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Abstract
Considering the impact of recommendations on item providers is one of the duties 
of multi-sided recommender systems. Item providers are key stakeholders in online 
platforms, and their earnings and plans are influenced by the exposure their items 
receive in recommended lists. Prior work showed that certain minority groups of 
providers, characterized by a common sensitive attribute (e.g., gender or race), are 
being disproportionately affected by indirect and unintentional discrimination. Our 
study in this paper handles a situation where (i) the same provider is associated with 
multiple items of a list suggested to a user, (ii) an item is created by more than one 
provider jointly, and (iii) predicted user–item relevance scores are biasedly estimated 
for items of provider groups. Under this scenario, we assess disparities in relevance, 
visibility, and exposure, by simulating diverse representations of the minority group 
in the catalog and the interactions. Based on emerged unfair outcomes, we devise 
a treatment that combines observation upsampling and loss regularization, while 
learning user–item relevance scores. Experiments on real-world data demonstrate 
that our treatment leads to lower disparate relevance. The resulting recommended 
lists show fairer visibility and exposure, higher minority item coverage, and negligi-
ble loss in recommendation utility.
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1  Introduction

Recommender systems help individuals explore vast catalogs of items. To this 
end, such systems adopt a model that implements a suitable way of ranking items. 
Conventionally, items are ranked in order of their decreasing relevance for a 
given user, estimated via machine learning. The literature traditionally focused 
on optimizing user–item relevance for user’s recommendation utility (Ricci et al. 
2015). However, many recommendation scenarios involve multiple stakeholders 
and should account for the impact on more than one group of participants (Burke 
2017; Boratto et al. 2021). For instance, the ranked lists may influence profits and 
plans of item providers (Jannach and Jugovac 2019).

Context: The motivation driving this paper is that a model, optimized for user’s 
recommendation utility, can introduce an indirect and unintentional discrimina-
tion for providers belonging to a legally protected minority class (e.g., when con-
sidering gender or ethnicity as a sensitive attribute) (Zliobaite 2017; Dwork et al. 
2012). Given the primary role of recommender systems also for minority provid-
ers, having their items unfairly recommended would have human, ethical, social, 
and economic consequences (Ricci et al. 2015). Furthermore, due to these phe-
nomena, providers might lose their trust in the platform and consequently leave it, 
impacting on the ecosystem as a whole. Hence, it is imperative to uncover, char-
acterize, and mitigate discrimination inherent in the recommendation model, so 
that no platform systematically and repeatedly disadvantages minority providers.

Problem Statement: The literature in ranking and recommendation recently 
focused on aligning the exposure or the attention to providers with their relevance 
or contribution in the catalog, at individual or group level (Yang and Stoyanovich 
2017; Liu et  al. 2019; Kamishima et  al. 2018; Biega et  al. 2018). Our study 
encodes the idea of a group-level proportionality between the contribution in the 
catalog and the relevance, the visibility, and the exposure, following a distributive 
norm based on equity (Walster et al. 1973). Operationalizing this notion during 
the user–item relevance optimization stage may be envisioned as a proactive way 
of addressing provider’s fairness along the recommendation pipeline, given that 
relevance scores are the input for the final ranking stage. Being optimized for 
their ability to rank, the estimated relevance scores directly influence the chance 
of an item being ranked high (i.e., the higher the relevance is, the more likely 
the item appears at the top). If these relevances are biased against the minor-
ity group, the recommender system is unfairly giving minority items less chance 
of being ranked high. Given its connection with the final ranking, relevance is 
thus an internal algorithmic asset to be allocated to provider groups, and not just 
a property of user–item pairs to be estimated. Therefore, controlling relevances 
of items of a provider group can be a driver of recommendation outcomes with 
lower disparities.

Despite potentially bringing fairness-related benefits on the suggested lists by 
itself, controlling predicted relevance scores may also help to deal with situations 
where true expected relevances required by existing fairness-aware treatments are 
not available. Ensuring that a model improves its capability to deem the items of 
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the minority as relevant is not trivial, since minority items tend to be under-rep-
resented in interactions. This may influence the predicted relevance and, in cas-
cade, the recommendations involving minority providers. The disparate impact 
we address consists in items of a small minority group of providers systematically 
receiving unfairly low relevance and, by extension, an exposure not proportional 
to their contribution in the catalog. Our goal in this paper is thus to investigate 
whether, during the learning stage, taking actions for increasing the relevance of 
items from the minority group positively impacts on providers’ group fairness in 
recommendations.

