C-detectability can be verified by computing strongly connected com-

ponents [79], which is of polynomial complexity with respect to the size of the observer.

4) Two examples showing the efficiency of the proposed approaches are presented.

3. Application of C-detectability in railway signal system. In this part, we study the C-

detectability of the RBC handover. Taking the RBC handover procedure in the Chinese train

control system level 3 (CTCS-3) as an example, we first model the RBC handover procedure

using labeled Petri nets. Then an efficient approach is used to check C-detectability of the

labeled Petri net modeling the handover procedure.

1) According to the specification of the RBC handover procedure in CTCS-3, we build

the sequence diagram of the RBC handover procedure.

2) Based on the sequence diagram, the RBC handover procedure is split into three main

subsystems modeled by labeled Petri nets, then the whole system model is built by the com-

position of the basic subsystem models.

3) Using the notion of BRG and observer, the C-detectability properties of the RBC

handover procedure are checked efficiently.

1.4 Organization and Contribution of the Thesis

The thesis focuses on detectability properties and C-detectability properties for systems

that are modeled as labeled Petri nets. Moreover, the application of C-detectability is also

provided. The organization and main contribution of the thesis are summarized as follows,

which are also shown in Fig. 1-1.

Chapter 1: The background and the research motivation of the detectability are present-

ed. The current works and results of detectability are reviewed, and the main research content

and technical route of the thesis are explained. We give an overview of the relevant literature

on detectability analysis, and position our contributions with respect to these works.

Chapter 2: This chapter presents some basics on automata, Petri nets, elementary cycles

and strongly connected components.

Chapter 3: We formalize and analyze the four types of detectability properties for sys-
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Chapter 4 Verification of 

C-detectability using Labeled 

Petri Nets

Chapter 3 Verification of 

Detectability using Labeled 

Petri Nets

Chapter 2 Preliminaries

Chapter 1 Introduction

Chapter 5 Analysis of 

C-detectability of the Radio 

Block Center Handover

Conclusions and Future Work

1.Definitions of C-detectability in LPNs

2.Verification methods for detectability

3.Comparison of the proposed Methods

1. Literature review and research

2. Academic exchange

3. Field investigation

1. Literature review and research

2. Academic exchange

1. Petri net analysis method

2. Graph theory analysis method

3. Optimization theory and method

4. MATLAB programming

1. Petri net modeling method

2. C-detectability analysis method

3. MATLAB programming

1. Literature review and research

2. Academic exchange

3. Field investigation

1. Petri net analysis method

2. Graph theory analysis method

3. Optimization theory and method

4. MATLAB programming

1.Definitions of detectability in LPNs

2.Verification methods for detectability

3.Comparison of the proposed methods

1.Automata

2.Petri nets

3.Elementary cycles and SCCs

1.Background and motivation

2.Detectability problem in DESs

1.The procedure of radio block center handover

2.Modeling RBC handover using LPNs

3.Analysis of C-detectability of RBC handover

1.Conclusions

2.Future work

Chapter Contents Methods

Fig. 1-1 The structure of the thesis.

tems that are modeled as labeled Petri nets with partial observation on their transitions. We

provide four new approaches for the verification of such detectability properties using four

different structures, and analyze their computational complexity.

Chapter 4: In order to focus more on the estimation of crucial states of the system,

we propose four types of C-detectability in the framework of labeled Petri nets: strong C-

detectability, weak C-detectability, periodically strong C-detectability, and periodically weak

C-detectability. Then, the approaches are proposed to verify such properties for bounded

labeled Petri net systems.

Chapter 5: We investigate the C-detectability of the RBC handover. The RBC handover

procedure in the Chinese train control system level 3 is modeled by labeled Petri nets. Then,

the efficient approaches proposed in Chapter 4 are used to check C-detectability of the labeled

Petri net modeling the handover procedure.

Conclusion and Future work: We conclude the thesis and present potential directions for

future work.
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Chapter 2: Preliminaries

In this section we recall the formalisms used in this thesis and some results on state

estimation in automata and Petri nets [25, 77, 80].

2.1 Automata

2.1.1 Automaton models

A nondeterministic finite (state) automaton (NFA) is a 5-tuple 𝐴 = (𝑋,𝐸𝐴, 𝑓, 𝑥0, 𝑋𝑚),

where

• 𝑋 = {𝑥0, 𝑥1, ..., 𝑥𝑛} is the finite set of states,

• 𝐸𝐴 = {𝑎, 𝑏, ...} is the finite set of events,

• 𝑥0 ∈ 𝑋 is the initial state,

• 𝑋𝑚 ⊆ 𝑋 is the set of marked states,

• 𝑓 : 𝑋 × 𝐸𝜀 → 2𝑋 is the transition relation.

𝐸𝜀 = 𝐸𝐴 ∪ {𝜀} and 𝜀 is the empty word. If 𝑋𝑚 = ∅, the NFA is denoted by 𝐴 =

(𝑋,𝐸𝐴, 𝑓, 𝑥0). The transition relation 𝑓 can be extended to 𝑓 : 𝑋 × 𝐸*
𝜀 → 2𝑋 in a standard

manner. Given an event sequence 𝑤 ∈ 𝐸*
𝜀 , if 𝑓(𝑥0, 𝑤) is defined in 𝐴, 𝑓(𝑥0, 𝑤) ̸= ∅ is the set

of states reached in 𝐴 from 𝑥0 with 𝑤 occurring. On the contrary, if 𝑓(𝑥0, 𝑤) is not defined

in 𝐴, we denote 𝑓(𝑥0, 𝑤) = ∅.

Given a subset of states 𝑌 ⊆ 𝑋 , the language generated from 𝑌 is ℒ(𝐴, 𝑌 ) = {𝑤 ∈
𝐸*

𝜀 |∃𝑥 ∈ 𝑌 : 𝑓(𝑥,𝑤)!}. If 𝑌 = {𝑥} is a singleton, the generated language is simply denoted

by ℒ(𝐴, 𝑥). The language generated from the initial states is denoted by ℒ(𝐴).

Example 2.1 Fig. 2-1 shows the graphical structure of a NFA 𝐴 = (𝑋,𝐸𝐴, 𝑓, 𝑥0). 𝑋 =

{0, 1, 2, 3, 4}, 𝐸𝐴 = {𝑎, 𝑏} and 𝑥0 = 0. The transition relation is: 2 ∈ 𝑓(0, 𝜀), 1, 3 ∈ 𝑓(0, 𝑎),

1 ∈ 𝑓(1, 𝑏), 4 ∈ 𝑓(2, 𝑎), 4 ∈ 𝑓(3, 𝑏) and 4 ∈ 𝑓(4, 𝑏). Let an event sequence be 𝑤 = 𝑎𝑏𝑏𝑏, by

Fig. 2-1, we have that 1, 4 ∈ 𝑓(0, 𝑤), thus 𝑤 ∈ ℒ(𝐴). ◇

2.1.2 Automata operation

In this section, we introduce two tools used in the thesis: observer and detector, which

are useful in the verification of the properties of interest.
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Fig. 2-1 The NFA in Example 2.1.

2.1.2.1 Observer

Given an NFA, its observer is a deterministic finite (state) automaton (DFA). Each state

of the observer is a subset of states of 𝑋 in which the NFA resides after a certain event

sequence has occurred. Thus, the observer is also called the equivalent DFA of the given

NFA.

Given an NFA 𝐴 = (𝑋,𝐸𝐴, 𝑓, 𝑥0, 𝑋𝑚), the unobservable reach of each state 𝑥 ∈ 𝑋 is

𝑈𝑅(𝑥) = {𝑦 ∈ 𝑋|∃𝑤 ∈ {𝜀}* : 𝑦 ∈ 𝑓(𝑥,𝑤)}

the set of states that can be reached from 𝑥 by an empty word. This definition can be extended

to a set of states 𝑌 ⊆ 𝑋 by

𝑈𝑅(𝑌 ) =
⋃︁
𝑥∈𝑌

𝑈𝑅(𝑥).

Let a NFA be 𝐴 = (𝑋,𝐸𝐴, 𝑓, 𝑥0), its observer is denoted by 𝐴𝑜 = (𝒳 , 𝐸𝐴, 𝑓𝑜, �̂�0),

where 𝒳 ⊆ 2𝑋 is a finite set of states. The initial state of 𝐴𝑜 is �̂�0 = 𝑈𝑅(𝑥0). The event set

of the observer is 𝐸𝐴. The transition function 𝑓𝑜 : 𝒳 × 𝐸 → 𝒳 is defined in Algorithm 1.

The observer can be constructed following the procedure in Algorithm 1, which works

as follows. First, the initial node �̂�0 = 𝑈𝑅(𝑥0) is added to a set of unchecked nodes 𝒳𝑛𝑒𝑤

(Steps 1 to 2). Then, for all nodes �̂� in 𝒳𝑛𝑒𝑤, consider all the states 𝑥 in �̂� . Compute the set

of states �̂�𝑡 that can be reached from 𝑥 by firing 𝑒, and then compute the unobservable reach

�̂� ′ of the set �̂�𝑡 (Steps 3 to 6). Next, add an edge from �̂� to �̂� ′ labeled 𝑒 (Step 7). If �̂� ′

does not exist in the observer, then add it to 𝒳 and 𝒳𝑛𝑒𝑤 (Steps 8 to 10). This procedure runs

iteratively until there is no unchecked node in 𝒳𝑛𝑒𝑤.

According to Algorithm 1, in the worst case, there are 2𝑛 − 1 states in the observer,

where 𝑛 is the number of states of 𝐴. Thus, the complexity of computing the observer is

𝒪(2𝑛).
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Algorithm 1 Construction of the observer
Input: A NFA 𝐴 = (𝑋,𝐸𝐴, 𝑓, 𝑥0).
Output: The corresponding observer 𝐴𝑜 = (𝒳 , 𝐸𝐴, 𝑓𝑜, �̂�0).

1: �̂�0 := 𝑈𝑅(𝑥0),
2: 𝒳 := {�̂�0}, 𝒳𝑛𝑒𝑤 := {�̂�0}.
3: for all nodes �̂� ∈ 𝒳𝑛𝑒𝑤, do
4: for all 𝑒 ∈ 𝐸𝐴, do
5: �̂�𝑡 := {𝑥 ∈ 𝑋|∃𝑥′ ∈ �̂� : 𝑥 ∈ 𝑓(𝑥′, 𝑒)},
6: �̂� ′ := 𝑈𝑅(�̂�𝑡),
7: 𝑓𝑜(�̂�, 𝑒) := �̂� ′,
8: if �̂� ′ /∈ 𝒳 , then
9: 𝒳 := 𝒳 ∪ {�̂� ′}, 𝒳𝑛𝑒𝑤 := 𝒳𝑛𝑒𝑤 ∪ {�̂� ′}.

10: end if
11: end for
12: 𝒳𝑛𝑒𝑤 := 𝒳𝑛𝑒𝑤 ∖ {�̂�}.
13: end for

Example 2.2 Consider the NFA 𝐴 in Fig. 2-1, where 𝐸𝐴 = {𝑎, 𝑏} and 𝑥0 = 0. Since

2 ∈ 𝑓(0, 𝜀), 𝑈𝑅(𝑥0) = {0, 2}. Now, we use Algorithm 1 to build the observer of the NFA.

First, by Step 1, �̂�0 = 𝑈𝑅(𝑥0) = {0, 2}. For �̂�0, only event 𝑎 is enabled and its execution

leads to three different states 1, 3, 4, since 1, 3 ∈ 𝑓(0, 𝑎), 4 ∈ 𝑓(2, 𝑎). By Steps 5 to 7, node

�̂�1 can be reached from node �̂�0, where �̂�1 = {1, 3, 4}. Namely, �̂�1 = 𝑓𝑜(�̂�0, 𝑎). Starting

from �̂�1, only event 𝑏 may be executed. The execution of 𝑏 leads to states 1 and 4. Thus,

�̂�2 = {1, 4} and �̂�2 = 𝑓𝑜(�̂�1, 𝑏). For �̂�2, only event 𝑏 is enabled and its execution also leads

to states 1 and 4. Thus, �̂�2 = 𝑓𝑜(�̂�2, 𝑏). Therefore, the obtained observer of the NFA 𝐴 is

𝐴𝑜, which is shown in Fig. 2-2. Clearly, The observer 𝐴𝑜 is a DFA. ◇
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Fig. 2-2 The observer of the NFA in Fig. 2-1.

2.1.2.2 Detector

The detector of a given automaton is a NFA, whose size is polynomial with respect to

the number of states of the considered automaton [23]. Given a NFA 𝐴 = (𝑋,𝐸𝐴, 𝑓, 𝑥0),

we denote 𝐴𝑑 = (𝑄,𝐸𝐴, 𝑓𝑑, 𝑞0) the detector of 𝐴, where 𝑄 ⊆ 2𝑋 is a finite set of states.

The initial state of 𝐴𝑑 is 𝑞0 = 𝑈𝑅(𝑥0), and the other states of 𝐴𝑑 are subsets of 𝑋 with
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cardinality at most equal to 2. The event set of the detector is 𝐸𝐴. The transition function

𝑓𝑑 : 𝑄× 𝐸 → 2𝑄 is defined in Algorithm 2.

Algorithm 2 Construction of the detector
Input: A NFA 𝐴 = (𝑋,𝐸𝐴, 𝑓, 𝑥0).
Output: The corresponding detector 𝐴𝑑 = (𝑄,𝐸𝐴, 𝑓𝑑, 𝑞0).

1: 𝑞0 := 𝑈𝑅(𝑥0),
2: 𝑄 := {𝑞0}, 𝑄𝑛𝑒𝑤 := {𝑞0}.
3: for all nodes 𝑞 ∈ 𝑄𝑛𝑒𝑤, do
4: for all 𝑒 ∈ 𝐸𝐴, do
5: 𝑞𝑒 := {𝑥 ∈ 𝑋|∃𝑥′ ∈ 𝑞, 𝑥 ∈ 𝑓(𝑥′, 𝑒)},
6: 𝑞𝑡 := 𝑈𝑅(𝑞𝑒),
7: if |𝑞𝑡| = 1, then
8: 𝑓𝑑(𝑞, 𝑒) := {𝑞𝑡},
9: if 𝑞𝑡 /∈ 𝑄, then

10: 𝑄 := 𝑄 ∪ {𝑞𝑡}, 𝑄𝑛𝑒𝑤 := 𝑄𝑛𝑒𝑤 ∪ {𝑞𝑡}.
11: end if
12: else
13: 𝑓𝑑(𝑞, 𝑒) := ∅,
14: for all 𝑞′ ⊆ 𝑞𝑡 with |𝑞′| = 2, do
15: 𝑓𝑑(𝑞, 𝑒) := 𝑓𝑑(𝑞, 𝑒) ∪ {𝑞′},
16: if 𝑞′ /∈ 𝑄, then
17: 𝑄 := 𝑄 ∪ {𝑞′}, 𝑄𝑛𝑒𝑤 := 𝑄𝑛𝑒𝑤 ∪ {𝑞′}.
18: end if
19: end for
20: end if
21: end for
22: 𝑄𝑛𝑒𝑤 := 𝑄𝑛𝑒𝑤 ∖ {𝑞}.
23: end for

The procedure to construct the detector of a given NFA is summarized in Algorithm 2,

which works as follows. First, the initial node 𝑞0 = 𝑈𝑅(𝑥0) is added to a set of unchecked

nodes 𝑄𝑛𝑒𝑤 (Steps 1 to 2). Then, for all nodes 𝑞 in 𝑄𝑛𝑒𝑤, consider all the states 𝑥 in 𝑞.

Compute the set of states 𝑞𝑒 that can be reached from 𝑥 by firing 𝑒, and then compute the

unobservable reach 𝑞𝑡 of the set 𝑞𝑒 (Steps 3 to 6). If the cardinality of 𝑞𝑡 is equal to 1, then

add an edge from 𝑞 to 𝑞𝑡 labeled 𝑒 (Steps 7 to 11). Else, compute all the strict subsets 𝑞′ ⊆ 𝑞𝑡

with |𝑞′| = 2 as new nodes, then add an edge from 𝑞 to 𝑞′ labeled 𝑒 (Steps 12 to 15). If 𝑞′

does not exist in the detector, then add it to 𝑄 and 𝑄𝑛𝑒𝑤 (Steps 16 to 18). This procedure runs
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iteratively until there is no unchecked node in 𝑄𝑛𝑒𝑤.

According to Algorithm 2, in the worst case, the detector has 𝑛 states whose cardinality

is one, and 𝑛×(𝑛−1)
2 states whose cardinality is two, where 𝑛 is the number of states of 𝐴.

Thus, the number of states of the detector is bounded by 𝑛×(𝑛+1)
2 . Moreover, the number of

transitions is bounded by (𝑛×(𝑛+1)
2 )2 × 𝑒, where 𝑒 is the number of events of 𝐴. Therefore,

the complexity of constructing it is polynomial w.r.t. the size of the BRG, which is 𝒪(𝑒𝑛4).
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Fig. 2-3 The detector of the NFA in Fig. 2-1.

Example 2.3 Consider again the NFA 𝐴 in Fig. 2-1, where 𝐸𝐴 = {𝑎, 𝑏} and 𝑥0 = 0.

Now, we use Algorithm 2 to build the detector of the NFA. First, by Step 1, 𝑞0 = 𝑈𝑅(𝑥0) =

{0, 2}. For 𝑞0, only event 𝑎 is enabled and its execution leads to three different states 1, 3,

4. By Steps 5 to 17, three different nodes can be reached from node 𝑞0, each one containing

two states. Namely, 𝑞1, 𝑞2, 𝑞3 ∈ 𝑓𝑑(𝑞0, 𝑎), where 𝑞1 = {1, 3}, 𝑞2 = {1, 4} and 𝑞3 = {3, 4}.

Starting from 𝑞1, only event 𝑏 may be executed. The execution of 𝑏 leads to states 1 and 4.

Thus, 𝑞2 ∈ 𝑓𝑑(𝑞1, 𝑏). For 𝑞2, the execution of 𝑏 also leads to states 1 and 4, i.e., 𝑞2 ∈ 𝑓𝑑(𝑞2, 𝑏).

For 𝑞3, 4 ∈ 𝑓(3, 𝑏) and 4 ∈ 𝑓(4, 𝑏), thus 𝑞4 ∈ 𝑓𝑑(𝑞3, 𝑏) and 𝑞4 = {4}. Finally, we can obtain

the detector 𝐴𝑑 of the NFA 𝐴, which is shown in Fig. 2-3. Clearly, The detector 𝐴𝑑 is also a

NFA without the empty word. ◇

2.2 Petri nets

2.2.1 Petri net models

A Petri net is a structure 𝑁 = (𝑃, 𝑇, 𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡), where

• 𝑃 is a set of 𝑚 places, graphically represented by circles;

• 𝑇 is a set of 𝑛 transitions, graphically represented by bars;

• 𝑃𝑟𝑒 : 𝑃 × 𝑇 → N is the pre-incidence functions that specify the arcs directed from

places to transitions.
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• 𝑃𝑜𝑠𝑡 : 𝑃 × 𝑇 → N is the post-incidence functions that specify the arcs directed from

transitions to places.

Note that in this thesis, we use N and Z to denote the sets of nonnegative integers and

integers, respectively. The incidence matrix of 𝑁 is denoted by 𝐶 = 𝑃𝑜𝑠𝑡−𝑃𝑟𝑒. A Petri net

is acyclic if there are no oriented cycles.

A marking is a vector 𝑀 : 𝑃 → N that assigns to each place a non-negative integer

number of tokens, graphically represented by black dots. The marking of place 𝑝 is denoted

by 𝑀(𝑝). A marking is also denoted by 𝑀 =
∑︀

𝑝∈𝑃 𝑀(𝑝) · 𝑝. A Petri net system ⟨𝑁,𝑀0⟩ is

a net 𝑁 with initial marking 𝑀0.

A transition 𝑡 is enabled at marking 𝑀 if 𝑀 ≥ 𝑃𝑟𝑒(·, 𝑡) and may fire yielding a new

marking 𝑀 ′ = 𝑀 + 𝐶(·, 𝑡). We write 𝑀 [𝜎⟩ to denote that the sequence of transitions 𝜎 =

𝑡𝑗1 · · · 𝑡𝑗𝑘 is enabled at 𝑀 , and 𝑀 [𝜎⟩𝑀 ′ to denote that the firing of 𝜎 yields 𝑀 ′. The set of all

enabled transition sequences in 𝑁 from marking 𝑀 is 𝐿(𝑁,𝑀) = {𝜎 ∈ 𝑇 *|𝑀 [𝜎⟩}. Given

a transition sequence 𝜎 ∈ 𝑇 *, the function 𝜋 : 𝑇 * → N𝑛 associates with 𝜎 the Parikh vector

𝑦 = 𝜋(𝜎) ∈ N𝑛, i.e., 𝑦(𝑡) = 𝑘 if transition 𝑡 appears 𝑘 times in 𝜎. Given a sequence of

transitions 𝜎 ∈ 𝑇 *, its prefix, denoted by 𝜎′ ⪯ 𝜎, is a string such that ∃𝜎′′ ∈ 𝑇 * : 𝜎′𝜎′′ = 𝜎.

The length of 𝜎 is denoted by |𝜎|.

A marking 𝑀 is reachable in ⟨𝑁,𝑀0⟩ if there exists a transition sequence 𝜎 such that

𝑀0[𝜎⟩𝑀 . The set of all markings reachable from 𝑀0 defines the reachability set of ⟨𝑁,𝑀0⟩,
denoted by 𝑅(𝑁,𝑀0). A Petri net system is bounded if there exists a nonnegative integer

𝑘 ∈ N such that for any place 𝑝 ∈ 𝑃 and any reachable marking 𝑀 ∈ 𝑅(𝑁,𝑀0), 𝑀(𝑝) ≤ 𝑘

holds. Given a bounded Petri net, its reachability set 𝑅(𝑁,𝑀0) can be graphically represented

by the reachability graph (RG) that is a directed graph whose nodes are reachable markings

and arcs are tagged by transitions in 𝑇 . If 𝑀 [𝑡⟩𝑀 ′ and 𝑀,𝑀 ′ ∈ 𝑅(𝑁,𝑀0), then 𝑀 and 𝑀 ′

are two nodes in the RG and there is an arc from 𝑀 to 𝑀 ′ tagged with 𝑡.
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Fig. 2-4 A Petri net system.

Example 2.4 Consider the Petri net system in Fig. 2-4. Let the Petri net system be

⟨𝑁,𝑀0⟩ with 𝑀0 = 𝑝1 (or denoted as 𝑀0 = [1 0 0]𝑇 ). In the net 𝑁 = (𝑃, 𝑇, 𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡),
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𝑃 = {𝑝1, 𝑝2, 𝑝3}, 𝑇 = {𝑡1, 𝑡2, 𝑡3, 𝑡4},

𝑃𝑟𝑒 =

⎡⎣ 1 0 0 0
0 0 1 0
0 1 0 1

⎤⎦ , 𝑃𝑜𝑠𝑡 =

⎡⎣ 0 1 0 1
1 0 0 0
0 0 1 0

⎤⎦
and the incidence matrix

𝐶 =

⎡⎣ −1 1 0 1
1 0 − 1 0
0 − 1 1 − 1

⎤⎦ .

At 𝑀0, 𝑀0 ≥ 𝑃𝑟𝑒(·, 𝑡1), thus, 𝑡1 is enabled at 𝑀0 and 𝑀1 = 𝑀0 +𝐶(·, 𝑡1) = [0 1 0]𝑇 . Let a

transition sequence 𝜎 = 𝑡1𝑡3𝑡2𝑡1, which are enabled at 𝑀0, then 𝑦 = 𝜋(𝜎) = [2 1 1 0]𝑇 . The

maximal number of tokens in a place is 1 and thus the Petri net system is bounded. The RG

of the Petri net system is shown in Fig. 2-5. ◇
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Fig. 2-5 The RG of the Petri net system in Fig. 2-4.

2.2.2 Labeled Petri net models

A labeled Petri net (LPN) system is a 4-tuple 𝐺 = (𝑁,𝑀0, 𝐸, ℓ), where

• ⟨𝑁,𝑀0⟩ is a Petri net system;

• 𝐸 is the alphabet (a set of labels);

• ℓ : 𝑇 → 𝐸 ∪ {𝜀} is the labeling function.

The labeling function ℓ assigns to each transition 𝑡 ∈ 𝑇 either a symbol from 𝐸 or

the empty word 𝜀. Therefore, the set of transitions can be partitioned into two disjoint sets

𝑇 = 𝑇𝑜∪̇𝑇𝑢, where 𝑇𝑜 = {𝑡 ∈ 𝑇 |ℓ(𝑡) ∈ 𝐸} is the set of observable transitions with |𝑇𝑜| = 𝑛𝑜,

and 𝑇𝑢 = 𝑇 ∖ 𝑇𝑜 = {𝑡 ∈ 𝑇 |ℓ(𝑡) = 𝜀} is the set of unobservable transitions with |𝑇𝑢| = 𝑛𝑢.

Given a marking 𝑀 ∈ 𝑅(𝑁,𝑀0), we define

𝑈𝑅(𝑀) = {𝑀 ′ ∈ N𝑚|𝑀 [𝜎𝑢⟩𝑀 ′, 𝜎𝑢 ∈ 𝑇 *
𝑢}

its unobservable reach. Namely, the set of markings reachable from 𝑀 through unobserv-

able transition sequences. We denote as 𝐿(𝑁,𝑀0) = {𝜎 ∈ 𝑇 *|𝑀0[𝜎⟩} the set of transition
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sequences enabled at initial marking in 𝑅(𝑁,𝑀0). Finally we denote as

𝐿∞(𝐺) = {𝜎 ∈ 𝑇 *|𝜎 ∈ 𝐿(𝑁,𝑀0) ∧ |𝜎| is infinite}

the set of transition sequences of infinite length that are enabled at initial marking in

𝑅(𝑁,𝑀0). The labeling function can be extended to sequences ℓ : 𝑇 * → 𝐸* as

ℓ(𝜎𝑡) =

⎧⎪⎪⎨⎪⎪⎩
ℓ(𝜎)ℓ(𝑡) if 𝑡 ∈ 𝑇𝑜,

ℓ(𝜎) otherwise,

where 𝜎 ∈ 𝑇 * and 𝑡 ∈ 𝑇 . Given a set of markings 𝑌 ⊆ 𝑅(𝑁,𝑀0), the language generated

by 𝐺 from 𝑌 is

ℒ(𝐺, 𝑌 ) =
⋃︁

𝑀∈𝑌
{𝑤 ∈ 𝐸*|∃𝜎 ∈ 𝐿(𝑁,𝑀) : 𝑤 = ℓ(𝜎)}.

In particular, ℒ(𝐺, {𝑀0}) = {𝑤 ∈ 𝐸*|∃𝜎 ∈ 𝐿(𝑁,𝑀0) : 𝑤 = ℓ(𝜎)} is the language generat-

ed by 𝐺, which is also denoted by ℒ(𝐺). Let 𝑤 ∈ ℒ(𝐺) be an observed word. We denote as

𝒞(𝑤) = {𝑀 ∈ N𝑚|∃𝜎 ∈ 𝐿(𝑁,𝑀0) : 𝑀0[𝜎⟩𝑀, ℓ(𝜎) = 𝑤} (2-1)

the set of markings consistent with 𝑤. When |𝒞(𝑤)| ≠ 1, markings in 𝒞(𝑤) are confusable

since any of them could be the current marking given the observation 𝑤; otherwise, we say

that the markings in 𝒞(𝑤) are distinguishable.

Given an LPN system 𝐺 = (𝑁,𝑀0, 𝐸, ℓ) and the set of unobservable transitions 𝑇𝑢,

the 𝑇𝑢-induced subnet 𝑁 ′ = (𝑃, 𝑇 ′, 𝑃 𝑟𝑒′, 𝑃𝑜𝑠𝑡′) of 𝑁 is the net resulting by removing all

transitions in 𝑇 ∖ 𝑇𝑢 from 𝑁 , where 𝑃𝑟𝑒′ and 𝑃𝑜𝑠𝑡′ are the restrictions of 𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡 to 𝑇𝑢,

respectively. The incidence matrix of the 𝑇𝑢-induced subnet is denoted by 𝐶𝑢 = 𝑃𝑜𝑠𝑡′−𝑃𝑟𝑒′.
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Fig. 2-6 An LPN system.

Example 2.5 Consider the LPN system 𝐺 = (𝑁,𝑀0, 𝐸, ℓ) in Fig. 2-6, where 𝐸 =

{𝑎, 𝑏}, ℓ(𝑡1) = 𝑎, ℓ(𝑡2) = 𝑏, and ℓ(𝑡3) = ℓ(𝑡4) = 𝜀. Thus, 𝑇𝑜 = {𝑡1, 𝑡2} and 𝑇𝑢 = {𝑡3, 𝑡4}.
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Fig. 2-7 The 𝑇𝑢-induced subnet of the LPN system in Fig. 2-6.

The RG of the LPN system is shown in Fig. 2-5. Since 𝑀1[𝑡3⟩𝑀2 and 𝑀1[𝑡3𝑡4⟩𝑀0,

𝑈𝑅(𝑀1) = {𝑀0,𝑀1,𝑀2}. Given an observation 𝑤 = 𝑎, 𝒞(𝑎) = {𝑀0,𝑀1,𝑀2}. Let a

transition sequence be 𝜎 = (𝑡1𝑡3𝑡2)
*, clearly, 𝜎 is enabled at 𝑀0, thus 𝜎 ∈ 𝐿(𝑁,𝑀0) and

𝜎 ∈ 𝐿∞(𝐺). Then the observation 𝑤 = ℓ(𝜎) = (𝑎𝑏)* and 𝑤 ∈ ℒ(𝐺). The 𝑇𝑢-induced subnet

𝑁 ′ = (𝑃, 𝑇 ′, 𝑃 𝑟𝑒′, 𝑃𝑜𝑠𝑡′) of 𝑁 is shown in Fig. 2-7, and the incidence of 𝑁 ′ is

𝐶𝑢 =

⎡⎣ 0 1
−1 0
1 − 1

⎤⎦ .

Clearly, the 𝑇𝑢-induced subnet is acyclic since there is no cycle in 𝑁 ′. ◇

2.2.3 Basis Markings

The basis reachability graph (BRG) of an LPN system summarizes in a compact form

the information contained in its RG. Each node in the BRG represents not only the mark-

ing associated with it, but also its unobservable reach. In addition, only markings (called

basis markings) reachable through observable transitions and the unobservable transition se-

quences whose firing is necessary to enable the observable transitions, are enumerated. As a

consequence, the size of the BRG is usually much smaller than that of the RG, thus the BRG

has been efficiently used to verify some properties [6]. Before providing the algorithm for

its construction, we recall some results on state estimation using basis markings proposed in

[6, 77].

Definition 2.1 Given a marking 𝑀 and an observable transition 𝑡 ∈ 𝑇𝑜, we denote as

Σ(𝑀, 𝑡) = {𝜎 ∈ 𝑇 *
𝑢 |𝑀 [𝜎⟩𝑀 ′,𝑀 ′ ≥ 𝑃𝑟𝑒(·, 𝑡)}

the set of explanations of 𝑡 at 𝑀 and

𝑌 (𝑀, 𝑡) = {𝑦𝑢 ∈ N𝑛𝑢|∃𝜎 ∈ Σ(𝑀, 𝑡) : 𝑦𝑢 = 𝜋(𝜎)}

the set of 𝑒-vectors. ◇
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Thus Σ(𝑀, 𝑡) is the set of unobservable transition sequences whose firing at 𝑀 enables

𝑡. Among all the explanations, to provide a compact representation of the reachability set we

are interested in finding the minimal ones, i.e., the ones whose firing vector is minimal.

Definition 2.2 Given a marking 𝑀 and an observable transition 𝑡 ∈ 𝑇𝑜, we denote as

Σ𝑚𝑖𝑛(𝑀, 𝑡) = {𝜎 ∈ Σ(𝑀, 𝑡)|@𝜎′ ∈ Σ(𝑀, 𝑡) : 𝜋(𝜎′) � 𝜋(𝜎)}

the set of minimal explanations of 𝑡 at 𝑀 and

𝑌𝑚𝑖𝑛(𝑀, 𝑡) = {𝑦𝑢 ∈ N𝑛𝑢|∃𝜎 ∈ Σ𝑚𝑖𝑛(𝑀, 𝑡) : 𝑦𝑢 = 𝜋(𝜎)}

the corresponding set of minimal 𝑒-vectors. ◇

Different approaches can be applied to computing 𝑌𝑚𝑖𝑛(𝑀, 𝑡) [77, 81, 82]. In particular,

when the 𝑇𝑢-induced subnet is acyclic the approach proposed by Cabasino et al. [77] only

requires algebraic manipulations. Note that since a given place may have two or more unob-

servable input transitions, i.e., the 𝑇𝑢-induced subnet is not backward conflict free, the set of

minimal explanations is not necessarily a singleton.

Definition 2.3 Given an LPN system 𝐺 = (𝑁,𝑀0, 𝐸, ℓ) whose 𝑇𝑢-induced subnet is

acyclic, its basis marking set ℳ𝑏 is defined as follows:

• 𝑀0 ∈ ℳ𝑏;

• If 𝑀 ∈ ℳ𝑏, then ∀𝑡 ∈ 𝑇𝑜,∀𝑦𝑢 ∈ 𝑌𝑚𝑖𝑛(𝑀, 𝑡),

𝑀 ′ = 𝑀 + 𝐶(·, 𝑡) + 𝐶𝑢 · 𝑦𝑢 ⇒ 𝑀 ′ ∈ ℳ𝑏.

A marking 𝑀𝑏 ∈ ℳ𝑏 is called a basis marking of 𝐺. ◇

The set of basis markings contains the initial marking and all other markings that are

reachable from a basis marking by firing a transition sequence 𝜎𝑢𝑡, where 𝑡 ∈ 𝑇𝑜 is an observ-

able transition and 𝜎𝑢 is a minimal explanation of 𝑡 at 𝑀 . Note that since 𝑦𝑢 ∈ 𝑌𝑚𝑖𝑛(𝑀, 𝑡), 𝑡

is enabled at some marking in the unobservable reach of 𝑀 .

By Definition 2.3, basis markings and BRG can be recursively computed from the initial

marking if the 𝑇𝑢-induced subnet is acyclic. Given an LPN system 𝐺 = (𝑁,𝑀0, 𝐸, ℓ), its

BRG is an NFA, where each state is a basis marking, the set of events is the alphabet of

the LPN system, and there is no transition labeled with the empty word. The procedure to

construct the BRG of an LPN system is summarized in Algorithm 3, which works as follows.
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Algorithm 3 Computation of BRG
Input: A bounded LPN system 𝐺 = (𝑁,𝑀0, 𝐸, ℓ)

Output: The corresponding BRG 𝐵 = (ℳ𝑏, 𝐸, 𝑓,𝑀0).
1: ℳ𝑏 := {𝑀0},ℳ𝑛𝑒𝑤 := {𝑀0}.
2: for all nodes 𝑀 ∈ ℳ𝑛𝑒𝑤, do
3: for all 𝑡 s.t. 𝑌𝑚𝑖𝑛(𝑀, 𝑡) ̸= ∅ do
4: for all 𝑦 ∈ 𝑌𝑚𝑖𝑛(𝑀, 𝑡) do
5: 𝑀 ′ := 𝑀 + 𝐶𝑢 · 𝑦 + 𝐶(·, 𝑡);
6: 𝑓(𝑀, ℓ(𝑡)) := 𝑓(𝑀, ℓ(𝑡)) ∪ {𝑀 ′};
7: if 𝑀 ′ /∈ ℳ𝑏, then
8: ℳ𝑏 := ℳ𝑏 ∪ {𝑀 ′}, ℳ𝑛𝑒𝑤 := ℳ𝑛𝑒𝑤 ∪ {𝑀 ′};
9: end if

10: end for
11: end for
12: ℳ𝑛𝑒𝑤 := ℳ𝑛𝑒𝑤 ∖ {𝑀}.
13: end for

First, the initial node 𝑀0 is added to a set of unchecked nodes ℳ𝑛𝑒𝑤 (Step 1). Then, for all

markings 𝑀 in ℳ𝑛𝑒𝑤, if at marking 𝑀 there exists an observable transition 𝑡 for which a

minimal explanation exists, then we compute the markings reached firing 𝑡 and its minimal

explanations (Steps 2 to 4). Let 𝑀 ′ be one of such markings. Add an edge from 𝑀 to 𝑀 ′

labeled ℓ(𝑡) (Steps 5 to 6). If such a node does not exist in the BRG, then add it to ℳ𝑏 and

ℳ𝑛𝑒𝑤 (Steps 7 to 9). This procedure runs iteratively until there is no unchecked node in

ℳ𝑛𝑒𝑤. Clearly, ℳ𝑏 ⊆ 𝑅(𝑁,𝑀0) and ℒ(𝐵) = ℒ(𝐺).

We briefly analyze the complexity of Algorithm 3 in terms of number of basis markings

enumerated through the procedure. The complexity of constructing a BRG highly depends on

the structure of the net system. If all transitions are observable, then the set of basis markings

is identical to the set of reachable markings, i.e., ℳ𝑏 = 𝑅(𝑁,𝑀0). Although in the worst case

constructing the BRG has the same complexity as constructing the RG, in practical cases the

number of basis markings is much smaller than the number of reachable markings [6, 77, 83].

Therefore, the proposed BRG-based approaches usually have significant advantages over the

RG-based approaches.

Note that to apply the BRG approach, two assumptions are made:

1) the LPN system is bounded, and

2) its 𝑇𝑢-induced subnet is acyclic.
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Assumption 1) guarantees that the number of basis markings is finite. Assumption 2)

allows us to iteratively compute the basis markings and the set of markings that are reachable

from a basis marking using the state equation in Proposition 2.1.
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Fig. 2-8 The BRG of the LPN system in Fig. 2-6.

Example 2.6 Consider the LPN system in Fig. 2-6, where transitions 𝑡3 and 𝑡4 are un-

observable, and transitions 𝑡1 and 𝑡2 are labeled by 𝑎 and 𝑏, respectively. At the initial

marking 𝑀0 = [1 0 0]𝑇 , the minimal explanations of 𝑡1 is Σ𝑚𝑖𝑛(𝑀0, 𝑡1) = {𝜀}, and thus

𝑌𝑚𝑖𝑛(𝑀0, 𝑡1) = {⃗0}. The corresponding basis marking is 𝑀0+𝐶(·, 𝑡1) = 𝑀1 = [0 1 0]𝑇 . At

𝑀1, the minimal explanation of 𝑡2 is Σ(𝑀1, 𝑡2) = {𝑡3}, and thus 𝑌𝑚𝑖𝑛(𝑀1, 𝑡2) = {[1 0]𝑇}.

The basis marking obtained is 𝑀1 + 𝐶(·, 𝑡2) + 𝐶𝑢 · [1 0]𝑇 = 𝑀0. By Algorithm 3, the set of

basis markings of 𝐺 is ℳ𝑏 = {𝑀0,𝑀1}, and the obtained BRG is shown in Fig. 2-8. ◇

We denote

𝒞𝑏(𝑤) = {𝑀𝑏 ∈ ℳ𝑏|∃𝑤 ∈ ℒ(𝐵) : 𝑀𝑏 ∈ 𝑓(𝑀0, 𝑤)}

the set of basis markings consistent with a given observation 𝑤 ∈ ℒ(𝐺).