Open Issues: While a range of frameworks to assess and mitigate provider unfair-
ness has been introduced in the context of non-personalized people rankings (Biega 
et al. 2018; Singh and Joachims 2018; Lahoti et al. 2019) and item recommendation 
(Kamishima et al. 2018; Beutel et al. 2019), several issues remain open.

Despite being extendable to many-to-many item–provider associations, exist-
ing frameworks for provider fairness have been assessed on settings with a one-to-
one association between items and providers (Beutel et al. 2019; Sapiezynski et al. 
2019). This is natural in a people ranking, since the concepts of provider and item 
being ranked coincide. However, under a more general item recommendation sce-
nario, items and providers may be linked by a many-to-many relationship (e.g., a 
movie having multiple directors or a director offering multiple movies). Hence, 
there is a need to assess how fair are recommendations for providers in the general 
context we described (e.g., for items having both female and male providers).

Furthermore, disparate exposure has been traditionally mitigated through a form 
of re-ranking, assuming to have access to true unbiased relevances (Singh and 
Joachims 2018; Biega et al. 2018). However, these relevances are typically estimated 
by means of a machine learning technique, leading to a possibly biased value of the 
relevance scores. Indeed, recommender systems are known to be biased from sev-
eral perspectives (e.g., popularity, presentation, and, obviously, unfairness for users 
and providers). Predicting a relevance score on biased/unfair results and basing a re-
ranking approach on a possibly biased relevance may lead to undesired effects, con-
sidering that relevance directly influences the chance of an item being ranked high. 
This issue is urging novel methods able to instill a fine-grained share of relevance 
across groups in the algorithmic mechanics. This would generate a tangible impact 
on disparity reduction in the final ranking.

To the best of our knowledge, no approach deals with controlling the balance 
of relevance estimations across provider groups, under the above scenario. Indeed, 
while in-processing regularizations of relevance exist (Kamishima et al. 2018; Beu-
tel et al. 2019) and this would overcome the second issue, these treatments are fun-
damentally driven by a fairness objective different from ours, not relying on con-
trolling the share of relevances, and still assessed on a one-to-one item–provider 
relationship.
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Motivating Intuitions: The intuitions that drive our approach are depicted with 
concrete examples, taken from the MovieLens-10M dataset, presented in detail in 
Sect. 5.1.1. Considering a binary gender attribute1 and using movie directors as a 
proxy of providers, female directors appear on the 6.0% of items in the catalog, but 
end up being under-represented with only 3.9% of interactions. With the pair-wise 
approach we employed in this work and the (un)fairness metric we will present, 
female providers receive 2.9% of the total item relevance (and 2.8% of exposure), 
being affected by the disparate impact.

Considering that the items having more interactions are more likely to receive 
high relevance and be recommended at the top of the ranking (i.e., the well-known 
popularity phenomenon), we investigated whether upsampling the interactions 
involving the minority group of providers, to reach a percentage aligned with their 
representation in the catalog (i.e., 6.0% of the total interactions), can reduce dispari-
ties in relevance and, by extension, in exposure. Giving the upsampled set of interac-
tions as an input to the same pair-wise algorithm led to female providers receiving 
5.4% of relevance and 5.2% of exposure, still far from the 6.0% of representation 
in the catalog. Given this gap, we then regularized for the share of relevances dur-
ing the learning process, leveraging upsampled interactions (which are important to 
enable the regularization). This latter setting led to a 5.9% of relevance and 5.8% of 
exposure for female providers, reducing the initial disparate impact. These prelimi-
nary practical results motivated us to investigate how upsampling and regularization 
can lead to higher relevance and lower disparate exposure for the minority.

Contributions: Compared to prior work, both in the fairness metric and the miti-
gation, we consider a many-to-many relationship between items and their providers 
and assess the representation of each value of a sensitive attribute in a given item 
(i.e., we would assess how represented each gender is in that item). Under this sce-
nario, to reduce disparities in relevance and exposure, we propose a pre-processing 
strategy that upsamples interactions where the minority group is predominant (e.g., 
an item where the minority is represented with two providers is better than item with 
only one provider of that group; moreover, the lower the representation of the major-
ity in that item is, the more we can help the minority, by favoring an upsampling of 
these latter items). In addition, an in-processing component aims to control that the 
relevance given to the items of the minority group is proportional to the minority 
group contribution in the catalog. Our contribution is summarized as follows:

•	 we characterize disparities in predicted relevance, visibility, and exposure against 
the minority group of providers and assess their existence on synthetic data that 
simulates diverse representations of the group in the catalog and the interactions, 
learning lessons that guide our mitigation;

•	 we present a mitigation approach that relies on (i) tailored upsampling in pre-
processing and (ii) a regularization term added to the original training optimiza-
tion function, to operationalize our motivating intuitions;

1  While gender is by no means a binary construct, to the best of our knowledge no dataset with non-
binary genders exists. What we are considering is a binary feature, as the current publicly available data-
sets offer.
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•	 we leverage two public datasets with gender information of the providers, ena-
bling the consequent evaluation of the impact of our metrics and strategies on 
real-world datasets with very small minority groups.

Roadmap: The remaining of this paper is structured as follows: Sect. 2 formalizes 
key concepts and metrics, and Sect.  3 describes our exploratory analysis. Then, 
Sect.  4 introduces our mitigation approach, while Sect.  5 assesses its feasibility. 
Section 6 provides connections with prior work. Finally, Sect. 7 depicts concluding 
remarks and future research directions.

2 � Concepts and definitions

In this section, we outline the recommendation scenario we seek to investigate and 
the concepts and definitions used throughout this paper.

2.1 � Recommender system formalization

Given a set of users U, a set of items I, and a set of providers P, we assume that 
each item i ∈ I is jointly offered by a subset of providers Pi ⊂ P , with |Pi| > 0 , and 
a provider p ∈ P offers a subset of items Ip ⊂ I , with |Ip| > 0 . For instance, in the 
context of course recommendation, if we consider instructors as providers of course 
items, a course could have two instructors who give lectures cooperatively. Simi-
larly, the same instructor could deliver three different courses on the platform, two 
of them cooperatively and one alone, just as an example. Each provider p ∈ P is 
associated with N discrete sensitive attributes (ap

1
, a

p

2
,⋯ , a

p
n) , with ap

1
∈ A1 ⊂ ℕ , … , 

a
p
n ∈ An ⊂ ℕ . For instance, a set Aj could be associated with the gender attribute 

and, thus, being defined as Aj = {0 ∶ female, 1 ∶ male,…} , assuming that an attrib-
ute is discrete and that we encoded each discrete value to a unique integer.

We assume that users have interacted with a subset of items in I. The col-
lected feedback from user–item interactions can be abstracted to a set of pairs (u, 
i) obtained from the normal user’s activity or triplets (u, i, value), whose value is 
either provided by users (e.g., ratings) or computed by the system (e.g., frequency). 
In our study, we consider pairs derived from explicit feedback, by applying a pre-
selected threshold to rating values, in order to model the recommendation task as 
a personalized ranking problem. We denote the user–item feedback matrix by 
R ∈ ℝ

|U|∗|I| , where Ru,i > 0 indicates that user u interacted with item i, and Ru,i = 0 
otherwise. Furthermore, we denote the set of items that user u ∈ U interacted with 
by Iu = {i ∈ I ∶ Ru,i > 0}.

We assume that each user u ∈ U and item i ∈ I is internally represented by a 
D-sized numerical vector from a user-vector matrix W and an item-vector matrix X, 
respectively. The recommender system’s task is to optimize � = (W,X) for predict-
ing unobserved user–item relevance. It can be abstracted as learning R̃u,i = f�(u, i) , 
where R̃u,i denotes the predicted relevance, � denotes learnt user and item matrices, 
and f denotes the function predicting the relevance between Wu and Xi . Given a user 
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u, items i ∈ I ⧵ Iu are ranked by decreasing R̃u,i , and top-k, with k ∈ ℕ and k > 0 , 
items are recommended. Our study will focus on k = 10 recommendations per user, 
since they probably get the most attention of users and 10 is a widely employed cut-
off. Finally, we denote the set of k ∈ ℕ items recommended to user u by Ĩu.