Proposition 2.1 [77] Let 𝐺 = (𝑁,𝑀0, 𝐸, ℓ) be an LPN system whose 𝑇𝑢-induced sub-

net is acyclic, and 𝑤 ∈ ℒ(𝐺) an observation generated by 𝐺. The following two statements

hold:

1. A marking 𝑀 is reachable iff there exists a basis marking 𝑀𝑏 ∈ ℳ𝑏 such that

𝑀 = 𝑀𝑏 + 𝐶𝑢 · 𝑦𝑢 (2-2)

has a nonnegative solution 𝑦𝑢 ∈ N𝑛𝑢 .

2.

𝒞(𝑤) =
⋃︁

𝑀𝑏∈𝒞𝑏(𝑤)

𝑈𝑅(𝑀𝑏) (2-3)

Statement 1 of Proposition 2.1 implies that any solution 𝑦𝑢 ∈ N𝑛𝑢 of Eq. (2-2) corre-

sponds to the firing vector of a transition sequence 𝜎 enabled at 𝑀𝑏, i.e., 𝑀𝑏[𝜎⟩ and 𝜋(𝜎) = 𝑦𝑢.

Under the assumption that the 𝑇𝑢-induced subnet is acyclic, the unobservable reach 𝑈𝑅(𝑀𝑏)
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of 𝑀𝑏 can be re-written as

𝑈𝑅(𝑀𝑏) = {𝑀 ∈ N𝑚|𝑀 = 𝑀𝑏 + 𝐶𝑢 · 𝑦𝑢, 𝑦𝑢 ∈ N𝑛𝑢}. (2-4)

According to Statement 2 and Eq. (2-4), the set of markings consistent with an observation

can be characterized using linear algebra rather than enumerating all the reachable markings.

Example 2.7 Consider again the LPN system in Fig. 2-6, whose RG is shown in Fig.

2-5 and BRG is shown in Fig. 2-8. ℳ𝑏 = {𝑀0,𝑀1}. There exists 𝑦𝑢 = [1 0]𝑇 such that

𝑀2 = [0 0 1]𝑇 = 𝑀1 + 𝐶𝑢 · 𝑦𝑢. According to Fig. 2-7, the 𝑇𝑢-induced subnet is acyclic,

thus 𝑀2 is reachable from 𝑀1. Since 𝒞𝑏(𝑎) = {𝑀1} and 𝑈𝑅(𝑀1) = {𝑀0,𝑀1,𝑀2}, 𝒞(𝑎) =
{𝑀0,𝑀1,𝑀2}. ◇

2.3 Elementary cycles and strongly connected components

In this subsection, we recall the notions of elementary cycles and strongly connected

components in a directed graph.

Definition 2.4 [Elementary cycles] An elementary cycle in a directed graph is a path

𝛾 = 𝑣1𝑒1𝑣2 . . . 𝑣𝑘𝑒𝑘𝑣1, where 𝑣𝑖 is a node and 𝑒𝑖 is an edge with 𝑖 ∈ {1, 2, . . . , 𝑘}, no node

appears twice, apart from the first and the last node that coincide. The corresponding obser-

vation of the elementary cycle is 𝑤 = 𝑒1𝑒2 . . . 𝑒𝑘. A node 𝑣𝑖 contained in the elementary cycle

𝛾 is denoted by 𝑣𝑖 ∈ 𝛾. ◇

Finding all the elementary cycles in a directed graph is known to be an NP-hard problem.

In this thesis, the algorithm in [84] is used to find all the elementary cycles. The algorithm

has a time bound of 𝒪((𝑛 + 𝑒)(𝑐 + 1)), where 𝑛, 𝑒 and 𝑐 are the number of nodes, edges

and elementary cycles, respectively. Note that in [84] the author points out that the number

of elementary cycles in a directed graph can grow faster with the number 𝑛 of nodes than the

exponential 2𝑛. Hereafter, elementary cycles are simply referred as cycles.

A directed graph 𝒢 is strongly connected, if for each pair of its nodes 𝑛𝑖, 𝑛𝑗 , there exist

directed paths 𝑛𝑖 → 𝑛𝑗 and 𝑛𝑗 → 𝑛𝑖.

Definition 2.5 [Strongly connected components] In a directed graph 𝒢, the subgraphs 𝒢𝑖

of 𝒢 are called strongly connected components (SCCs) of 𝒢 if (i) each 𝒢𝑖 is strongly connected

(1 ≤ 𝑖 ≤ 𝑛); (ii) no 𝒢𝑖 is a subgraph of a strongly connected subgraph of 𝒢. ◇

Finding all the SCCs is proven to be of polynomial complexity w.r.t. the size of the

graph [79]. In this thesis, only SCCs that contain at least one cycle (including self-loops)
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are considered. Note that if an SCC does not contain a cycle, then it contains only one node

without self-loops. Clearly, finding all the SCCs that contain at least one cycle is also of

polynomial complexity w.r.t. the size of the graph.

In this thesis, a node 𝑣𝑖 is said to be reachable from a cycle (or an SCC) if there exists

one node 𝑣𝑗 in the cycle (or the SCC) from which 𝑣𝑖 is reachable.
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Chapter 3: Verification of Detectability using Labeled
Petri Nets

Detectability describes the property of a system to uniquely determine, after a finite

number of observations, the current and the subsequent states. In this chapter, we formalize

and analyze four types of detectability: strong detectability, weak detectability, strong period-

ic detectability, and weak periodic detectability for systems that are modeled as labeled Petri

nets (LPNs) with partial observation on their transitions. We provide four new approaches

for the verification of such detectability properties using four different structures, and analyze

their computational complexity. Without computing the whole reachability space and without

enumerating all the markings consistent with an observation, the proposed approaches are

more efficient.

3.1 Introduction

In recent years, detectability has drawn a lot of attention from researchers in the discrete

event systems (DESs) community [22, 24, 42]. In this chapter, we present four new approach-

es for the analysis and testing of some detectability properties of LPNs. Strong detectability,

weak detectability, strong periodic detectability, and weak periodic detectability are fromally

defined in LPNs. The choice of LPNs as the reference formalism originates from the fact

that they allow to effectively formalize state estimation problems in the presence of partial

observation, simultaneously considering silent and indistinguishable events. The detectabil-

ity properties characterize the possibility to determine the current and the subsequent states

of a system after the observation of a finite number of events generated by the system. We

focus on four detectability properties, and consider the situation where both the structure and

the initial marking of the Petri net are known, while the system evolution is only partially

observed.

In order to reduce the computational complexity of verifying detectability of a system

modeled as a LPN, we propose four approaches: 1) BRG-observer method: by analyzing the

observer of the BRG of the system. The observer is a deterministic finite-state automaton,

whose size is exponential with respect to the number of states of the considered automaton

[25]. 2) BRG-detector method: by analyzing the detector of the BRG of the system. The

detector is a nondeterministic finite-state automaton, whose size is polynomial with respect to
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the number of states of the considered automaton [23]. 3) BRG-V method: by checking the

verifier of the BRG of the system. The complexity of constructing the verifier is polynomial

in the number of states of the given automaton [85, 86]. 4) VN-BRG method: by analyzing

the BRG of the verifier net of the system. The verifier net is a Petri net, whose construction

has polynomial complexity in terms of the size of the LPN system. It is noticed that all the

four approaches are based on the BRG, a graph that allows to summarize in a compact form

all the information contained in the RG. In more detail, thanks to the notion of basis markings

[77], there is no need to enumerate all the reachable markings, which usually causes the state

explosion issue. This leads to a relevant advantage in terms of computational complexity

since the BRG is typically much smaller than the RG.

It is known that the complexity of finding all the cycles in a directed graph is NP-hard.

Thus, in this chapter rather than computing all cycles of the structure following the approach-

es in [13, 23, 66], we show that strong detectability can be verified looking at the strongly

connected components whose computation has a polynomial complexity. Finally, MATLAB

codes are developed to implement the proposed approaches. Numerical results are presented

to illustrate them and compare their efficiency.

The rest of the chapter is organized as follows. Strong detectability, weak detectability,

strong periodic detectability and weak periodic detectability in LPNs are defined in Section

3.2. In Section 3.3, the approaches based on the BRG and observer are presented to verify the

four detectability properties. In Section 3.4, based on the BRG and its detector, we propose

an approach to verify strong detectability and strong periodic detectability. In Section 3.5,

strong detectability is verified by analyzing the verifier of the BRG of the system. Using the

verifier net and its BRG, an approach is proposed to verify strong detectability in Section 3.6.

In Section 3.7, a parametric example that illustrates the efficiency of the proposed approaches

is given. Conclusions are finally drawn in Section 3.8

3.2 Definitions of Detectability

In [23], four detectability properties have been defined: strong detectability, weak de-

tectability, strong periodic detectability, and weak periodic detectability. In this section we

extend these four detectability notions to LPNs.

3.2.1 Definitions

Detectability is a property related to the possibility that the system’s current and subse-

quent states can be uniquely determined after a finite length of observation. In literature, it is
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assumed that

1) The LPN system 𝐺 is deadlock free. This means that ∀𝑀 ∈ 𝑅(𝑁,𝑀0),∃𝑡 ∈ 𝑇 such

that 𝑀 [𝑡⟩, i.e., any reachable marking enables at least one transition;

2) The 𝑇𝑢-induced subnet is acyclic.

The two assumptions above guarantee that any transition sequence enabled in the system

can continue infinitely long as well as its corresponding observation. Similar assumptions are

commonly made when detectability is studied (e.g. [7, 24, 65]). Note that Assumption 2)

is more restrictive than assuming that there are no strings of unobservable events of infinite

length since the existence of a cycle of unobservable transitions in the Petri net structure does

not imply that such a cycle is enabled. However, Assumption 2) is a structural assumption

that can be verified in polynomial time and that leads to computational advantages in the

verification of detectability (as shown in the following sections).

Now, we extend the definitions of detectability defined in [23] to LPNs in a formal way.

Definition 3.1 [Strong detectability] An LPN system 𝐺 = (𝑁,𝑀0, 𝐸, ℓ) is said to be

strongly detectable if there exists a finite integer 𝐾 ∈ N such that

∀𝜎 ∈ 𝐿∞(𝐺),∀𝜎′ ⪯ 𝜎, |𝑤| ≥ 𝐾 ⇒ |𝒞(𝑤)| = 1,

where 𝑤 = ℓ(𝜎′). ◇

An LPN system is strongly detectable if the current and the subsequent states of the

system can be determined after a finite number of events observed for all evolutions of the

system.

Example 3.1 Consider the LPN system in Fig. 3-1(a). Its RG is shown in Fig. 3-1(b).

The resulting observer is reported in Fig. 3-1(c). After 𝑎* is observed, the current state

of the system can be uniquely determined, being 𝒞(𝑎*) = {𝑀2}. If (𝑎𝑏)*𝑎𝑏 is observed,

the estimation of the current marking is 𝒞((𝑎𝑏)*𝑎𝑏) = {𝑀1}, while if (𝑎𝑏)*𝑎 is observed,

𝒞((𝑎𝑏)*𝑎) = {𝑀2}. Thus, the two states can also be uniquely determined. Therefore, by

Definition 3.1, the LPN system is strongly detectable. ◇

Definition 3.2 [Weak detectability] An LPN system 𝐺 = (𝑁,𝑀0, 𝐸, ℓ) is said to be

weakly detectable if there exists a finite integer 𝐾 ∈ N such that

∃𝜎 ∈ 𝐿∞(𝐺),∀𝜎′ ⪯ 𝜎, |𝑤| ≥ 𝐾 ⇒ |𝒞(𝑤)| = 1,

where 𝑤 = ℓ(𝜎′). ◇
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Fig. 3-1 An LPN system (a), its RG (b), and the observer of the RG (c).

An LPN system is weakly detectable if the current and the subsequent states of the

system can be determined after a finite number of events observed for some evolutions of the

system. According to the definitions of strong detectability and weak detectability, obviously

if an LPN system is strongly detectable, it is weakly detectable as well.

Example 3.2 Consider again the LPN system in Fig. 3-1(a). Now we suppose that tran-

sition 𝑡2 is a unobservable transition. Then the resulting observer is reported in Fig. 3-2.

Clearly, the LPN system is not strongly detectable since after 𝑏* is observed, the estimation

contains markings 𝑀1 and 𝑀2. However, since after 𝑎* is observed, the estimation only

contains one marking 𝑀2, by Definition 3.2, the LPN system is weakly detectable. ◇
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Fig. 3-2 The observer in Example 3.2

Definition 3.3 [Strong periodic detectability] An LPN system 𝐺 = (𝑁,𝑀0, 𝐸, ℓ) is

said to be strongly periodically detectable if there exists a finite integer 𝐾 ∈ N such that

∀𝜎 ∈ 𝐿∞(𝐺),∀𝜎′ ⪯ 𝜎,

∃𝜎′′ ∈ 𝑇 * : 𝜎′𝜎′′ ⪯ 𝜎 ∧ |ℓ(𝜎′′)| ≤ 𝐾 ⇒ |𝒞(𝑤)| = 1,

where 𝑤 = ℓ(𝜎′𝜎′′). ◇
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An LPN system is strongly periodically detectable if the current and the subsequent s-

tates of the system can be periodically determined for all evolutions of the system. In other

words, “periodically detectable” implies that as a string 𝜎 continues, eventually there is only

one state consistent with the corresponding observation. We point out that for different evo-

lutions the period may be different. Note that as the system is bounded one can find an upper

bound for all periods.

Example 3.3 Consider the LPN system in Fig. 3-3(a). Its RG is shown in Fig. 3-3(b),

and the observer of the RG is shown in Fig. 3-3(c). State {𝑀2} of the observer contains

only one marking. Thus, when the transition sequence (𝑡1𝑡2𝑡4)
* fires and we observe (𝑎𝑎)*,

we know that the current state of the system is periodically {𝑀2} (when the 𝑎 is observed

even times). When observing (𝑎𝑏)*𝑎 (the transition sequence 𝑡1(𝑡2𝑡3)*𝑡2 fires), and we realize

that{𝑀2} is the current state of the system. By Definition 3.3, the LPN system is strongly

periodically detectable and the finite integer 𝐾 in the definition can equal to 2. Note that the

system is also weakly detectable, but not strongly C-detectable. ◇

Definition 3.4 [Weak periodic detectability] An LPN system 𝐺 = (𝑁,𝑀0, 𝐸, ℓ) is

said to be weakly periodically detectable if there exists a finite integer 𝐾 ∈ N such that

∃𝜎 ∈ 𝐿∞(𝐺),∀𝜎′ ⪯ 𝜎,

∃𝜎′′ ∈ 𝑇 * : 𝜎′𝜎′′ ⪯ 𝜎 ∧ |ℓ(𝜎′′)| ≤ 𝐾 ⇒ |𝒞(𝑤)| = 1,

where 𝑤 = ℓ(𝜎′𝜎′′). ◇

An LPN system is weakly periodically detectable if the current and the subsequent s-

tates of the system can be periodically determined for some evolutions of the system. By

Definitions 3.1 to 3.4, if an LPN system is strongly periodically detectable, it is also weak-

ly periodically detectable; if an LPN system is strongly/weakly detectable, it is periodically

strongly/weakly detectable as well.

Example 3.4 Let us consider again the LPN system in Fig. 3-3(a). Now we suppose that

transition 𝑡4 is a unobservable transition. Then the resulting observer is reported in Fig. 3-4.

When 𝑎* is observed, the current state of the system contains three markings, being 𝒞(𝑎*) =
{𝑀0,𝑀1,𝑀2}. If (𝑎𝑏)*𝑎 is observed, the estimation of the current marking is also state

{𝑀0,𝑀1,𝑀2}. As a result, by Definition 3.3, the LPN system is not strongly periodically

detectable. However, when (𝑎𝑏)*𝑎𝑏 is observed, the estimation of the current marking is

𝒞((𝑎𝑏)*𝑎𝑏) = {𝑀1}. Thus, the current state can be uniquely determined. Therefore, by

Definition 3.4, the LPN system is weakly periodically detectable.
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Fig. 3-3 An LPN system in Example 3.3 (a), its RG (b), and the observer of the RG (c).
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Fig. 3-4 The observer in Example 3.4.

Let us consider another LPN system in Fig. 3-5. Its RG is shown in Fig. 3-6(a), and the

observer of the RG is shown in Fig. 3-6(b). When 𝑎(𝑏𝑔)* is observed (the transition sequence

𝑡1𝑡2(𝑡8𝑡9𝑡10)
* fires), the current state of the system can be uniquely determined, which is equal

to 𝑀2. However, there always exist two arbitrarily long sequences (prefixes of the previous

sequence) 𝑡1𝑡2(𝑡8𝑡9𝑡10)
*𝑡8 and 𝑡1𝑡2(𝑡8𝑡9𝑡10)

*𝑡3 (having the same observation 𝑎(𝑏𝑔)*𝑏) such

that the current state cannot be determined, that is, if 𝑎(𝑏𝑔)*𝑏 is observed, the current state

could be any state in {𝑀3,𝑀4,𝑀5,𝑀6,𝑀7}. Therefore, according to Definition 3.1, the

LPN system is not strongly detectable.

On the other hand, when the transition sequence 𝑡1𝑡2(𝑡8𝑡9𝑡10)
* fires and we observe

𝑎(𝑏𝑔)*, we know that the current state of the system is periodically 𝑀2 (after seeing 𝑔). When

observing 𝑎𝑏(𝑐)* (the transition sequence 𝑡1𝑡2𝑡3(𝑡4)
* fires), and we realize that 𝑀3 is the

current state of the system. When observing 𝑎𝑏(𝑑)* (the transition sequence 𝑡1𝑡2𝑡5(𝑡7)* fires),

we realize that 𝑀6 is the current state of the system. Therefore, according to Definitions 3.2,

3.3 and 3.4, the LPN system is weakly detectable, strongly periodically detectable and weakly

periodically detectable. ◇

In the automaton framework, the (state) observer is constructed to verify detectability[7,

23]. To verify bounded LPN, first one needs to construct the RG and then follow the methods

by constructing the observer of the RG. It is known that, the complexity of constructing the
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Fig. 3-6 The RG of the LPN system in Fig. 3-5 (a), the observer of the RG (b).

RG of the Petri net is exponential in the size of the net system (number of places, transitions,

tokens in the initial marking). Moreover, in the worst case, the complexity of constructing the

observer is exponential in the number of states of the system. Therefore, to verify detectability

of large-sized systems the state explosion problem cannot be avoided. In this section, we

present an approach to verifying detectability without enumerating all states of the system.

3.2.2 BRG for Detectability

In this chapter, we propose a modified BRG that characterizes if there is a confusable

companion of a basis marking. To make sure the nodes of the BRG is finite, we assume that

the LPN system is bounded.

Given a bounded LPN system 𝐺, for each basis marking 𝑀𝑏 ∈ ℳ𝑏, a binary scalar is

assigned by function Ψ(𝑀𝑏) : ℳ𝑏 → {0, 1} that is defined as follows:

Ψ(𝑀𝑏) =

⎧⎪⎪⎨⎪⎪⎩
1 if 𝑀𝑏 + 𝐶𝑢 · 𝑦𝑢 ≥ 0 has a positive integer solution;

0 otherwise.
(3-1)

Lemma 3.1 Let 𝐺 be an LPN whose 𝑇𝑢-induced subnet is acyclic, and 𝑀𝑏 ∈ ℳ𝑏 a basis
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marking of 𝐺. If Ψ(𝑀𝑏) = 1, there exists an observation 𝑤 and a marking 𝑀 ∈ 𝑅(𝑁,𝑀0)

such that 𝑀,𝑀𝑏 ∈ 𝒞(𝑤) and 𝑀 ̸= 𝑀𝑏.

Proof：By assumption Ψ(𝑀𝑏) = 1, Eq. (3-1) has a positive integer solution. Since

the 𝑇𝑢-induced subnet of 𝐺 is acyclic, there is a marking 𝑀 reachable from 𝑀𝑏 by firing

unobservable transitions 𝜎𝑢 ∈ 𝑇 *
𝑢 whose corresponding firing vector is 𝑦𝑢 = 𝜋(𝜎𝑢). Let

𝜎 ∈ 𝑇 * be a transition sequence such that 𝑀0[𝜎⟩𝑀𝑏 and ℓ(𝜎) = 𝑤. Clearly, 𝑀0[𝜎𝜎𝑢⟩𝑀 and

ℓ(𝜎𝜎𝑢) = 𝑤. Therefore, 𝑀𝑏,𝑀 ∈ 𝒞(𝑤). Moreover, as the 𝑇𝑢-induced subnet is acyclic and

𝑦𝑢 ̸= 0⃗, 𝑀 ̸= 𝑀𝑏. �

In simple words, if Ψ(𝑀𝑏) = 1, 𝑀𝑏 has a confusable companion that is different from

𝑀𝑏. However, if Ψ(𝑀𝑏) = 0 there may be also a marking confusable with 𝑀𝑏 since there

may exist another basis marking 𝑀 ′
𝑏 that is confusable with 𝑀𝑏. In this case, to determine if

𝑀𝑏 has a confusable companion it is necessary to do further analysis.

In this chapter, we denote 𝐵 = (𝑋,𝐸, 𝑓, 𝑥0) the BRG for detectability of an LPN system

𝐺 = (𝑁,𝑀0, 𝐸, ℓ), where 𝑋 ∈ ℳ𝑏 × {0, 1} is a finite set of states, and each state 𝑥 ∈ 𝑋

of the BRG is a pair (𝑀𝑏,Ψ(𝑀𝑏)). We denote 𝑥(1), 𝑥(2) the first and the second element of

𝑥 respectively. The initial state of the BRG is 𝑥0 = (𝑀0,Ψ(𝑀0)). The event set of the BRG

is the alphabet 𝐸. The transition relation is 𝑓 : 𝑋 × 𝐸 → 2𝑋 . As illustrated in [6, 77, 83],

the BRG of an LPN is usually much smaller than its corresponding RG, and the reachability

analysis transformed into determining if a linear equation has an positive integer solution.

Example 3.5 Let us consider again the LPN system in Fig. 3-5 whose 𝑇𝑢-induced subnet

is acyclic. The LPN system has 8 reachable markings and only 6 of them are basis markings,

namely, ℳ𝑏 = {𝑀0,𝑀2,𝑀3,𝑀4,𝑀5,𝑀6}. When 𝑀𝑏 in Eq. (3-1) equals 𝑀0, the equation

has one positive integer solution. Thus, Ψ(𝑀0) = 1. On the other hand, for 𝑀2, Eq. (3-1) does

not have a positive solution. Therefore, Ψ(𝑀2) = 0. Therefore, the BRG for detectability is

the graph in Fig. 3-7. ◇
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Fig. 3-7 The BRG of the LPN system in Fig. 3-5.
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Proposition 3.1 An LPN system 𝐺 does not perform any detectability defined herein if

for all basis markings 𝑀𝑏 ∈ ℳ𝑏 of 𝐺, Ψ(𝑀𝑏) = 1.

Proof：Since ∀𝑀𝑏 ∈ ℳ𝑏, Ψ(𝑀𝑏) = 1, by Lemma 3.1, all basis markings 𝑀𝑏 of 𝐺

have a confusable marking that is different from 𝑀𝑏. By Proposition 2.1, for all observations

𝑤 ∈ ℒ(𝐺), 𝒞(𝑤) is not a singleton, i.e., |𝒞(𝑤)| > 1. Therefore, it is not possible for the

system to have any detectability defined in Definitions 3.1, 3.2, 3.3 and 3.4. �

3.3 Verification of Detectability based on BRG and Observer

In this section, we introduce the observer of the BRG. Then we show how the observer of

the BRG can be used to verify the four detectability properties. This approach is called BRG-

observer method. In the following, we present necessary and sufficient conditions for strong

detectability, weak detectability, strong periodic detectability, and weak periodic detectability,

by analyzing the observer of the BRG of the original LPN system.

3.3.1 Observer of the BRG

Proposition 3.1 only provides necessary conditions for detectability as aforementioned

Ψ(𝑀𝑏) = 0 does not necessarily imply that there are no markings confusable with 𝑀𝑏.

We construct the observer of the BRG to further investigate the sufficient and necessary

conditions for detectability. The observer of a BRG 𝐵 = (𝑋,𝐸, 𝑓, 𝑥0) is denoted as

𝐵𝑜 = (𝒳 , 𝐸, 𝑓𝑜, �̂�0), where 𝒳 ⊆ 2�̂� is the set of states, 𝐸 is the set of events, 𝑓𝑜 is the

transition function and �̂�0 = {𝑥0} is the initial state. Each state of 𝐵𝑜 corresponds to a set

𝒞𝑏(𝑤), that is, let 𝑓𝑜(�̂�0, 𝑤) = �̂� , then 𝒞𝑏(𝑤) =
⋃︀

𝑥∈�̂� 𝑥(1). Therefore, the complexity of

constructing 𝐵𝑜 is 𝒪(2|ℳ𝑏|), which is smaller than the complexity of constructing the ob-

server of the RG, which is equal to 𝒪(2|𝑅(𝑁,𝑀0)|). In the following, necessary and sufficient

conditions for detectability are provided based on the inspection of the cycles in the observer.

3.3.2 Verification

Theorem 3.1 Let 𝐺 = (𝑁,𝑀0, 𝐸, ℓ) be an LPN whose 𝑇𝑢-induced subnet is acyclic,

and 𝐵𝑜 = (𝒳 , 𝐸, 𝑓𝑜, �̂�0) the observer of its BRG. The LPN system 𝐺 is strongly detectable

if and only if for any cycle 𝛾𝑗 in 𝐵𝑜, ∀�̂�𝑗𝑖 ∈ 𝛾𝑗 , ∀𝑤 ∈ 𝐸* that 𝑓𝑜(�̂�𝑗𝑖, 𝑤) is defined,

𝑓𝑜(�̂�𝑗𝑖, 𝑤) = {(𝑀𝑏, 0)}, where 𝑀𝑏 ∈ ℳ𝑏.

Proof： (If) Let 𝜎 ∈ 𝐿∞(𝐺) and 𝑤 = ℓ(𝜎). Since the 𝑇𝑢-induced subnet is acyclic, 𝑤

is also of infinite length. As 𝐵𝑜 has finite nodes while 𝑤 is an infinite string, there exists a



Southwest Jiaotong University Doctor Degree Dissertation Page 33

cycle 𝛾𝑗 = �̂�𝑗1𝑒𝑗1�̂�𝑗2 . . . �̂�𝑗𝑘𝑒𝑗𝑘�̂�𝑗1 and 𝑤1, 𝑤2 ∈ 𝐸* such that 𝑤 = 𝑤1(𝑒𝑗1𝑒𝑗2 . . . 𝑒𝑗𝑘)
*𝑤2

and |𝑤1| is finite. Namely, the path along 𝑤 must contain a cycle in 𝐵𝑜 because in a graph

with a finite number of nodes and no unobservable cycles it is impossible to have a path

with an infinite length. For all 𝜎′ ∈ 𝑇 * : ℓ(𝜎′) = 𝑤1, as the 𝑇𝑢-induced subnet is acyclic

and |𝑤1| is finite, |𝜎′| is also finite. Therefore, there exists an integer 𝐾 ≥ |𝜎′| such that

∀𝜎′′ ⪯ 𝜎 with |𝜎′′| ≥ 𝐾, ℓ(𝜎′′) = 𝑤1𝑤
′, where 𝑤′ ⪯ (𝑒𝑗1𝑒𝑗2 . . . 𝑒𝑗𝑘)

*𝑤2, and states in

𝑓𝑜(�̂�0, 𝑤1𝑤
′) are reachable from 𝛾𝑗 . By assumption that ∀𝑤 ∈ 𝐸* that 𝑓𝑜(�̂�𝑗𝑖, 𝑤) is defined,

𝑓𝑜(�̂�𝑗𝑖, 𝑤) = {(𝑀𝑏, 0)}, thus 𝑓𝑜(�̂�0, 𝑤1𝑤
′) = {(𝑀𝑏, 0)}, and 𝒞𝑏(𝑤1𝑤

′) = {𝑀𝑏}. Moreover,

Ψ(𝑀𝑏) = 0, i.e., Eq. (3-1) does not have a positive integer solution. By Proposition 2.1,

|𝒞(𝑤1𝑤
′)| = |𝒞𝑏(𝑤1𝑤

′)| = |{𝑀𝑏}| = 1. Since for all 𝜎 ∈ 𝐿∞(𝐺) the induction holds, by

Definition 3.1, the LPN system is strongly detectable.

(Only if) Assume that there exists a cycle 𝛾𝑖 = �̂�𝑖1𝑒𝑖1�̂�𝑖2 . . . �̂�𝑖𝑘𝑒𝑖𝑘�̂�𝑖1, 𝑤0 ∈ 𝐸*,

a state �̂�𝑖𝑟 in 𝛾𝑖 (with 1 ≤ 𝑟 ≤ 𝑘 and 𝑓𝑜(�̂�0, 𝑤0(𝑒𝑖1 . . . 𝑒𝑖𝑘)
*𝑒𝑖1 . . . 𝑒𝑖𝑟) = �̂�𝑖𝑟), and a

string 𝑤′ ∈ 𝐸* such that 𝑓𝑜(�̂�𝑖𝑟, 𝑤
′) is defined, and either |𝑓𝑜(�̂�𝑖𝑟, 𝑤

′)| > 1 (Case 1) or

𝑓𝑜(�̂�𝑖𝑟, 𝑤
′) = {(𝑀𝑏, 1)} (Case 2). For these two cases, we prove that the LPN system is not

strongly detectable.

Suppose that the LPN system is strongly detectable. Since the LPN system is dead-

lock free, there exist another cycle 𝛾𝑗 = �̂�𝑗1𝑒𝑗1�̂�𝑗2 . . . �̂�𝑗𝑙𝑒𝑗𝑙�̂�𝑗1 and 𝜎 ∈ 𝐿∞(𝐺) such

that ℓ(𝜎) = 𝑤 = 𝑤0(𝑒𝑖1 . . . 𝑒𝑖𝑘)
*𝑒𝑖1 . . . 𝑒𝑖𝑟𝑤

′(𝑒𝑗1 . . . 𝑒𝑗𝑙)
*. Since the LPN system is strong-

ly detectable, there exists an integer 𝐾 ∈ N such that ∀𝜎1 ⪯ 𝜎 with |𝜎1| ≥ 𝐾,

|𝒞(𝑤1)| = 1 where 𝑤1 = ℓ(𝜎1). Clearly, we can always find an integer 𝑧 such that

𝑤1 = 𝑤0(𝑒𝑗1 . . . 𝑒𝑗𝑘)
𝑧𝑒𝑗1 . . . 𝑒𝑗𝑟𝑤

′), |𝑤1| ≥ 𝐾 and 𝑤1 ⪯ 𝑤. Let 𝜎1 ⪯ 𝜎 with ℓ(𝜎1) = 𝑤1.

Obviously, |𝜎1| ≥ 𝐾.

Case 1: |𝑓𝑜(�̂�𝑖𝑟, 𝑤
′)| > 1

By assumption, we have 𝑓𝑜(�̂�𝑖𝑟, 𝑤
′) = 𝑓𝑜(�̂�0, 𝑤1) and |𝑓𝑜(�̂�0, 𝑤1) = 𝒞𝑏(𝑤1)| > 1. By

Proposition 2.1, |𝒞(𝑤1)| > 1 that leads to a contradiction.

Case 2: 𝑓𝑜(�̂�𝑖𝑟, 𝑤
′) = {(𝑀𝑏, 1)}

By assumption, we have 𝑓𝑜(�̂�𝑖𝑟, 𝑤
′) = 𝑓𝑜(�̂�0, 𝑤1) = {(𝑀𝑏, 1)}. Therefore, 𝒞𝑏(𝑤) =

{𝑀𝑏} and Ψ(𝑀𝑏) = 1. Since Eq. (3-1) has a positive integer solution and the 𝑇𝑢-induced

subnet is acyclic, there exists a marking 𝑀 = 𝑀𝑏 + 𝐶𝑢 · 𝑦𝑢 and 𝑀 ̸= 𝑀𝑏. Thus, 𝑀,𝑀𝑏 ∈
𝒞(𝑤1), i.e., |𝒞(𝑤1)| > 1 that leads to a contradiction. �

In words, an LPN system is strongly detectable if and only if in the observer of its BRG,

all states reachable from a cycle have the form {(𝑀𝑏, 0)}, i.e., there is only one element
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(𝑀𝑏,Ψ(𝑀𝑏)) in 𝑓𝑜(�̂�𝑗𝑖, 𝑤) and Ψ(𝑀𝑏) = 0.

Theorem 3.2 Let 𝐺 = (𝑁,𝑀0, 𝐸, ℓ) be an LPN whose 𝑇𝑢-induced subnet is acyclic,

and 𝐵𝑜 = (𝒳 , 𝐸, 𝑓𝑜, �̂�0) the observer of its BRG. The LPN system 𝐺 is weakly detectable

if and only if there exists a cycle 𝛾𝑗 in 𝐵𝑜 such that ∀�̂�𝑗𝑖 ∈ 𝛾𝑗 , �̂�𝑗𝑖 = {(𝑀𝑏, 0)}, where

𝑀𝑏 ∈ ℳ𝑏.

Proof： (If) Assume that ∃𝛾𝑗 = �̂�𝑗1𝑒𝑗1�̂�𝑗2 . . . �̂�𝑗𝑘𝑒𝑗𝑘�̂�𝑗1 : ∀�̂�𝑗𝑖 ∈ 𝛾𝑗 , �̂�𝑗𝑖 =

{(𝑀𝑏, 0)}. Clearly, there exist 𝜎 ∈ 𝐿∞(𝐺) and 𝑤1 ∈ 𝐸* such that ℓ(𝜎) = 𝑤 =

𝑤1(𝑒𝑗1 . . . 𝑒𝑗𝑘)
* and |𝑤1| is finite. Since the 𝑇𝑢-induced subnet is acyclic, there exist-

s an integer 𝐾 ∈ N such that ∀𝜎1 ∈ 𝐿(𝑁,𝑀0) with ℓ(𝜎1) = 𝑤1, |𝜎1| ≤ 𝐾. For all

𝜎1 ⪯ 𝜎 with |𝜎1| ≥ 𝐾, ℓ(𝜎1) = 𝑤1 ⪯ 𝑤 and ∃�̂�𝑗𝑟 ∈ 𝛾𝑗 , 𝑓𝑜(�̂�0, 𝑤1) = �̂�𝑗𝑟. By as-

sumption, �̂�𝑗𝑟 = {(𝑀𝑏, 0)}. Therefore, 𝑓𝑜(�̂�0, 𝑤1) = {(𝑀𝑏, 0)}, 𝒞𝑏(𝑤1) = {𝑀𝑏}, and

Ψ(𝑀𝑏) = 0. Since Eq. (3-1) does not have a positive integer solution, by Proposition 2.1,

𝒞(𝑤1) = 𝒞𝑏(𝑤1) = {𝑀𝑏}. Thus, the LPN system is weakly detectable.

(Only if) Assume that such a cycle in the theorem does not exist. Namely, ∀𝛾𝑗 , ∀�̂�𝑗𝑖 ∈
𝛾𝑗 , either |�̂�𝑗𝑖| > 1 or �̂�𝑗𝑖 = {(𝑀𝑏, 1)}. Suppose that the LPN system is weakly detectable,

i.e., ∃𝐾 ∈ N, ∃𝜎 ∈ 𝐿∞(𝐺) such that ∀𝜎1 ⪯ 𝜎 with |𝜎1| ≥ 𝐾, |𝒞(ℓ(𝜎1))| = 1. Since

𝜎 is of an infinite length and 𝐵𝑜 has a finite number of nodes, the path along ℓ(𝜎) = 𝑤

must contain a cycle 𝛾𝑗 = �̂�𝑗1𝑒𝑗1�̂�𝑗2 . . . �̂�𝑗𝑘𝑒𝑗𝑘�̂�𝑗1, i.e., there exist 𝑤1, 𝑤2 ∈ 𝐸* such that

𝑤 = 𝑤1(𝑒𝑗1 . . . 𝑒𝑗𝑘)
*𝑤2 and |𝑤1| is finite. Similarly to the “Only if” part of Theorem 3.1’s

proof, we can always find 𝜎1 ⪯ 𝜎 such that |𝜎1| ≥ 𝐾 but |𝒞(𝑤1)| > 1, where 𝑤1 = ℓ(𝜎1),

leading to a contradiction. �

That is, the LPN system is weakly detectable if and only if there is at least one cycle 𝛾𝑗

in the observer such that all states �̂�𝑗𝑖 in the cycle have the form �̂�𝑗𝑖 = {(𝑀𝑏, 0)}.

Theorem 3.3 Let 𝐺 = (𝑁,𝑀0, 𝐸, ℓ) be an LPN whose 𝑇𝑢-induced subnet is acyclic,

and 𝐵𝑜 = (𝒳 , 𝐸, 𝑓𝑜, �̂�0) the observer of its BRG. The LPN system 𝐺 is strongly periodically

detectable if and only if for any cycle 𝛾𝑗 in 𝐵𝑜, ∃�̂�𝑗𝑟 ∈ 𝛾𝑗 : �̂�𝑗𝑟 = {(𝑀𝑏, 0)}, where

𝑀𝑏 ∈ ℳ𝑏.

Proof：(If) Let 𝜎 ∈ 𝐿∞(𝐺) and 𝑤 = ℓ(𝜎). Since the 𝑇𝑢-induced subnet is acyclic and

𝐵𝑜 has a finite number of nodes, |𝑤| is infinite and 𝑤 must pass a cycle 𝛾𝑗 in 𝐵𝑜. Assume that

∃�̂�𝑗𝑟 ∈ 𝛾𝑗: �̂�𝑗𝑟 = {(𝑀𝑏, 0)}. For all 𝜎1 ⪯ 𝜎, there exists 𝜎2 ∈ 𝑇 * such that 𝑓𝑜(�̂�0, 𝑤1𝑤2) =

�̂�𝑗𝑟 and |𝑤1𝑤2| < 𝐾 + 1, where 𝑤1 = ℓ(𝜎1), 𝑤2 = ℓ(𝜎2) and 𝐾 is the number of nodes

in 𝐵𝑜. In other words, from any state along 𝑤 in 𝐵𝑜 the state �̂�𝑗𝑟 can be always reached
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within 𝐾 + 1 steps. Therefore, 𝒞𝑏(𝑤1𝑤2) = {𝑀𝑏} and Ψ(𝑀𝑏) = 0. Since Eq. (3-1) has no

positive integer solution, by Proposition 2.1, 𝒞(𝑤1𝑤2) = {𝑀𝑏}. Therefore, the LPN system

is strongly periodically detectable.

(Only if) Assume that the condition in the theorem does not hold. Namely, there exists a

cycle 𝛾𝑗 = �̂�𝑗1𝑒𝑗1�̂�𝑗2 . . . �̂�𝑗𝑘𝑒𝑗𝑘�̂�𝑗1 such that ∀�̂�𝑗𝑖 ∈ 𝛾𝑗 , |�̂�𝑗𝑖| > 1 or �̂�𝑗𝑖 = {(𝑀𝑏, 1)}. Let

𝜎 = 𝐿∞(𝐺) such that ℓ(𝜎) = 𝑤 = 𝑤0(𝑒𝑗1 . . . 𝑒𝑗𝑘)
*, where 𝑤0 ∈ 𝐸*. Since for all �̂�𝑗𝑖 ∈ 𝛾𝑗 ,

|�̂�𝑗𝑖| > 1 or �̂�𝑗𝑖 = {(𝑀𝑏, 1)}, for all 𝜎1 ⪯ 𝜎 and 𝜎2 ∈ 𝑇 * such that 𝜎1𝜎2 ⪯ 𝜎, 𝑤1𝑤2 enters

the cycle, |𝒞(𝑤1𝑤2)| > 1. Therefore, such a 𝐾 does not exist and the LPN system is not

strongly periodically detectable. �

A sufficient and necessary condition for strong periodic detectability is that all cycles of

the observer of its BRG have a state in the form {(𝑀𝑏, 0)}.

Theorem 3.4 Let 𝐺 = (𝑁,𝑀0, 𝐸, ℓ) be an LPN whose 𝑇𝑢-induced subnet is acyclic,

and 𝐵𝑜 = (𝒳 , 𝐸, 𝑓𝑜, �̂�0) the observer of its BRG. The LPN system 𝐺 is weakly periodically

detectable if and only if there exists a cycle 𝛾𝑗 in 𝐵𝑜 such that ∃�̂�𝑗𝑟 ∈ 𝛾𝑗 , �̂�𝑗𝑟 = {(𝑀𝑏, 0)},

where 𝑀𝑏 ∈ ℳ𝑏.

Proof：(If) According to the proof of Theorem 3.3, when a cycle 𝛾𝑗 satisfies the condi-

tion, for any observation 𝑤 that passes 𝛾𝑗 the current state of the system can be periodically

determined. Therefore, if there exists such a cycle, we can always find a transition sequence 𝜎

satisfies the condition in Definition 3.4, and the LPN system is weakly periodically detectable.

(Only if) Assume that there are no such cycles. That is, for all cycles 𝛾𝑗 , and for all

�̂�𝑗𝑖 ∈ 𝛾𝑗 , either |�̂�𝑗𝑖| > 1 or �̂�𝑗𝑖 = {(𝑀𝑏, 1)}. For any 𝜎 ∈ 𝐿∞(𝐺), there exists a cycle

𝛾𝑗 that ℓ(𝜎) passes. By the assumption and according to the proof of Theorem 3.3, for any 𝜎

there is no such a integer 𝐾. Therefore, the LPN system is no weakly periodically detectable.

�

Example 3.6 Let us consider again the LPN system in Fig. 3-5 whose BRG is shown in

Fig. 3-7. Now we use Theorems 3.1 to 3.4 to check detectability. The observer of its BRG for
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Fig. 3-8 The observer of the BRG in Fig. 3-7.
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detectability is shown in Fig. 3-8. In Fig. 3-8, we can see that there is a cycle 𝛾1 = {(𝑀2, 0)}
𝑏{(𝑀3, 0), (𝑀4, 1), (𝑀5, 1)}𝑔{(𝑀2, 0)} containing state {(𝑀3, 0), (𝑀4, 1), (𝑀5, 1)} whose

cardinality is 3. Thus, there exists a cycle that does not satisfy the condition that all states

are in the form {(𝑀𝑏,Ψ(𝑀𝑏))} with Ψ(𝑀𝑏) = 0. Therefore, the LPN system is not strongly

detectable. On the other hand, the state {(𝑀2, 0)} in 𝛾1 satisfies the form {(𝑀𝑏, 0)}. In

other cycles 𝛾2 = {(𝑀3, 0)}𝑐{(𝑀3, 0)} and 𝛾3 = {(𝑀6, 0)}𝑐{(𝑀6, 0)}, all their states are

in the form {(𝑀𝑏, 0)}, therefore, the LPN system is strongly periodically detectable, weakly

detectable and weakly periodically detectable. ◇

3.4 Verification of Detectability based on BRG and Detector

In the previous section, we show that the above four detectability properties can be ver-

ified using the notions of BRG and observer. The BRG of an LPN system is usually much

smaller than its corresponding RG. In this way, the state explosion problem is practically

avoided. However, building the observer of the BRG has an exponential complexity. Thus, it

is important to search for more efficient algorithms for checking detectability in LPNs. Mo-

tivated by the fact that in the automaton framework checking strong detectability and strong

periodic detectability is polynomial time, in the following, we look for efficient methods to

check them in Petri net systems, which do not require the use of the observer.

In this section, we introduce the detector of the BRG. Then we show how the detector

of the BRG can be used to verify strong detectability and strong periodic detectability with

lower complexity, compared with the method in BRG-observer method. This approach is

called BRG-detector method. The notion of detector was first proposed in [23] for verification

of detectability in the framework of automata. In the following, we present necessary and

sufficient conditions for strong detectability and strong periodic detectability, by analyzing

the detector of the BRG of the original LPN system.

3.4.1 Detector of the BRG

In [23], the detector is proposed to check, in polynomial time, whether an automaton

system satisfies strong (periodic) detectability property. Now, we construct the detector of

the BRG for the verification in the framework of Petri nets. Given a BRG 𝐵 = (𝑋,𝐸, 𝑓, 𝑥0)

built as explained in Section 3.2.2, we denote 𝐵𝑑 = (𝑄,𝐸, 𝑓𝑑, 𝑞0) the detector of the BRG

𝐵 = (𝑋,𝐸, 𝑓, 𝑥0) for detectability, where 𝑄 ⊆ 2𝑋 is a finite set of states. The initial state of

𝐵𝑑 is 𝑞0 = {𝑥0}, and the other states of 𝐵𝑑 are subsets of 𝑋 with cardinality at most equal to

2. The event set of the detector is the alphabet 𝐸. The transition function 𝑓𝑑 : 𝑄 × 𝐸 → 2𝑄
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is defined in Algorithm 2.

According to Algorithm 2, the complexity of constructing it is polynomial w.r.t. the size

of the BRG, which is 𝒪(|𝐸||ℳ𝑏|4).

Example 3.7 Consider again the LPN system in Fig. 3-5 whose BRG is shown in Fig.

3-7. The detector of the BRG is presented in Fig. 3-9. The initial state of the detector contains

only one marking, i.e., the initial marking of the BRG. At the initial state of the BRG only

event 𝑎 is enabled and its execution leads to a single marking, namely (𝑀2, 0). This node only

containing such a pair is added to the detector and it can be reached from the initial marking

firing 𝑎. Starting from (𝑀2, 0) in the BRG, only event 𝑏 may be executed. The execution of

𝑏 at such a marking leads to three different markings in the BRG. Thus, three different nodes

can be reached from node {(𝑀2, 0)} in the detector, each one containing two pairs, which

are the possible pairwise combinations obtained by the three pairs corresponding to the three

different basis markings. ◇

In simple words, the detector of the BRG is constructed by recombining in pairs the

states in 𝒞𝑏(𝑤) whenever |𝒞𝑏(𝑤)| > 2. Namely, for any state 𝑞 ∈ 𝑓𝑑(𝑞0, 𝑤) in 𝐵𝑑,
⋃︀

𝑥∈𝑞 𝑥(1) ⊆
𝒞𝑏(𝑤) ⊆ 𝒞(𝑤).

Proposition 3.2 Let 𝐺 be an LPN system whose 𝑇𝑢-induced subnet is acyclic, and 𝐵𝑑 =

(𝑄,𝐸, 𝑓𝑑, 𝑞0) the detector of its BRG. There exists an observation 𝑤 ∈ 𝐸* such that |𝒞(𝑤)| ≠
1, iff there exists a state 𝑞 ∈ 𝑄 such that |𝑞| = 2 or ∃𝑥 ∈ 𝑞 such that 𝑥(2) = 1.

Proof： (If) Assume that there exists a state 𝑞 ∈ 𝑄 such that |𝑞| = 2 or ∃𝑥 ∈ 𝑞 with

𝑥(2) = 1. If 𝑥(2) = 1, by Lemma 3.1, there exists an observation 𝑤 ∈ 𝐸* such that

|𝒞(𝑤)| ̸= 1. If |𝑞| = 2, let 𝑞 = {𝑥1, 𝑥2}, 𝑥1 ̸= 𝑥2. According to the construction of the

detector, there exists an observation 𝑤 such that 𝑞 ∈ 𝑓𝑑(𝑞0, 𝑤), 𝑞 = {𝑥1, 𝑥2} and 𝑥1 ̸= 𝑥2.

Thus 𝑥1(1), 𝑥2(1) ∈ 𝒞(𝑤). Therefore, |𝒞(𝑤)| ≠ 1.

(Only if) Assume that there exists an observation 𝑤 ∈ 𝐸* such that |𝒞(𝑤)| ≠ 1, thus

there exist two different markings 𝑀1,𝑀2 ∈ 𝒞(𝑤) with 𝑀1 ̸= 𝑀2. According to the con-

struction of the detector, if 𝑀1,𝑀2 ∈ 𝒞𝑏(𝑤), then there exists a state 𝑞 ∈ 𝑄 such that |𝑞| = 2;
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Fig. 3-9 The detector of the BRG in Fig. 3-7.
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if either 𝑀1 or 𝑀2 not in 𝒞𝑏(𝑤), by Proposition 2.1, there exists at least one state 𝑞 ∈ 𝑄

containing a state 𝑥 of the BRG such that 𝑥(2) = 1. �

In words, in an LPN system, there exists an observation 𝑤 such that 𝒞(𝑤) contains more

than one marking, iff there exists a state 𝑞 in the detector such that |𝑞| = 2 or ∃𝑥 ∈ 𝑞 that

𝑥(2) = 1.

3.4.2 Verification

Based on Proposition 3.2, a sufficient condition for strong detectability can be easily

obtained.

Corollary 3.1 Let 𝐺 be an LPN system whose 𝑇𝑢-induced subnet is acyclic, and 𝐵𝑑 =

(𝑄,𝐸, 𝑓𝑑, 𝑞0) the detector of its BRG. The LPN system 𝐺 is strongly detectable if ∀𝑞 ∈ 𝑄,

𝑞 = {(𝑀𝑏, 0)} where 𝑀𝑏 ∈ ℳ𝑏.

By Corollary 3.1, if each state of the detector contains only one basis marking 𝑀𝑏 and

Ψ(𝑀𝑏) = 0, then we can conclude that the system is strongly detectable. However, this

condition is not necessary because detectability allows finite delays to ascertain the current

state, namely, it may happen that 𝐺 is strongly detectable but there are some states 𝑞 from the

beginning not satisfying the condition. In the following, necessary and sufficient conditions

for detectability are provided based on the inspection of the cycles in the detector.

Theorem 3.5 Let 𝐺 be an LPN system whose 𝑇𝑢-induced subnet is acyclic, and 𝐵𝑑 =

(𝑄,𝐸, 𝑓𝑑, 𝑞0) the detector of its BRG. The LPN system 𝐺 is strongly detectable iff for any

𝑞 ∈ 𝑄 reachable from a cycle in 𝐵𝑑, 𝑞 = {(𝑀𝑏, 0)} where 𝑀𝑏 ∈ ℳ𝑏.

Proof： (If) By contrapositive. Assume that system 𝐺 is not strongly detectable. This

implies that for all 𝐾 ∈ N, there exists 𝜎 ∈ 𝐿∞(𝐺) such that ∃𝜎′ ⪯ 𝜎, with 𝑤′ = ℓ(𝜎′), |𝑤′| ≥
𝐾 ⇒ |𝒞(𝑤′)| ≠ 1. Since 𝜎 has an infinite length, 𝐵𝑑 has a finite number of nodes, and there

is no cycle of unobservable transitions, the path along ℓ(𝜎) = 𝑤 must contain a cycle 𝛾𝑗 =

𝑞𝑗1𝑒𝑗1𝑞𝑗2 . . . 𝑞𝑗𝑘𝑒𝑗𝑘𝑞𝑗1. Thus the observation of 𝜎 can be written as 𝑤 = 𝑤0(𝑒𝑗1 . . . 𝑒𝑗𝑘)
𝑛𝑤2,

where |𝑤0| is finite, 𝑛 ∈ {1, 2, 3, . . .} and 𝑤0, 𝑤2 ∈ 𝐸*. Let 𝐾 = |𝑤0|. Then, there exists

𝑤′ = ℓ(𝜎′) = 𝑤0𝑤
′′ such that |𝑤′| ≥ 𝐾 and 𝑤′′ ⪯ (𝑒𝑗1 . . . 𝑒𝑗𝑘)

𝑛𝑤2. Under the initial

assumption that |𝒞(𝑤′)| ≠ 1, by Proposition 3.2, there exists a state 𝑞 ∈ 𝑓𝑑(𝑞0, 𝑤0𝑤
′′) such

that |𝑞| = 2 or ∃𝑥 ∈ 𝑞 with 𝑥(2) = 1. Namely, there exists a state 𝑞 reachable from a cycle in

𝐵𝑑 such that |𝑞| = 2 or ∃𝑥 ∈ 𝑞 with 𝑥(2) = 1.
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(Only if) By contrapositive. Assume in the detector there exists a state 𝑞 reachable

from a cycle but 𝑞 ̸= {(𝑀𝑏, 0)}. Namely, there exist 𝛾𝑗 = 𝑞𝑗1𝑒𝑗1𝑞𝑗2 . . . 𝑞𝑗𝑘𝑒𝑗𝑘𝑞𝑗1, 𝑞𝑗𝑟 ∈ 𝛾𝑗

(𝑟 ∈ {1, 2, . . . , 𝑘}), and 𝑤′ ∈ 𝐸* such that 𝑞 ∈ 𝑓𝑑(𝑞𝑗𝑟, 𝑤
′) and 𝑞 ̸= {(𝑀𝑏, 0)}. Since

there are no cycles of unobservable transitions, there exist 𝜎 ∈ 𝐿∞(𝐺) and 𝑤1, 𝑤2 ∈ 𝐸*

such that ℓ(𝜎) = 𝑤1(𝑒𝑗1𝑒𝑗2 . . . 𝑒𝑗𝑘)
𝑛𝑤2, 𝑛 ∈ {1, 2, 3, . . .} and |𝑤1| is finite. Therefore, for

any 𝐾 ∈ N, there exists 𝜎′ ⪯ 𝜎 such that ℓ(𝜎′) = 𝑤1(𝑒𝑗1𝑒𝑗2 . . . 𝑒𝑗𝑘)
𝑚(𝑒𝑗1𝑒𝑗2 . . . 𝑒𝑗𝑟)𝑤

′ and

|ℓ(𝜎′)| ≥ 𝐾, where 𝑤′ ⪯ (𝑒𝑗𝑟+1 . . . 𝑒𝑗𝑘)(𝑒𝑗1𝑒𝑗2 . . . 𝑒𝑗𝑘)
𝑘𝑤2 and 𝑚 + 𝑘 + 1 = 𝑛. Let 𝑤0 =

𝑤1(𝑒𝑗1𝑒𝑗2 . . . 𝑒𝑗𝑘)
𝑚(𝑒𝑗1𝑒𝑗2 . . . 𝑒𝑗𝑟). Clearly, 𝑞𝑗𝑟 ∈ 𝑓𝑑(𝑞0, 𝑤0). With the initial assumption, 𝑞 ∈

𝑓𝑑(𝑞𝑗𝑟, 𝑤
′) = 𝑓𝑑(𝑞0, 𝑤0𝑤

′). By Proposition 3.2, this implies that |𝒞(𝑤0𝑤
′)| ≠ 1. Therefore,

the system is not strongly detectable. �

In words, an LPN system is strongly detectable iff in the detector of the BRG, all the

states reachable from any cycle have the form {(𝑀𝑏, 0)}, i.e., there is only one element

(𝑀𝑏,Ψ(𝑀𝑏)) in such states and Ψ(𝑀𝑏) = 0.

Remark 1: Although the complexity of the construction of the detector according to

[23] is polynomial, it is known that the complexity of finding all the cycles in a directed graph

is NP-hard. Thus, the complexity of verifying strong detectability based on detector in [23] is

not actually polynomial. However, finding all the SCCs in a directed graph is of polynomial

complexity w.r.t the size of the graph. Clearly, if a state of the detector is reachable from a

cycle, it is also reachable from an SCC. Therefore, Theorem 3.5 can be rephrased as follows.

Corollary 3.2 Let 𝐺 be an LPN system whose 𝑇𝑢-induced subnet is acyclic, and 𝐵𝑑 =

(𝑄,𝐸, 𝑓𝑑, 𝑞0) the detector of its BRG. The LPN system 𝐺 is strongly detectable iff for any

𝑞 ∈ 𝑄 reachable from an SCC in 𝐵𝑑, 𝑞 = {(𝑀𝑏, 0)} where 𝑀𝑏 ∈ ℳ𝑏.

Now, we present necessary and sufficient conditions for strong periodic detectability.

Theorem 3.6 Let 𝐺 be an LPN system whose 𝑇𝑢-induced subnet is acyclic, and 𝐵𝑑 =

(𝑄,𝐸, 𝑓𝑑, 𝑞0) the detector of its BRG. The LPN system 𝐺 is strongly periodically detectable

iff for any cycle 𝛾𝑗 in 𝐵𝑑, ∃𝑞 ∈ 𝛾𝑗 , 𝑞 = {(𝑀𝑏, 0)}, where 𝑀𝑏 ∈ ℳ𝑏.

Proof：(If) By contrapositive. Assume that the LPN system 𝐺 is not strongly periodical-

ly detectable. This implies that for all 𝐾 ∈ N, there exists a transition sequence 𝜎 ∈ 𝐿∞(𝐺)

with a prefix 𝜎′ ⪯ 𝜎 such that ∀𝜎′′ ∈ 𝑇 *, 𝜎′𝜎′′ ⪯ 𝜎, |ℓ(𝜎′′)| ≤ 𝐾 ⇒ |𝒞(𝑤′)| ̸= 1 where

𝑤′ = ℓ(𝜎′𝜎′′). Since 𝜎 has an infinite length, 𝐵𝑑 has a finite number of nodes, and there is

no cycle of unobservable transitions, eventually the tail of the path along ℓ(𝜎) = 𝑤 will be

in a cycle 𝛾𝑗 = 𝑞𝑗1𝑒𝑗1𝑞𝑗2 . . . 𝑞𝑗𝑘𝑒𝑗𝑘𝑞𝑗1. Thus, 𝑤 contains the corresponding observation of
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𝛾𝑗 , and there exist 𝑤0 ∈ 𝐸* and 𝑤2 ⪯ 𝑒𝑗1 . . . 𝑒𝑗𝑘 such that 𝑤 = 𝑤0(𝑒𝑗1 . . . 𝑒𝑗𝑘)
𝑛𝑤2, |𝑤0| is

finite and 𝑛 ∈ {1, 2, 3, . . .}. Let 𝜎′ ⪯ 𝜎 such that |ℓ(𝜎′)| ≥ |𝑤0|. Then, for all 𝜎′′ ∈ 𝑇 *

such that 𝜎′𝜎′′ ⪯ 𝜎, |ℓ(𝜎′′)| ≤ 𝐾, 𝑞𝑗𝑟 ∈ 𝛾𝑗 and 𝑞𝑗𝑟 ∈ 𝑓𝑑(𝑞0, 𝑤
′), where 𝑤′ = ℓ(𝜎′𝜎′′)

and 𝑟 ∈ {1, 2, . . . , 𝑘}. Under the initial assumption that |𝒞(𝑤′)| ≠ 1, by Proposition 3.2,

𝑞𝑟 ∈ 𝑓𝑑(𝑞0, 𝑤
′) such that |𝑞𝑟| = 2 or ∃𝑥 ∈ 𝑞𝑟 with 𝑥(2) = 1. Namely, for all 𝑞𝑟 ∈ 𝛾𝑗 ,

𝑞𝑟 ̸= {(𝑀𝑏, 0)}.

(Only if) By contrapositive. Assume that there exists a cycle 𝛾𝑗 = 𝑞𝑗1𝑒𝑗1𝑞𝑗2 . . . 𝑞𝑗𝑘

𝑒𝑗𝑘𝑞𝑗1 in 𝐵𝑑 and ∀𝑞𝑗𝑟 ∈ 𝛾𝑗 , 𝑞𝑟 ̸= {(𝑀𝑏, 0)}. Since there are no deadlocks nor cycles of

unobservable transitions in the system, there exist 𝜎 ∈ 𝐿∞(𝐺) and 𝑤0 ∈ 𝐸* such that ℓ(𝜎) =

𝑤0(𝑒𝑗1 . . . 𝑒𝑗𝑘)
* and |𝑤0| is finite. Let 𝜎′ ⪯ 𝜎 such that ℓ(𝜎′) = 𝑤0. Then for all 𝐾 ∈ N,

∀𝜎′′ ∈ 𝑇 *, 𝜎′𝜎′′ ⪯ 𝜎, ℓ(𝜎′𝜎′′) = 𝑤′, |ℓ(𝜎′′)| ≤ 𝐾 such that 𝑞𝑗𝑟 ∈ 𝑓𝑑(𝑞0, 𝑤
′) and 𝑞𝑗𝑟 ∈

𝛾𝑗 . Under the initial assumption that 𝑞𝑟 ̸= {(𝑀𝑏, 0)}, by Proposition 3.2, this implies that

|𝒞(𝑤′)| ≠ 1. Therefore, the system is not strongly periodically detectable. �

Therefore, an LPN system is strongly periodically detectable iff in the detector of the

BRG, all the cycles contain a state having the form {(𝑀𝑏, 0)}.

Remark 2: Note that even if each SCC contains at least one state having the form

{(𝑀𝑏, 0)}, not all cycles necessarily contain a state having the form {(𝑀𝑏, 0)}. Therefore, the

condition for strong periodic detectability cannot be reformulated in terms of SCCs. However,

it is easy to find that we can check Theorem 3.6 by its contrapositive, namely, the system is

not strongly periodically detectable iff there exists one cycle 𝛾𝑗 in 𝐵𝑑 such that for all 𝑞 ∈ 𝛾𝑗 ,

𝑞 ̸= {(𝑀𝑏, 0)}. Thus, we just need to find one cycle such that all its states do not have

the form {(𝑀𝑏, 0)}, which makes the approach polynomial complexity w.r.t. the size of the

detector. More precisely, Theorem 3.6 can be checked by removing all the states having the

form {(𝑀𝑏, 0)} in the detector, then finding whether there exists a cycle in the remaining

parts.

Example 3.8 Consider again the LPN system in Fig. 3-5. Its BRG is shown in Fig. 3-7,

and the detector of the BRG is shown in Fig. 3-9. Now we use Theorems 3.5 and 3.6 to check

its strong detectability and strong periodic detectability. In Fig. 3-9, we can see that there

is a cycle 𝛾1 = {(𝑀2, 0)}𝑏{(𝑀3, 0), (𝑀5, 1)}𝑔{(𝑀2, 0)} containing state {(𝑀3, 0), (𝑀5, 1)}
whose cardinality is 2 and Ψ(𝑀5) = 1, thus, there exists a cycle that does not satisfy the

condition that all states are in the form 𝑞 = {(𝑀𝑏,Ψ(𝑀𝑏))} with Ψ(𝑀𝑏) = 0. Therefore, the

LPN system is not strongly detectable. On the other hand, the state {(𝑀2, 0)} in 𝛾1 satisfies

the form {(𝑀𝑏, 0)}. In another cycle 𝛾2 = {(𝑀3, 0)}𝑐{(𝑀3, 0)}, the only state {(𝑀3, 0)} is
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in the form {(𝑀𝑏, 0)}, therefore, the LPN system is strongly periodically detectable.

Consider another LPN system in Fig. 3-10(a), where 𝑀0 = {𝑝1} and 𝑀1 = {𝑝2}. The

BRG and the detector of the LPN system are shown in Fig. 3-10(b) and 3-10(c), respectively.

Clearly, there is a cycle 𝛾1 = {(𝑀0, 0), (𝑀1, 0)}𝑎{(𝑀0, 0), (𝑀1, 0)} such that all its states do

not satisfy the form {(𝑀𝑏, 0)}. Thus, the LPN system is not strongly periodically detectable,

and of course not strongly detectable. ◇

The above results show that, rather than enumerating all reachable markings and con-

structing the detector of the RG, strong detectability and strong periodic detectability can be

verified through the detector of the BRG. The complexity of constructing 𝐵𝑑 is 𝒪(|𝐸||ℳ𝑏|4),
which is much smaller than the RG-based approaches. Furthermore, since the problem of

finding all elementary cycles is NP-hard, we prove that strong detectability can be verified by

just computing all the SCCs in the detector, which is polynomial complexity w.r.t. the size of

the detector, and strong periodic detectability can be verified by just finding one special cycle,

which is also polynomial complexity w.r.t. the size of the detector. Therefore, the complexity

of the proposed approaches is further reduced.

3.5 Verification of Strong Detectability based on BRG and Verifier

In this section, we first introduce the verifier of the BRG. Then we show how it can be

used as an effective tool for the verification of strong detectability. This approach is called

BRG-V method. Verifier was first proposed in [85] for verification of diagnosability in the

framework of automata. In the following, we present necessary and sufficient conditions for

strong detectability, by analyzing the verifier of the BRG of the original LPN system.

3.5.1 Verifier of the BRG

In [85], verifier is proposed to analyze diagnosability in the framework of automata. In

the following, without fault transitions, verifier is constructed to check strong detectability of

an LPN system.

g

b

g

1

t4(a) p5 p6t5(ε)

t2(a)p2

p3

t3(b)t1(ε)

t6(c)

p1

p4

p1

p4
a

p2+p5 
c

p2+p3

b

a

a

a (p1) (p4,p2+p5) (p4)

(p2+p3)

a

ac

b

M1=p2+p3 

M2=p4

M3=p2+p5 M0=p1 M4=p2+p6

t1(ε)
t2(a)

t4(a)

t3(b)

t5(ε)

t6(c)

(M1,M2) (M2,M3,M4) (M2)

(M1)

a

ac

b
b

b

t5(b) p6 p7t6(ε)

t3(b)p3

p4

t4(c)
t2(a)

t10(g)

p2

p5

t7(d)

p8 p9t9(ε)t8(b)

{M3,M4,M5,M6,M7}

{M3}

{M0,M1} {M6}
a

b

c
c

d

g

(M2,0)

(M3,0)

(M4,1) (M6,0)

t2(a)
t3(b)

(M5,1)

{(M2,0)}

b

b

{(M3,0),(M5,1)}

{(M3,0),(M4,1)}

{(M4,1),(M5,1)}

{(M3,0)}

c

c

p1

t1(ε)

M2=p3+p4 

M3=p5

M4=p3+p6 M1=p2 M6=p3+p7M0=p1

t5(b)

t6(ε)
t3(b)

t4(c)

t2(a)t1(ε)

M5=p3+p8 M7=p3+p9

t8(b) t9(ε)

t10(g)

t7(d)

{M2} d

(M0,1)
t5(b)

t8(b)

t10(g)

t7(d)

t4(c)

t7(d)

{(M0,1)}
a

c

{(M6,0)} d
d

d
t5(b)

p6

p7

t6(ε)

t3(b)

p3p4

t4(c)

t2(a)

t10(g)

p2

p5

t7(d)

p8

p9

t9(ε)

t8(b)

p1

t1(ε)

t5(b) p6

t6(ε)

t3(b)

p3

p4

t4(c)

t2(a)

t10(d)

p2

p5

p8
p9t9(ε)t8(b)

p1

t1(ε)

p3'

p4' p4

p3

(t3',t8)

(t5',t8) (t8',t8)(t3',t5)
(t5',t5)

(t8',t5)(t3',t3) (t5',t3)

(t8',t3)

p5' p5 p6' p6 p8' p8

p1' p1p2' p2

(t4',t4)

(t7',t7) (t9',t9)

(t2',t2)

(t1', ) ( ,t1)

(t6', ) ( ,t6) ( ,t9)(t9', )

p7' p7 p9' p9

(p5'+p5 ,0)

(p5'+p3+p6 ,1)

(p5'+p3+p8 ,1)

(p3'+p6'+p5 ,1)

(p3'+p6'+p3+p6 ,1)

(p3'+p6'+p3+p8 ,1)

(p3'+p8'+p3+p6 ,1)

(p3'+p8'+p3+p8 ,1)

(p3'+p8'+p3+p5 ,1)

(p3'+p4'+p3+p4 ,0)(p1'+p1 ,1) (p3'+p7'+p3+p7 ,0)
a

b

g

c

d
d

(t2',t2)

(t4',t4)

(t2',t4)

(t4',t2)

p2

p3

p3'

p2'

p4'

p4

p5'

p5

(t3',t3)

(t6',t6)

p1

p1' (t1',λ)

(λ,t1) (t5',λ)

(λ,t5)

(p1'+p1 ,1)

(p4'+p4 ,0)
a

(p4'+p2+p5 ,1)

(p2'+p5'+p4 ,1)

(p2'+p5'+p2+p5 ,1)
c

(p2'+p3'+p2+p3 ,0)

b

a

a

a

a

p6

p6'

x0

x1

x2

x3

x4 x5

(t2',t2)

(t4',t4)

(t2',t4)

(t4',t2)

p2

p3

p3'

p2'

p4'

p4

p5'

p5

(t3',t3)

(t6',t6)

p1

p1' (t1',λ)

(λ,t1) (t5',λ)

(λ,t5) p6

p6'

t4(a) p5 p6t5(ε)

t2(a)p2

p3

t3(b)t1(ε)

t6(c)

p1

p4

(M0,1)

(M2,0)

(M3,1) (M1,0)

M1=p2+p3 

M2=p4

M3=p2+p5 M0=p1 M4=p2+p6

t1(ε)
t2(a)

t4(a)

t3(b)

t5(ε)

t6(c)

t2(a)

t3(b)

t4(a) t6(c)
t4(a)

t2(a)

(M0,1),(M0,1)

(M2,0),(M2,0)
a

(M2,0),(M3,1)

(M2,0),(M3,1)

(M3,1),(M3,1)
c

(M1,0),(M1,0)

b

a

a

a

a a
a a

a

a

a

a b
a

p1 p2

p2

p2'

p1

p1'

(t1',t1)

(t2',t2)

(t2',t1)

(t1',t2)

(t2',t2)t1(a)

t2(a)

t3(b)
(p1'+p1 ,0)

(p2'+p2 ,0)

(p2'+p1 ,0)

(p1'+p2 ,0)

a

b

a

a
a

LPN system
VN BRG of VN

(M0,0) (M1,0)

a b
a

BRG

Verifier net

(M0,0),(M0,0)

(M1,0),(M1,0)
a

(M1,0),(M0,0)

(M0,0),(M1,0)

a

a

(M0,0) {(M1,0),(M1,0)}
a

{(M0,0),(M1,0)}
a

b

b

b

Detector

a)

g

b

g

1

t4(a) p5 p6t5(ε)

t2(a)p2

p3

t3(b)t1(ε)

t6(c)

p1

p4

p1

p4
a

p2+p5 
c

p2+p3

b

a

a

a (p1) (p4,p2+p5) (p4)

(p2+p3)

a

ac

b

M1=p2+p3 

M2=p4

M3=p2+p5 M0=p1 M4=p2+p6

t1(ε)
t2(a)

t4(a)

t3(b)

t5(ε)

t6(c)

(M1,M2) (M2,M3,M4) (M2)

(M1)

a

ac

b
b

b

t5(b) p6 p7t6(ε)

t3(b)p3

p4

t4(c)
t2(a)

t10(g)

p2

p5

t7(d)

p8 p9t9(ε)t8(b)

{M3,M4,M5,M6,M7}

{M3}

{M0,M1} {M6}
a

b

c
c

d

g

(M2,0)

(M3,0)

(M4,1) (M6,0)

t2(a)
t3(b)

(M5,1)

{(M2,0)}

b

b

{(M3,0),(M5,1)}

{(M3,0),(M4,1)}

{(M4,1),(M5,1)}

{(M3,0)}

c

c

p1

t1(ε)

M2=p3+p4 

M3=p5

M4=p3+p6 M1=p2 M6=p3+p7M0=p1

t5(b)

t6(ε)
t3(b)

t4(c)

t2(a)t1(ε)

M5=p3+p8 M7=p3+p9

t8(b) t9(ε)

t10(g)

t7(d)

{M2} d

(M0,1)
t5(b)

t8(b)

t10(g)

t7(d)

t4(c)

t7(d)

{(M0,1)}
a

c

{(M6,0)} d
d

d
t5(b)

p6

p7

t6(ε)

t3(b)

p3p4

t4(c)

t2(a)

t10(g)

p2

p5

t7(d)

p8

p9

t9(ε)

t8(b)

p1

t1(ε)

t5(b) p6

t6(ε)

t3(b)

p3

p4

t4(c)

t2(a)

t10(d)

p2

p5

p8
p9t9(ε)t8(b)

p1

t1(ε)

p3'

p4' p4

p3

(t3',t8)

(t5',t8) (t8',t8)(t3',t5)
(t5',t5)

(t8',t5)(t3',t3) (t5',t3)

(t8',t3)

p5' p5 p6' p6 p8' p8

p1' p1p2' p2

(t4',t4)

(t7',t7) (t9',t9)

(t2',t2)

(t1', ) ( ,t1)

(t6', ) ( ,t6) ( ,t9)(t9', )

p7' p7 p9' p9

(p5'+p5 ,0)

(p5'+p3+p6 ,1)

(p5'+p3+p8 ,1)

(p3'+p6'+p5 ,1)

(p3'+p6'+p3+p6 ,1)

(p3'+p6'+p3+p8 ,1)

(p3'+p8'+p3+p6 ,1)

(p3'+p8'+p3+p8 ,1)

(p3'+p8'+p3+p5 ,1)

(p3'+p4'+p3+p4 ,0)(p1'+p1 ,1) (p3'+p7'+p3+p7 ,0)
a

b

g

c

d
d

(t2',t2)

(t4',t4)

(t2',t4)

(t4',t2)

p2

p3

p3'

p2'

p4'

p4

p5'

p5

(t3',t3)

(t6',t6)

p1

p1' (t1',λ)

(λ,t1) (t5',λ)

(λ,t5)

(p1'+p1 ,1)

(p4'+p4 ,0)
a

(p4'+p2+p5 ,1)

(p2'+p5'+p4 ,1)

(p2'+p5'+p2+p5 ,1)
c

(p2'+p3'+p2+p3 ,0)

b

a

a

a

a

p6

p6'

x0

x1

x2

x3

x4 x5

(t2',t2)

(t4',t4)

(t2',t4)

(t4',t2)

p2

p3

p3'

p2'

p4'

p4

p5'

p5

(t3',t3)

(t6',t6)

p1

p1' (t1',λ)

(λ,t1) (t5',λ)

(λ,t5) p6

p6'

t4(a) p5 p6t5(ε)

t2(a)p2

p3

t3(b)t1(ε)

t6(c)

p1

p4

(M0,1)

(M2,0)

(M3,1) (M1,0)

M1=p2+p3 

M2=p4

M3=p2+p5 M0=p1 M4=p2+p6

t1(ε)
t2(a)

t4(a)

t3(b)

t5(ε)

t6(c)

t2(a)

t3(b)

t4(a) t6(c)
t4(a)

t2(a)

(M0,1),(M0,1)

(M2,0),(M2,0)
a

(M2,0),(M3,1)

(M2,0),(M3,1)

(M3,1),(M3,1)
c

(M1,0),(M1,0)

b

a

a

a

a a
a a

a

a

a

a b
a

p1 p2

p2

p2'

p1

p1'

(t1',t1)

(t2',t2)

(t2',t1)

(t1',t2)

(t2',t2)t1(a)

t2(a)

t3(b)
(p1'+p1 ,0)

(p2'+p2 ,0)

(p2'+p1 ,0)

(p1'+p2 ,0)

a

b

a

a
a

LPN system
VN BRG of VN

(M0,0) (M1,0)

a b
a

BRG

Verifier net

(M0,0),(M0,0)

(M1,0),(M1,0)
a

(M1,0),(M0,0)

(M0,0),(M1,0)

a

a

(M0,0) {(M1,0),(M1,0)}
a

{(M0,0),(M1,0)}
a

b

b

b

Detector

b)

g

b

g

1

t4(a) p5 p6t5(ε)

t2(a)p2

p3

t3(b)t1(ε)

t6(c)

p1

p4

p1

p4
a

p2+p5 
c

p2+p3

b

a

a

a (p1) (p4,p2+p5) (p4)

(p2+p3)

a

ac

b

M1=p2+p3 

M2=p4

M3=p2+p5 M0=p1 M4=p2+p6

t1(ε)
t2(a)

t4(a)

t3(b)

t5(ε)

t6(c)

(M1,M2) (M2,M3,M4) (M2)

(M1)

a

ac

b
b

b

t5(b) p6 p7t6(ε)

t3(b)p3

p4

t4(c)
t2(a)

t10(g)

p2

p5

t7(d)

p8 p9t9(ε)t8(b)

{M3,M4,M5,M6,M7}

{M3}

{M0,M1} {M6}
a

b

c
c

d

g

(M2,0)

(M3,0)

(M4,1) (M6,0)

t2(a)
t3(b)

(M5,1)

{(M2,0)}

b

b

{(M3,0),(M5,1)}

{(M3,0),(M4,1)}

{(M4,1),(M5,1)}

{(M3,0)}

c

c

p1

t1(ε)

M2=p3+p4 

M3=p5

M4=p3+p6 M1=p2 M6=p3+p7M0=p1

t5(b)

t6(ε)
t3(b)

t4(c)

t2(a)t1(ε)

M5=p3+p8 M7=p3+p9

t8(b) t9(ε)

t10(g)

t7(d)

{M2} d

(M0,1)
t5(b)

t8(b)

t10(g)

t7(d)

t4(c)

t7(d)

{(M0,1)}
a

c

{(M6,0)} d
d

d
t5(b)

p6

p7

t6(ε)

t3(b)

p3p4

t4(c)

t2(a)

t10(g)

p2

p5

t7(d)

p8

p9

t9(ε)

t8(b)

p1

t1(ε)

t5(b) p6

t6(ε)

t3(b)

p3

p4

t4(c)

t2(a)

t10(d)

p2

p5

p8
p9t9(ε)t8(b)

p1

t1(ε)

p3'

p4' p4

p3

(t3',t8)

(t5',t8) (t8',t8)(t3',t5)
(t5',t5)

(t8',t5)(t3',t3) (t5',t3)

(t8',t3)

p5' p5 p6' p6 p8' p8

p1' p1p2' p2

(t4',t4)

(t7',t7) (t9',t9)

(t2',t2)

(t1', ) ( ,t1)

(t6', ) ( ,t6) ( ,t9)(t9', )

p7' p7 p9' p9

(p5'+p5 ,0)

(p5'+p3+p6 ,1)

(p5'+p3+p8 ,1)

(p3'+p6'+p5 ,1)

(p3'+p6'+p3+p6 ,1)

(p3'+p6'+p3+p8 ,1)

(p3'+p8'+p3+p6 ,1)

(p3'+p8'+p3+p8 ,1)

(p3'+p8'+p3+p5 ,1)

(p3'+p4'+p3+p4 ,0)(p1'+p1 ,1) (p3'+p7'+p3+p7 ,0)
a

b

g

c

d
d

(t2',t2)

(t4',t4)

(t2',t4)

(t4',t2)

p2

p3

p3'

p2'

p4'

p4

p5'

p5

(t3',t3)

(t6',t6)

p1

p1' (t1',λ)

(λ,t1) (t5',λ)

(λ,t5)

(p1'+p1 ,1)

(p4'+p4 ,0)
a

(p4'+p2+p5 ,1)

(p2'+p5'+p4 ,1)

(p2'+p5'+p2+p5 ,1)
c

(p2'+p3'+p2+p3 ,0)

b

a

a

a

a

p6

p6'

x0

x1

x2

x3

x4 x5

(t2',t2)

(t4',t4)

(t2',t4)

(t4',t2)

p2

p3

p3'

p2'

p4'

p4

p5'

p5

(t3',t3)

(t6',t6)

p1

p1' (t1',λ)

(λ,t1) (t5',λ)

(λ,t5) p6

p6'

t4(a) p5 p6t5(ε)

t2(a)p2

p3

t3(b)t1(ε)

t6(c)

p1

p4

(M0,1)

(M2,0)

(M3,1) (M1,0)

M1=p2+p3 

M2=p4

M3=p2+p5 M0=p1 M4=p2+p6

t1(ε)
t2(a)

t4(a)

t3(b)

t5(ε)

t6(c)

t2(a)

t3(b)

t4(a) t6(c)
t4(a)

t2(a)

(M0,1),(M0,1)

(M2,0),(M2,0)
a

(M2,0),(M3,1)

(M2,0),(M3,1)

(M3,1),(M3,1)
c

(M1,0),(M1,0)

b

a

a

a

a a
a a

a

a

a

a b
a

p1 p2

p2

p2'

p1

p1'

(t1',t1)

(t2',t2)

(t2',t1)

(t1',t2)

(t2',t2)t1(a)

t2(a)

t3(b)
(p1'+p1 ,0)

(p2'+p2 ,0)

(p2'+p1 ,0)

(p1'+p2 ,0)

a

b

a

a
a

LPN system
VN BRG of VN

(M0,0) (M1,0)

a b
a

BRG

Verifier

(M0,0),(M0,0)

(M1,0),(M1,0)
a

(M1,0),(M0,0)

(M0,0),(M1,0)

a

a

{(M0,0)} {(M1,0)}
a

{(M0,0),(M1,0)}
a

b

b

b

Detectorc)

Fig. 3-10 An LPN system (a), the BRG (b) and the detector (c).
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Given a BRG 𝐵 = (𝑋,𝐸, 𝑓, 𝑥0) built as explained in Section 3.2.2, the verifier of 𝐵 is

obtained by synchronization of 𝐵 with itself. We denote the verifier as 𝐵𝑣 = (𝑄𝑣, 𝐸, 𝑓𝑣, 𝑞𝑣0),

where 𝑄𝑣 ⊆ 𝑋 × 𝑋 is the set of states, 𝑞𝑣0 = (𝑥0, 𝑥0) is the initial state, 𝐸 is the alphabet,

and 𝑓𝑣 : 𝑄𝑣 × 𝐸 → 2𝑄𝑣 is the transition relation.