2.2 � Associating providers’ sensitive attributes to items

Formalizing our target notion of fairness for provider groups, under the scenario 
depicted in Sect. 2.1, requires to deal with several aspects. Fairness studies in rank-
ing and recommendation traditionally targeted people as entities to be ranked or 
recommended (Biega et al. 2018; Yang and Stoyanovich 2017; Lahoti et al. 2019). 
While still having individuals being directly affected by how recommendations are 
generated, entities to be recommended are not always individuals and may include 
items (e.g., movies, courses). This turns out to key challenges that rise in cascade.

First, in many cases, there is no direct one-to-one mapping between an item and 
the individual who has created or offered it (i.e., the provider). Realistic scenarios 
need to consider items created by more than one provider cooperatively (e.g., a 
course with two instructors) and how the sensitive attributes are associated to the 
involved providers. It can be even difficult to come up with a one-to-many mapping 
for items offered by an entity not directly linked to individuals (e.g., a training com-
pany providing an online course).

Second, the fact that an item might have more than one provider behind it poses 
the problem of how to model the representation of a providers’ sensitive attribute, 
when considering that item (e.g., how each gender is represented in a given item), 
based on the individuals associated to it. Linking a unique variable, either binary or 
multi-class, discrete or continuous, to a sensitive attribute of a provider and claim 
fairness on such a variable is often impractical. More sophisticated solutions should 
be considered. For instance, the metrics proposed by Biega et al. (2018) and in the 
TREC Fair Track (Biega et al. 2020) have been devised to handle items with multi-
ple providers with different attributes.

Based on these observations, we define a notion of sensitive attribute 
representation for an item i, subjected to a sensitive attribute A. This notion 
requires to consider the membership of each provider p ∈ Pi to a class of the sensi-
tive attribute A (which we previously denoted as ap ), while mapping sensitive attrib-
utes to items.

Definition 1  (Sensitive attribute representation) Given a sensitive attribute A ⊂ ℕ , 
the sensitive attribute representation sA

i
 of an item i with respect to A is defined as:

where Pa
i
 is the set of i’s providers with attribute a ∈ A . Each vector sA

i
 has size |A| 

for all items i ∈ I , and each of its values represents the number of providers who 
belong to a given class of the attribute A, ranging in [0, |Pi|] . Similarly to us, Sapy-
ezinski et al. (Yang and Stoyanovich 2017) use a function to map each ranked item 

(1)sA
i
= [ |Pa

i
| , ∀ a ∈ A]
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to a vector. However, their vector is used as a proxy of uncertainty, while assign-
ing a sensitive attribute value to a person to be ranked (e.g., given a binary gender 
construct, if a system considers that a person is male with a probability of 10% , the 
vector associated to that person is [0.10, 0.90]). Our notion differs both conceptually 
and operationally, as we model and compute how each value a sensitive attribute 
can assume is represented across providers associated to a given item, in magni-
tude. Furthermore, our notion could be extended to model uncertainty, while getting 
the value of the sensitive attribute associated with a provider, assumed by us to be 
a ∈ A ⊂ ℕ . To better highlight our contribution, our study leaves this combination 
as a future work.

2.3 � Identifying the minority Group

Our study considers groups of providers who belong to a given class of the attrib-
ute a ∈ A . Each group is involved in the creation/delivering of a certain number of 
items in the catalog and, consequently, in a certain number of the user–item interac-
tions. Specifically, given the definitions previously provided in Sect. 2.2, the repre-
sentation of a group in the catalog and the interactions is computed in our study as 
follows:

Definition 2  (Provider group representation in the catalog) Given a sensitive attrib-
ute A ⊂ ℕ , the representation of providers with a value of the sensitive attribute 
a ∈ A in the catalog, is defined as:

where sA
i
(a) is the element of the vector sA

i
 associated to the value a, as per defini-

tion in Eq. 1. The representation Ca ranges in [0, 1] and accounts for the contribution 
of providers belonging to a given group in the delivering of items in the catalog. A 
value close to 0 means that a’s providers rarely contribute to items in the catalog, 
and vice versa for values close to 1. Similarly, we define the representation of a pro-
vider group in the interactions.