The procedure to construct the verifier of the BRG is summarized in Algorithm 4, which

works as follows. First, the initial node 𝑞𝑣0 = (𝑥0, 𝑥0) is added to a set of unchecked nodes

𝑄𝑛𝑒𝑤 (Steps 1 to 2). Then, for all nodes 𝑞 = (𝑥′, 𝑥) in 𝑄𝑛𝑒𝑤, and for all events 𝑒 ∈ 𝐸, if there

exists a pair (𝑥′1, 𝑥1) such that 𝑥′1 can be reached from 𝑥′ executing 𝑒 and 𝑥1 can be reached

from 𝑥 executing 𝑒, then make 𝑞′ = (𝑥′1, 𝑥1) reachable from 𝑞 executing event 𝑒 (Steps 3 to

6). In more detail, we add an edge from 𝑞 to 𝑞′ labeled 𝑒. If 𝑞′ does not exist in the verifier,

then we add it to 𝑄𝑣 and 𝑄𝑛𝑒𝑤 (Steps 7 to 9). This procedure runs iteratively until there is no

unchecked node in 𝑄𝑛𝑒𝑤.

Algorithm 4 Construction of the verifier
Input: A BRG 𝐵 = (𝑋,𝐸, 𝑓, 𝑥0).
Output: The corresponding verifier 𝐵𝑣 = (𝑄𝑣, 𝐸, 𝑓𝑣, 𝑞𝑣0)

1: 𝑞𝑣0 := (𝑥0, 𝑥0),
2: 𝑄𝑣 := {𝑞𝑣0}, 𝑄𝑛𝑒𝑤 := {𝑞𝑣0}.
3: for all nodes 𝑞 = (𝑥′, 𝑥) ∈ 𝑄𝑛𝑒𝑤, do
4: for all 𝑒 ∈ 𝐸, do
5: for all pairs 𝑞′ = (𝑥′1, 𝑥1) with 𝑥′1 ∈ 𝑓(𝑥, 𝑒) and 𝑥1 ∈ 𝑓(𝑥, 𝑒), do
6: 𝑓𝑣(𝑞, 𝑒) := 𝑓𝑣(𝑞, 𝑒) ∪ {𝑞′},
7: if 𝑞′ /∈ 𝑄𝑣, then
8: 𝑄𝑣 := 𝑄𝑣 ∪ {𝑞′}, 𝑄𝑛𝑒𝑤 := 𝑄𝑛𝑒𝑤 ∪ {𝑞′}.
9: end if

10: end for
11: end for
12: 𝑄𝑛𝑒𝑤 := 𝑄𝑛𝑒𝑤 ∖ {𝑞}.
13: end for

By Algorithm 4, in the worst case, there are |ℳ𝑏|2 states and |𝐸||ℳ𝑏|4 transitions.

Thus, the complexity of constructing the verifier is polynomial in the number of states of the

BRG, which is 𝒪(|𝐸||ℳ𝑏|4).

Example 3.9 Consider the LPN system in Fig. 3-11 and its BRG in Fig. 3-12. The

verifier of the BRG is presented in Fig. 3-13. ◇
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Fig. 3-11 The LPN system in Example 3.9.
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Fig. 3-12 BRG of the LPN system in Fig. 3-11.

Proposition 3.3 There exists an observation 𝑤 ∈ ℒ(𝐺) such that |𝒞(𝑤)| ≠ 1, iff there

exists a state 𝑞𝑣 = (𝑥′, 𝑥) ∈ 𝑄𝑣 such that 𝑥′(1) ̸= 𝑥(1) or 𝑥′(2) = 1 or 𝑥(2) = 1.

Proof：(If) Assume that there exists a state 𝑞𝑣 = (𝑥′, 𝑥) ∈ 𝑄𝑣 such that 𝑥′(1) ̸= 𝑥(1) or

𝑥′(2) = 1 or 𝑥(2) = 1. If 𝑥′(1) ̸= 𝑥(1), by Algorithm 4, there exists an observation 𝑤 such

that 𝑞𝑣 ∈ 𝑓𝑣(𝑞𝑣0, 𝑤). Thus 𝑥′(1), 𝑥(1) ∈ 𝒞(𝑤). Since 𝑥′(1) ̸= 𝑥(1), |𝒞(𝑤)| ≠ 1. If 𝑥′(2) = 1

or 𝑥(2) = 1, by Lemma 3.1, there exists an observation 𝑤 ∈ 𝐸* such that |𝒞(𝑤)| ≠ 1.

(Only if) Assume that there exists an observation 𝑤 ∈ 𝐸* such that |𝒞(𝑤)| ≠ 1. This

implies that there exist two different markings 𝑀1,𝑀2 ∈ 𝒞(𝑤) with 𝑀1 ̸= 𝑀2. By Algorithm

4, if 𝑀1,𝑀2 ∈ 𝒞𝑏(𝑤), then there must exist a state 𝑞𝑣 = (𝑥′, 𝑥) ∈ 𝑄𝑣 such that 𝑥′(1) = 𝑀1

and 𝑥(1) = 𝑀2, i.e., 𝑥′(1) ̸= 𝑥(1); if 𝑀1,𝑀2 do not all belong to 𝒞𝑏(𝑤), then by Eq. (3-1),

there must exist a state 𝑞𝑣 = (𝑥′, 𝑥) ∈ 𝑄𝑣 such that 𝑥′(2) = 1 or 𝑥(2) = 1. �

In simple words, by inspecting the existence of a state 𝑞𝑣 = (𝑥′, 𝑥) such that 𝑥′(1) ̸=
𝑥(1) or 𝑥′(2) = 1 or 𝑥(2) = 1 in the verifier of the BRG, one can conclude whether there is

an observation 𝑤 such that 𝒞(𝑤) ̸= 1. This result helps us to determine strong detectability of

the LPN system.
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Fig. 3-13 Verifier of the BRG in Fig. 3-12.
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3.5.2 Verification

Based on Proposition 3.3, a sufficient condition for strong detectability can be obtained.

Corollary 3.3 Let 𝐺 be an LPN system whose 𝑇𝑢-induced subnet is acyclic, and 𝐵𝑣 =

(𝑄𝑣, 𝐸, 𝑓𝑣, 𝑞𝑣0) the verifier of its BRG. The LPN system 𝐺 is strongly detectable if ∀𝑞𝑣 =

(𝑥′, 𝑥) ∈ 𝑄𝑣 satisfy that 𝑥′(1) = 𝑥(1) and 𝑥′(2) = 𝑥(2) = 0.

The following necessary and sufficient condition for strong detectability is also derived

from Proposition 3.3.

Theorem 3.7 Let 𝐺 be an LPN system whose 𝑇𝑢-induced subnet is acyclic, and 𝐵𝑣 =

(𝑄𝑣, 𝐸, 𝑓𝑣, 𝑞𝑣0) the verifier of its BRG. The LPN system 𝐺 is strongly detectable iff for any

𝑞𝑣 ∈ 𝑄𝑣 reachable from a cycle in 𝐵𝑣, 𝑞𝑣 = ((𝑀𝑏, 0), (𝑀𝑏, 0)) where 𝑀𝑏 ∈ ℳ𝑏.

Proof： (If) By contrapositive. Assume that system 𝐺 is not strongly detectable.

This implies that for all 𝐾 ∈ N, there exists 𝜎 ∈ 𝐿∞(𝐺) such that ∃𝜎′ ⪯ 𝜎, with

𝑤′ = ℓ(𝜎′), |𝑤′| ≥ 𝐾 ⇒ |𝒞(𝑤′)| ≠ 1. Since 𝜎 has an infinite length, 𝐵𝑣 has a fi-

nite number of nodes, and there is no cycle of unobservable transitions, the path along

ℓ(𝜎) = 𝑤 must contain a cycle 𝛾𝑗 = 𝑞𝑗1𝑒𝑗1𝑞𝑗2 . . . 𝑞𝑗𝑘𝑒𝑗𝑘𝑞𝑗1. Thus the observation of

𝜎 can be written as 𝑤 = 𝑤0(𝑒𝑗1 . . . 𝑒𝑗𝑘)
𝑛𝑤2, where |𝑤0| is finite, 𝑛 ∈ {1, 2, 3, . . .} and

𝑤0, 𝑤2 ∈ 𝐸*. Let 𝐾 = |𝑤0|. Then, there exists 𝑤′ = ℓ(𝜎′) = 𝑤0𝑤
′′ such that |𝑤′| ≥ 𝐾

and 𝑤′′ ⪯ (𝑒𝑗1 . . . 𝑒𝑗𝑘)
𝑛𝑤2. Under the initial assumption that |𝒞(𝑤′)| ≠ 1, by Proposition

3.3, there exists a state 𝑞𝑣 = (𝑥′, 𝑥) ∈ 𝑓𝑣(𝑞𝑣0, 𝑤0𝑤
′′) such that 𝑥′(1) ̸= 𝑥(1) or 𝑥′(2) = 1 or

𝑥(2) = 1. Namely, there exists a state 𝑞𝑣 = (𝑥′, 𝑥) reachable from a cycle in 𝐵𝑣 such that

𝑞𝑣 ̸= ((𝑀𝑏, 0), (𝑀𝑏, 0)) where 𝑀𝑏 ∈ ℳ𝑏.

(Only if) By contrapositive. Assume that in the verifier there exists a state 𝑞𝑣 = (𝑥′, 𝑥)

reachable from a cycle and 𝑞𝑣 ̸= ((𝑀𝑏, 0), (𝑀𝑏, 0)), i.e., 𝑥′(1) ̸= 𝑥(1) or 𝑥′(2) = 1 or

𝑥(2) = 1. Namely, there exist 𝛾𝑗 = 𝑞𝑗1𝑒𝑗1𝑞𝑗2 . . . 𝑞𝑗𝑘𝑒𝑗𝑘𝑞𝑗1, 𝑞𝑗𝑟 ∈ 𝛾𝑗 (𝑟 ∈ {1, 2, . . . , 𝑘}),

and 𝑤′ ∈ 𝐸* such that 𝑞𝑣 ∈ 𝑓𝑣(𝑞𝑗𝑟, 𝑤
′). Since there are no cycles of unobservable tran-

sitions, there exist 𝜎 ∈ 𝐿∞(𝐺) and 𝑤1, 𝑤2 ∈ 𝐸* such that ℓ(𝜎) = 𝑤1(𝑒𝑗1𝑒𝑗2 . . . 𝑒𝑗𝑘)
𝑛𝑤2

and |𝑤1| is finite. Therefore, for any 𝐾 ∈ N, there exists 𝜎′ ⪯ 𝜎 such that

ℓ(𝜎′) = 𝑤1(𝑒𝑗1𝑒𝑗2 . . . 𝑒𝑗𝑘)
𝑚(𝑒𝑗1𝑒𝑗2 . . . 𝑒𝑗𝑟)𝑤

′ and |ℓ(𝜎′)| ≥ 𝐾, where 𝑤′ ⪯ (𝑒𝑗𝑟+1 . . . 𝑒𝑗𝑘)

(𝑒𝑗1𝑒𝑗2 . . . 𝑒𝑗𝑘)
𝑘𝑤2 and 𝑚+ 𝑘+1 = 𝑛. Let 𝑤0 = 𝑤1(𝑒𝑗1𝑒𝑗2 . . . 𝑒𝑗𝑘)

𝑚(𝑒𝑗1𝑒𝑗2 . . . 𝑒𝑗𝑟). Clearly,

𝑞𝑗𝑟 ∈ 𝑓𝑣(𝑞𝑣0, 𝑤0). With the initial assumption, 𝑞𝑣 ∈ 𝑓𝑣(𝑞𝑗𝑟, 𝑤
′) = 𝑓𝑣(𝑞𝑣0, 𝑤0𝑤

′). By Propo-

sition 3.3, this implies that |𝒞(𝑤0𝑤
′)| ≠ 1. Therefore, the system is not strongly detectable.

�
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Therefore, an LPN system is strongly detectable iff in the verifier of its BRG, all states

reachable from a cycle have the form ((𝑀𝑏, 0), (𝑀𝑏, 0)). Here, we can also take advantages

from SCCs. Thus Theorem 3.7 can be rewritten as follows.

Corollary 3.4 Let 𝐺 be an LPN system whose 𝑇𝑢-induced subnet is acyclic, and 𝐵𝑣 =

(𝑄𝑣, 𝐸, 𝑓𝑣, 𝑞𝑣0) the verifier of its BRG. The LPN system 𝐺 is strongly detectable iff for any

𝑞𝑣 ∈ 𝑄𝑣 reachable from an SCC in 𝐵𝑣, 𝑞𝑣 = ((𝑀𝑏, 0), (𝑀𝑏, 0)) where 𝑀𝑏 ∈ ℳ𝑏.

Example 3.10 Consider again the LPN system in Fig. 3-11. Its BRG is shown in Fig.

3-12, and the verifier of the BRG is shown in Fig. 3-13. Now we use Theorem 3.7 to check

strong detectability of the system. In the verifier, state ((𝑀3, 1), (𝑀3, 1)) belongs to a cycle,

so it is not true that all states are in the form ((𝑀𝑏, 0), (𝑀𝑏, 0)). Therefore, the LPN system is

not strongly detectable. ◇

Analogously to what has been done using the detector in Section 3.4, we try to check

strong periodic detectability by inspection of the cycles in the verifier of the BRG. However,

we finally find that the system may not be strongly periodically detectable even if in any cycle

𝛾𝑗 in 𝐵𝑣, ∃𝑞𝑣 = (𝑥′, 𝑥) ∈ 𝛾𝑗 , such that 𝑞𝑣 = ((𝑀𝑏, 0), (𝑀𝑏, 0)). This is shown in the following

example.

Example 3.11 Consider the LPN system in Fig. 3-10(a). The verifier of the BRG

of the LPN system is shown in Fig. 3-14. There are two cycles 𝛾1 = ((𝑀0, 0),

(𝑀0, 0))𝑎((𝑀0, 0), (𝑀0, 0)) and 𝛾2 = ((𝑀1, 0), (𝑀1, 0))𝑎((𝑀1, 0), (𝑀1, 0)). All the states

in the cycles satisfy the form ((𝑀𝑏, 0), (𝑀𝑏, 0)). However, as shown in Example 3.8, the

system is not strongly periodically detectable. ◇

The above results show that strong detectability can be verified through the verifier of

the BRG, by checking all the SCCs in the verifier. The complexity of constructing 𝐵𝑣 is

𝒪(|𝐸||ℳ𝑏|4) and the complexity of computing all the SCCs in the verifier is polynomial

w.r.t. the size of the verifier. Therefore, the complexity of the approach is also reduced.
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3.6 Verification of Strong Detectability based on Verifier Net and
BRG

In this section, we introduce the construction of the verifier net, which is still a Petri net,

and discuss some of its properties. Then, we show how the BRG of the verifier net can be

used to verify strong detectability. This approach is called VN-BRG method. Verifier net was

first proposed in [87] for verification of diagnosability. The verifier net is a labeled Petri net

that is built from the original LPN system. In this section, we present necessary and sufficient

conditions for strong detectability by analyzing the BRG of the verifier net. This approach is

related to several works on state estimation of Petri nets [65, 78, 87]. In particular, it is closely

related to the work of Masopust and Yin [65] who used a twin-plant construction algorithm

to verify strong detectability. Indeed, the twin-plant is a Petri net, while the proposed verifier

net is a labeled Petri net. Furthermore, we construct the BRG of the verifier net, thus avoiding

to enumerate all the markings.

3.6.1 Verifier Net

In [87], the verifier net (VN) is proposed to check diagnosability of an LPN system. In

this section, by modifying the labeling function of the VN, we will make it useful for the

analysis of strong detectability.

Let 𝐺 = (𝑁,𝑀0, 𝐸, ℓ) be an LPN system, where 𝑁 = (𝑃, 𝑇, 𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡), 𝑇 = 𝑇𝑜∪̇𝑇𝑢,

and ℓ : 𝑇 → 𝐸∪{𝜀}. Let 𝑁 ′ = (𝑃 ′, 𝑇 ′, 𝑃 𝑟𝑒′, 𝑃𝑜𝑠𝑡′) be a copy of 𝑁 where each place 𝑝𝑖 in 𝑁

is denoted as 𝑝′𝑖 and each transition 𝑡𝑖 in 𝑁 is denoted as 𝑡′𝑖. We denote 𝐺′ = (𝑁 ′,𝑀 ′
0, 𝐸, ℓ′)

a copy of 𝐺, that is, the initial marking 𝑀 ′
0 = 𝑀0, the set of labels in 𝐺′ is the alphabet 𝐸,

the labeling function of 𝐺′ is equal to ℓ, i.e., ∀𝑡′𝑖 ∈ 𝑇 ′, ℓ′(𝑡′𝑖) = ℓ(𝑡𝑖).

The VN is a labeled Petri net system obtained by composing 𝐺 with 𝐺′ assuming that

the synchronization is performed on the observable transition labels. We denote the VN 𝑉 =

(�̃� , �̃�0, 𝐸, ℓ̃), where �̃� = (𝑃 , 𝑇 , 𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡) is a Petri net, �̃�0 =

⎡⎢⎢⎣ 𝑀 ′
0

𝑀0

⎤⎥⎥⎦ is the initial

marking of 𝑉 , 𝐸 is the alphabet, ℓ̃ : 𝑇 → 𝐸 ∪ {𝜀} is the labeling function of 𝑉 . In net �̃� ,

𝑃 = 𝑃 ′ ∪ 𝑃 is a set of places of 𝑉 , and according to the labeling function ℓ̃, let 𝜆 be the

empty transition, the set of transitions can be partitioned into two disjoint sets 𝑇 = 𝑇𝑜 ∪ 𝑇𝑢,

where 𝑇𝑜 = {(𝑡′, 𝑡)|𝑡′ ∈ 𝑇 ′
𝑜, 𝑡 ∈ 𝑇𝑜, ℓ

′(𝑡′) = ℓ(𝑡) ∈ 𝐸} is the set of observable transitions,

and 𝑇𝑢 = (𝑇 ′
𝑢 × {𝜆}) ∪ ({𝜆} × 𝑇𝑢) is the set of unobservable transitions, i.e., ℓ̃(𝑇𝑜) ∈ 𝐸 and
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ℓ̃(𝑇𝑢) = 𝜀. The function 𝑃𝑟𝑒 : 𝑃 × 𝑇 → N and 𝑃𝑜𝑠𝑡 : 𝑃 × 𝑇 → N are defined as detailed

in Algorithm 5. Note that in [87], 𝑁 ′ is a subnet of 𝑁 and the labeling function of the VN is

also different from this structure.

Algorithm 5 Construction of the Verifier Net
Input: An LPN system 𝐺 = (𝑁,𝑀0, 𝐸, ℓ), where 𝑁 = (𝑃, 𝑇, 𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡), 𝑇 = 𝑇𝑜 ∪ 𝑇𝑢,

and ℓ : 𝑇 → 𝐸 ∪ {𝜀}.
Output: The corresponding VN 𝑉 = (�̃� , �̃�0, 𝐸, ℓ̃), where �̃� = (𝑃 , 𝑇 , 𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡), and

ℓ̃ : 𝑇 → 𝐸 ∪ {𝜀}.
1: 𝐺′ = (𝑁 ′,𝑀 ′

0, 𝐸, ℓ′) be a copy of 𝐺.

2: 𝑃 = 𝑃 ′ ∪ 𝑃 , �̃�0 =

⎡⎢⎣ 𝑀 ′
0

𝑀0

⎤⎥⎦.

3: for all transitions 𝑡𝑢 ∈ 𝑇𝑢, do
4: ∙ add a transition 𝑡 = (𝜆, 𝑡𝑢) ∈ 𝑇 , ℓ̃(𝑡) := 𝜀;
5: ∙ for all 𝑝′ ∈ 𝑃 ′, 𝑃𝑟𝑒(𝑝′, 𝑡) := 𝑃𝑜𝑠𝑡(𝑝′, 𝑡) := 0;
6: ∙ for all 𝑝 ∈ 𝑃 , 𝑃𝑟𝑒(𝑝, 𝑡) := 𝑃𝑟𝑒(𝑝, 𝑡𝑢) and 𝑃𝑜𝑠𝑡(𝑝, 𝑡) := 𝑃𝑜𝑠𝑡(𝑝, 𝑡𝑢);
7: end for
8: for all transitions 𝑡′𝑢 ∈ 𝑇 ′

𝑢, do
9: ∙ add a transition 𝑡 = (𝑡′𝑢, 𝜆) ∈ 𝑇 , ℓ̃(𝑡) := 𝜀;

10: ∙ for all 𝑝′ ∈ 𝑃 ′, 𝑃𝑟𝑒(𝑝′, 𝑡) := 𝑃𝑟𝑒′(𝑝′, 𝑡′𝑢) and 𝑃𝑜𝑠𝑡(𝑝′, 𝑡) := 𝑃𝑜𝑠𝑡′(𝑝′, 𝑡′𝑢)

11: ∙ for all 𝑝 ∈ 𝑃 , 𝑃𝑟𝑒(𝑝, 𝑡) := 𝑃𝑜𝑠𝑡(𝑝, 𝑡) := 0;
12: end for
13: for all labels 𝑒 ∈ 𝐸, do
14: ∙ for any pair (𝑡′𝑜, 𝑡𝑜) with 𝑡′𝑜 ∈ 𝑇 ′

𝑜 , 𝑡𝑜 ∈ 𝑇𝑜, ℓ′(𝑡′𝑜) := ℓ(𝑡𝑜) = 𝑒;
15: ∙ add a transition 𝑡 = (𝑡′𝑜, 𝑡𝑜) ∈ 𝑇 , ℓ̃(𝑡) := 𝑒;
16: ∙ for all 𝑝′ ∈ 𝑃 ′, 𝑃𝑟𝑒(𝑝′, 𝑡) := 𝑃𝑟𝑒′(𝑝′, 𝑡′𝑜) and 𝑃𝑜𝑠𝑡(𝑝′, 𝑡) := 𝑃𝑜𝑠𝑡′(𝑝′, 𝑡′𝑜);
17: ∙ for all 𝑝 ∈ 𝑃 , 𝑃𝑟𝑒(𝑝, 𝑡) := 𝑃𝑟𝑒(𝑝, 𝑡𝑜) and 𝑃𝑜𝑠𝑡(𝑝, 𝑡) := 𝑃𝑜𝑠𝑡(𝑝, 𝑡𝑜).
18: end for

According to Algorithm 5, the initial marking �̃�0 of VN is the concatenation of the

initial marking of 𝐺′ and 𝐺 (Step 2). All the unobservable transitions are indicated with a pair

𝑡 = (𝜆, 𝑡𝑢) (Step 3 to 7) or 𝑡 = (𝑡′𝑢, 𝜆) (Steps 8 to 12), where 𝑡𝑢 ∈ 𝑇𝑢 in 𝐺, 𝑡′𝑢 ∈ 𝑇 ′
𝑢 in 𝐺′,

and ℓ̃(𝑡) = 𝜀. All the observable transitions are indicated as 𝑡 = (𝑡′𝑜, 𝑡𝑜), where 𝑡′𝑜 ∈ 𝑇 ′
𝑜 in 𝐺′,

𝑡𝑜 ∈ 𝑇𝑜 in 𝐺, and ℓ̃(𝑡) = ℓ(𝑡′𝑜) = ℓ(𝑡𝑜) (Steps 13 to 18).

Since the VN is a labeled Petri net, the properties of Petri net in Section 2.2 are also

suitable for the VN. Given a VN 𝑉 = (�̃� , �̃�0, 𝐸, ℓ̃), the incidence matrix of 𝑉 is 𝐶 =

𝑃𝑜𝑠𝑡− 𝑃𝑟𝑒. Let �̃� ′ = (𝑃 ′, 𝑇 ′, 𝑃 𝑟𝑒′, 𝑃𝑜𝑠𝑡′) be the 𝑇𝑢-induced subnet of �̃� , where 𝑇𝑢 is the
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set of unobservable transitions. The incidence matrix of the 𝑇𝑢-induced subnet is denoted by

𝐶𝑢 = 𝑃𝑜𝑠𝑡′ − 𝑃𝑟𝑒′.

By Algorithm 5, the number of places and tokens of a VN is twice that of the LPN

system. In the worst case, the number of the transitions of a VN is 𝑛2, where 𝑛 is the number

of the transitions of the LPN system. Thus, the complexity of constructing a VN is polynomial

in the size of the original LPN system.

Example 3.12 Let us consider again the LPN system in Fig. 3-11, whose VN is pre-

sented in Fig. 3-15. The set of places of the VN is obtained by the union of the set of places

𝑃 of the system 𝐺 in Fig. 3-11 and the set of places 𝑃 ′ of the system 𝐺′, where 𝐺′ is a

copy of 𝐺. The initial marking is �̃�0 = 𝑝′1 + 𝑝1, and there are four unobservable transitions

𝑇𝑢 = {(𝑡′1, 𝜆), (𝜆, 𝑡1), (𝑡′5, 𝜆), (𝜆, 𝑡5)}, and six observable transitions 𝑇𝑜 = {(𝑡′2, 𝑡2), (𝑡′4, 𝑡4),
(𝑡′2, 𝑡4), (𝑡

′
4, 𝑡2), (𝑡

′
3, 𝑡3), (𝑡

′
6, 𝑡6)}. ◇

Lemma 3.2 There exists a transition sequence �̃� ∈ 𝑇 * in 𝑉 , where �̃� = (𝑡′𝑗1, 𝑡𝑗1)

(𝑡′𝑗2, 𝑡𝑗2) · · · (𝑡′𝑗𝑘, 𝑡𝑗𝑘), iff there exists a transition sequence 𝜎′ = 𝑡′𝑗1𝑡
′
𝑗2 · · · 𝑡′𝑗𝑘 ∈ 𝑇 ′* in 𝐺′,

and a transition sequence 𝜎 = 𝑡𝑗1𝑡𝑗2 · · · 𝑡𝑗𝑘 ∈ 𝑇 * in 𝐺, and ℓ′(𝜎′) = ℓ(𝜎) = ℓ̃(�̃�).

Proof：By Algorithm 5, the VN is constructed by all pairs of transition sequences that

have the same observation. Thus, the result can be easily obtained. �

In other words, for any transition sequence �̃� ∈ 𝐿(�̃� , �̃�0) in 𝑉 whose first and second

components are 𝜎′ and 𝜎, we can find 𝜎′ in 𝐺′ and 𝜎 in 𝐺, that have the same observation

ℓ′(𝜎′) = ℓ(𝜎). On the other hand, for any 𝜎′ ∈ 𝐿(𝑁 ′,𝑀 ′
0) and 𝜎 ∈ 𝐿(𝑁,𝑀0), with ℓ′(𝜎′) =

ℓ(𝜎), we can also find transition sequence �̃� in 𝑉 whose first and second components are 𝜎′

and 𝜎.

Lemma 3.3 There exists a transition sequence �̃� ∈ 𝐿(�̃� , �̃�0) in 𝑉 such that

�̃�0[�̃�⟩�̃� =

⎡⎢⎢⎣ 𝑀 ′

𝑀

⎤⎥⎥⎦ with 𝑀 ′ ̸= 𝑀 , iff there exist two different markings 𝑀1,𝑀2 ∈

𝑅(𝑁,𝑀0) in 𝐺, where 𝑀0[𝜎1⟩𝑀1, 𝑀0[𝜎2⟩𝑀2, ℓ(𝜎1) = ℓ(𝜎2) = ℓ̃(�̃�).

Proof： (If) Assume that 𝑀0[𝜎1⟩𝑀1, 𝑀0[𝜎2⟩𝑀2 such that ℓ(𝜎1) = ℓ(𝜎2) and 𝑀1 ̸=
𝑀2. Since 𝐺′ is a copy of 𝐺, there exists 𝜎′ ∈ 𝐿(𝑁 ′,𝑀 ′

0) such that 𝑀 ′
0[𝜎

′⟩𝑀 ′ = 𝑀2 and

ℓ′(𝜎′) = ℓ(𝜎2) = ℓ(𝜎1). By Lemma 3.2 and Algorithm 5, there exist �̃� ∈ 𝐿(�̃� , �̃�0) such that

�̃�0[�̃�⟩�̃� =

⎡⎢⎢⎣ 𝑀 ′

𝑀1

⎤⎥⎥⎦ with 𝑀 ′ ̸= 𝑀1.
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Fig. 3-15 The VN of the LPN system in Fig. 3-11.

(Only if) Assume that �̃�0[�̃�⟩�̃� =

⎡⎢⎢⎣ 𝑀 ′

𝑀

⎤⎥⎥⎦ with 𝑀 ′ ̸= 𝑀 . By Lemma 3.2 and Al-

gorithm 5, there exist 𝜎′ ∈ 𝐿(𝑁 ′,𝑀 ′
0) and 𝜎 ∈ 𝐿(𝑁,𝑀0) such that 𝑀 ′

0[𝜎
′⟩𝑀 ′, 𝑀0[𝜎⟩𝑀

and ℓ′(𝜎′) = ℓ(𝜎). Since 𝐺′ is a copy of 𝐺, there exists 𝜎1 ∈ 𝐿(𝑁,𝑀0) such that

𝑀0[𝜎1⟩𝑀1 = 𝑀 ′, with ℓ(𝜎1) = ℓ′(𝜎′). Thus, ℓ(𝜎1) = ℓ(𝜎) and 𝑀1 ̸= 𝑀 . �

Therefore, in an LPN system, if there exists a reachable marking �̃� =

⎡⎢⎢⎣ 𝑀 ′

𝑀

⎤⎥⎥⎦ ∈

𝑅(�̃� , �̃�0) in its VN with 𝑀 ′ ̸= 𝑀 , then there must exist two different transition sequences

whose observations are the same, while the markings reached by them are also different from

each other in the LPN system.

Lemma 3.4 There exist two transition sequences �̃�1, �̃�2 ∈ 𝐿(�̃� , �̃�0) in 𝑉 , with ℓ̃(�̃�1) =

ℓ̃(�̃�2), �̃�0[�̃�1⟩�̃�1, �̃�0[�̃�2⟩�̃�2, and �̃�1 ̸= �̃�2, iff there exist two transition sequences 𝜎1 and

𝜎2 in 𝐺 such that 𝑀0[𝜎1⟩𝑀1,𝑀0[𝜎2⟩𝑀2,𝑀1 ̸= 𝑀2, and ℓ(𝜎1) = ℓ(𝜎2) = ℓ̃(�̃�1).

Proof： (If) Assume that there exist two transition sequences 𝜎1 and 𝜎2 in 𝐺 such that

𝑀0[𝜎1⟩𝑀1, 𝑀0[𝜎2⟩𝑀2,𝑀1 ̸= 𝑀2, and ℓ(𝜎1) = ℓ(𝜎2) = ℓ̃(�̃�1). Since 𝐺′ is a copy of 𝐺, there

exist 𝜎′
1, 𝜎

′
2 ∈ 𝐿(𝑁 ′,𝑀 ′

0) such that 𝑀 ′
0[𝜎

′
1⟩𝑀 ′

1 = 𝑀1 and 𝑀 ′
0[𝜎

′
2⟩𝑀 ′

2 = 𝑀2. By Lemma
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3.2 and Algorithm 5, there exist 𝜎1, 𝜎2 ∈ 𝐿(�̃� , �̃�0) such that �̃�0[𝜎1⟩�̃�1 =

⎡⎢⎢⎣ 𝑀 ′
1

𝑀1

⎤⎥⎥⎦ and

�̃�0[𝜎2⟩�̃�2 =

⎡⎢⎢⎣ 𝑀 ′
2

𝑀2

⎤⎥⎥⎦. Clearly, �̃�1 ̸= �̃�2.

(Only if) Assume that �̃�0[�̃�1⟩�̃�1 =

⎡⎢⎢⎣ 𝑀 ′
1

𝑀1

⎤⎥⎥⎦, �̃�0[�̃�2⟩�̃�2 =

⎡⎢⎢⎣ 𝑀 ′
2

𝑀2

⎤⎥⎥⎦, with �̃�1 ̸= �̃�2.

By Lemma 3.2 and Algorithm 5, there exist 𝜎′
1, 𝜎

′
2 ∈ 𝐿(𝑁 ′,𝑀 ′

0) and 𝜎1, 𝜎2 ∈ 𝐿(𝑁,𝑀0)

such that 𝑀 ′
0[𝜎

′
1⟩𝑀 ′

1, 𝑀0[𝜎1⟩𝑀1, 𝑀 ′
0[𝜎

′
2⟩𝑀 ′

2, 𝑀0[𝜎2⟩𝑀2 and ℓ′(𝜎′
1) = ℓ(𝜎1) = ℓ′(𝜎2) =

ℓ(𝜎2). Since 𝐺′ is a copy of 𝐺, there exist 𝜎3, 𝜎4 ∈ 𝐿(𝑁,𝑀0) such that 𝑀0[𝜎3⟩𝑀3 =

𝑀 ′
1, 𝑀0[𝜎4⟩𝑀4 = 𝑀 ′

2, with ℓ(𝜎3) = ℓ′(𝜎′
1) and ℓ(𝜎4) = ℓ′(𝜎′

2). Since �̃�1 ̸= �̃�2,

𝑀 ′
1,𝑀1,𝑀

′
2,𝑀2 can not all be equal. Namely, 𝑀1,𝑀2,𝑀3,𝑀4 can not all be equal. Since

ℓ(𝜎1) = ℓ(𝜎2) = ℓ(𝜎3) = ℓ(𝜎4), the result holds. �

In other words, in an LPN system, if there exist two different markings with the same

observation in its VN, then there must exist two different markings in the LPN system that

can be reached when observing the same event sequence.

Proposition 3.4 The 𝑇𝑢-induced subnet of 𝑉 is acyclic, iff the 𝑇𝑢-induced subnet of 𝐺

is acyclic.

Proof： (If) Assume that the 𝑇𝑢-induced subnet of 𝑉 is not acyclic. Clearly, there

exists a cycle in the 𝑇𝑢-induced subnet, i.e., there exists a transition sequence 𝜎𝑢 =

(𝑡′𝑗1, 𝑡𝑗1)(𝑡
′
𝑗2, 𝑡𝑗2) · · · (𝑡′𝑗𝑘, 𝑡𝑗𝑘) ∈ 𝑇𝑢

*
, such that �̃� [𝜎𝑢⟩�̃� . By Lemma 3.2, there must exist

a transition sequence 𝜎 = 𝑡𝑗1𝑡𝑗2 · · · 𝑡𝑗𝑘 in 𝐺, ℓ(𝜎) = ℓ̃(�̃�) = 𝜀. Let �̃� =

⎡⎢⎢⎣ 𝑀 ′

𝑀

⎤⎥⎥⎦, thus

𝑀 [𝜎⟩𝑀 . Therefore, the 𝑇𝑢-induced subnet of 𝐺 is also not acyclic.

(Only if) Assume that the 𝑇𝑢-induced subnet of 𝐺 is not acyclic. Clearly, there exists

a cycle in the 𝑇𝑢-induced subnet, i.e., there exists a transition sequence 𝜎𝑢 = 𝑡𝑗1𝑡𝑗2 · · · 𝑡𝑗𝑘 ∈
𝑇 *
𝑢 , such that 𝑀 [𝜎𝑢⟩𝑀 . Since 𝐺′ is a copy of 𝐺, there also exists a transition sequence

𝜎′ = 𝑡′𝑗1𝑡
′
𝑗2 · · · 𝑡′𝑗𝑘 in 𝐺′ that 𝑀 ′[𝜎′⟩𝑀 ′, with ℓ′(𝜎′) = ℓ(𝜎𝑢) = 𝜀. By Lemma 3.2, there must

exist a transition sequence �̃� = (𝑡′𝑗1, 𝑡𝑗1)(𝑡
′
𝑗2, 𝑡𝑗2) · · · (𝑡′𝑗𝑘, 𝑡𝑗𝑘) and a marking �̃� =

⎡⎢⎢⎣ 𝑀 ′

𝑀

⎤⎥⎥⎦,
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such that �̃� [�̃�⟩�̃� with ℓ̃(�̃�) = ℓ′(𝜎′) = ℓ(𝜎𝑢) = 𝜀. Therefore, The 𝑇𝑢-induced subnet of 𝑉

is not acyclic. �

3.6.2 BRG of the VN

In this subsection, we show how the BRG of the VN can be used to verify detectability,

thus again avoiding the enumeration of all the states of the LPN system. Obviously, such an

approach can be applied provided that the 𝑇𝑢-induced subnet of the LPN is acyclic.

To distinguish the BRG of the original system and the BRG of the VN, we denote 𝑉𝑏 =

(�̃�, 𝐸, 𝑓, �̃�0) the BRG of the VN 𝑉 = (�̃� , �̃�0, 𝐸, ℓ̃), where �̃� ⊆ ℳ̃𝑏 × {0, 1} is a finite set

of states, and each state �̃� ∈ �̃� of the BRG is a pair (�̃�𝑏,Ψ(�̃�𝑏)). We denote the 𝑖-th (with

𝑖 = 1, 2) element of �̃� as �̃�(𝑖). The initial node of the BRG is �̃�0 = (�̃�0,Ψ(�̃�0)).

According to [83, 88], in the worst case, the complexity of constructing a BRG is e-

qual to that of the RG. Thus, in the worst case, the complexity of constructing the BRG is

exponential in the VN’s size.

Example 3.13 Consider again the LPN system in Fig. 3-11. Its VN in Fig. 3-15 is

already introduced in Example 3.12. The VN has 13 reachable markings and 6 basis markings.