Definition 3  (Provider group representation in the interactions) Given a sensi-
tive attribute A ⊂ ℕ , the representation of providers with a value of the sensitive 
attribute equal to a ∈ A , in the interactions R, where M = {(u, i) ∶ Ru,i > 0} are the 
observed interactions, is defined as:

In our study, we are interested in investigating how recommendation decisions 
impact on a group of providers identified as a minority. There exists different modalities 

(2)C
a =

1

�I�
�

i∈I

sA
i
(a)

∑
ã∈A s

A
i
(ã)

(3)O
a =

1

�M�
�

(u,i)∈M

sA
i
(a)

∑
ã∈A s

A
i
(ã)
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to identify a minority group amin , one of them being the lowest representation in the cat-
alog, i.e., amin = argmina∈ACa . This choice will better support us to account for differ-
ences in contribution among provider groups, assuming that the catalog curation does 
not suffer from sampling bias (e.g., a course platform that refuses to add courses given 
by female teachers to its catalog). While it could be reasonable to assume that certain 
groups of providers are less represented than others in the catalog (e.g., because certain 
categories of items are traditionally offered by providers of a given gender), the rec-
ommendation loop may lead to under-represent the minority group in the interactions 
more and more with respect to its group contribution in the catalog, i.e., Camin > O

amin . 
This effect may inadvertently bias the learnt relevance and, consequently, detain recom-
mendations of minority group items.

2.4 � Formalizing disparities

To assess the extent to which the recommender system generates disparities, we define 
three core disparity metrics. One of them considers an internal perspective and moni-
tors the difference of predicted relevance between providers’ groups. The other metrics 
operate on the final outcomes of the recommender system, monitoring differences in 
visibility and exposure.

More precisely, the disparity in relevance ( �R ) is quantified as the absolute differ-
ence between the representation in the catalog ( Camin ) and the percentage of relevance 
for the minority group:

where ��(u, pos) represents the item recommended at position pos for users u and 
R̃u,��(u,pos)

 refers to the predicted relevance formalized in Sect. 2.1, while the terms 
C
amin and sA

��(u,p)
 derive from Eqs. 2 and 1, respectively. Scores of �R refer to top-k 

recommendations and range in [0, 1], with higher values indicating a higher dispar-
ity of the degree of relevance estimates with respect to the contribution in the cata-
log for the minority group.

A disparity in relevances might not necessarily imply that the minority group is 
discriminated based on its exposure or visibility in the recommendations lists (Singh 
and Joachims 2018), which is exactly what we aim to investigate in this paper. For this 
reason, we also define the difference between the contribution in the catalog and the 
percentage of visibility ( �V ) and of exposure ( �E ) for items of the minority group. Dis-
parate visibility and exposure are formalized as follows:

(4)�R =

������

1

�U�
�

u∈U

∑k

pos=1
R̃u,��(u,pos)

⋅ sA
�� (u,pos)

(amin)

∑k

pos=1

∑
a∈A R̃u,�� (u,pos)

⋅ sA
��(u,pos)

(a)
− C

amin

������

(5)�V =

������

1

�U�
�

u∈U

∑k

pos=1
sA
��(u,pos)

(amin)

∑k

pos=1

∑
a∈A s

A
�� (u,pos)

(a)
− C

amin

������
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where, � , R̃ , Camin , and sA
��(u,pos)

 are defined as above. Scores of �V and �E refer to 
top-k recommendations and range in [0, 1], with lower values indicating a lower dis-
parity w.r.t. the contribution in the catalog.