We take �̃�0 and �̃�1 as examples to compute Ψ(�̃�0) and Ψ(�̃�1). For basis marking �̃�0 =

𝑝′1 + 𝑝1, the Eq. (3-1) has 3 solutions. In this case, Ψ(�̃�0) = 1. For basis marking �̃�1 =

𝑝′4 + 𝑝4, by Eq. (3-1), the equation does not have a positive integer solution. Therefore,

Ψ(�̃�1) = 0. The BRG of the VN is presented in Fig. 3-16. ◇

Proposition 3.5 Let 𝐺 = (𝑁,𝑀0, 𝐸, ℓ) be an LPN system, and 𝑉 = (�̃� , �̃�0, 𝐸, ℓ̃) the

VN of 𝐺. There exists an observation 𝑤 ∈ 𝐸* of 𝐺 with |𝒞(𝑤)| ≠ 1, iff there exists a state

�̃� = (�̃�𝑏,Ψ(�̃�𝑏)) of 𝑉𝑏, such that Ψ(�̃�𝑏) = 1 or �̃�𝑏 =

⎡⎢⎢⎣ 𝑀 ′
𝑏

𝑀𝑏

⎤⎥⎥⎦ with 𝑀 ′
𝑏 ̸= 𝑀𝑏.
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Fig. 3-16 The BRG of the VN in Fig. 3-15.
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Proof：(If) Assume that there exists a state �̃� = (�̃�𝑏,Ψ(�̃�𝑏)) of 𝑉 , such that Ψ(�̃�𝑏) =

1 or �̃�𝑏 =

⎡⎢⎢⎣ 𝑀 ′
𝑏

𝑀𝑏

⎤⎥⎥⎦ with 𝑀 ′
𝑏 ̸= 𝑀𝑏.

Case 1: �̃�𝑏 =

⎡⎢⎢⎣ 𝑀 ′
𝑏

𝑀𝑏

⎤⎥⎥⎦ with 𝑀 ′
𝑏 ̸= 𝑀𝑏. By Lemma 3.3, there must exist 𝑀1,𝑀2 ∈

𝑅(𝑁,𝑀0) in 𝐺, where 𝑀0[𝜎1⟩𝑀1 = 𝑀 ′
𝑏, 𝑀0[𝜎2⟩𝑀2 = 𝑀𝑏, ℓ(𝜎1) = ℓ(𝜎2). Let the ob-

servation of 𝐺 be 𝑤 = ℓ(𝜎1) = ℓ(𝜎2), where 𝑤 ∈ 𝐸*. Therefore, 𝑀1,𝑀2 ∈ 𝒞(𝑤), thus

|𝒞(𝑤)| ≠ 1.

Case 2: Ψ(�̃�𝑏) = 1. This implies that Eq. (3-1) has a positive integer solution, Thus,

there exists an unobservable transition 𝑡𝑢 that is enabled at marking �̃� . Let �̃�0[�̃�⟩�̃�𝑏[𝑡𝑢⟩�̃�
with ℓ̃(�̃�) = 𝑤. Since the 𝑇𝑢-induced subnet of 𝐺 is acyclic, by Proposition 3.4, the 𝑇𝑢-

induced subnet of 𝑉 is also acyclic. Thus, �̃� ̸= �̃�𝑏 and ℓ̃(�̃�𝑡𝑢) = ℓ̃(�̃�). By Lemma 3.4,

there must exist two different markings 𝑀1,𝑀2 ∈ 𝑅(𝑁,𝑀0) in 𝐺 with 𝑀1 ̸= 𝑀2, where

𝑀0[𝜎1⟩𝑀1, 𝑀0[𝜎2⟩𝑀2, ℓ(𝜎1) = ℓ(𝜎2) = ℓ̃(�̃�) = 𝑤. Therefore, 𝑀1,𝑀2 ∈ 𝒞(𝑤), thus

|𝒞(𝑤)| ≠ 1.

(Only if) Assume that there exists an observation 𝑤 ∈ 𝐸* of 𝐺 with |𝒞(𝑤)| ̸= 1, i.e.,

there exist two different markings 𝑀1,𝑀2 ∈ 𝒞(𝑤) in 𝐺 with 𝑀1 ̸= 𝑀2, where 𝑀0[𝜎1⟩𝑀1,

𝑀0[𝜎2⟩𝑀2, ℓ(𝜎1) = ℓ(𝜎2) = 𝑤. By Lemma 3.3, there must exist a transition sequence

�̃� ∈ 𝐿(�̃� , �̃�0) with ℓ(�̃�) = 𝑤, �̃�0[�̃�⟩�̃� =

⎡⎢⎢⎣ 𝑀 ′

𝑀

⎤⎥⎥⎦ such that 𝑀 ′ = 𝑀1,𝑀 = 𝑀2. Since

�̃� ∈ 𝑅(�̃� , �̃�0), by construction of the BRG, if �̃� ∈ ℳ̃𝑏, the result holds; if �̃� /∈ ℳ̃𝑏, there

must exist a basis marking �̃�𝑏 ∈ ℳ̃𝑏 from which �̃� can be reached, namely, Ψ(�̃�𝑏) = 1. �

Therefore, there exists an observation 𝑤 to which it corresponds a set of consistent

markings 𝒞(𝑤) containing more than one marking, iff there exists a state �̃� = (�̃�𝑏,Ψ(�̃�𝑏))

in the BRG of its VN, such that either Ψ(�̃�𝑏) = 1 or �̃�𝑏 =

⎡⎢⎢⎣ 𝑀 ′
𝑏

𝑀𝑏

⎤⎥⎥⎦ with 𝑀 ′
𝑏 ̸= 𝑀𝑏.

3.6.3 Verification

Based on Proposition 3.5, a sufficient condition for strong detectability can be obtained.

Corollary 3.5 Let 𝐺 = (𝑁,𝑀0, 𝐸, ℓ) be an LPN system whose 𝑇𝑢-induced subnet is
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acyclic, 𝑉 = (�̃� , �̃�0, 𝐸, ℓ̃) the VN of 𝐺, and 𝑉𝑏 = (�̃�, 𝐸, 𝑓, �̃�0) the BRG of 𝑉 . The system

is strongly detectable if for all states �̃� = (�̃�𝑏,Ψ(�̃�𝑏)) of 𝑉𝑏, it holds that Ψ(�̃�𝑏) = 0 and

�̃�𝑏 =

⎡⎢⎢⎣ 𝑀 ′
𝑏

𝑀𝑏

⎤⎥⎥⎦ with 𝑀 ′
𝑏 = 𝑀𝑏.

In the following, necessary and sufficient conditions for detectability are provided based

on the inspection of the cycles in the BRG of the VN.

Theorem 3.8 Let 𝐺 = (𝑁,𝑀0, 𝐸, ℓ) be an LPN system whose 𝑇𝑢-induced subnet is

acyclic, 𝑉 = (�̃� , �̃�0, 𝐸, ℓ̃) the VN of 𝐺, and 𝑉𝑏 = (�̃�, 𝐸, 𝑓, �̃�0) the BRG of 𝑉 . The

LPN system 𝐺 is strongly detectable iff for any �̃� ∈ �̃� reachable from any cycle in 𝑉𝑏,

�̃� =

⎛⎜⎜⎝
⎡⎢⎢⎣ 𝑀 ′

𝑏

𝑀𝑏

⎤⎥⎥⎦ , 0

⎞⎟⎟⎠ with 𝑀 ′
𝑏 = 𝑀𝑏.

Proof： (If) By contrapositive. Assume that system 𝐺 is not strongly detectable. This

implies that for all 𝐾 ∈ N, there exists 𝜎 ∈ 𝐿∞(𝐺) such that ∃𝜎′ ⪯ 𝜎, with 𝑤′ = ℓ(𝜎′), |𝑤′| ≥
𝐾 ⇒ |𝒞(𝑤′)| ̸= 1. By Lemma 3.2, there exists a transition sequence �̃� ∈ 𝐿∞(𝑉 ) and

�̃�′ ⪯ �̃�, with ℓ̃(�̃�) = ℓ(𝜎), ℓ̃(�̃�′) = ℓ(𝜎′) = 𝑤′. Since the 𝑇𝑢-induced subnet of 𝐺 is acyclic,

by Proposition 3.4, the 𝑇𝑢-induced subnet of 𝑉 is acyclic. Since �̃� has an infinite length,

𝑉𝑏 has a finite number of nodes, and there is no cycle of unobservable transitions, the path

along ℓ̃(�̃�) = 𝑤 must contain a cycle 𝛾𝑗 = �̃�𝑗1𝑒𝑗1�̃�𝑗2 . . . �̃�𝑗𝑘𝑒𝑗𝑘�̃�𝑗1. Thus, the observation

of �̃� can be written as 𝑤 = 𝑤0(𝑒𝑗1 . . . 𝑒𝑗𝑘)
𝑛𝑤2, where |𝑤0| is finite, 𝑛 ∈ {1, 2, 3, . . .} and

𝑤0, 𝑤2 ∈ 𝐸*. Let 𝐾 = |𝑤0|. Then, there exists 𝑤′ = ℓ̃(�̃�′) = 𝑤0𝑤
′′ such that |𝑤′| ≥ 𝐾

and 𝑤′′ ⪯ (𝑒𝑗1 . . . 𝑒𝑗𝑘)
𝑛𝑤2. Under the initial assumption that |𝒞(𝑤′)| ≠ 1, by Proposition 3.5,

there exists a state �̃� = (�̃�𝑏,Ψ(�̃�𝑏)) ∈ 𝑓(�̃�0, 𝑤0𝑤
′′) such that Ψ(�̃�𝑏) = 1 or �̃�𝑏 =

⎡⎢⎢⎣ 𝑀 ′
𝑏

𝑀𝑏

⎤⎥⎥⎦
with 𝑀 ′

𝑏 ̸= 𝑀𝑏. Clearly, the state �̃� is reachable from a cycle in 𝑉𝑏.

(Only if) By contrapositive. Assume in the BRG of a VN, there exists a state �̃� =

(�̃�𝑏,Ψ(�̃�𝑏)) reachable from a cycle and Ψ(�̃�𝑏) = 1 or �̃�𝑏 =

⎡⎢⎢⎣ 𝑀 ′
𝑏

𝑀𝑏

⎤⎥⎥⎦ with 𝑀 ′
𝑏 ̸= 𝑀𝑏.

Namely, there exist 𝛾𝑗 = �̃�𝑗1𝑒𝑗1�̃�𝑗2 . . . �̃�𝑗𝑘𝑒𝑗𝑘�̃�𝑗1, �̃�𝑗𝑟 ∈ 𝛾𝑗 (𝑟 ∈ {1, 2, . . . , 𝑘}), and 𝑤′ ∈ 𝐸*

such that �̃� ∈ 𝑓(�̃�𝑗𝑟, 𝑤
′). Since the 𝑇𝑢-induced subnet of 𝐺 is acyclic, by Proposition 3.4,

the 𝑇𝑢-induced subnet of 𝑉 is acyclic. Thus, there exist �̃� ∈ 𝐿∞(𝑉 ) and 𝑤1, 𝑤2 ∈ 𝐸*
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such that ℓ̃(�̃�) = 𝑤1(𝑒𝑗1𝑒𝑗2 . . . 𝑒𝑗𝑘)
𝑛𝑤2 and |𝑤1| is finite. Therefore, for any 𝐾 ∈ N, there

exists �̃�′ ⪯ �̃� such that ℓ̃(�̃�′) = 𝑤1(𝑒𝑗1𝑒𝑗2 . . . 𝑒𝑗𝑘)
𝑚(𝑒𝑗1𝑒𝑗2 . . . 𝑒𝑗𝑟)𝑤

′ and |ℓ̃(�̃�′)| ≥ 𝐾, where

𝑤′ ⪯ (𝑒𝑗𝑟+1 . . . 𝑒𝑗𝑘)(𝑒𝑗1𝑒𝑗2 . . . 𝑒𝑗𝑘)
𝑘𝑤2 and 𝑚+ 𝑘+1 = 𝑛. Let 𝑤0 = 𝑤1(𝑒𝑗1𝑒𝑗2 . . . 𝑒𝑗𝑘)

𝑚(𝑒𝑗1

𝑒𝑗2 . . . 𝑒𝑗𝑟). Clearly, �̃�𝑗𝑟 ∈ 𝑓(�̃�0, 𝑤0). Thus, �̃� ∈ 𝑓(�̃�𝑗𝑟, 𝑤
′) = 𝑓(�̃�0, 𝑤0𝑤

′). Since �̃� ∈
𝐿∞(𝑉 ) and �̃�′ ⪯ �̃�, by Lemma 3.2, there exist 𝜎 ∈ 𝐿∞(𝐺) and 𝜎′ ⪯ 𝜎, with ℓ(𝜎′) = ℓ̃(�̃�′) =

𝑤0𝑤
′. Under the initial assumption, by Proposition 3.5, this implies that |𝒞(𝑤0𝑤

′)| ≠ 1.

Therefore, the system is not strongly detectable. �

In words, an LPN system is strongly detectable iff in the BRG of its VN, all states

reachable from a cycle have the form

⎛⎜⎜⎝
⎡⎢⎢⎣ 𝑀 ′

𝑏

𝑀𝑏

⎤⎥⎥⎦ , 0

⎞⎟⎟⎠ with 𝑀 ′
𝑏 = 𝑀𝑏. Here, we can also take

advantages on SCCs. Thus Theorem 3.8 can be rewritten as follows.

Corollary 3.6 Let 𝐺 = (𝑁,𝑀0, 𝐸, ℓ) be an LPN system whose 𝑇𝑢-induced subnet is

acyclic, 𝑉 = (�̃� , �̃�0, 𝐸, ℓ̃) the VN of 𝐺, and 𝑉𝑏 = (�̃�, 𝐸, 𝑓, �̃�0) the BRG of 𝑉 . The

LPN system 𝐺 is strongly detectable iff for any �̃� ∈ �̃� reachable from any SCC in 𝑉𝑏,

�̃� =

⎛⎜⎜⎝
⎡⎢⎢⎣ 𝑀 ′

𝑏

𝑀𝑏

⎤⎥⎥⎦ , 0

⎞⎟⎟⎠ with 𝑀 ′
𝑏 = 𝑀𝑏.

Example 3.14 Consider again the LPN system in Fig. 3-11. Its VN is shown in Fig.

3-15, and the BRG of the VN is shown in Fig. 3-16. Now we use Theorem 3.8 to check

its strong detectability. In the BRG, we can see that �̃�5(2) = 0 and �̃�4(2) = 1, thus there

exists a cycle that does not satisfy all states having the form

⎛⎜⎜⎝
⎡⎢⎢⎣ 𝑀 ′

𝑏

𝑀𝑏

⎤⎥⎥⎦ , 0

⎞⎟⎟⎠ with 𝑀 ′
𝑏 = 𝑀𝑏.

Therefore, the LPN system is not strongly detectable. ◇

Analogously to Section 3.5, the following example shows that the LPN system is not

strongly periodically detectable even if for any cycle 𝛾𝑗 in 𝑉𝑏, ∃�̃� ∈ �̃� , �̃� =

⎛⎜⎜⎝
⎡⎢⎢⎣ 𝑀 ′

𝑏

𝑀𝑏

⎤⎥⎥⎦ , 0

⎞⎟⎟⎠
with 𝑀 ′

𝑏 = 𝑀𝑏.

Example 3.15 Consider the LPN system in Fig. 3-10(a). The VN of the LPN system

and the BRG of the VN are shown in Fig. 3-17(a) and 3-17(b). Clearly, all the states in the

cycles are in the form

⎛⎜⎜⎝
⎡⎢⎢⎣ 𝑀 ′

𝑏

𝑀𝑏

⎤⎥⎥⎦ , 0

⎞⎟⎟⎠ with 𝑀 ′
𝑏 = 𝑀𝑏. However, the system is not strongly



Southwest Jiaotong University Doctor Degree Dissertation Page 55

g

b

g

1

t4(a) p5 p6t5(ε)

t2(a)p2

p3

t3(b)t1(ε)

t6(c)

p1

p4

p1

p4
a

p2+p5 
c

p2+p3

b

a

a

a (p1) (p4,p2+p5) (p4)

(p2+p3)

a

ac

b

M1=p2+p3 

M2=p4

M3=p2+p5 M0=p1 M4=p2+p6

t1(ε)
t2(a)

t4(a)

t3(b)

t5(ε)

t6(c)

(M1,M2) (M2,M3,M4) (M2)

(M1)

a

ac

b
b

b

t5(b) p6 p7t6(ε)

t3(b)p3

p4

t4(c)
t2(a)

t10(g)

p2

p5

t7(d)

p8 p9t9(ε)t8(b)

{M3,M4,M5,M6,M7}

{M3}

{M0,M1} {M6}
a

b

c
c

d

g

(M2,0)

(M3,0)

(M4,1) (M6,0)

t2(a)
t3(b)

(M5,1)

{(M2,0)}

b

b

{(M3,0),(M5,1)}

{(M3,0),(M4,1)}

{(M4,1),(M5,1)}

{(M3,0)}

c

c

p1

t1(ε)

M2=p3+p4 

M3=p5

M4=p3+p6 M1=p2 M6=p3+p7M0=p1

t5(b)

t6(ε)
t3(b)

t4(c)

t2(a)t1(ε)

M5=p3+p8 M7=p3+p9

t8(b) t9(ε)

t10(g)

t7(d)

{M2} d

(M0,1)
t5(b)

t8(b)

t10(g)

t7(d)

t4(c)

t7(d)

{(M0,1)}
a

c

{(M6,0)} d
d

d
t5(b)

p6

p7

t6(ε)

t3(b)

p3p4

t4(c)

t2(a)

t10(g)

p2

p5

t7(d)

p8

p9

t9(ε)

t8(b)

p1

t1(ε)

t5(b) p6

t6(ε)

t3(b)

p3

p4

t4(c)

t2(a)

t10(d)

p2

p5

p8
p9t9(ε)t8(b)

p1

t1(ε)

p3'

p4' p4

p3

(t3',t8)

(t5',t8) (t8',t8)(t3',t5)
(t5',t5)

(t8',t5)(t3',t3) (t5',t3)

(t8',t3)

p5' p5 p6' p6 p8' p8

p1' p1p2' p2

(t4',t4)

(t7',t7) (t9',t9)

(t2',t2)

(t1', ) ( ,t1)

(t6', ) ( ,t6) ( ,t9)(t9', )

p7' p7 p9' p9

(p5'+p5 ,0)

(p5'+p3+p6 ,1)

(p5'+p3+p8 ,1)

(p3'+p6'+p5 ,1)

(p3'+p6'+p3+p6 ,1)

(p3'+p6'+p3+p8 ,1)

(p3'+p8'+p3+p6 ,1)

(p3'+p8'+p3+p8 ,1)

(p3'+p8'+p3+p5 ,1)

(p3'+p4'+p3+p4 ,0)(p1'+p1 ,1) (p3'+p7'+p3+p7 ,0)
a

b

g

c

d
d

(t2',t2)

(t4',t4)

(t2',t4)

(t4',t2)

p2

p3

p3'

p2'

p4'

p4

p5'

p5

(t3',t3)

(t6',t6)

p1

p1' (t1',λ)

(λ,t1) (t5',λ)

(λ,t5)

(p1'+p1 ,1)

(p4'+p4 ,0)
a

(p4'+p2+p5 ,1)

(p2'+p5'+p4 ,1)

(p2'+p5'+p2+p5 ,1)
c

(p2'+p3'+p2+p3 ,0)

b

a

a

a

a

p6

p6'

x0

x1

x2

x3

x4 x5

(t2',t2)

(t4',t4)

(t2',t4)

(t4',t2)

p2

p3

p3'

p2'

p4'

p4

p5'

p5

(t3',t3)

(t6',t6)

p1

p1' (t1',λ)

(λ,t1) (t5',λ)

(λ,t5) p6

p6'

t4(a) p5 p6t5(ε)

t2(a)p2

p3

t3(b)t1(ε)

t6(c)

p1

p4

(M0,1)

(M2,0)

(M3,1) (M1,0)

M1=p2+p3 

M2=p4

M3=p2+p5 M0=p1 M4=p2+p6

t1(ε)
t2(a)

t4(a)

t3(b)

t5(ε)

t6(c)

t2(a)

t3(b)

t4(a) t6(c)
t4(a)

t2(a)

(M0,1),(M0,1)

(M2,0),(M2,0)
a

(M2,0),(M3,1)

(M2,0),(M3,1)

(M3,1),(M3,1)
c

(M1,0),(M1,0)

b

a

a

a

a a
a a

a

a

a

a b
a

p1 p2

p2

p2'

p1

p1'

(t1',t1)

(t2',t2)

(t2',t1)

(t1',t2)

(t2',t2)t1(a)

t2(a)

t3(b)
(p1'+p1 ,0)

(p2'+p2 ,0)

(p2'+p1 ,0)

(p1'+p2 ,0)

a

b

a

a
a

LPN system
VN BRG of VN

(M0,0) (M1,0)

a b
a

BRG

Verifier net

(M0,0),(M0,0)

(M1,0),(M1,0)
a

(M1,0),(M0,0)

(M0,0),(M1,0)

a

a

(M0,0) {(M1,0),(M1,0)}
a

{(M0,0),(M1,0)}
a

b

b

b

Detector

a)

g

b

g

1

t4(a) p5 p6t5(ε)

t2(a)p2

p3

t3(b)t1(ε)

t6(c)

p1

p4

p1

p4
a

p2+p5 
c

p2+p3

b

a

a

a (p1) (p4,p2+p5) (p4)

(p2+p3)

a

ac

b

M1=p2+p3 

M2=p4

M3=p2+p5 M0=p1 M4=p2+p6

t1(ε)
t2(a)

t4(a)

t3(b)

t5(ε)

t6(c)

(M1,M2) (M2,M3,M4) (M2)

(M1)

a

ac

b
b

b

t5(b) p6 p7t6(ε)

t3(b)p3

p4

t4(c)
t2(a)

t10(g)

p2

p5

t7(d)

p8 p9t9(ε)t8(b)

{M3,M4,M5,M6,M7}

{M3}

{M0,M1} {M6}
a

b

c
c

d

g

(M2,0)

(M3,0)

(M4,1) (M6,0)

t2(a)
t3(b)

(M5,1)

{(M2,0)}

b

b

{(M3,0),(M5,1)}

{(M3,0),(M4,1)}

{(M4,1),(M5,1)}

{(M3,0)}

c

c

p1

t1(ε)

M2=p3+p4 

M3=p5

M4=p3+p6 M1=p2 M6=p3+p7M0=p1

t5(b)

t6(ε)
t3(b)

t4(c)

t2(a)t1(ε)

M5=p3+p8 M7=p3+p9

t8(b) t9(ε)

t10(g)

t7(d)

{M2} d

(M0,1)
t5(b)

t8(b)

t10(g)

t7(d)

t4(c)

t7(d)

{(M0,1)}
a

c

{(M6,0)} d
d

d
t5(b)

p6

p7

t6(ε)

t3(b)

p3p4

t4(c)

t2(a)

t10(g)

p2

p5

t7(d)

p8

p9

t9(ε)

t8(b)

p1

t1(ε)

t5(b) p6

t6(ε)

t3(b)

p3

p4

t4(c)

t2(a)

t10(d)

p2

p5

p8
p9t9(ε)t8(b)

p1

t1(ε)

p3'

p4' p4

p3

(t3',t8)

(t5',t8) (t8',t8)(t3',t5)
(t5',t5)

(t8',t5)(t3',t3) (t5',t3)

(t8',t3)

p5' p5 p6' p6 p8' p8

p1' p1p2' p2

(t4',t4)

(t7',t7) (t9',t9)

(t2',t2)

(t1', ) ( ,t1)

(t6', ) ( ,t6) ( ,t9)(t9', )

p7' p7 p9' p9

(p5'+p5 ,0)

(p5'+p3+p6 ,1)

(p5'+p3+p8 ,1)

(p3'+p6'+p5 ,1)

(p3'+p6'+p3+p6 ,1)

(p3'+p6'+p3+p8 ,1)

(p3'+p8'+p3+p6 ,1)

(p3'+p8'+p3+p8 ,1)

(p3'+p8'+p3+p5 ,1)

(p3'+p4'+p3+p4 ,0)(p1'+p1 ,1) (p3'+p7'+p3+p7 ,0)
a

b

g

c

d
d

(t2',t2)

(t4',t4)

(t2',t4)

(t4',t2)

p2

p3

p3'

p2'

p4'

p4

p5'

p5

(t3',t3)

(t6',t6)

p1

p1' (t1',λ)

(λ,t1) (t5',λ)

(λ,t5)

(p1'+p1 ,1)

(p4'+p4 ,0)
a

(p4'+p2+p5 ,1)

(p2'+p5'+p4 ,1)

(p2'+p5'+p2+p5 ,1)
c

(p2'+p3'+p2+p3 ,0)

b

a

a

a

a

p6

p6'

x0

x1

x2

x3

x4 x5

(t2',t2)

(t4',t4)

(t2',t4)

(t4',t2)

p2

p3

p3'

p2'

p4'

p4

p5'

p5

(t3',t3)

(t6',t6)

p1

p1' (t1',λ)

(λ,t1) (t5',λ)

(λ,t5) p6

p6'

t4(a) p5 p6t5(ε)

t2(a)p2

p3

t3(b)t1(ε)

t6(c)

p1

p4

(M0,1)

(M2,0)

(M3,1) (M1,0)

M1=p2+p3 

M2=p4

M3=p2+p5 M0=p1 M4=p2+p6

t1(ε)
t2(a)

t4(a)

t3(b)

t5(ε)

t6(c)

t2(a)

t3(b)

t4(a) t6(c)
t4(a)

t2(a)

(M0,1),(M0,1)

(M2,0),(M2,0)
a

(M2,0),(M3,1)

(M2,0),(M3,1)

(M3,1),(M3,1)
c

(M1,0),(M1,0)

b

a

a

a

a a
a a

a

a

a

a b
a

p1 p2

p2

p2'

p1

p1'

(t1',t1)

(t2',t2)

(t2',t1)

(t1',t2)

(t2',t2)t1(a)

t2(a)

t3(b)
(p1'+p1 ,0)

(p2'+p2 ,0)

(p2'+p1 ,0)

(p1'+p2 ,0)

a

b

a

a
a

LPN system
VN BRG of VN

(M0,0) (M1,0)

a b
a

BRG

Verifier net

(M0,0),(M0,0)

(M1,0),(M1,0)
a

(M1,0),(M0,0)

(M0,0),(M1,0)

a

a

(M0,0) {(M1,0),(M1,0)}
a

{(M0,0),(M1,0)}
a

b

b

b

Detector

b)

Fig. 3-17 The VN of the LPN system in Fig 3-10 (a), and the BRG of the VN (b).

periodically detectable. ◇

The above results show that strong detectability can be verified through the BRG of the

VN, by checking all the SCCs in the BRG. The complexity of computing all the SCCs in the

BRG is polynomial w.r.t. the size of the BRG.

3.7 Comparison of the proposed Methods

Since the complexity of constructing the BRG cannot be quantitatively measured in gen-

eral, the efficiency of the four proposed methods cannot be compared directly. In this section,

a series of numerical examples are presented, to compare the efficiency of the four proposed

methods. To implement the approaches proposed in this work, we developed MATLAB codes

[89] to compute the BRG of a bounded LPN system, its observer, its detector, its verifier, the

BRG of the VN, and to determine the detectability properties of bounded LPN systems.

Let us consider the LPN system in Fig. 3-18 whose 𝑇𝑢-induced subnet is acyclic, and

where 𝑇𝑢 = {𝑡1, 𝑡2, 𝑡3} and 𝑇𝑜 = {𝑡4, 𝑡5, · · · , 𝑡12}. The initial marking in place 𝑝1 is a

parameter 𝑘 ∈ {1, 2, · · · }.

The number of markings in the BRG of the LPN system, the observer, the verifier, the
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Fig. 3-18 The LPN system considered in Section 3.7.
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detector, and the BRG of the VN for different values of 𝑘 are reported in Table 3-1. Cor-

respondingly, time (in seconds) to compute them, as well as the results relative to the two

detectability properties for the different values of 𝑘, are summarized in Table 3-2. Computa-

tions are performed using MATLAB on a laptop with Intel i7-7700 CPU 3.6GHz processor

and 8G DDR3 RAM.

• In Table 3-1, Column 2 illustrates the number of basis markings of the LPN system.

Columns 3 to 5 show the number of states in the observer, the detector and the verifier, re-

spectively. Column 6 illustrates the number of basis markings of the VN.

• In Table 3-2, the corresponding time (in seconds) is presented in Columns 2 to 5,

which illustrate the time to compute observer, detector, verifier and the BRG of the VN,

respectively. In Table 3-2 “o.t.” means out of time, in the case where the tool did not halt

within 10 hours.

• In Table 3-2, Columns 6 and 7 summarize the properties satisfied by the LPN system

for the different values of 𝑘 in Table 3-1. “SD” and “PSD” stand for strong detectability

and strong periodic detectability, respectively. “Y” means that the LPN system satisfies the

property, and “N” means that the LPN system does not satisfy the property.

The following conclusions can be drawn from the results in Tables 3-1 and 3-2.

• When 𝑘 is larger than 4, the number of states of the observer is much larger than that

of the verifier and the BRG of the VN, while the number of states of the verifier is much larger

than that of the detector.

• The BRG of the VN of the LPN system and the verifier of the BRG of the LPN system

always have the same number of states. However, the BRG-V method is more efficient than

the VN-BRG method.

• When 𝑘 is larger than 2, the time needed to compute the observer of the BRG is much

longer and grows faster than that required to compute the verifier of the BRG.

• When 𝑘 is larger than 6, the time needed to compute the observer of the BRG is longer

and grows faster than that required to compute the BRG of the VN.

• Whatever the value of 𝑘, the time needed to compute the detector of the BRG is much

shorter and grows slower than that required to compute the other three structures.

In summary, BRG-detector method, BRG-V method and VN-BRG method are practi-

cally more efficient for large-size Petri net systems than BRG-observer method. In particular,

the BRG-detector method is the most efficient in the considered examples.
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Table 3-1 Cardinality of sets for different values of 𝑘 in Fig. 3-18.
𝑘 |ℳ𝑏| |𝒳 | |𝑄| |𝑄𝑣| |�̃�|

1 4 7 7 10 10
2 10 28 37 82 82
3 20 163 172 362 362
4 35 844 562 1157 1157
5 56 4123 1486 3026 3026
6 84 22327 3404 6890 6890
7 120 135277 7022 14162 14162
8 165 o.t. 13367 26897 26897
9 220 o.t. 23872 47962 o.t.

ℳ𝑏: the set of basis markings of the LPN system;
𝒳 : the set of states in the observer of the BRG;
𝑄: the set of states in the detector of the BRG;
𝑄𝑣: the set of states in the verifier of the BRG;
�̃�: the set of basis markings of the VN.

Table 3-2 Time and results for different values of 𝑘 in Fig. 3-18.
𝑘 𝜏𝑜 𝜏𝑑 𝜏𝑣 𝜏𝑏𝑣 SD PSD

1 0.020s 0.018s 0.024s 0.051s N N
2 0.131s 0.098s 0.199s 0.553s N N
3 1.459s 0.605s 1.387s 5.409s N N
4 14.415s 3.535s 9.481s 53.850s N N
5 119.70s 20.64s 56.79s 301.64s N N
6 1317.06s 96.64s 285.23s 1607.43s N N
7 18907.73s 433.89s 1207.52s 7057.02s N N
8 o.t. 1530.11s 4374.29s 23692.88s N N
9 o.t. 4893.05s 15050.46s o.t. N N

3.8 Conclusions

In the chapter, strong detectability, weak detectability, strong periodic detectability and

weak periodic detectability have been defined in labeled Petri nets. Four new approaches to

verify the detectability of a labeled Petri net system are developed. The first approach is based

on a structure called observer, the second approach is based on a structure called detector, the

third one is based on a structure called verifier, and the last one is based on a labeled Petri net

called verifier net. All the four approaches use basis reachability graph techniques. Through

solving an integer linear equation, the proposed approaches avoid exhaustively enumerating

the reachability space. This leads to significant advantages in terms of computational com-

plexity. After careful derivation, the first approach can be used to check the four detectability

properties, the second approach can be used to check strong and strong periodic detectability,

while the last two methods have the limitation of only allowing the verification of strong de-
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tectability. Finally, in all the considered testing examples, it is shown that the BRG-detector

method is the most efficient among the four methods for large-size Petri net systems.
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Chapter 4: Verification of C-detectability using Labeled
Petri Nets

Detectability describes the property of a system to uniquely determine, after a finite

number of observations, the current and the subsequent states. In this chapter, we extend

detectability to C-detectability that only requires that a given set of crucial states can be dis-

tinguished from other states. We define four types of C-detectability in the framework of

labeled Petri nets (LPNs): strong C-detectability, weak C-detectability, periodically strong

C-detectability, and periodically weak C-detectability. Moreover, we propose efficient ap-

proaches to verify such properties in the case of bounded LPN systems. The proposed ap-

proaches use the notion of basis marking and thus do not require an exhaustive enumeration

of the reachability space.

4.1 Introduction

Detectability describes the property of a system to uniquely determine, after a finite

number of observations, the current and the subsequent states. It typically requires a large

number of sensors associated with transitions to satisfy the detectability properties. Thus,

imposing detectability could be too restrictive in real applications. To address such issues,

in this chapter we propose different notions of detectability. In particular, we formalize the

notion of C-detectability, where “C” stands for “crucial”. C-detectability requires that if the

set of markings consistent with a certain observation contains crucial states, then the crucial

state has to be determined uniquely after a finite number of observations. In other words, we

extend detectability to C-detectability that only requires that a given set of crucial states can be

distinguished from the other states. Clearly, detectability is a special case of C-detectability,

where the set of crucial states is equivalent to the whole state space. Based on the notions

of basis marking and basis reachability graph (BRG) [77], efficient approaches to verify the

above four C-detectability properties are proposed. The contributions of the chapter can be

summarized as follows.

• Strong C-detectability, weak C-detectability, periodically strong C-detectability, and

periodically weak C-detectability are formally defined in LPNs.

• Efficient approaches to verify the above four C-detectability properties in bounded

LPNs are proposed. Thanks to basis markings, there is no need to enumerate all the markings
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that are consistent with an observation. This leads to significant advantages in terms of com-

putational complexity since the BRG is usually much smaller than the RG, thus allowing to

deal with problems that are otherwise infeasible. By constructing the observer of the BRG,

the four C-detectability properties can be checked. By constructing the detector of the BRG,

strong C-detectability and periodically strong C-detectability can be checked more efficiently.

• Rather than computing all the elementary cycles in the observer [7, 23], which is

NP-hard, we show that C-detectability can be verified by computing strongly connected com-

ponents [79], which is of polynomial complexity with respect to the size of the observer.

• When a system satisfies a certain C-detectability property, original methods are pro-

posed to compute the smallest number of observed events after which the crucial states can

be distinguished.

The rest of the chapter is organized as follows. Strong C-detectability, weak C-

detectability, periodically strong C-detectability and periodically weak C-detectability in LP-

Ns are defined in Section 4.2. In Section 4.3, the approaches based on BRG and observer are

presented to verify the four C-detectability properties in bounded LPNs. In Section 4.4, the

approaches based on BRG and detector are provided to verify strong C-detectability proper-

ties in bounded LPNs. A parametric example that illustrates the efficiency of the proposed

approaches is given in Section 4.5. Finally, conclusions are presented in Section 4.6.

4.2 Definition of C-detectability

4.2.1 Definition

A Petri net system is detectable if its current state and the subsequent ones can be u-

niquely determined after a finite number of observations. This requirement may be too strong

in some applications. In this chapter, we relax such a definition and introduce the property of

C-detectability, where “𝐶” stands for “crucial”. In particular, we only care about a given set

of states, called crucial states, and want to be sure that when the system reaches such states,

they are uniquely identified.

The following two assumptions are made:

1) The LPN system 𝐺 is deadlock free. This means that ∀𝑀 ∈ 𝑅(𝑁,𝑀0),∃𝑡 ∈ 𝑇 such

that 𝑀 [𝑡⟩, i.e., any reachable marking enables at least one transition;

2) The 𝑇𝑢-induced subnet is acyclic.

The two assumptions above guarantee that any transition sequence enabled in the system

can continue infinitely long as well as its corresponding observation. Similar assumptions are
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commonly made when detectability is studied (e.g. [7, 24, 65]). Note that Assumption 2)

is more restrictive than assuming that there are no strings of unobservable events of infinite

length since the existence of a cycle of unobservable transitions in the Petri net structure does

not imply that such a cycle is enabled. However, Assumption 2) is a structural assumption

that can be verified in polynomial time and that leads to computational advantages in the

verification of C-detectability (as shown in the following sections).

Let us now introduce the notion of crucial markings and the C-detectability properties

considered in this chapter, namely, strong, weak, periodically strong, and periodically weak

C-detectability.

Definition 4.1 Given an LPN system 𝐺 = (𝑁,𝑀0, 𝐸, ℓ) and the set of its reachable

markings 𝑅(𝑁,𝑀0), the set of crucial markings is a subset of markings ℳ𝑐 ⊆ 𝑅(𝑁,𝑀0). ◇

C-detectability requires that any crucial marking 𝑀 ∈ ℳ𝑐 is distinguishable from the

other markings after a finite number of observations. In the following, we formalize four

C-detectability properties, namely, strong C-detectability, weak C-detectability, periodically

strong C-detectability and periodically weak C-detectability.

Definition 4.2 [Strong C-detectability] Let 𝐺 = (𝑁,𝑀0, 𝐸, ℓ) be an LPN system and

ℳ𝑐 the set of crucial markings. System 𝐺 is strongly C-detectable with respect to (w.r.t.) ℳ𝑐

if there exists a finite integer 𝐾 ∈ N such that ∀𝜎 ∈ 𝐿∞(𝐺), ∀𝜎′ ⪯ 𝜎 with |𝑤′| ≥ 𝐾, the

following condition holds:

𝒞(𝑤′) ∩ℳ𝑐 ̸= ∅ ⇒ |𝒞(𝑤′)| = 1, (4-1)

where 𝑤′ = ℓ(𝜎′). ◇

In words, an LPN system is strongly C-detectable if we can uniquely determine all

markings in ℳ𝑐 after a finite number of observations for all possible evolutions of the system.

Meanwhile, if there is no crucial marking in 𝒞(𝑤) it does not matter whether markings in 𝒞(𝑤)
are distinguishable from other markings or not.

Example 4.1 Consider the LPN system in Fig. 4-1(a). Let the set of crucial markings be

ℳ𝑐 = {𝑀0} = {[1 0 0]𝑇}. Its RG is shown in Fig. 4-1(b). The resulting observer is reported

in Fig. 4-1(c). After 𝑎* is observed, the current state of the system can be uniquely determined,

being 𝒞(𝑎*) = {𝑀0}. On the contrary, if 𝑏* is observed, the estimation of the current marking

is 𝒞(𝑏*) = {𝑀1,𝑀2}, namely there are two consistent markings but none of them is a crucial

marking. Therefore, by Definition 4.2, the LPN system is strongly C-detectable w.r.t. ℳ𝑐. ◇
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Fig. 4-1 An LPN system (a), its RG (b), and the observer of the RG (c).

Definition 4.3 [Weak C-detectability] Let 𝐺 = (𝑁,𝑀0, 𝐸, ℓ) be an LPN system and

ℳ𝑐 the set of crucial markings. System 𝐺 is weakly C-detectable w.r.t. ℳ𝑐 if there exist a

finite integer 𝐾 ∈ N and a transition sequence 𝜎 ∈ 𝐿∞(𝐺) such that ∀𝜎′ ⪯ 𝜎 with |𝑤′| ≥ 𝐾,

the condition in Eq. (4-1) holds. ◇

In simple words, weak C-detectability implies that markings in ℳ𝑐 can be distinguished

after a finite number of observations, at least during one possible evolution of the system, but

not necessarily during all of them, as in the case of strong C-detectability.