3 � Optimizing under different catalog‑interaction representations

To illustrate the unfairness against a minority group of providers and further empha-
size the value of our analytical modeling, we simulate various imbalances in cata-
log and interactions, for the minority group. Then, we characterize to what extent 
a model is unfair against the minority group. Specifically, the exploratory study 
presented in this section aims to assess the extent to which the share of relevance 
across groups depends on imbalances between catalog and observation representa-
tions, and whether reducing the degree of imbalance between the representations in 
the catalog and the interactions for a minority group leads to lower disparate expo-
sure. Our hypothesis is that there is a strongly direct relationship between the imbal-
ance in catalog-observation representations and the estimated disparities defined in 
Sect. 2.4.

3.1 � Pair‑wise optimization and exploratory protocols

Pair-wise optimization is one of the most influential approaches to train recom-
mendation models and represents the foundation of many cutting edge personalized 
algorithms (Chen et  al. 2017; Xue et  al. 2017; Xiao et  al. 2017). The underlying 
Bayesian formulation (Rendle et al. 2012) aims to maximize a posterior probability 
that can be adapted to the parameter vector of an arbitrary model class (e.g., matrix 
factorization or neighborhood-based). In our study, we adopt matrix factorization 
(Koren et al. 2009), due to its popularity and flexibility. Model parameters � , i.e., 
user and item matrices, are estimated through an objective function that maximizes 
the margin between (i) the relevance f�(u, i) predicted for an observed item i and, (ii) 
the relevance f�(u, j) predicted for an unobserved item j. The optimization process 
considers a set of triplets D that are fed into the model during training:

where I+
u
 and I−

u
 are the sets of items for which user u’s feedback is observed and 

unobserved, respectively.
The original implementation proposed by (Rendle et al. 2012) requires that, for 

each user u, triplets (u, i, j) per observed item i should be created; the unobserved 
item j is randomly selected. The objective function can be formalized as follows:

(6)�E =

�������

1

�U�
�

u∈U

∑k

pos=1

1

log2(pos+1)
sA
�� (u,pos)

(amin)

∑k

pos=1

∑
a∈A

1

log2(pos)
sA
��(u,pos)

(a)
− C

amin

�������

(7)D = {(u, i, j) | u ∈ U, i ∈ I+
u
, j ∈ I−

u
}
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where � is a sigmoid function returning a value between 0 and 1.
The code for our study was implemented in Python on top of Tensorflow. User 

and item matrices, with vectors of size 100, were initialized with values uniformly 
distributed in [0,  1]. The optimization function is transformed to the equivalent 
minimization dual problem. For each user, we randomly took apart 70% of their 
interactions for training, 10% for validation, and 20% for testing. Given the train-
ing user–item interactions, the model was served with batches of 1,  024 triplets. 
For each user u, we created 10 triplets (u, i, j) per observed item i; the unobserved 
item j was randomly selected for each triplet. The optimizer used for gradient update 
was Adam. Training lasted until convergence on the validation set. Parameters were 
selected via grid search on the validation set.

3.2 � Observations on synthetic datasets

To investigate if and to what extent the share of relevance across providers’ groups 
depends on imbalances between catalog and observation representations, we con-
sider a recommendation context that associates each provider p ∈ P with a generic 
binary sensitive attribute, and we assume that each item is associated with a single 
provider, leaving experiments on items associated with more than one provider to 
the real-world datasets leveraged in Sect. 5.

Specifically, the imbalances considered in this study are subdivided in two forms: 
catalog imbalance and observation imbalance. Catalog imbalances 
emerge when providers from a different group occur in the catalog with varied fre-
quencies. For instance, there may be significantly fewer female/male providers than 
male/female providers who offer items to users. On the other hand, with observation 
imbalances, users may interact with items from certain provider groups with differ-
ent tendencies. This imbalance is often part of a feedback loop involving existing 
methods of recommendation, either introduced by models or by humans. If users do 
not receive any item offered by a provider belonging to a certain group, users will 

(8)argmax
�

�

(u,i,j)∈D

�(f�(u, i) − f�(u, j)) − ‖�‖2
2

(a) Popularity tail (b) Provider Group Imbalance

Fig. 1   Synthetic Datasets Imbalance. Popularity tail across items based on the observed interactions, 
conveyed by each of our synthetic dataset, according with the procedure in Appendix A (a). Catalog 
and observation representations of the minority group in synthetic data, where C stands for “Catalog”, 
O stands for “Interactions”, and � C–O is the difference between catalog and interactions representations
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not interact with that class of providers. In cascade, models will be served with only 
few data on this preference relation. For instance, train data about female/male pro-
viders may be significantly less than train data about male/female providers.