Example 4.2 Let us consider again the LPN system in Fig. 4-1(a). Let the set of crucial

markings be ℳ𝑐 = {𝑀0,𝑀1} = {[1 0 0]𝑇 , [0 1 0]𝑇}. Clearly, the LPN system is not

strongly C-detectable w.r.t. ℳ𝑐 since after 𝑏* is observed, the estimation contains a crucial

marking 𝑀1 which cannot be distinguished from 𝑀2. However, since after 𝑎* is observed,

the estimation only contains one marking 𝑀0 in ℳ𝑐, by Definition 4.3, the LPN system is

weakly C-detectable w.r.t. ℳ𝑐. ◇

Definition 4.4 [Periodically strong C-detectability] Let 𝐺 = (𝑁,𝑀0, 𝐸, ℓ) be an LPN

system and ℳ𝑐 the set of crucial markings. System 𝐺 is periodically strongly C-detectable

w.r.t. ℳ𝑐 if there exists a finite integer 𝐾 ∈ N such that ∀𝜎 ∈ 𝐿∞(𝐺),∀𝜎′ ⪯ 𝜎,

∃𝜎′′ ∈ 𝑇 * : 𝜎′𝜎′′ ⪯ 𝜎, |ℓ(𝜎′′)| ≤ 𝐾,

𝒞(𝑤) ∩ℳ𝑐 ̸= ∅ ⇒ |𝒞(𝑤)| = 1, (4-2)

where 𝑤 = ℓ(𝜎′𝜎′′). ◇
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Therefore, an LPN system is periodically strongly C-detectable if we can periodically

distinguish markings in ℳ𝑐 for all trajectories of the system. In other words, “periodically

C-detectable” means that, as an arbitrary sequence in 𝐿∞(𝐺) continues, from time to time

the set of markings consistent with the corresponding observation contains either a single

marking or no marking in ℳ𝑐. We point out that for different evolutions of the system the

period may be different. However, if the system is bounded one can find an upper bound for

all the periods.

Example 4.3 Consider the LPN system in Fig. 4-2(a). Let the set of crucial markings

be ℳ𝑐 = {𝑀2} = {[0 0 1 0]𝑇}. Its RG is shown in Fig. 4-2(b), and the observer of the

RG is shown in Fig. 4-2(c). State {𝑀0,𝑀1} of the observer contains no crucial marking in

the estimation, i.e., no crucial marking is confused with other markings. On the contrary,

the other two states of the observer contain the crucial marking together with at least one

additional marking. Let us now focus on state {𝑀2,𝑀3}. There exists only one sequence

𝜎 ∈ 𝐿∞(𝐺) with ℓ(𝜎) = 𝑏(𝑎𝑏)* that leads to state {𝑀2,𝑀3}. However, if we consider

𝜎 = 𝑡3(𝑡4𝑡5𝑡1𝑡3)
*, then for any 𝜎′ ⪯ 𝜎 (for instance 𝜎′ = 𝑡3𝑡4𝑡5𝑡1) there exists 𝜎′′ = 𝑡3𝑡4𝑡5

such that 𝜎′𝜎′′ ⪯ 𝜎, |ℓ(𝜎′′)| ≤ 2 and 𝒞(ℓ(𝜎′𝜎′′)) = {𝑀0,𝑀1} ∩ℳ𝑐 = ∅. By Definition 4.4,

the LPN system is periodically strongly C-detectable and the finite integer 𝐾 in the definition

is equal to 2. Note that the system is also weakly C-detectable, but not strongly C-detectable.

◇

Definition 4.5 [Periodically weak C-detectability] Let 𝐺 = (𝑁,𝑀0, 𝐸, ℓ) be an LPN

system and ℳ𝑐 the set of crucial markings. System 𝐺 is periodically weakly C-detectable

w.r.t. ℳ𝑐 if there exist a finite integer 𝐾 ∈ N and a transition sequence 𝜎 ∈ 𝐿∞(𝐺) such that

∀𝜎′ ⪯ 𝜎, the condition in Eq. (4-2) holds. ◇

An LPN system is periodically weakly C-detectable if there exists at least one sequence

enabled at the initial marking such that from time to time the set of markings consistent with

the corresponding observation contains either a single marking or no marking in ℳ𝑐.

Example 4.4 Let us consider again the LPN system in Fig. 4-2(a). Let the set of crucial

markings be ℳ𝑐 = {𝑀0} = {[1 0 0 0]𝑇}. When 𝑎* is observed, the crucial marking 𝑀0

is confused with 𝑀1, while if (𝑎𝑏)* is observed, state {𝑀2,𝑀3} is reached, which does not

contain any crucial marking. On one hand, there exist a finite integer 𝐾 = 2 and sequence

𝜎 = 𝑡3(𝑡4𝑡5𝑡1𝑡3)
* ∈ 𝐿∞(𝐺) such that for any 𝜎′ ⪯ 𝜎 (for instance 𝜎′ = 𝑡3𝑡4𝑡5) there exists

𝜎′′ = 𝑡1𝑡3 satisfying 𝜎′𝜎′′ ⪯ 𝜎, |ℓ(𝜎′′)| ≤ 𝐾 and 𝒞(ℓ(𝜎′𝜎′′)) = {𝑀2,𝑀3} ∩ ℳ𝑐 = ∅. On

the other hand, there also exists sequence 𝜎 = (𝑡1𝑡2)
* ∈ 𝐿∞(𝐺) such that no finite integer 𝐾
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Fig. 4-2 The LPN system in Example 4.3 (a), its RG (b), and the observer of the RG (c).

can be found such that ∀𝜎′ ⪯ 𝜎, the condition in Eq. (4-2) holds. As a result, by Definition

4.4, the LPN system is not periodically strongly C-detectable. However, by Definition 4.5,

the LPN system is periodically weakly C-detectable. ◇

We finally notice that, by Definitions 4.2 to 4.5, the relationship among the four de-

tectability properties can be summarized by the Venn diagram in Fig. 4-3, where a property

in a box implies the properties whose corresponding boxes contain it. For instance, if an LPN

system is strongly C-detectable (SCD box), it is certainly also weakly C-detectable (WCD

box), periodically strongly C-detectable (PSCD box), and periodically weakly C-detectable

(PWCD box). However, if an LPN system is weakly C-detectable, it may not be periodically

strongly C-detectable, or vice versa. For instance, in Example 4.2, the LPN system is weak-

ly C-detectable, but not periodically strongly C-detectable. Now, assume that transition 𝑡2 in

Fig. 4-2(a) is removed. In such a case, the selfloop labeled 𝑎 at state {𝑀0,𝑀1} in the observer

WCD

SCDPSCD

PWCD

SCD : strongly C-detectable;
PSCD   : periodically strongly C-detectable;
WCD   : weakly C-detectable;
PWCD : periodically weakly C-detectable.

Fig. 4-3 The relationship among the four detectability properties.
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in Fig. 4-2(c) would no longer exist. If 𝑀𝑐 = {𝑀2}, the LPN system is periodically strongly

C-detectable, but not weakly C-detectable.

In the automaton framework, detectability analysis is performed using the notion of

observer [7, 23]. Obviously, in the case of bounded LPN systems the same approach can be

used first constructing the RG of the net system and then computing its observer (as Examples

4.1 to 4.4 illustrate). However, such an approach could be infeasible in the case of systems

with a large state space. Indeed, the RG of a Petri net system is exponential in the size of the

net (number of places, transitions, tokens in the initial marking) and the observer of the RG is

exponential in the number of reachable markings.

In this chapter, we show how the above four detectability properties can be verified using

the notion of basis marking, thus avoiding an exhaustive enumeration of all the markings in

the RG.

4.2.2 BRG for C-detectability

In this chapter, using the notion of basis marking, we introduce the BRG for C-

detectability. To guarantee that the BRG is finite, we assume that the LPN system is bounded.

For each basis marking 𝑀𝑏 ∈ ℳ𝑏 two values are respectively assigned by functions

𝛼 : ℳ𝑏 → {0, 1} and 𝛽 : ℳ𝑏 → {0, 1} that are defined by Eqs. (4-3) and (4-4), respectively:

𝛼(𝑀𝑏) =

⎧⎪⎪⎨⎪⎪⎩
1 if ℳ𝑐 ∩ 𝑈𝑅(𝑀𝑏) ̸= ∅;

0 otherwise.
(4-3)

𝛽(𝑀𝑏) =

⎧⎪⎪⎨⎪⎪⎩
1 if |𝑈𝑅(𝑀𝑏)| > 1;

0 if |𝑈𝑅(𝑀𝑏)| = 1.
(4-4)

Since 𝑀𝑏 ∈ 𝑈𝑅(𝑀𝑏), |𝑈𝑅(𝑀𝑏)| ≥ 1.

Lemma 4.1 Given a basis marking 𝑀𝑏 ∈ ℳ𝑏, |𝑈𝑅(𝑀𝑏)| > 1 iff the following equation

𝑀𝑏 + 𝐶𝑢 · 𝑦𝑢 ≥ 0⃗ (4-5)

has a positive solution 𝑦𝑢 ∈ N𝑛𝑢

≥1.

Proof：(If) Suppose Eq. (4-5) has a positive integer solution 𝑦𝑢 ∈ N𝑛𝑢

≥1, i.e., there exists
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at least one of the elements in the vector 𝑦𝑢 that is a positive integer. Thus, there exists an

unobservable transition 𝑡 that is enabled at marking 𝑀𝑏. Let 𝑀𝑏[𝑡⟩𝑀 . With the assumption

that the 𝑇𝑢-induced subnet is acyclic, we have 𝑀 ̸= 𝑀𝑏. By definition of unobservable reach,

𝑀𝑏,𝑀 ∈ 𝑈𝑅(𝑀𝑏). Thus |𝑈𝑅(𝑀𝑏)| > 1.

(Only if) If |𝑈𝑅(𝑀𝑏)| > 1, there exists a marking 𝑀 ∈ 𝑈𝑅(𝑀𝑏) such that 𝑀 ̸= 𝑀𝑏.

Let 𝜎𝑢 ∈ 𝑇 *
𝑢 such that 𝑀𝑏[𝜎𝑢⟩𝑀 and 𝑦𝑢 = 𝜋(𝜎𝑢). Therefore, 𝑦𝑢 is a solution to Eq. (4-5).

Since 𝑀 ̸= 𝑀𝑏, 𝑦𝑢 ∈ N𝑛𝑢

≥1. �

Lemma 4.1 shows that the value of 𝛽(𝑀𝑏) can be computed by simply checking whether

Eq. (4-5) has a positive integer solution. We also point out that to compute 𝛼(𝑀𝑏) there is no

need to enumerate all markings in 𝑈𝑅(𝑀𝑏) either, but we simply need to check whether there

exists a marking 𝑀 ∈ ℳ𝑐 such that 𝑀 = 𝑀𝑏 + 𝐶𝑢 · 𝑦𝑢 has a solution 𝑦𝑢 ∈ N𝑛𝑢 .

In this chapter, we denote as 𝐵 = (𝑋,𝐸, 𝑓, 𝑥0) the BRG for C-detectability of an LPN

system 𝐺 = (𝑁,𝑀0, 𝐸, ℓ), where 𝑋 ⊆ ℳ𝑏 × {0, 1} × {0, 1} is a finite set of states, and

each state 𝑥 ∈ 𝑋 of the BRG is a triple (𝑀𝑏, 𝛼(𝑀𝑏), 𝛽(𝑀𝑏)). We denote the 𝑖-th (with

𝑖 ∈ {1, 2, 3}) element of 𝑥 as 𝑥(𝑖). The initial node of the BRG is 𝑥0 = (𝑀0, 𝛼(𝑀0), 𝛽(𝑀0)).

Note that |𝑋| = |ℳ𝑏| since for a given basis marking 𝑀𝑏 and a given set of crucial markings

ℳ𝑐 the values of 𝛼(𝑀𝑏) and 𝛽(𝑀𝑏) are uniquely determined, i.e., there is only one triple

(𝑀𝑏, 𝛼(𝑀𝑏), 𝛽(𝑀𝑏)) assigned to 𝑀𝑏. The event set of the BRG is the alphabet 𝐸.

Lemma 4.2 Let 𝐺 be an LPN system, ℳ𝑐 the set of crucial markings, and 𝑀𝑏 ∈ ℳ𝑏

a basis marking. If 𝛼(𝑀𝑏) = 1, there exists an observation 𝑤 ∈ ℒ(𝐺) such that 𝑀𝑏 ∈ 𝒞(𝑤)
and 𝒞(𝑤) ∩ℳ𝑐 ̸= ∅.

Proof：Assume that 𝛼(𝑀𝑏) = 1. By Eq. (4-3), 𝛼(𝑀𝑏) = 1 implies that there exists

a marking 𝑀 ∈ ℳ𝑐 ∩ 𝑈𝑅(𝑀𝑏). Let 𝑀 ′ ∈ 𝑅(𝑁,𝑀0), 𝜎 ∈ 𝑇 * and 𝜎𝑢 ∈ 𝑇 *
𝑢 such that

𝑀 ′[𝜎⟩𝑀𝑏[𝜎𝑢⟩𝑀 and ℓ(𝜎) = 𝑤. Clearly, ℓ(𝜎𝜎𝑢) = 𝑤. Therefore, 𝑀𝑏,𝑀 ∈ 𝒞(𝑤) and

𝑀 ∈ 𝒞(𝑤) ∩ℳ𝑐 ̸= ∅. �

In simple words, if 𝛼(𝑀𝑏) = 1, then there exists an observation 𝑤 ∈ ℒ(𝐺) such that

𝒞(𝑤) contains crucial markings. However, even if 𝛼(𝑀𝑏) = 0 there may exist an observation

𝑤 and another basis marking 𝑀 ′
𝑏 ̸= 𝑀𝑏 such that 𝑀 ′

𝑏,𝑀𝑏 ∈ 𝒞(𝑤) but 𝛼(𝑀 ′
𝑏) = 1. In this

case, 𝒞(𝑤) ∩ℳ𝑐 is still not empty.

Lemma 4.3 Let 𝐺 be an LPN system, ℳ𝑐 the set of crucial markings, and 𝑀𝑏 ∈ ℳ𝑏

a basis marking. If 𝛽(𝑀𝑏) = 1, there exists an observation 𝑤 ∈ ℒ(𝐺) such that 𝑀𝑏 ∈ 𝒞(𝑤)
and |𝒞(𝑤)| > 1.
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Proof：Assume that 𝛽(𝑀𝑏) = 1, i.e., |𝑈𝑅(𝑀𝑏)| > 1. Let 𝑀 ′ ∈ 𝑅(𝑁,𝑀0) and 𝜎 ∈ 𝑇 *

such that 𝑀 ′[𝜎⟩𝑀𝑏 and ℓ(𝜎) = 𝑤. Therefore, 𝑀𝑏 ∈ 𝒞𝑏(𝑤). By Eq. (2-3), 𝑈𝑅(𝑀𝑏) ⊆ 𝒞(𝑤).
Since |𝑈𝑅(𝑀𝑏)| > 1, |𝒞(𝑤)| > 1. �

In simple words, if 𝛽(𝑀𝑏) = 1, then there exists an observation 𝑤 ∈ ℒ(𝐺) such that

𝒞(𝑤) contains more than one marking. However, even if 𝛽(𝑀𝑏) = 0 there may be another

basis marking 𝑀 ′
𝑏 such that 𝑀𝑏,𝑀

′
𝑏 ∈ 𝒞(𝑤) and 𝑀 ′

𝑏 /∈ 𝑈𝑅(𝑀𝑏). In this case, |𝒞(𝑤)| is still

greater than 1.

Lemmas 4.2 and 4.3 show that constructing the BRG is not sufficient for C-detectability

analysis. In the following, we construct the observer of the BRG to derive necessary and

sufficient conditions for C-detectability.

4.3 Verification of C-detectability based on BRG and Observer

4.3.1 Observer of the BRG in C-detectability

We denote 𝐵𝑜 = (𝒳 , 𝐸, 𝛿, �̂�0,𝒳𝑚) the observer of the BRG 𝐵 = (𝑋,𝐸, 𝑓, 𝑥0) for C-

detectability, where 𝒳 ⊆ 2𝑋 is a finite set of nodes and 𝒳𝑚 ⊆ 𝒳 is the set of marked states

(a definition of them is provided later). The event set of the observer is the alphabet 𝐸. The

transition function is 𝛿 : 𝒳 × 𝐸 → 𝒳 . The initial state is taken as �̂�0 = {𝑥0}. Clearly, all

markings in a state of 𝐵𝑜 correspond to the markings in a set 𝒞𝑏(𝑤), where 𝑤 is the sequence

of events in 𝐸* leading from the initial state of the observer to the current state. Namely, if

𝛿(�̂�0, 𝑤) = �̂� , then 𝒞𝑏(𝑤) =
⋃︀

𝑥∈�̂� 𝑥(1). Therefore, the complexity of constructing 𝐵𝑜 is

𝒪(2|ℳ𝑏|), which is smaller than the complexity of constructing the observer of the RG, which

is equal to 𝒪(2|𝑅(𝑁,𝑀0)|).

Proposition 4.1 Let 𝐺 be an LPN system, 𝐵𝑜 = (𝒳 , 𝐸, 𝛿, �̂�0,𝒳𝑚) the observer of its

BRG, and ℳ𝑐 the set of crucial markings. There exists an observation 𝑤 ∈ ℒ(𝐺) such that

𝒞(𝑤) ∩ℳ𝑐 = ∅, iff there exists a state �̂� ∈ 𝒳 such that ∀𝑥 ∈ �̂� , 𝑥(2) = 0.

Proof：(If) Let 𝑤 ∈ ℒ(𝐺) be an observation and 𝛿(�̂�0, 𝑤) = �̂� . With the assumption

that for all 𝑥 ∈ �̂� , 𝑥(2) = 0, i.e., for all 𝑀𝑏 ∈ 𝒞𝑏(𝑤), 𝑈𝑅(𝑀𝑏) ∩ℳ𝑐 = ∅, and by Eq. (2-3),

𝒞(𝑤) ∩ℳ𝑐 = ∅.

(Only if) Assume that there exists 𝑤 ∈ ℒ(𝐺) such that 𝒞(𝑤) ∩ ℳ𝑐 = ∅. Let �̂� =

𝛿(�̂�0, 𝑤). By Eq. (2-3),
⋃︀

𝑀𝑏∈𝒞𝑏(𝑤) 𝑈𝑅(𝑀𝑏) ∩ ℳ𝑐 = ∅. Therefore, for all 𝑀𝑏 ∈ 𝒞𝑏(𝑤),
𝑈𝑅(𝑀𝑏) ∩ℳ𝑐 = ∅. By Eq. (4-3), for all 𝑥 ∈ �̂� , 𝑥(2) = 0. �
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In simple words, given a state �̂� ∈ 𝒳 , if all the triples (𝑀𝑏, 𝛼(𝑀𝑏), 𝛽(𝑀𝑏)) in �̂� have

𝛼(𝑀𝑏) = 0, then there exists an observation 𝑤 ∈ ℒ(𝐺) such that 𝒞(𝑤) does not contain

crucial markings.

Proposition 4.2 Let 𝐺 be an LPN system and 𝐵𝑜 = (𝒳 , 𝐸, 𝛿, �̂�0,𝒳𝑚) the observer

of its BRG. There exists an observation 𝑤 ∈ ℒ(𝐺) such that |𝒞(𝑤)| = 1, iff there exists

a state �̂� ∈ 𝒳 such that �̂� = {(𝑀𝑏, 𝛼(𝑀𝑏), 0)}, where 𝑀𝑏 is a basis marking of 𝐺, and

𝛼(𝑀𝑏) ∈ {0, 1}.

Proof： (If) Assume there exists such �̂� = {(𝑀𝑏, 𝛼(𝑀𝑏), 0)}, where 𝛼(𝑀𝑏) may be

either 0 or 1. Clearly, there exists an observation 𝑤 ∈ ℒ(𝐺) such that 𝛿(�̂�0, 𝑤) = �̂� and

𝒞𝑏(𝑤) = {𝑀𝑏}. Since 𝛽(𝑀𝑏) = 0, i.e., 𝑈𝑅(𝑀𝑏) = {𝑀𝑏}, by Eq. (2-3), 𝒞(𝑤) = 𝒞𝑏(𝑤) =

{𝑀𝑏}. Thus, |𝒞(𝑤)| = 1.

(Only if) Assume there exists an observation 𝑤 ∈ ℒ(𝐺) such that |𝒞(𝑤)| = 1. By Eq.

(2-3), |
⋃︀

𝑀𝑏∈𝒞𝑏(𝑤) 𝑈𝑅(𝑀𝑏)| = 1, i.e., there is only one marking 𝑀𝑏 ∈ 𝒞(𝑤) and 𝑈𝑅(𝑀𝑏) =

{𝑀𝑏}. By Eq. (4-4), 𝛽(𝑀𝑏) = 0. Then 𝛿(�̂�0, 𝑤) = �̂� = {(𝑀𝑏, 𝛼(𝑀𝑏), 0)}. �

By Proposition 4.2, given a state �̂� ∈ 𝒳 , if and only if �̂� contains only one state

𝑥 = (𝑀𝑏, 𝛼(𝑀𝑏), 0), then there exists an observation 𝑤 ∈ ℒ(𝐺) whose corresponding 𝒞(𝑤)
contains only one marking 𝑀𝑏.

We now define the set of marked states as the set of states in 𝐵𝑜 that contain only one or

no crucial marking, namely:

𝒳𝑚 ={�̂� ∈ 𝒳 |�̂� = {𝑥}, 𝑥(3) = 0} ∪ {�̂� ∈ 𝒳 |∀𝑥 ∈ �̂�, 𝑥(2) = 0}.

Corollary 4.1 Let 𝐺 be an LPN system, 𝐵𝑜 = (𝒳 , 𝐸, 𝛿, �̂�0,𝒳𝑚) the observer of its

BRG, and ℳ𝑐 the set of crucial markings. Given an observation 𝑤 ∈ ℒ(𝐺), 𝒞(𝑤) ∩ℳ𝑐 ̸=
∅ ⇒ |𝒞(𝑤)| = 1 holds iff 𝛿(�̂�0, 𝑤) ∈ 𝒳𝑚.

Proof：Follows from Propositions 4.1 and 4.2 and from the definition of the set 𝒳𝑚 of

marked states. �

The above proposition implies that, given an observation that leads to a marked state in

the observer, its current marking can be distinguished from a crucial marking.

Example 4.5 Let us consider the LPN system in Fig. 4-4 whose 𝑇𝑢-induced subnet is

acyclic and where 𝑇𝑜 = {𝑡1, 𝑡5} and 𝑇𝑢 = {𝑡2, 𝑡3, 𝑡4, 𝑡6}. Let the set of crucial markings be

ℳ𝑐 = {𝑀0} = {[1 0 0 0 0 0]𝑇}. The LPN system has 6 reachable markings and only two
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Fig. 4-4 The LPN system in Example 4.5.

of them are basis markings: 𝑀0 = [1 0 0 0 0 0]𝑇 and 𝑀1 = [0 1 1 0 0 0]𝑇 . By Eq. (2-4),

𝑈𝑅(𝑀0) = {𝑀0}, ℳ𝑐 ∩ 𝑈𝑅(𝑀0) ̸= ∅ and |𝑈𝑅(𝑀0)| = 1. Therefore, by Eqs. (4-3) and

(4-4), respectively, 𝛼(𝑀0) = 1 and 𝛽(𝑀0) = 0. Moreover, 𝑈𝑅(𝑀1) = 𝑅(𝑁,𝑀0), thus

ℳ𝑐 ∩ 𝑈𝑅(𝑀1) ̸= ∅ and |𝑈𝑅(𝑀1)| > 1, which imply 𝛼(𝑀1) = 1 and 𝛽(𝑀1) = 1. Thus, the

BRG for C-detectability is the graph in Fig. 4-5. The observer of the BRG for C-detectability

is shown in Fig. 4-6, where 𝒳𝑚 = {�̂�0}. ◇

Corollary 4.2 Let 𝐺 be an LPN system and 𝐵𝑜 = (𝒳 , 𝐸, 𝛿, �̂�0,𝒳𝑚) the observer of its

BRG. System 𝐺 is strongly C-detectable if 𝒳 = 𝒳𝑚.

Proof：Assume 𝒳 = 𝒳𝑚. By Corollary 4.1, ∀𝑤 ∈ ℒ(𝐺), 𝒞(𝑤)∩ℳ𝑐 ̸= ∅ ⇒ |𝒞(𝑤)| =
1. Namely, for any evolution of the system, crucial markings can always be distinguished

from other markings. Therefore, 𝐺 is strongly C-detectable. �

In simple words, if all states of the observer are marked, we can conclude that the system

is strongly C-detectable. However, the condition that all states are marked is not necessary.

In the next section, sufficient and necessary conditions for C-detectability are provided based

on the inspection of the cycles in the observer.
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Fig. 4-5 BRG of the LPN system in Fig. 4-4.
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Fig. 4-6 Observer of the BRG in Fig. 4-5.

4.3.2 Verification of C-detectability

Since C-detectability considers the transition sequences of infinite length, we first study

the properties of cycles in the observer. In the following, we write �̂�𝑗𝑖 ∈ 𝛾𝑗 to denote that

�̂�𝑗𝑖 is a node belonging to cycle 𝛾𝑗 . The set of cycles in the observer is denoted by Γ.

Definition 4.6 [Unambiguous cycle] Given the set ℳ𝑐 of crucial markings, a cycle 𝛾 ∈
Γ of the observer 𝐵𝑜 = (𝒳 , 𝐸, 𝛿, �̂�0,𝒳𝑚) is

• unambiguous w.r.t. ℳ𝑐 if ∀�̂� ∈ 𝛾, �̂� ∈ 𝒳𝑚;

• semi-unambiguous w.r.t. ℳ𝑐 if ∃�̂� ∈ 𝛾, �̂� ∈ 𝒳𝑚;

• ambiguous w.r.t. ℳ𝑐 if ∀�̂� ∈ 𝛾, �̂� /∈ 𝒳𝑚.

◇

In words, if all states contained in a cycle are marked, then the cycle is said to be u-

nambiguous since for all the observations corresponding to the nodes of the cycle, crucial

markings either do not appear in the node (none of them is consistent with the observation),

or the node only contains a single crucial marking (one of them is consistent with the obser-

vation, but it is not confused with other markings). Furthermore, if there exists at least one

marked state in the cycle, then the cycle is said to be semi-unambiguous. Clearly, an unam-

biguous cycle is also semi-unambiguous, while the converse may not be true. Finally, the

cycle is said to be ambiguous if the current marking is always confusable with other mark-

ings. We now prove that in an unambiguous cycle, any transition sequence consistent with

the observation of the cycle satisfies the condition in Eq. (4-1).

Proposition 4.3 Let 𝐺 = (𝑁,𝑀0, 𝐸, ℓ) be an LPN system, and ℳ𝑐 the set of crucial

markings. There exists an unambiguous cycle 𝛾𝑗 in the observer of its BRG iff there exist a

finite integer 𝐾 ∈ N and a transition sequence 𝜎 ∈ 𝐿∞(𝐺) such that ∀𝜎′ ⪯ 𝜎 with |𝑤′| ≥ 𝐾,

the condition in Eq. (4-1) holds, where 𝑤′ = ℓ(𝜎′).
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Proof： (If) Assume that ∃𝐾 ∈ N, ∃𝜎 ∈ 𝐿∞(𝐺) such that ∀𝜎′ ⪯ 𝜎 with ℓ(𝜎′) = 𝑤′,

|𝑤′| ≥ 𝐾, 𝒞(𝑤′) ∩ ℳ𝑐 ̸= ∅ ⇒ |𝒞(𝑤′)| = 1. Since 𝜎 has an infinite length, 𝐵𝑜 has a finite

number of nodes, and there is no cycle of unobservable transitions, eventually the tail of the

path along ℓ(𝜎) = 𝑤 will be in a cycle 𝛾𝑗 = �̂�𝑗1𝑒𝑗1�̂�𝑗2 . . . �̂�𝑗𝑘𝑒𝑗𝑘�̂�𝑗1 ∈ Γ. Thus, 𝑤 must

contain the corresponding observation of 𝛾𝑗 , and there exist 𝑤0 ∈ 𝐸* and 𝑤2 ⪯ 𝑒𝑗1 . . . 𝑒𝑗𝑘

such that 𝑤 = 𝑤0(𝑒𝑗1 . . . 𝑒𝑗𝑘)
*𝑤2 and |𝑤0| is finite. Thus, for all 𝑖 ∈ {1, 2, . . . , 𝑘} there exists

𝑤′ ⪯ 𝑤 such that |𝑤′| ≥ 𝐾 and 𝛿(�̂�0, 𝑤
′) = �̂�𝑗𝑖 ∈ 𝛾𝑗 . Under the initial assumption and

Corollary 4.1, �̂�𝑗𝑖 ∈ 𝒳𝑚. Therefore, the cycle 𝛾𝑗 is unambiguous.

(Only if) Assume that there exists an unambiguous cycle 𝛾𝑗 = �̂�𝑗1𝑒𝑗1

�̂�𝑗2 . . . �̂�𝑗𝑘𝑒𝑗𝑘�̂�𝑗1 ∈ Γ. Namely, ∀𝑖 ∈ {1, 2, . . . , 𝑘}, �̂�𝑗𝑖 ∈ 𝒳𝑚. Since there are no deadlocks

nor cycles of unobservable transitions in the system, there exist 𝜎 ∈ 𝐿∞(𝐺) and 𝑤0 ∈ 𝐸*

such that ℓ(𝜎) = 𝑤0(𝑒𝑗1 . . . 𝑒𝑗𝑘)
* where |𝑤0| is finite. Let 𝐾 = |𝑤0|, 𝜎′ ⪯ 𝜎, 𝑤′ = ℓ(𝜎′)

and |ℓ(𝜎′)| ≥ 𝐾. Clearly, 𝛿(�̂�0, 𝑤
′) = �̂�𝑗𝑖 ∈ 𝛾𝑗 for some 𝑖 ∈ {1, 2, . . . , 𝑘}, i.e., eventually

when |ℓ(𝜎)| ≥ 𝐾 the evolution of 𝜎 will lead ℓ(𝜎) to containing the observation of 𝛾𝑗 in the

observer. Under the initial assumption and Corollary 4.1, 𝒞(𝑤′) ∩ ℳ𝑐 ̸= ∅ ⇒ |𝒞(𝑤′)| = 1

holds. �

In other words, an unambiguous cycle 𝛾𝑗 ∈ Γ in 𝐵𝑜, whose observation is 𝑒𝑗1 . . . 𝑒𝑗𝑘,

corresponds to a set of infinite length transition sequences 𝜎 such that ℓ(𝜎) = 𝑤 =

𝑤0(𝑒𝑗1 . . . 𝑒𝑗𝑘)
*𝑤2 with 𝑤0 ∈ 𝐸* and 𝑤2 ⪯ 𝑒𝑗1 . . . 𝑒𝑗𝑘 . There also exists a finite integer

𝐾 such that for all 𝑤′ ⪯ 𝑤 with |𝑤′| ≥ 𝐾, the current marking can be determined uniquely

whether 𝒞(𝑤′) contains a crucial marking after 𝑤′ has been observed.

Proposition 4.4 Let 𝐺 = (𝑁,𝑀0, 𝐸, ℓ) be an LPN system, and ℳ𝑐 the set of crucial

markings. There exists a semi-unambiguous cycle 𝛾𝑗 in the observer of its BRG iff there exist

a finite integer 𝐾 ∈ N and a transition sequence 𝜎 ∈ 𝐿∞(𝐺) such that ℓ(𝜎) contains the

observation of 𝛾𝑗 and ∀𝜎′ ⪯ 𝜎, the condition in Eq. (4-2) holds.

Proof： (If) Assume that ∃𝐾 ∈ N, ∃𝜎 ∈ 𝐿∞(𝐺) such that ∀𝜎′ ⪯ 𝜎, ∃𝜎′′ ∈
𝑇 *, ℓ(𝜎′𝜎′′) = 𝑤′ : 𝜎′𝜎′′ ⪯ 𝜎, |ℓ(𝜎′′)| ≤ 𝐾, 𝒞(𝑤′) ∩ℳ𝑐 ̸= ∅ ⇒ |𝒞(𝑤′)| = 1. Since 𝜎 has an

infinite length, 𝐵𝑜 has a finite number of nodes, and there is no cycle of unobservable transi-

tions, eventually the tail of the path along ℓ(𝜎) = 𝑤 will be in a cycle 𝛾𝑗 = �̂�𝑗1𝑒𝑗1�̂�𝑗2 . . . �̂�𝑗𝑘

𝑒𝑗𝑘�̂�𝑗1 ∈ Γ. Thus, 𝑤 contains the corresponding observation of 𝛾𝑗 , and there exist 𝑤0 ∈ 𝐸*

and 𝑤2 ⪯ 𝑒𝑗1 . . . 𝑒𝑗𝑘 such that 𝑤 = 𝑤0(𝑒𝑗1 . . . 𝑒𝑗𝑘)
*𝑤2 and |𝑤0| is finite.

Now we prove that in 𝛾𝑗 there exists a marked state. Let 𝜎′ ⪯ 𝜎 such that |ℓ(𝜎′)| ≥ |𝑤0|.
Then, there exists 𝜎′′ ∈ 𝑇 * such that 𝜎′𝜎′′ ⪯ 𝜎, |ℓ(𝜎′′)| ≤ 𝐾, and 𝛿(�̂�0, 𝑤

′) = �̂�𝑗𝑟 ∈ 𝛾𝑗 ,
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where 𝑤′ = ℓ(𝜎′𝜎′′) and 𝑟 ∈ {1, 2, . . . , 𝑘}. Under the initial assumption and Corollary 4.1,

�̂�𝑗𝑟 ∈ 𝒳𝑚. Thus, the cycle 𝛾𝑗 is semi-unambiguous.

(Only if) Assume that there exists a semi-unambiguous cycle 𝛾𝑗 = �̂�𝑗1𝑒𝑗1�̂�𝑗2 . . . �̂�𝑗𝑘

𝑒𝑗𝑘�̂�𝑗1 ∈ Γ. Namely, there exist 𝑤 ∈ 𝐸* and 𝑟 ∈ {1, 2, . . . , 𝑘} such that 𝛿(�̂�0, 𝑤) = �̂�𝑗𝑟 ∈
𝒳𝑚. Since there are no deadlocks nor cycles of unobservable transitions in the system, there

exist 𝜎 ∈ 𝐿∞(𝐺) and 𝑤0 ∈ 𝐸* such that ℓ(𝜎) = 𝑤0(𝑒𝑗1 . . . 𝑒𝑗𝑘)
* and |𝑤0| is finite. Let 𝜎′ ⪯ 𝜎

and |𝑤0(𝑒𝑗1 . . . 𝑒𝑗𝑘)| = 𝐾 ∈ N. From Fig. 4-7, it is clear that there exists 𝜎′′ ∈ 𝑇 * such that

𝜎′𝜎′′ ⪯ 𝜎, |ℓ(𝜎′′)| ≤ 𝐾, and ℓ(𝜎′𝜎′′) = 𝑤. Under the initial assumption and Corollary 4.1,

𝒞(𝑤) ∩ℳ𝑐 ̸= ∅ ⇒ |𝒞(𝑤)| = 1 holds. �

In simple words, a semi-unambiguous cycle 𝛾𝑗 in 𝐵𝑜 corresponds to a set of infinite

length transition sequences 𝜎 whose observation contains (𝑒𝑗1 . . . 𝑒𝑗𝑘)
* and for any prefix

of 𝜎 after at most 𝐾 observable events, the current crucial marking can be uniquely deter-

mined. Since the observer is finite, the current crucial marking is periodically detectable.

Summarizing, Proposition 4.4 (resp., Proposition 4.3) formalizes the relation between semi-

unambiguous (resp., unambiguous) cycles and the estimation of crucial markings. Based on

them, necessary and sufficient conditions for C-detectability are derived. In the following, a

state �̂� is said to be reachable from a cycle if there exists at least one state in the cycle from

which �̂� is reachable.

Theorem 4.1 Let 𝐺 be an LPN system, ℳ𝑐 a set of crucial markings, and 𝐵𝑜 =

(𝒳 , 𝐸, 𝛿, �̂�0,𝒳𝑚) the observer of its BRG. The LPN system 𝐺 is strongly C-detectable w.r.t.

ℳ𝑐 iff for any �̂� ∈ 𝒳 reachable from a cycle in 𝐵𝑜, �̂� ∈ 𝒳𝑚.

Proof： (If) Assume that all states reachable from a cycle in 𝐵𝑜 are in 𝒳𝑚. Let 𝜎 ∈
𝐿∞(𝐺). Since the system is bounded and there are no cycles of unobservable transitions, the

observation 𝑤 of 𝜎 contains at least 𝑤1 ∈ 𝐸* that corresponds to the observation of a cycle 𝛾𝑗
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Fig. 4-7 Illustration of the proof (Only if part) of Proposition 4.4.
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in 𝐵𝑜. Therefore, the observation of 𝜎 can be written as 𝑤 = 𝑤0𝑤
*
1𝑤2 where |𝑤0| is finite, and

𝑤0, 𝑤1, 𝑤2 ∈ 𝐸*. Let |𝑤0| = 𝐾 and 𝜎′ ⪯ 𝜎 such that ℓ(𝜎′) = 𝑤0𝑤
′. Clearly, 𝑤′ ⪯ 𝑤*

1𝑤2 and

|ℓ(𝜎′)| ≥ 𝐾. Let �̂� = 𝛿(�̂�0, 𝑤0𝑤
′), i.e., �̂� is reachable from 𝛾𝑗 . Under the initial assumption,

�̂� ∈ 𝒳𝑚. By Corollary 4.1, this means that condition 𝒞(𝑤0𝑤
′) ∩ℳ𝑐 ̸= ∅ ⇒ |𝒞(𝑤0𝑤

′)| = 1

holds. Therefore, the crucial marking consistent with the observation 𝑤0𝑤
′ can be certainly

determined. Since the system is bounded and there are no cycles of unobservable transitions,

for all 𝜎 ∈ 𝐿∞(𝐺) there exists an upper bound of 𝐾 such that for all the prefixes 𝜎′ with

|ℓ(𝜎′)| ≥ 𝐾, ℓ(𝜎′) leads to a cycle or to a state reachable from a cycle in 𝐵𝑜. Therefore, the

system is strongly C-detectable.

(Only if) We prove this argument by justifying its contrapositive. Assume in the

observer there exists a state reachable from a cycle but not in 𝒳𝑚. Namely, there ex-

ist 𝛾𝑗 = �̂�𝑗1𝑒𝑗1�̂�𝑗2 . . . �̂�𝑗𝑘𝑒𝑗𝑘�̂�𝑗1 ∈ Γ, �̂�𝑗𝑟 ∈ 𝛾𝑗 (𝑟 ∈ {1, 2, . . . , 𝑘}), and 𝑤′ ∈ 𝐸*

such that 𝛿(�̂�𝑗𝑟, 𝑤
′) is defined but 𝛿(�̂�𝑗𝑟, 𝑤

′) /∈ 𝒳𝑚. Since there are no cycles of un-

observable transitions, there exist 𝜎 ∈ 𝐿∞(𝐺) and 𝑤1, 𝑤2 ∈ 𝐸* such that ℓ(𝜎) =

𝑤1(𝑒𝑗1𝑒𝑗2 . . . 𝑒𝑗𝑘)
*𝑤2 and |𝑤1| is finite. Therefore, for any 𝐾 ∈ N, there exists 𝜎′ ⪯ 𝜎 such

that ℓ(𝜎′) = 𝑤1(𝑒𝑗1𝑒𝑗2 . . . 𝑒𝑗𝑘)
*(𝑒𝑗1𝑒𝑗2 . . . 𝑒𝑗𝑟)𝑤

′ and |ℓ(𝜎′)| ≥ 𝐾, where 𝑤′ ⪯ (𝑒𝑗𝑟+1 . . . 𝑒𝑗𝑘)

(𝑒𝑗1𝑒𝑗2 . . . 𝑒𝑗𝑘)
*𝑤2. Let 𝑤0 = 𝑤1(𝑒𝑗1𝑒𝑗2 . . . 𝑒𝑗𝑘)

*(𝑒𝑗1𝑒𝑗2 . . . 𝑒𝑗𝑟). Clearly, 𝛿(�̂�0, 𝑤0) = �̂�𝑗𝑟.

With the initial assumption, 𝛿(�̂�0, 𝑤0𝑤
′) = 𝛿(�̂�𝑗𝑟, 𝑤

′) /∈ 𝒳𝑚. By Corollary 4.1, this implies

that 𝒞(𝑤0𝑤
′)∩ℳ𝑐 ̸= ∅ ⇒ |𝒞(𝑤0𝑤

′)| = 1 does not hold. Therefore, the system is not strongly

C-detectable. �

In words, an LPN system is strongly C-detectable iff any state reachable from a cycle in

the observer is a marked state.

It is known that the complexity of finding all the cycles in a directed graph is NP-hard.

However, finding all the strongly connected components (SCCs) is of polynomial complexity

w.r.t. the size of the graph [79]. Meanwhile, Theorem 4.1 shows that C-detectability is closely

related to the cycles in the observer 𝐵𝑜. Herein, only SCCs that contain at least one cycle

(including self-loops) are considered. Note that if an SCC does not contain a cycle, then it

contains only one node without self-loops. Thus, obviously, finding all the SCCs that contain

at least one cycle is also of polynomial complexity w.r.t. the size of the graph. Clearly, if a

state of the observer is reachable from a cycle, it is also reachable from a state in an SCC.

Therefore, Theorem 4.1 can be rephrased as follows.

Corollary 4.3 Let 𝐺 be an LPN system, ℳ𝑐 a set of crucial markings, and 𝐵𝑜 =

(𝒳 , 𝐸, 𝛿, �̂�0,𝒳𝑚) the observer of its BRG. The LPN system 𝐺 is strongly C-detectable w.r.t.
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ℳ𝑐 iff for any state �̂� ∈ 𝒳 reachable from a state in an SCC in 𝐵𝑜, �̂� ∈ 𝒳𝑚.

Theorem 4.2 Let 𝐺 be an LPN system, ℳ𝑐 a set of crucial markings, and 𝐵𝑜 the ob-

server of its BRG. The LPN system 𝐺 is weakly C-detectable w.r.t. ℳ𝑐 iff in 𝐵𝑜 there exists

a cycle 𝛾𝑗 that is unambiguous w.r.t. ℳ𝑐.

Proof：Follows from Proposition 4.3. �

Note that differently from strong C-detectability, the necessary and sufficient condition

for weak C-detectability cannot be reformulated in terms of SCCs. Indeed, the existence of an

unambiguous cycle does not imply that there exists an SCC whose nodes are all marked states.

However, the converse is true. This allows us to derive the following sufficient condition for

weak C-detectability.

Corollary 4.4 Let 𝐺 be an LPN system, ℳ𝑐 a set of crucial markings, and 𝐵𝑜 the

observer of its BRG. The LPN system 𝐺 is weakly C-detectable w.r.t. ℳ𝑐 if there exists an

SCC in 𝐵𝑜 such that all its nodes are in 𝒳𝑚.

Theorem 4.3 Let 𝐺 be an LPN system, ℳ𝑐 a set of crucial markings, and 𝐵𝑜 the ob-

server of its BRG. The LPN system 𝐺 is periodically strongly C-detectable w.r.t. ℳ𝑐 iff all

cycles in 𝐵𝑜 are semi-unambiguous w.r.t. ℳ𝑐.

Proof：Follows from Proposition 4.4. �

We point out that even if each SCC contains at least one marked state, not all cy-

cles are necessarily semi-unambiguous. Therefore, the condition for periodically strong C-

detectability cannot be reformulated in terms of SCCs.

The following theorem provides a necessary and sufficient condition for periodically

weak C-detectability.

Theorem 4.4 Let 𝐺 be an LPN system, ℳ𝑐 a set of crucial markings, and 𝐵𝑜 the ob-

server of its BRG. The LPN system 𝐺 is periodically weakly C-detectable w.r.t. ℳ𝑐 iff there

exists a cycle in 𝐵𝑜 that is semi-unambiguous w.r.t. ℳ𝑐.

Proof：Follows from Proposition 4.4. �

Now, if 𝐵𝑜 contains a semi-unambiguous cycle, then it also contains an SCC where there

is at least one marked state, and the other way around. Thus, necessary and sufficient condi-

tions for periodically weak C-detectability can be reformulated as the following corollary.
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Corollary 4.5 Let 𝐺 be an LPN system, ℳ𝑐 a set of crucial markings, and 𝐵𝑜 the

observer of its BRG. The LPN system 𝐺 is periodically weakly C-detectable w.r.t. ℳ𝑐 iff in

𝐵𝑜 there exists an SCC such that at least one of its node belongs to 𝒳𝑚.

The following result can be trivially derived from the previous ones.

Corollary 4.6 Let 𝐺 be an LPN system, ℳ𝑐 a set of crucial markings, and 𝐵𝑜 the

observer of its BRG. If all cycles in 𝐵𝑜 are ambiguous, 𝐺 does not satisfy any C-detectability

property w.r.t. ℳ𝑐.

The above results show that, rather than enumerating all reachable markings and con-

structing the observer of the RG, all the four types of C-detectability can be verified through

the observer of the BRG. In [23], a structure called detector is proposed to verify strong

detectability and strong periodic detectability. Even though the size of the detector is poly-

nomial w.r.t. the number of states of the system, it cannot be used to verify weak and weak

periodic detectability. On the contrary, the observer of the BRG can be used to verify all

the C-detectability properties. Furthermore, if the set of crucial markings is changed, only

functions 𝛼 and 𝛽 should be updated.

By Theorems 4.1, 4.2, 4.3 and 4.4, efficient approaches are proposed to necessarily

and sufficiently verify the four considered C-detectability properties of an LPN system by

analyzing all cycles in the observer 𝐵𝑜 of its BRG. The complexity of constructing 𝐵𝑜 is

𝒪(2|ℳ𝑏|), which is much smaller than the RG-based approaches. Furthermore, since the

problem of finding all cycles is NP-hard, we prove that strong C-detectability and periodically

weak C-detectability can be verified by just computing all the SCCs in the observer, which

is of polynomial complexity w.r.t. the size of the observer. Therefore, the complexity of the

proposed approaches is further reduced.

In the following subsection, we show that, when the set of crucial markings is described

by a set of linear constraints, the values of 𝛼 and 𝛽 functions can be determined by solving

appropriate integer linear programming problems.

4.3.3 Crucial markings in terms of GMECs

It is well-known that generalized mutual exclusion constraints (GMECs) [90] describe

convex sets of markings. This allows us to take advantage of integer linear programming in

the solution to several problems. We now discuss how the analysis of the above C-decidability

properties can be simplified if the set of crucial markings is described by a set of GMECs,
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namely,

ℳ𝑐 = (𝑊,𝐾) =
𝑟⋂︁

𝑖=1

{𝑀 ∈ N𝑚|𝑤𝑇
𝑖 ·𝑀 ≤ 𝑘𝑖},

where 𝑤𝑖 ∈ Z𝑚 and 𝑘𝑖 ∈ Z with 𝑖 = 1, 2, · · · , 𝑟. Such a set of GMECs can also be written as

ℳ𝑐 = {𝑀 ∈ N𝑚|𝑊 ·𝑀 ≤ 𝐾}, where 𝑊 = [𝑤1, 𝑤2, · · · , 𝑤𝑟]
𝑇 and 𝐾 = [𝑘1, 𝑘2, · · · , 𝑘𝑟]𝑇 .

In addition, the following constraint sets are also defined.

Definition 4.7 Let 𝑀 ∈ 𝑅(𝑁,𝑀0) be a marking of an LPN system 𝐺 = (𝑁,𝑀0, 𝐸, ℓ),

and ℳ𝑐 = {𝑀 ∈ N𝑚|𝑊 ·𝑀 ≤ 𝐾} the set of crucial markings.

• The 𝒴(𝑀)-constraint set is defined by

𝒴(𝑀) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑀 ′ = 𝑀 + 𝐶𝑢 · 𝑦𝑢

𝑊 ·𝑀 ′ ≤ 𝐾

𝑀 ′ ∈ N𝑚

𝑦𝑢 ∈ N𝑛𝑢

(4-6)

• The 𝒵(𝑀)-constraint set is defined by

𝒵(𝑀) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑀 ′ = 𝑀 + 𝐶𝑢 · 𝑦𝑢

𝑀 ′ ∈ N𝑚

𝑦𝑢 ∈ N𝑛𝑢

≥1

(4-7)

◇

In Eqs. (4-6) and (4-7), 𝑀 ′ = 𝑀 + 𝐶𝑢 · 𝑦𝑢 describes a marking 𝑀 ′ reachable from 𝑀

by firing only unobservable transitions. In Eq. (4-6), 𝑊 · 𝑀 ′ ≤ 𝐾 implies that 𝑀 ′ ∈ ℳ𝑐.

The following corollary shows that the values of 𝛼(𝑀𝑏) and 𝛽(𝑀𝑏) associated with a given

basis marking 𝑀𝑏 can be computed looking at the feasibility of the two constraint sets 𝒴(𝑀)

and 𝒵(𝑀), respectively.

Corollary 4.7 Given a basis marking 𝑀𝑏 ∈ ℳ𝑏 of an LPN system 𝐺 and ℳ𝑐 = {𝑀 ∈
N𝑚|𝑊 ·𝑀 ≤ 𝐾} the set of crucial markings,

1. 𝛼(𝑀𝑏) = 1 iff the 𝒴(𝑀𝑏)-constraint set is feasible;

2. 𝛽(𝑀𝑏) = 1 iff the 𝒵(𝑀𝑏)-constraint set is feasible.

Proof：We prove the two statements separately, providing a series of iff conditions.
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(Statement 1)

𝛼(𝑀𝑏) = 1

⇔ℳ𝑐 ∩ 𝑈𝑅(𝑀𝑏) ̸= ∅ [by Eq. (4-3)]

⇔∃𝑦𝑢 ∈ N𝑛𝑢 : 𝑀𝑏 + 𝐶𝑢 · 𝑦𝑢 = 𝑀 ∈ N𝑚 and 𝑊 ·𝑀 ≤ 𝐾 [by Eq. (2-4)]

⇔The 𝒴(𝑀𝑏)-constraint set is feasible [by Eq. (4-6)].

(Statement 2)

𝛽(𝑀𝑏) = 1

⇔|𝑈𝑅(𝑀𝑏)| > 1 [by Eq. (4-4)]

⇔∃𝑦𝑢 ∈ N𝑛𝑢

≥1 : 𝑀𝑏 + 𝐶𝑢 · 𝑦𝑢 ≥ 0⃗ [by Lemma 4.1]

⇔The 𝒵(𝑀𝑏)-constraint set is feasible [by Eq. (4-7)].
�

Based on Corollary 4.7, the construction of the BRG for C-detectability requires the

solution to a certain number of integer linear programming problems (ILPPs). However,

for some net structures (see [6]) the complexity of constructing the BRG can be reduced by

relaxing ILPPs into linear programming problems (LPPs).

Example 4.6 Consider again the LPN system in Fig. 4-4. Let the set of crucial markings

be ℳ𝑐 = {𝑀 ∈ N6|𝑀(𝑝1) ≥ 1}, i.e., 𝑊 = [−1 0 0 0 0 0] and 𝐾 = −1. By solving Eq.

(4-6), 𝛼(𝑀0) = 1 and 𝛼(𝑀1) = 0. By solving Eq. (4-7), 𝛽(𝑀0) = 0 and 𝛽(𝑀1) = 1.

Therefore, the BRG for C-detectability is identical to the one in Fig. 4-5 and the observer is

identical to the one in Fig. 4-6 and 𝒳𝑚 = {�̂�0}.

There is no unambiguous cycle in the observer. Thus by Theorems 4.1 and 4.2, the

LPN system is neither strongly detectable nor weakly detectable w.r.t. ℳ𝑐. On the other

hand, there is a cycle 𝛾1 = �̂�0𝑎�̂�1𝑏�̂�0 containing the marked state �̂�0. By Definition 4.6,

𝛾1 is semi-unambiguous. Therefore, by Theorem 4.4 the LPN system is periodically weakly

C-detectable w.r.t. ℳ𝑐. However, there also exists a cycle 𝛾2 = �̂�1𝑎�̂�1 that is not semi-

unambiguous, thus by Theorem 4.3 the LPN system is not periodically strongly C-detectable.

◇

4.3.4 Computation of the smallest value of 𝐾 in Definitions 4.2 to 4.5

In practical problems, in addition to establishing if a system satisfies a certain C-

detectability property, it is important to compute the smallest number of observed events after



Page 78 Southwest Jiaotong University Doctor Degree Dissertation

which the states of interest are distinguished, or periodically distinguished. By Definitions

4.2 to 4.5，if a system satisfies a certain C-detectability property, 𝐾 may take infinite values.

In more detail, if a property holds for a certain 𝐾, then it holds for any 𝐾 ′ > 𝐾. Thus, it is

important to compute the smallest values of 𝐾 in Definitions 4.2 to 4.5. The four values are

called �̄�𝑠, �̄�𝑠𝑝, �̄�𝑤 and �̄�𝑤𝑝, respectively. In the following, given a LPN system 𝐺, and the

observer 𝐵𝑜 = (𝒳 , 𝐸, 𝛿, �̂�0,𝒳𝑚) of its BRG, we show that the four values can be calculated

by looking at the observer 𝐵𝑜.

∙ When system 𝐺 satisfies strong C-detectability, �̄�𝑠 can be calculated as follows:

1. Compute the longest path 𝐿 from �̂�0 to the nodes in 𝒳 ∖ 𝒳𝑚 in 𝐵𝑜;

2. Let �̄�𝑠 = |𝐿|, where |𝐿| denotes the number of nodes in 𝐿.

∙ When system 𝐺 satisfies periodically strong C-detectability, �̄�𝑠𝑝 can be calculated as fol-

lows:

1. Compute 𝐵′
𝑜 by removing all marked nodes and their connected transitions in 𝐵𝑜;

2. Compute the longest path 𝐿 in 𝐵′
𝑜;

3. Let �̄�𝑠𝑝 = |𝐿|.

∙ When system 𝐺 satisfies weak C-detectability, �̄�𝑤 can be calculated as follows:

1. Compute the set Γ of elementary cycles in 𝐵𝑜 only including nodes in 𝒳𝑚;

2. For all cycles 𝛾𝑖 ∈ Γ, compute the set 𝑆𝑖 of paths including no cycle from �̂�0 to 𝛾𝑖;

3. For all path 𝑠𝑖,𝑗 ∈ 𝑆𝑖, compute the longest path 𝐿𝑖,𝑗 from �̂�0 to non-marked notes in

𝑠𝑖,𝑗;

4. Let �̄�𝑤 = 𝑚𝑖𝑛
𝑖:𝛾𝑖∈Γ;𝑗:𝑠𝑖,𝑗∈𝑆𝑖

(|𝐿𝑖,𝑗|).

∙ When system 𝐺 satisfies periodically weak C-detectability, �̄�𝑤𝑝 can be calculated as fol-

lows:

1. Compute the set Γ of elementary cycles in 𝐵𝑜 such that there exists nodes belong to

𝒳𝑚;

2. For all cycles 𝛾𝑖 ∈ Γ, compute the set 𝑆𝑖 of paths including no cycle from �̂�0 to 𝛾𝑖;

3. For all path 𝑠𝑖,𝑗 ∈ 𝑆𝑖, connect 𝑠𝑖,𝑗 with its correspond cycle 𝛾𝑖 to obtain 𝑠′𝑖,𝑗;

4. Remove all marked nodes and their connected transitions in 𝑠′𝑖,𝑗 , and compute the

longest path 𝐿𝑖,𝑗 in the remaining part;

5. Let �̄�𝑤𝑝 = 𝑚𝑖𝑛
𝑖:𝛾𝑖∈Γ;𝑗:𝑠𝑖,𝑗∈𝑆𝑖

(|𝐿𝑖,𝑗|).
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4.4 Verification of C-detectability based on BRG and Detector

In this section, we show how the detector of the BRG can be used to verify strong C-

detectability and strong periodic C-detectability.

4.4.1 Detector of the BRG in C-detectability

In [23], the detector is proposed to check, in polynomial time, whether an automaton

system satisfies strong (periodic) detectability property. Now, we construct the detector of the

BRG for the verification in the framework of Petri nets. We denote 𝐵𝑑 = (𝑄,𝐸, 𝑓𝑑, 𝑞0, 𝑄𝑚)

the detector of the BRG 𝐵 = (𝑋,𝐸, 𝑓, 𝑥0) for detectability, where 𝑄 ⊆ 2𝑋 is a finite set of

states and 𝑄𝑚 ⊆ 𝑄 is the set of marked states (a definition of them is provided later). The

initial state of 𝐵𝑑 is 𝑞0 = {𝑥0}, and the other states of 𝐵𝑑 are subsets of 𝑋 with cardinality

at most equal to 2. The event set of the detector is the alphabet 𝐸. The transition function

𝑓𝑑 : 𝑄× 𝐸 → 2𝑄 is defined in Algorithm 2. The complexity of constructing it is polynomial

w.r.t. the size of the BRG, which is 𝒪(|𝐸||ℳ𝑏|4).

Proposition 4.5 Let 𝐺 be an LPN system, 𝐵𝑑 = (𝑄,𝐸, 𝑓𝑑, 𝑞0, 𝑄𝑚) the detector of its

BRG, and ℳ𝑐 the set of crucial markings. There exists an observation 𝑤 ∈ ℒ(𝐺) such that

𝒞(𝑤) ∩ℳ𝑐 ̸= ∅, iff there exists a state 𝑞 ∈ 𝑄 such that ∃𝑥 ∈ 𝑞, 𝑥(2) = 1.

Proof： (If) Let 𝑤 ∈ ℒ(𝐺) be an observation and 𝑞 ∈ 𝑓𝑑(𝑞0, 𝑤). With the assumption

that there exists 𝑥 ∈ 𝑞, 𝑥(2) = 1, i.e., there exists 𝑀𝑏 ∈ 𝒞𝑏(𝑤), 𝑈𝑅(𝑀𝑏) ∩ℳ𝑐 ̸= ∅, and by

Proposition 2.1, 𝒞(𝑤) ∩ℳ𝑐 ̸= ∅.

(Only if) Assume that there exists 𝑤 ∈ ℒ(𝐺) such that 𝒞(𝑤)∩ℳ𝑐 ̸= ∅. By Proposition

2.1,
⋃︀

𝑀𝑏∈𝒞𝑏(𝑤) 𝑈𝑅(𝑀𝑏)∩ℳ𝑐 ̸= ∅. Therefore, there exists 𝑀𝑏 ∈ 𝒞𝑏(𝑤), 𝑈𝑅(𝑀𝑏)∩ℳ𝑐 ̸= ∅.

According to the construction of the detector, there exists a state 𝑞 ∈ 𝑓𝑑(𝑞0, 𝑤), such that

∃𝑥 ∈ 𝑞, 𝑥(2) = 1. �

In words, given a state 𝑞 ∈ 𝑄, if there exists a triple (𝑀𝑏, 𝛼(𝑀𝑏), 𝛽(𝑀𝑏)) in 𝑞 have

𝛼(𝑀𝑏) = 1, then there exists an observation 𝑤 ∈ ℒ(𝐺) such that 𝒞(𝑤) contains crucial

markings.

Proposition 4.6 Let 𝐺 be an LPN system and 𝐵𝑑 = (𝑄,𝐸, 𝑓𝑑, 𝑞0, 𝑄𝑚) the detector of

its BRG. There exists an observation 𝑤 ∈ ℒ(𝐺) such that |𝒞(𝑤)| ≠ 1, iff there exists a state

𝑞 ∈ 𝑄 such that |𝑞| = 2 or ∃𝑥 ∈ 𝑞 such that 𝑥(3) = 1.

Proof： (If) Assume that there exists a state 𝑞 ∈ 𝑄 such that |𝑞| = 2 or ∃𝑥 ∈ 𝑞 with

𝑥(3) = 1. If 𝑥(3) = 1, by Lemma 4.3, there exists an observation 𝑤 ∈ 𝐸* such that
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|𝒞(𝑤)| ̸= 1. If |𝑞| = 2, let 𝑞 = {𝑥1, 𝑥2}, 𝑥1 ̸= 𝑥2. According to the construction of the

detector, there exists an observation 𝑤 such that 𝑞 ∈ 𝑓𝑑(𝑞0, 𝑤), 𝑞 = {𝑥1, 𝑥2} and 𝑥1 ̸= 𝑥2.

Thus 𝑥1(1), 𝑥2(1) ∈ 𝒞(𝑤). Therefore, |𝒞(𝑤)| ≠ 1.

(Only if) Assume that there exists an observation 𝑤 ∈ 𝐸* such that |𝒞(𝑤)| ≠ 1, thus

there exist two different markings 𝑀1,𝑀2 ∈ 𝒞(𝑤) with 𝑀1 ̸= 𝑀2. According to the con-

struction of the detector, if 𝑀1,𝑀2 ∈ 𝒞𝑏(𝑤), then there exists a state 𝑞 ∈ 𝑄 such that |𝑞| = 2;

if either 𝑀1 or 𝑀2 not in 𝒞𝑏(𝑤), by Proposition 2.1, there exists at least one state 𝑞 ∈ 𝑄

containing a state 𝑥 of the BRG such that 𝑥(3) = 1. �

By Proposition 4.6, in an LPN system, there exists an observation 𝑤 such that 𝒞(𝑤)
contains more than one marking, iff there exists a state 𝑞 in the detector such that |𝑞| = 2 or

∃𝑥 ∈ 𝑞 that 𝑥(3) = 1.

We now define the set of marked states as the set of states in 𝐵𝑑 that contain only one or

no crucial marking, namely:

𝑄𝑚 ={𝑞 ∈ 𝑄|𝑞 = {𝑥}, 𝑥(3) = 0} ∪ {𝑞 ∈ 𝑄|∀𝑥 ∈ 𝑞, 𝑥(2) = 0}.

Proposition 4.7 Let 𝐺 be an LPN system, 𝐵𝑑 = (𝑄,𝐸, 𝑓𝑑, 𝑞0, 𝑄𝑚) the detector of its

BRG, and ℳ𝑐 the set of crucial markings. Given an observation 𝑤 ∈ ℒ(𝐺), 𝒞(𝑤) ∩ℳ𝑐 ̸=
∅ ⇒ |𝒞(𝑤)| ≠ 1 holds iff there exists a state 𝑞 ∈ 𝑓𝑑(𝑞0, 𝑤) such that 𝑞 /∈ 𝑄𝑚.

Proof：Follows from Propositions 4.5 and 4.6. �

4.4.2 Verification of C-detectability

Based on Proposition 4.7, a sufficient condition for strong C-detectability can be easily

obtained.

Corollary 4.8 Let 𝐺 be an LPN system and 𝐵𝑑 = (𝑄,𝐸, 𝑓𝑑, 𝑞0, 𝑄𝑚) the detector of its

BRG. System 𝐺 is strongly C-detectable if 𝑄 = 𝑄𝑚.

The following necessary and sufficient condition for strong C-detectability is also de-

rived from Proposition 4.7.

Theorem 4.5 Let 𝐺 be an LPN system, ℳ𝑐 a set of crucial markings, and 𝐵𝑑 =

(𝑄,𝐸, 𝑓𝑑, 𝑞0, 𝑄𝑚) the detector of its BRG. The LPN system 𝐺 is strongly C-detectable w.r.t.

ℳ𝑐 iff for any 𝑞 ∈ 𝑄 reachable from a cycle in 𝐵𝑑, 𝑞 ∈ 𝑄𝑚.
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Proof：(If) By contrapositive. Assume that system 𝐺 is not strongly C-detectable. This

implies that for all 𝐾 ∈ N, there exists 𝜎 ∈ 𝐿∞(𝐺) such that ∃𝜎′ ⪯ 𝜎, with 𝑤′ = ℓ(𝜎′), |𝑤′| ≥
𝐾, 𝒞(𝑤′) ∩ ℳ𝑐 ̸= ∅ ⇒ |𝒞(𝑤′)| ≠ 1. Since 𝜎 has an infinite length, 𝐵𝑑 has a finite number

of nodes, and there is no cycle of unobservable transitions, the path along ℓ(𝜎) = 𝑤 must

contain a cycle 𝛾𝑗 = 𝑞𝑗1𝑒𝑗1𝑞𝑗2 . . . 𝑞𝑗𝑘𝑒𝑗𝑘𝑞𝑗1. Thus the observation of 𝜎 can be written as 𝑤 =

𝑤0(𝑒𝑗1 . . . 𝑒𝑗𝑘)
𝑛𝑤2, where |𝑤0| is finite, 𝑛 ∈ {1, 2, 3, . . .} and 𝑤0, 𝑤2 ∈ 𝐸*. Let 𝐾 = |𝑤0|.

Then, there exists 𝑤′ = ℓ(𝜎′) = 𝑤0𝑤
′′ such that |𝑤′| ≥ 𝐾 and 𝑤′′ ⪯ (𝑒𝑗1 . . . 𝑒𝑗𝑘)

𝑛𝑤2. Under

the initial assumption that 𝒞(𝑤′) ∩ℳ𝑐 ̸= ∅ and |𝒞(𝑤′)| ̸= 1, by Proposition 4.7, there exists

a state 𝑞 ∈ 𝑓𝑑(𝑞0, 𝑤0𝑤
′′) such that 𝑞 /∈ 𝑄𝑚. Namely, there exists a state 𝑞 reachable from a

cycle in 𝐵𝑑 such that 𝑞 /∈ 𝑄𝑚.

(Only if) By contrapositive. Assume in the detector there exists a state 𝑞 reachable

from a cycle but 𝑞 /∈ 𝑄𝑚. Namely, there exist 𝛾𝑗 = 𝑞𝑗1𝑒𝑗1𝑞𝑗2 . . . 𝑞𝑗𝑘𝑒𝑗𝑘𝑞𝑗1, 𝑞𝑗𝑟 ∈ 𝛾𝑗

(𝑟 ∈ {1, 2, . . . , 𝑘}), and 𝑤′ ∈ 𝐸* such that 𝑞 ∈ 𝑓𝑑(𝑞𝑗𝑟, 𝑤
′) and 𝑞 /∈ 𝑄𝑚. Since there

are no cycles of unobservable transitions, there exist 𝜎 ∈ 𝐿∞(𝐺) and 𝑤1, 𝑤2 ∈ 𝐸* such

that ℓ(𝜎) = 𝑤1(𝑒𝑗1𝑒𝑗2 . . . 𝑒𝑗𝑘)
𝑛𝑤2, 𝑛 ∈ {1, 2, 3, . . .} and |𝑤1| is finite. Therefore, for any

𝐾 ∈ N, there exists 𝜎′ ⪯ 𝜎 such that ℓ(𝜎′) = 𝑤1(𝑒𝑗1𝑒𝑗2 . . . 𝑒𝑗𝑘)
𝑚(𝑒𝑗1𝑒𝑗2 . . . 𝑒𝑗𝑟)𝑤

′ and

|ℓ(𝜎′)| ≥ 𝐾, where 𝑤′ ⪯ (𝑒𝑗𝑟+1 . . . 𝑒𝑗𝑘)(𝑒𝑗1𝑒𝑗2 . . . 𝑒𝑗𝑘)
𝑘𝑤2 and 𝑚 + 𝑘 + 1 = 𝑛. Let

𝑤0 = 𝑤1(𝑒𝑗1𝑒𝑗2 . . . 𝑒𝑗𝑘)
𝑚(𝑒𝑗1𝑒𝑗2 . . . 𝑒𝑗𝑟). Clearly, 𝑞𝑗𝑟 ∈ 𝑓𝑑(𝑞0, 𝑤0). With the initial assump-

tion, 𝑞 ∈ 𝑓𝑑(𝑞𝑗𝑟, 𝑤
′) = 𝑓𝑑(𝑞0, 𝑤0𝑤

′) and 𝑞 /∈ 𝑄𝑚. By Proposition 4.7, this implies that

𝒞(𝑤0𝑤
′) ∩ℳ𝑐 ̸= ∅ and |𝒞(𝑤0𝑤

′)| ≠ 1. Therefore, the system is not strongly C-detectable.

�

In words, an LPN system is strongly C-detectable iff any state reachable from a cycle in

the detector is a marked state. Here, we can also take advantages from SCCs. Thus Theorem

4.5 can be rewritten as follows.

Corollary 4.9 Let 𝐺 be an LPN system, ℳ𝑐 a set of crucial markings, and 𝐵𝑑 =

(𝑄,𝐸, 𝑓𝑑, 𝑞0, 𝑄𝑚) the detector of its BRG. The LPN system 𝐺 is strongly C-detectable w.r.t.

ℳ𝑐 iff for any 𝑞 ∈ 𝑄 reachable from an SCC in 𝐵𝑑, 𝑞 ∈ 𝑄𝑚.

Now, we present necessary and sufficient conditions for periodically strong C-

detectability.

Theorem 4.6 Let 𝐺 be an LPN system, ℳ𝑐 a set of crucial markings, and 𝐵𝑑 =

(𝑄,𝐸, 𝑓𝑑, 𝑞0, 𝑄𝑚) the detector of its BRG. The LPN system 𝐺 is periodically strongly C-

detectable w.r.t. ℳ𝑐 iff for any cycle 𝛾𝑗 in 𝐵𝑑, ∃𝑞 ∈ 𝛾𝑗 , 𝑞 ∈ 𝑄𝑚.
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Proof： (If) By contrapositive. Assume that the LPN system 𝐺 is not periodically

strongly C-detectable. This implies that for all 𝐾 ∈ N, there exists a transition sequence

𝜎 ∈ 𝐿∞(𝐺) with a prefix 𝜎′ ⪯ 𝜎 such that ∀𝜎′′ ∈ 𝑇 *, 𝜎′𝜎′′ ⪯ 𝜎, |ℓ(𝜎′′)| ≤ 𝐾, 𝒞(𝑤′) ∩ℳ𝑐 ̸=
∅ ⇒ |𝒞(𝑤′)| ≠ 1 where 𝑤′ = ℓ(𝜎′𝜎′′). Since 𝜎 has an infinite length, 𝐵𝑑 has a finite

number of nodes, and there is no cycle of unobservable transitions, eventually the tail of

the path along ℓ(𝜎) = 𝑤 will be in a cycle 𝛾𝑗 = 𝑞𝑗1𝑒𝑗1𝑞𝑗2 . . . 𝑞𝑗𝑘𝑒𝑗𝑘𝑞𝑗1. Thus, 𝑤 contain-

s the corresponding observation of 𝛾𝑗 , and there exist 𝑤0 ∈ 𝐸* and 𝑤2 ⪯ 𝑒𝑗1 . . . 𝑒𝑗𝑘 such

that 𝑤 = 𝑤0(𝑒𝑗1 . . . 𝑒𝑗𝑘)
𝑛𝑤2, |𝑤0| is finite and 𝑛 ∈ {1, 2, 3, . . .}. Let 𝜎′ ⪯ 𝜎 such that

|ℓ(𝜎′)| ≥ |𝑤0|. Then, for all 𝜎′′ ∈ 𝑇 * such that 𝜎′𝜎′′ ⪯ 𝜎, |ℓ(𝜎′′)| ≤ 𝐾, 𝑞𝑗𝑟 ∈ 𝛾𝑗 and

𝑞𝑗𝑟 ∈ 𝑓𝑑(𝑞0, 𝑤
′), where 𝑤′ = ℓ(𝜎′𝜎′′) and 𝑟 ∈ {1, 2, . . . , 𝑘}. Under the initial assumption that

𝒞(𝑤′) ∩ ℳ𝑐 ̸= ∅ and |𝒞(𝑤′)| ≠ 1, by Proposition 4.7, 𝑞𝑟 ∈ 𝑓𝑑(𝑞0, 𝑤
′) such that 𝑞𝑟 /∈ 𝑄𝑚.

Namely, for all 𝑞𝑟 ∈ 𝛾𝑗 , 𝑞𝑟 /∈ 𝑄𝑚.

(Only if) By contrapositive. Assume that there exists a cycle 𝛾𝑗 = 𝑞𝑗1𝑒𝑗1𝑞𝑗2 . . . 𝑞𝑗𝑘

𝑒𝑗𝑘𝑞𝑗1 in 𝐵𝑑 and ∀𝑞𝑗𝑟 ∈ 𝛾𝑗 , 𝑞𝑟 /∈ 𝑄𝑚. Since there are no deadlocks nor cycles of un-

observable transitions in the system, there exist 𝜎 ∈ 𝐿∞(𝐺) and 𝑤0 ∈ 𝐸* such that

ℓ(𝜎) = 𝑤0(𝑒𝑗1 . . . 𝑒𝑗𝑘)
* and |𝑤0| is finite. Let 𝜎′ ⪯ 𝜎 such that ℓ(𝜎′) = 𝑤0. Then for al-

l 𝐾 ∈ N, ∀𝜎′′ ∈ 𝑇 *, 𝜎′𝜎′′ ⪯ 𝜎, ℓ(𝜎′𝜎′′) = 𝑤′, |ℓ(𝜎′′)| ≤ 𝐾 such that 𝑞𝑗𝑟 ∈ 𝑓𝑑(𝑞0, 𝑤
′)

and 𝑞𝑗𝑟 ∈ 𝛾𝑗 . Under the initial assumption that 𝑞𝑟 /∈ 𝑄𝑚, by Proposition 4.7, this implies

that 𝒞(𝑤′) ∩ ℳ𝑐 ̸= ∅ and |𝒞(𝑤′)| ̸= 1. Therefore, the system is not periodically strongly

C-detectable. �

Therefore, a bounded LPN system is strongly periodically C-detectable iff in the detector

of the BRG, all the cycles contain a state in 𝑄𝑚.

Example 4.7 Consider the LPN system in Fig. 4-8, where 𝑇𝑜 = {𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡7, 𝑡9}，
𝑇𝑢 = {𝑡1, 𝑡6, 𝑡8}. There are 7 reachable markings in the LPN system, and only 5 of them are

basis markings, where 𝑀0 = 𝑝1, 𝑀2 = 𝑝3 + 𝑝4, 𝑀3 = 𝑝5, 𝑀4 = 𝑝3 + 𝑝6, and 𝑀5 = 𝑝3 + 𝑝7.

Let the set of crucial markings be ℳ𝑐 = {𝑀 ∈ N8|𝑀(𝑝5) ≥ 1} ∪ {𝑀 ∈ N8|𝑀(𝑝8) ≥ 1},

i.e., 𝑊 = [0 0 0 0 − 1 0 0 − 1] and 𝐾 = −1. Consider the basis marking 𝑀3 and 𝑀4.

By solving Eq. (4-6), 𝛼(𝑀3) = 1 and 𝛼(𝑀4) = 4. By solving Eq. (4-7), 𝛽(𝑀3) = 0 and

𝛽(𝑀4) = 1. Therefore, the BRG for C-detectability is identical to the one in Fig. 4-9 and the

detector is identical to the one in Fig. 4-10.

According to Fig. 4-10, there are 4 cycles in the detector. Namely, 𝛾1 = {(𝑀2, 0, 0)}
𝑏{(𝑀3, 1, 0), (𝑀4, 1, 1)}𝑑{(𝑀2, 0, 0)}, 𝛾2 = {(𝑀2, 0, 0)}𝑏{(𝑀3, 1, 0), (𝑀5, 1, 1)}
𝑑{(𝑀2, 0, 0)}, 𝛾3 = {(𝑀2, 0, 0)}𝑏{(𝑀4, 1, 1), (𝑀5, 1, 1)}𝑑{(𝑀2, 0, 0)}, and
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𝛾4 = {(𝑀3, 1, 0)}𝑐{(𝑀3, 1, 0)}. There exist states in the cycles that are not marked

state, e.g., {(𝑀3, 1, 0) and (𝑀4, 1, 1)}. Thus, by Theorems 4.5, the LPN system is not

strongly C-detectable w.r.t. ℳ𝑐. On the other hand, there exists at least one marked state in

each cycle, e.g., {(𝑀2, 0, 0)} and {(𝑀3, 1, 0)}. Thus, by Theorem 4.6, the LPN system is

periodically strongly C-detectable w.r.t. ℳ𝑐. ◇

Therefore, rather than enumerating all reachable markings and constructing the detector

of the RG, strong C-detectability and strong periodic C-detectability can be verified through

the detector of the BRG.
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Fig. 4-8 The LPN system in Example 4.7.
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Fig. 4-9 The BRG of the LPN system in Fig. 4-8.
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Fig. 4-10 The detector of the BRG in Fig. 4-9.

4.5 Comparison of the proposed Methods

To compare the proposed approaches, a series of numerical examples are presented.

To implement the approaches proposed in this work, we developed MATLAB codes [91]
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to compute the RG, the BRG, the observer and the detector to analyze the C-detectability

properties of a bounded LPN system. Computations are performed using MATLAB on a

laptop with Intel i7-7700 CPU 3.6GHz processor and 8G DDR3 RAM.

4.5.1 Comparison of the BRG-based method and the RG-based method

Now we first compare the BRG-based method with the RG-based method. Let us

consider the LPN system in Fig. 4-11 whose 𝑇𝑢-induced subnet is acyclic, and where

𝑇𝑜 = {𝑡1, 𝑡7, 𝑡8, 𝑡9} and 𝑇𝑢 = {𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6}. The initial marking in place 𝑝1 is a pa-

rameter 𝑘 ∈ {2, 3, · · · }. Let

ℳ𝑐 = {𝑀 ∈ N10|𝑊 ·𝑀 ≤ 𝐾}, 𝑊 = [ 0 0 0 0 0 0 0 0 0 −1 ], and 𝐾 = −2.

Time (in seconds) to compute the RG, the BRG and the observer for different values of 𝑘

is reported in Table 4-1. Correspondingly, results relative to the four types of C-detectability

for the different values of 𝑘 are summarized in Table 4-2.

• In Table 4-1, Columns 2 and 3 illustrate the number of reachable markings |𝑅(𝑁,𝑀0)|
and the number of basis markings |ℳ𝑏|, respectively. Column 6 shows the number of states

of the observer of the BRG |𝒳 |. Note that the observers of the RG and the BRG always have

the same number of states [6].

• In Table 4-1, the corresponding time (in seconds) is presented in Columns 4, 5, 7 and

8, where Columns 4 and 5 illustrate the time to compute 𝑅(𝑁,𝑀0) and ℳ𝑏, respectively.

Columns 7 and 8 show the time to compute observers of RG and BRG, respectively. In Table

4-1 “o.t.” means out of time, in the case where the tool did not halt within 10 hours.

• In Table 4-2, Columns 2 to 5 summarize the properties satisfied by the LPN system for

the different values of 𝑘 in Table 4-1.“SCD”, “WCD”, “PSCD” and “PWCD” stand for strong

C-detectability, weak C-detect-ability, periodically strong C-detectability, and periodically

weak C-detectability, respectively. “Y” means that the LPN system satisfies the property, and
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Fig. 4-11 The LPN system considered in Section 4.5.
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“N” means that the LPN system does not satisfy the property.

Table 4-1 Cardinality of sets 𝑅(𝑁,𝑀0), ℳ𝑏, |𝒳 | and time to compute them (in seconds) for different
values of 𝑘 in Fig. 4-11.

𝑘 |𝑅(𝑁,𝑀0)| |ℳ𝑏| 𝑇𝑟 𝑇𝑏 |𝒳 | 𝑇𝑟𝑜 𝑇𝑏𝑜

2 53 6 0.01s 1.52s 6 0.07s 1.54s
3 200 10 0.14s 2.97s 10 0.43s 2.99s
4 606 15 1.42s 5.48s 15 2.72s 5.54s
5 1572 21 10.89s 7.68s 21 15.40s 7.75s
6 3630 28 62.22s 10.93s 28 79.20s 11.03s
7 7656 36 328.05s 13.93s 36 389.13s 14.07s
8 15015 45 1205.80s 18.11s 45 1385.40s 18.30s
9 27742 55 4382.00s 27.07s 55 4915.20s 27.34s

10 48763 66 14478.00s 28.24s 66 16007.00s 28.59s
11 o.t. 78 o.t. 38.37s 78 o.t. 38.83s
15 o.t. 136 o.t. 62.04s 136 o.t. 63.10s
20 o.t. 231 o.t. 106.23s 231 o.t. 108.46s

Table 4-2 The analysis results of the four detectability properties for the different values of 𝑘.
𝑘 SCD WCD PSCD PWCD

2 N N Y Y
3 N N Y Y
4 N N N Y
5 N N N Y
6 N N N Y
7 N N N Y
8 N N N Y
9 N N N Y
10 N N N Y
11 N N N Y
15 N N N Y
20 N N N Y

The following conclusions can be drawn from the results in Tables 4-1 and 4-2.

• The number of reachable markings is much larger than that of basis markings.

• When 𝑘 is larger than 4, the time needed to compute the observer of the RG is much

longer and grows faster than that required to compute the observer of the BRG. This implies

that using the RG-based approaches to analyze C-detectability becomes infeasible when the

state space becomes larger and larger.

• Table 4-2 shows that in the considered examples C-detectability properties depend on

the value of 𝑘.

In summary, the BRG-based method are practically efficient in particular for large-size

Petri net systems.
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4.5.2 Comparison of the observer-based method and the detector-based
method
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Fig. 4-12 The LPN system considered in Section 4.5.2.

Let us consider the LPN system in Fig. 4-12 whose 𝑇𝑢-induced subnet is acyclic, and

where 𝑇𝑢 = {𝑡1, 𝑡2, 𝑡3, 𝑡4}, 𝑇𝑜 = {𝑡5, 𝑡6, · · · , 𝑡20}. The initial marking in place 𝑝1 is a param-

eter 𝑘 ∈ {1, 2, · · · }. Let

ℳ𝑐 = {𝑀 ∈ N10|𝑊 ·𝑀 ≤ 𝐾}, 𝑊 = [ 0 0 0 0 −1 ], and 𝐾 = −2。

Table 4-3 reports the number of markings in the BRG of the LPN system, the observer,

and the detector for different values of 𝑘. Correspondingly, time (in seconds) to compute

them, as well as the results relative to the two C-detectability properties for the different

values of 𝑘, are also summarized in Table 4-3.

• In Table 4-3, Column 2 illustrates the number of basis markings of the LPN system.

Columns 3 and 4 show the number of states in the observer, the detector, respectively.

• In Table 4-3, the corresponding time (in seconds) is presented in Columns 5 and 6,

which illustrate the time to compute observer and detector, respectively. In Table 4-3 “o.t.”

Table 4-3 The results for different values of 𝑘 in Fig. 4-12
𝑘 |ℳ𝑏| |𝒳 | |𝑄| 𝑇𝑏𝑜 𝑇𝑏𝑑 SCD PSCD

1 5 15 11 0.53s 0.42s Y Y
2 15 91 92 2.89s 1.71s N N
3 35 771 562 37.98s 8.62s N N
4 70 8277 2347 835.65s 85.12s N N
5 126 85231 7751 20094.25s 956.31s N N
6 210 o.t. 21737 o.t. 8994.41s N N
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means out of time, in the case where the tool did not halt within 10 hours.

• In Table 4-3, Columns 7 and 8 summarize the properties satisfied by the LPN system

for the different values of 𝑘. “SCD” and “PSCD” stand for strong C-detectability and strong

periodic C-detectability, respectively. “Y” means that the LPN system satisfies the property,

and “N” means that the LPN system does not satisfy the property.

The following conclusions can be drawn from the results in Table 4-3.

• When 𝑘 is larger than 2, the number of states of the detector is smaller than that of the

observer.

• Whatever the value of 𝑘, the time needed to compute the detector of the BRG is much

shorter and grows slower than that required to compute the the observer.

• Table 4-3 shows that in the considered examples C-detectability properties depend on

the value of 𝑘.

In summary, BRG-detector method is practically more efficient for large-size Petri net

systems than BRG-observer method.

4.6 Conclusions

In this chapter, four different C-detectability properties of labeled Petri net systems are

proposed and approaches to verify them are provided. Such approaches are based on the

notion of basis marking that prevents exhaustive enumeration of the state space. This lead-

s to significant advantages in terms of computational complexity. In more detail, a basis

reachability graph for C-detectability is defined. For Petri nets whose unobservable subnet is

acyclic, the C-detectability properties can be decided by looking at the observer or detector of

the basis reachability graph, which is usually much smaller than the reachability graph. The

effectiveness of the presented approaches is demonstrated via two parametric examples.
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Chapter 5: Analysis of C-detectability of the Radio
Block Center Handover

The radio block center (RBC) is one of the most essential ground systems in a high-

speed train control system both in Europe and in China. The RBC handover procedure is

an important function of RBC, which affects the transport efficiency, reliability and safety of

railways. Analysis of crucial states in the RBC handover procedure is helpful to determine

whether there are potential risks in the procedure, and to locate the fault in time when a fault

occurs. In this chapter, we study the C-detectability of the RBC handover. This property has

been defined in discrete event systems and requires that the crucial states can be determined

uniquely by observing the system output. Taking the RBC handover procedure in the Chinese

train control system level 3 (CTCS-3) as an example, we first model the RBC handover pro-

cedure using labeled Petri nets (LPNs). Then, the approach proposed in Chapter 4 is used to

check C-detectability of the LPN modeling the handover procedure.

5.1 Introduction

In the last decades, there has been a rapid improvement in railway systems in China.

Chinese train control system level 3 (CTCS-3) is a typical safety-critical system that has bidi-

rectional wireless information transmission between on-board subsystems and ground sub-

systems to monitor the movement of trains [92].

In CTCS-3, a radio block center (RBC) is one of the most essential ground systems,

which elaborates messages to be sent to the train based on the information received from ex-

ternal ground subsystems and the information exchanged with the on-board systems. RBCs

provide trains movement authority (MA) that allows them to move forward. An RBC area is

a trackside area that is supervised by one RBC. At any time when a train runs in CTCS-3, it

must be supervised by an RBC. However, due to the limitation of the control capacity of a

single RBC, the railway is divided into many segments governed by different RBCs. The R-

BC handover procedure enables the train to automatically pass from one RBC area to another

RBC area without any action of the driver. Clearly, the RBC handover procedure affects the

transport efficiency and the operation safety of CTCS-3. Thus, it is necessary to provide for-

mal methods to analyze its properties. In fact, according to EN 50128 [93], formal methods

are highly recommended to design and analyze safety-critical systems. In [94], three position
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computation models are proposed to improve the positioning accuracy for high-speed trains.

In [95], based on a mathematical model and three mixed integer programming heuristic ap-

proaches, a planning procedure is proposed to satisfy the freight requirements in the railway

network. Recently, the RBC handover procedure has been extensively invested using formal

methods [53, 96–102]. In [53, 96, 103–105], the RBC handover procedure is modeled by

timed tools. Using timed automata, the safety of the RBC handover procedure is validated

in [53], and an integrated model-based test case generation method is proposed to guarantee

the function correctness of the RBC handover procedure in [96]. In [106], the RBC handover

procedure is modeled by Modeling, Simulation and Verification Language (MSVL), and the

correctness of the specifications of the RBC handover procedure is verified. In [97, 107, 108],

the RBC handover procedure is modeled by stochastic Petri nets, and the reliability, safety

and rationality of RBC handover protocol are analyzed and verified based on the model. In

[98, 109–113], colored Petri nets are used to model the RBC handover specification. The time

spent and the success rate of the RBC handover are studied in [109] and the authors in [98]

generate test cases and sequences based on the models, and use them to test the function of

an RBC platform. These works have studied some properties of the RBC handover, however

none of them is related to the state estimation problem of the RBC handover. Estimating cru-

cial states in the RBC handover procedure is helpful to determine whether there are potential

risks in the procedure. Especially, when any emergency occurs, knowing whether the system

has reached a crucial state is helpful to respond to the emergency. Analysis of crucial states

in the RBC handover procedure is also helpful for fault location and fault diagnosis. Thus,

in this thesis, we focus our attention on C-detectability of the RBC handover procedure. C-

detectability is an important property defined in state estimation problems, which requires

that a given set of crucial states can be uniquely distinguished from other states, after a finite

number of observations.

The reference formalism of this work is Petri nets, which are extensively used to model

many classes of systems. Recently, Petri nets have been used to model and analyze railway

systems [50, 51, 114, 115]. In [52] and [116], Petri nets are used to analyze and control

railway networks. The intermodal freight transport terminals are modeled by timed Petri nets,

and its performance is simulated and evaluated by the model in [114]. Based on LPNs, the

decision-making strategies in fixed-block systems are proposed [51], and the diagnosis of the

fixed-block systems [115] and the multi-track level crossing [50] are studied. However, these

approaches require the construction of the reachability graph (RG) of the Petri net, and suffer

the state explosion problem.
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In this chapter, LPNs are used as the formal method to model the RBC handover pro-

cedure and study its C-detectability. Based on the notion of basis reachability graph (BRG)

[77], the C-detectability properties of the RBC handover procedure are checked efficiently,

since an exhaustive enumeration of all the markings in the RG is avoided. The contributions

of the chapter can be summarized as follows.

• The RBC handover dynamics in high-speed railways are formalized in terms of LPNs.

• The C-detectability properties of the considered system are studied based on previous

theoretical results by ourselves.

• Finally, MATLAB codes are developed to implement the verification approach, and

to obtain the time costs for the considered application.

In the rest of the chapter, basics on the RBC handover procedure are provided in Section

5.2. In Section 5.3, the RBC handover procedure is modeled by LPNs. In Section 5.4, the

C-detectability analysis of the RBC handover procedure is provided. Finally, conclusions are

drawn in Section 5.5.

5.2 The Radio Block Center Handover

5.2.1 The Procedure of Radio Block Center Handover

In this section, we introduce the RBC handover procedure in CTCS-3 defined in [92].

As shown in Fig. 5-1, when a train passes from RBC1 area to RBC2 area, RBC2 will

provide route related information to RBC1 so that trains are able to pass the border of the two

RBC areas without slowing down and to obtain the MA without interruption. During the RBC

handover procedure, there are two important balise groups that will send messages to the train
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route information
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Fig. 5-1 RBC handover.
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when the train passes above them. One is called level transition announcement balise group

(LTA), which is placed at the border of another RBC area (RBC handover pre-announcement

point) to provide the position of the train. The other is placed at the handover point (the border

of RBC1/RBC2) to execute the handover immediately.

There are two options in the procedure of RBC handover: 1) RBC handover with two

normal mobile terminals, 2) RBC handover with one normal mobile terminal (MT). In this

chapter, we focus on the second option. The operational logic of RBC handover with one

normal MT is as follows:

1. When a train reaches the LTA, the train sends a position report to RBC1 via MT.

2. After RBC1 receives the position report from the train, it sends the handover com-

mand (message packet 131) to the train, meanwhile it sends handover notice and the route

request information to RBC2.

3. When RBC2 receives the information from RBC1, it sends route related information

to RBC1.

4. Based on the information received from RBC2, RBC1 generates MA and sends it to

the train.

5. When the maximum safe front end of the train reaches the handover point and receives

the massage from the border balise group, the train sends a position report to RBC1 via MT,

and RBC1 forwards the position report to RBC2.

6. After receiving the position report from RBC1, RBC2 sends takeover information to

RBC1.

7. When the minimum safe rear end of the train reaches the handover point, the train

sends a position report to RBC1 via MT.

8. When the position report from the train is received by RBC1, RBC1 sends the discon-

nection command (message packet 42) to the train.

9. After receiving the disconnection order from RBC1, the train disconnects the com-

munication with RBC1, and establishes a communication session with RBC2. After that the

train only communicates with RBC2. Thus, the handover procedure is completed.

The above RBC handover procedure is summarized in the sequence diagram in Fig. 5-2.

Note that in the chapter RBC1 always refers to the handing over RBC, while RBC2 always

refers to the accepting RBC.
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Fig. 5-2 The sequence diagram of RBC handover.

5.2.2 Modeling Mechanism

It is known that a model is a mathematical description and simplification of physical

systems such that some of their behavior and properties can be analyzed via the model. In

this thesis, the RBC handover procedure is modeled with a LPN, which provides not only a

mathematical but also a graphical description of the system. In LPNs, states change with the

occurrences of events, and the only outputs of the system are strings of signals correspond-

ing to the events generated by the system. Note that, due to limited sensor ability or cost

consideration, the occurrence of some events may not be detectable by sensors. Therefore,

we observe the behavior of the system through a “mask” that projects event sequences 𝜎 to

strings of signals 𝑤, called observations. This mechanism is illustrated in Fig. 5-3. Finally,

the states of the system can be estimated based on the observations.
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Fig. 5-3 Modeling mechanism.
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5.3 Modeling RBC Handover using Labeled Petri Nets

In this section we show how to model the RBC handover procedure with a LPN. The

RBC handover system is divided into three subsystems: the railway traffic, RBC1 and RBC2.

The whole model is obtained through the composition of the models relative to the three

subsystems.

5.3.1 Modeling the railway traffic

The railway traffic is modeled as the LPN system in Fig. 5-4. There are eleven places and

seven transitions, whose physical meaning is summarised in Tables 5-1 and 5-2, respectively.

The LPN system describes the behavior of the train passing from RBC1 area to RBC2

area.

• Initially, a train approaches RBC2 area and when it reaches the LTA, the train sends

its position report to RBC1, i.e., transition 𝑡𝑟1 fires.

• If the train receives a handover command and an MA from RBC1, i.e., places 𝑝𝑟8

and 𝑝𝑟9 are marked, it will keep running and when its maximum safe front end reaches the

handover point, the train will send its position to RBC1, i.e., transition 𝑡𝑟2 fires.

• When the minimum safe rear end of the train reaches the handover point, the train

sends its position report to RBC1, i.e., transition 𝑡𝑟3 fires.

• After receiving the disconnection order from RBC1, i.e., place 𝑝𝑟10 is marked, the

train disconnects the communication with RBC1, i.e., transition 𝑡𝑟4 fires.

• The train calls RBC2, i.e., transition 𝑡𝑟5 fires.

• If the train builds a communication session with RBC2, i.e., place 𝑝𝑟11 is marked, the

train will operate under the supervision of RBC2, i.e., transition 𝑡𝑟6 fires.

• Finally, the handover ends and the next train can approach RBC2 area from RBC1

area, i.e., transition 𝑡𝑟7 fires.

Note that in the normal situation, all the above transitions are observable, since all the

signals are recorded by the recorder of the train.
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Fig. 5-4 The LPN system modeling a train passing the RBC border.
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Table 5-1 Transitions in Fig. 5-4
𝑇 ℓ(𝑡) Physical meaning

𝑡𝑟1 𝑟1 a train reaches the LTA and sends its position report to RBC1
𝑡𝑟2 𝑟2 the maximum safe front of the train reaches the handover

point and the train sends its position report to RBC1
𝑡𝑟3 𝑟3 the minimum safe rear end of the train reaches the handover

point and the train sends its position report to RBC1
𝑡𝑟4 𝑟4 the train disconnects the communication with RBC1
𝑡𝑟5 𝑟5 the train calls RBC2
𝑡𝑟6 𝑟6 the train communicates with RBC2
𝑡𝑟7 𝑟7 the RBC handover ends

Table 5-2 Places in Fig. 5-4
𝑃 Physical meaning

𝑝𝑟1 a train is approaching RBC2 area
𝑝𝑟2 the train has passed the LTA
𝑝𝑟3 the maximum safe front end of the train has passed the handover point
𝑝𝑟4 the minimum safe rear end of the train has passed the handover point
𝑝𝑟5 the train has disconnected the communication with RBC1
𝑝𝑟6 the train has called RBC2
𝑝𝑟7 the train has established a communication session with RBC2
𝑝𝑟8 the train has received a handover command from RBC1
𝑝𝑟9 the train has received an MA from RBC1
𝑝𝑟10 the train has received a disconnection command from RBC1
𝑝𝑟11 the train has received the reply from RBC2

5.3.2 Modeling RBC1

The operation of RBC1 is modeled as the LPN system in Fig. 5-5. There are twelve

places and six transitions, and their physical meaning is summarised in Tables 5-3 and 5-4.

The LPN system describes the behavior of RBC1 during the RBC handover procedure.

• Initially, RBC1 is free and when it receives the position report claiming that a train

has reached the LTA, i.e., place 𝑝ℎ8 is marked, RBC1 begins the handover procedure. This

corresponds to the firing of transition 𝑡ℎ1.

• Then RBC1 sends the handover command to the train, i.e., transition 𝑡ℎ2 fires, mean-
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Fig. 5-5 The LPN system of RBC1.
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while it sends handover notice and route request information to RBC2, i.e., transition 𝑡ℎ3

fires.

• After receiving the reply from RBC2, i.e., place 𝑝ℎ9 is marked, RBC1 generates an

MA and sends it to the train, i.e., transition 𝑡ℎ4 fires.

• If RBC1 receives the position report claiming that the maximum safe front end of

the train has reached the handover point, i.e., place 𝑝ℎ10 is marked, then RBC1 forwards the

position report to RBC2, i.e., transition 𝑡ℎ5 fires.

• If RBC1 receives the position report claiming that the minimum safe rear end of the

train reaches the handover point, i.e., place 𝑝ℎ11 is marked, then RBC1 sends the disconnec-

tion command to the train, i.e., transition 𝑡ℎ6 fires.

5.3.3 Modeling RBC2

The operation of RBC2 is modeled as the LPN system in Fig. 5-6. There are seven

places and four transitions, and their physical meaning is summarised in Tables 5-5 and 5-6.

The LPN system describes the behavior of RBC2 during the RBC handover procedure.

• Initially, RBC2 is free and when it receives the handover notice and the route request

information from RBC1, i.e., place 𝑝𝑎5 is marked, RBC2 begins the handover procedure, i.e.,

transition 𝑡𝑎1 fires.

• Then, RBC2 sends route information to RBC1, i.e., transition 𝑡𝑎2 fires.

• After receiving the position report claiming that the maximum safe front end of the

train reaches the handover point, i.e., place 𝑝𝑎6 is marked, RBC2 sends takeover information

to RBC1, i.e., transition 𝑡𝑎3 fires.

• Finally, when the communication session is established with the train, i.e., place 𝑝𝑎7

is marked, the train operates under the supervision of RBC2, i.e., transition 𝑡𝑎4 fires.

Table 5-3 Transitions in Fig. 5-5
𝑇 ℓ(𝑡) Physical meaning

𝑡ℎ1 ℎ1 RBC1 starts the handover procedure
𝑡ℎ2 ℎ2 RBC1 sends the handover command to the train
𝑡ℎ3 ℎ3 RBC1 sends the handover notice and the route request in-

formation to RBC2
𝑡ℎ4 ℎ4 RBC1 generates an MA and sends it to the train
𝑡ℎ5 ℎ5 RBC1 forwards the position report to RBC2: the maximum

safe front end of the train reaches the handover point
𝑡ℎ6 ℎ6 RBC1 sends a disconnection command to the train
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Table 5-4 Places in Fig. 5-5
𝑃 Physical meaning

𝑝ℎ1 RBC1 is free
𝑝ℎ2 RBC1 has started the handover procedure
𝑝ℎ3 RBC1 has started the handover procedure
𝑝ℎ4 RBC1 has sent a handover command to the train
𝑝ℎ5 RBC1 has sent handover notice and route request infor-

mation to RBC2
𝑝ℎ6 RBC1 has sent an MA to the train
𝑝ℎ7 RBC1 has sent a position report to RBC2
𝑝ℎ8 RBC1 has received the position report: the train reaches

the LTA
𝑝ℎ9 RBC1 has received route information from RBC2
𝑝ℎ10 RBC1 has received the position report: the maximum

safe front end of the train has passed the handover point
𝑝ℎ11 RBC1 has received the position report: the minimum

safe rear end of the train has passed the handover point
𝑝ℎ12 RBC1 has received takeover information from RBC2
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Fig. 5-6 The LPN system of RBC2.

5.3.4 Modeling the RBC handover

Given the models of the three subsystems, we may construct the global model of the

RBC handover procedure with one normal mobile terminal.

According to the operational logic of the RBC handover in Section 5.2, we can obtain the

mutual dependence of the transitions and the markings of the three subsystems, then the global

model can be built. Let us focus on the first two sub-models. The following relationships exist

between them.

• When a train reaches the LTA, it sends its position report to RBC1. Thus, transition

𝑡𝑟1 fires and place 𝑝ℎ8 is marked.

• When the train has received the handover command from RBC1 (transition 𝑡ℎ2 fires

Table 5-5 Transitions in Fig. 5-6
𝑇 ℓ(𝑡) Physical meaning

𝑡𝑎1 𝑎1 RBC2 starts the handover procedure
𝑡𝑎2 𝑎2 RBC2 sends route information to RBC1
𝑡𝑎3 𝑎3 RBC2 sends takeover information to RBC1
𝑡𝑎4 𝑎4 RBC2 communicates with the train
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Table 5-6 Places in Fig. 5-6
𝑃 Physical meaning

𝑝𝑎1 RBC2 is free
𝑝𝑎2 RBC2 has started handover procedure
𝑝𝑎3 RBC2 has sent route information to RBC1
𝑝𝑎4 RBC2 has sent takeover information to RBC1
𝑝𝑎5 RBC2 has received the position report: the train reaches

the LTA
𝑝𝑎6 RBC2 has received the position report: the maximum safe

front end of the train has passed the handover point
𝑝𝑎7 RBC2 has received the calling from the train

and place 𝑝𝑟8 is marked), and an MA from RBC1 (transition 𝑡ℎ4 fires and place 𝑝𝑟9 is marked),

the maximum safe front end of the train can reach the handover point, and sends a position

report to RBC1 (transition 𝑡𝑟2 fires and place 𝑝ℎ10 is marked).

• If RBC1 receives the position report claiming that the minimum safe rear end of the

train reaches the handover point (transition 𝑡𝑟3 fires and place 𝑝ℎ11 is marked), then RBC1

sends the disconnection command to the train (transition 𝑡ℎ6 fires and place 𝑝𝑟10 is marked).

Analogously, according to the communication and cooperation among the three subsys-

tems, the whole system of the RBC handover procedure is modeled as the LPN system in Fig.

5-7.

Now we consider four events which may become unobservable in the RBC handover

procedure. Note that in the normal situation, all the transitions in Fig. 5-7 are observable,

since all the signals are received and recorded by the recorder. However, trains and RBCs

operate outdoors, thus they are often affected by many complicated environment factors, such

as thunder strikes, storms, and electromagnetic interference. Therefore, some signals may be

lost or the recorder may not work well.

The four unobservable events can be divided into two types. The first type of unobserv-

able events is caused by the two RBCs. The recorder may have failed so that it does not record

two signals: one signal is that RBC1 sends the handover notice and the route request informa-

tion to RBC2, modeled by transition 𝑡ℎ3(ℎ3); the other is the signal corresponding to RBC2

beginning the handover procedure, modeled by transition 𝑡𝑎1(𝑎1). In this application, we as-

sume this failure is permanent. Thus, in the PN model with faulty events, transitions 𝑡ℎ3(ℎ3)

and 𝑡𝑎1(𝑎1) are replaced by the unobservable transitions 𝑡ℎ3(𝜀) and 𝑡𝑎1(𝜀), respectively.

The other unobservable events in the faulty model are related to the train. In particular,

there are two of such unobservable events. Indeed, affected by the environment, the train may

not receive the position message from the border balise group (transition 𝑡𝑟8 fires), and the

disconnect command message from RBC1 (transition 𝑡𝑟10 fires). In the first situation, even
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Fig. 5-7 The LPN system of RBC handover under normal behavior.

though the train loses the position message from the border balise group, according to the

specification [92], the train can also calculate its position by its on-board equipment. Thus,

after a while, when its calculation indicates that the maximum safe front of the train has

reached the handover point, then the train will also send the position report to RBC1 (transi-

tion 𝑡𝑟9 fires). In the second situation, according to the specification [92], if the train does not

receive the information for a certain while, then it will disconnect with RBC1 (transition 𝑡𝑟11

fires). After that, the train starts calling RBC2. The two situations occur intermittently, thus

the system would follow both normal condition (transitions 𝑡𝑟2 and 𝑡𝑟4 fire) and the signal loss

condition (transitions 𝑡𝑟8 and 𝑡𝑟10 fire).

In conclusion, the LPN system of RBC handover in the presence of faults is the one

reported in Fig. 5-8, where the four unobservable events are denoted by blue transitions (𝑡𝑟8,

𝑡𝑟10, 𝑡ℎ3 and 𝑡𝑎1). Note that compared with the model in Fig. 5-7, there are two more arcs

linked to place 𝑝𝑟10 (in Fig. 5-8): the arc from transition 𝑡𝑟4 to place 𝑝𝑟10 ensures that 𝑝𝑟10
is marked after the firing of 𝑡𝑟4; the other arc from 𝑝𝑟10 to 𝑡𝑟5 regards the marking of 𝑝𝑟10 as

one of the requirements for firing 𝑡𝑟5. The arc from 𝑝𝑟10 to 𝑡𝑟4 ensures that the marking of

𝑝𝑟10 is necessary for the firing of 𝑡𝑟4, which depicts nominal operation. The arc from 𝑝𝑟10 to

𝑡𝑟5 ensures that the token in 𝑝𝑟10 will be consumed at each cycle whenever an unobservable

transition 𝑡𝑟10 has fired. This ensures the boundedness of place 𝑝𝑟10. Thus, an arc is also

added from 𝑡𝑟4 to 𝑝𝑟10 to ensure that the token from 𝑝𝑟10 consumed during the firing of 𝑡𝑟4 is

got back into 𝑝𝑟10 to make the firing of 𝑡𝑟5 possible.
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Fig. 5-8 The LPN system of RBC handover with faulty events.

5.4 Analysis of C-detectability of RBC Handover

In this section, we investigate the C-detectability properties of the RBC handover proce-

dure modeled with the LPN system in Fig. 5-8, where 𝑇𝑢 = {𝑡𝑟8, 𝑡𝑟10, 𝑡ℎ3, 𝑡𝑎1}. Clearly, the

LPN system is bounded and the 𝑇𝑢-induced subnet is acyclic. There are 30 reachable mark-

ings in the LPN system, and only 21 of them are basis markings. The set of basis markings of

the LPN system in Fig. 5-8 is reported in Table 5-7.

In the RBC handover procedure, there are three crucial states that must be determined

by the operator. The three crucial states represent the following three crucial times: the begin-

ning of the RBC handover, the train reaching the two RBC borders, and the end of the RBC

handover. The beginning of the RBC handover occurs when a train reaches the LTA and sends

a position report to RBC1, which corresponds to marking 𝑀1 in Table 5-7. The train reaches

the two RBC borders when the maximum safe front end of the train passes the handover point,

which corresponds to marking 𝑀7 in Table 5-7. The RBC handover is completed when the

train establishes a communication session with RBC2, which corresponds to marking 𝑀20

in Table 5-7. In other words, the set of the crucial markings is ℳ𝑐 = {𝑀1,𝑀7,𝑀20}. As

shown in Chapter 4, the set of the crucial markings can be also described by generalized mu-

tual exclusion constraints (GMECs). Thus, the set of the crucial markings can be rewritten as

ℳ𝑐 = {𝑀 ∈ N32|2𝑀(𝑝ℎ8)+𝑀(𝑝𝑟3)+𝑀(𝑝ℎ6)+2𝑀(𝑝𝑟7) ≥ 2}. Note that as shown in Table

5-7, 𝑀1(𝑝ℎ8) = 1, 𝑀20(𝑝𝑟7) = 1, and 𝑀7(𝑝𝑟3)+𝑀7(𝑝ℎ6) = 2. Thus, ℳ𝑐 = {𝑀1,𝑀7,𝑀20}.
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Fig. 5-9 The BRG of the LPN system in Fig. 5-8.

According to the Section 4.2.2, we may construct the BRG of the LPN system in Fig.

5-8 for C-detectability, which is reported in Fig. 5-9. Again we refer to Table 5-7 for the

marking definition. Since none of the labels of the transitions in the LPN system is identical,

all the transitions in BRG are distinguishable. Thus, each state in the observer contains only

one state of the BRG. Thus, the observer of the BRG is omitted.

All the states of the observer are marked states, namely they belong to set 𝒳𝑚. There-

fore, by Theorems 4.1, 4.2, 4.3 and 4.4 in Section 4.3, the RBC handover system is strongly C-

detectable, and consequently also periodically strongly C-detectable, weakly C-detectable and

periodically weakly C-detectable. Namely, each crucial state of the RBC handover procedure

can be uniquely determined after a finite number of observations for all possible evolutions

of the system. Let us consider two event sequences: 𝑟1ℎ1𝑎2ℎ2ℎ4𝑟2 and 𝑟1ℎ1ℎ2𝑎2ℎ4𝑟9𝑟3.
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Table 5-7 Markings in Fig. 5-9
𝑀𝑎𝑟𝑘𝑖𝑛𝑔 𝑃 𝑙𝑎𝑐𝑒𝑠

𝑀0 𝑝𝑟1 + 𝑝ℎ1 + 𝑝𝑎1

𝑀1 𝑝𝑟2 + 𝑝ℎ1 + 𝑝ℎ8 + 𝑝𝑎1

𝑀2 𝑝𝑟2 + 𝑝ℎ2 + 𝑝ℎ3 + 𝑝𝑎1

𝑀3 𝑝𝑟2 + 𝑝𝑟8 + 𝑝ℎ4 + 𝑝ℎ3 + 𝑝𝑎1

𝑀4 𝑝𝑟2 + 𝑝ℎ2 + 𝑝ℎ5 + 𝑝ℎ9 + 𝑝𝑎3

𝑀5 𝑝𝑟2 + 𝑝𝑟8 + 𝑝ℎ4 + 𝑝ℎ5 + 𝑝ℎ9 + 𝑝𝑎3

𝑀6 𝑝𝑟2 + 𝑝𝑟8 + 𝑝𝑟9 + 𝑝ℎ6 + 𝑝𝑎3

𝑀7 𝑝𝑟3 + 𝑝ℎ6 + 𝑝ℎ10 + 𝑝𝑎3

𝑀8 𝑝𝑟4 + 𝑝ℎ6 + 𝑝ℎ10 + 𝑝ℎ11 + 𝑝𝑎3

𝑀9 𝑝𝑟3 + 𝑝ℎ7 + 𝑝𝑎3 + 𝑝𝑎6

𝑀10 𝑝𝑟4 + 𝑝ℎ7 + 𝑝ℎ11 + 𝑝𝑎3 + 𝑝𝑎6

𝑀11 𝑝𝑟3 + 𝑝ℎ7 + 𝑝ℎ12 + 𝑝𝑎4

𝑀12 𝑝𝑟4 + 𝑝ℎ7 + 𝑝ℎ11 + 𝑝ℎ12 + 𝑝𝑎4

𝑀13 𝑝𝑟4 + 𝑝𝑟10 + 𝑝ℎ1 + 𝑝𝑎4

𝑀14 𝑝𝑟5 + 𝑝ℎ6 + 𝑝ℎ10 + 𝑝ℎ11 + 𝑝𝑎3

𝑀15 𝑝𝑟5 + 𝑝ℎ7 + 𝑝ℎ11 + 𝑝𝑎3 + 𝑝𝑎6

𝑀16 𝑝𝑟5 + 𝑝ℎ7 + 𝑝ℎ11 + 𝑝ℎ12 + 𝑝𝑎4

𝑀17 𝑝𝑟5 + 𝑝𝑟10 + 𝑝ℎ1 + 𝑝𝑎4

𝑀18 𝑝𝑟6 + 𝑝ℎ1 + 𝑝𝑎4 + 𝑝𝑎7

𝑀19 𝑝𝑟6 + 𝑝𝑟11 + 𝑝ℎ1 + 𝑝𝑎1

𝑀20 𝑝𝑟7 + 𝑝ℎ1 + 𝑝𝑎1

When 𝑟1ℎ1𝑎2ℎ2ℎ4𝑟2 is observed, the maximum safe front end of the train reaches the han-

dover point, the train will send its position to RBC1. By Fig. 5-9, the current state contains

only one marking 𝑀7 which is a crucial marking, i.e., the crucial marking 𝑀7 can be unique-

ly determined. When 𝑟1ℎ1ℎ2𝑎2ℎ4𝑟9𝑟3 is observed, the minimum safe rear end of the train

reaches the handover point, the train sends its position report to RBC1. By Fig. 5-9, the state

of the BRG is (𝑀8, 0, 1). Thus the current state can not be uniquely determined. However, the

current state does not contain any crucial state, namely, this event sequence does not influence

the determination of the crucial states. On the contrary, no matter what event sequence is ob-

served, when the current state contains a crucial marking, the current state contains only one

marking, therefore the RBC handover system is strongly C-detectable. Since all the states of

the observer are marked states, according to Section 4.3.4, smallest value of 𝐾 that satisfies

Definition 4.2 is 𝐾 = 0. Namely, from the very beginning of the system evolution, whenever

the state of the system is crucial, it can be unambiguously determined.

Finally, based on Theorem 4.1 in this work, we developed MATLAB codes [91] to

compute the BRG and the observer of the RBC handover LPN model, to analyze the C-

detectability properties of the model, and to record the time costs of the procedures. The
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computations are performed using MATLAB on a laptop with Intel i7-7700 CPU 3.6GHz

processor and 8G DDR3 RAM. Finally, we obtain the result that the RBC handover model is

strongly C-detectable. It only takes 1.90s to build the BRG, and only 2.20s to complete the

whole verification approach. Therefore, the proposed results are definitely applicable to the

considered physical problem.

5.5 Conclusions

RBC handover is one of the most essential functions in CTCS-3. In this chapter, labeled

Petri nets are used to model the RBC handover procedure based on only one normal mobile

termination. The RBC handover procedure is split into three main subsystems modeled by

labeled Petri nets, then the whole system model is built by the composition of the basic sub-

system models. In this way, the RBC handover procedure is expressed in a more concise

and understandable manner. Moreover, considering the crucial states, we construct the basis

reachability graph and its observer to show that the RBC handover procedure satisfies strong

C-detectability.
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Chapter 6: Conclusions and Future Work

In this chapter, conclusions are drawn and the directions on future research in this topic

are also discussed.

6.1 Conclusions

In the thesis, we investigated detectability problems in discrete event systems modeled

with bounded labeled Petri net systems. The operator knows the structure of the system but

partially observes the behavior of the system. Based on the knowledge of the system and its

observation, the operator wants to know whether the states (or crucial states) of the system

can be uniquely determined.

(1) Detectability:

The system is said to be detectable if the current and the subsequent states of the system

can be uniquely determined after the observation of a finite number of events. We formalized

the notion of strong detectability, weak detectability, strong periodic detectability and weak

periodic detectability in labeled Petri nets. Four new approaches to verify the detectability

properties of the system are developed. We show that based on the basis marking these four

detectability properties can be efficiently verified in bounded LPNs. Through solving an inte-

ger linear equation, the proposed approaches avoid exhaustively enumerating the reachability

space. The first approach is based on a structure called observer. We only need to construct

one structure: the observer of the basis reachability graph for detectability, the four detectabil-

ity properties can be verified at a time. The second approach is based on a structure called

detector. This approach can be used for the verification of strong detectability and strong peri-

odic detectability. The last two approaches are based on verifier and verifier net, respectively.

Strong detectability can be checked by the two approaches. All the four approaches use basis

reachability graph technique that prevents exhaustive enumeration of the state space. This

leads to significant advantages in terms of computational complexity compared with previous

approaches. Moreover, the last three structures are constructed in polynomial time. Finally,

the effectiveness of the presented approaches is demonstrated via a parametric example.

(2) C-detectability:

The goal of detectability properies may be too strong in some applications. In this the-

sis, we relax such a definition and introduce the property of C-detectability, where “C” stands
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for “crucial”. In particular, we only care about a given set of states, called crucial states,

and want to be sure that when the system reaches such states, they are uniquely identified.

The notion of strong C-detectability, weak C-detectability, periodically strong C-detectability

and periodically weak C-detectability is defined in labeled Petri nets. We have clarified the

relation among the four C-detectability properties. The approaches to verify the four dif-

ferent C-detectability properties are provided. Such approaches are based on the notion of

basis marking that prevents exhaustive enumeration of the state space. This leads to signifi-

cant advantages in terms of computational complexity. In more detail, the basis reachability

graph for C-detectability is defined. For Petri nets whose unobservable subnet is acyclic, the

C-detectability properties can be decided by looking at the observer or detector of the basis

reachability graph, which is usually much smaller than the reachability graph. If the cru-

cial states are described by a set of generalized mutual exclusion constraints (GMECs), then

C-detectability properties can be verified by solving a set of integer linear programming prob-

lems (ILPPs). Finally, the effectiveness of the presented approaches is demonstrated via two

parametric examples.

(3) C-detectability of RBC handover:

The RBC handover procedure enables trains to automatically pass from one RBC area

to another RBC area without any action of the driver. It is one of the most essential functions

in CTCS-3. In this thesis, labeled Petri nets are used to model the RBC handover procedure

based on only one normal mobile termination. The RBC handover procedure is split into

three main subsystems modeled by labeled Petri nets, then the whole system model is built

by the composition of the basic subsystem models. In this way, the RBC handover proce-

dure is expressed more concise and understandable. Moreover, considering the crucial states,

we construct the basis reachability graph and its observer to show that the RBC handover

procedure satisfies strongly C-detectability.

6.2 Future work

The work in the thesis points out several potential research directions.

For the detectability verification problem, we only considered the problem in logical

Petri net models, i.e., labeled Petri nets, and there is no time factor or probability. Clearly, this

is not the case in practice. Therefore, extending the notion of detectability timed/stochastic

Petri nets and Petri nets with probability would be one direction of our future research. The

problem would be how to extend the notion of detectability in the new Petri net models and

how to efficiently verify the new detectability properties. For timed Petri nets, the operator
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may refine its estimation taking the time factor into account. Therefore, the problem would be

more complicated. In Petri nets with probability, the firing of a transition has its probability. If

we assume the operator also knows the firing probability of all transitions, then its estimation

would be with confidence.

In this thesis, we do not tackle the enforcement problem of the detectability of labeled

Petri net systems. Given a system that is not detectable, the detectability enforcement problem

consists in turning the system into a detectable one. Approaches to detectability enforcement

may rely on supervisory control, dynamically restraining the observability of events.

In this thesis, we do not consider the characteristics of the railway signal system model,

that is, their network structure presents the characteristics of a specific workflow. Consid-

ering the characteristics, there may exist more efficient methods for the verification of the

C-detectability properties in railway signal system. Moreover, we can also consider analyz-

ing the various subsystems of the railway signal system first, and then carry out the formal

methods on the entire system to realize state estimation and early fault diagnosis for the rail-

way signal system.
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