To assess the interplay among representations in the catalog, interactions, and rel-
evance, we generate a range of synthetic datasets that simulate different catalog and 
observation imbalances. To create them, we use a procedure based on two stochastic 
block models (Yao and Huang 2017), whose description is provided in Appendix 
A. The popularity tails, catalog, and observation representations of the resulting 15 
synthetic datasets are reported in Fig. 1. Through synthetic datasets, we explore a 
wider range of configurations, questioning situations not usually observable in pub-
lic real-world datasets but that might occur in the real world, e.g., datasets with dif-
ferent representations of the minority group.

Once the synthetic datasets are generated, we run the pair-wise optimization pro-
cedure on all our synthetic datasets. Then, we analyze the resulting relevance scores 
for each provider group with respect to their contribution in the catalog and their 
representation in the interactions. To this end, Fig. 2 depicts the share of the items’ 
relevance for the minority group (left) and the difference between contribution and 
relevance shares for the minority group (right). It should be noted that the half-lower 
diagonal of the heatmap is not considered, given that we only generate synthetic 
datasets where the difference in representation between contribution and interac-
tions for the minority group is non negative. Results show us that the representation 

Fig. 2   Contribution–Relevance Relationship. The percentage of relevance given to the minority (left) and 
the difference between contribution and relevance percentages (right)

(a) (b)

Fig. 3   Disparate Impacts. Disparate visibility (a) and exposure (b) for the minority group a
min

 in top-10 
lists. The disparate impacts are calculated with Eqs. 5 and 6, respectively
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in relevance (left heatmap) is consistent across datasets having the same representa-
tion of the minority group in interactions, i.e., within the same column (e.g., 0.5-0.4 
and 0.4-0.4 settings). Further, for each dataset, the relevance is similar to the repre-
sentation in interactions and increases as much as the representation in interactions 
increases (from left to right). It follows that the representation in interactions for 
the minority group appears to play a key role in shaping the share of relevance for 
the group. By extension, the disparate relevance may directly depend on the gap 
between the representation in contribution and in interactions (right heatmap). The 
smaller the gap is, the lower the difference between (i) the representation of the 
minority group in the catalog and (ii) the share of relevance assigned to it is. The 
heatmaps allow us to see to what extent the imbalance between catalog and interac-
tion representations influences the disparate relevance. We can draw the following 
observation.

Next, according to the relevance learnt by the recommendation model on each 
synthetic dataset, we suggested to each user k = 10 items; then, in Fig. 3, we meas-
ured the disparate visibility (exposure) for the minority group, both ranging between 
[0, 1]; we consider visibility as the percentage of providers of a given group in the 
recommendations (regardless of their position in the ranking), while we use a defini-
tion of exposure inspired by (Singh and Joachims 2018). Both have been previously 
introduced in Sect. 2.4. The higher the value is, the higher the disparate impact is. 
The connection of all these results allows us to understand how much the imbal-
ances in relevance for provider groups, learnt by recommender system, result in ine-
qualities on recommended lists.

We can observe that the effect on exposure is more evident. We conjecture that 
this result might depend on the fact that, when in presence of a small minority, the 
items from the minority group are progressively inserted at lower positions of the 
top-10 or even excluded, because of the lower predicted relevance. The considera-
tions we made suggest to investigate treatments that impact on the interaction and 
relevance distributions. Hence, we will play with the minority group representa-
tion in interactions and regularize the percentage of relevance given to items across 
groups.

4 � Reducing disparities via upsampling and regularization

With an understanding of our fairness goals and of the intuitions we came up with 
in the exploratory study, this section describes how we can arrange a recommender 
system to reduce disparities, while preserving utility.

Our exploratory analysis revealed that the share of relevance may depend on the 
representation of providers’ groups in both the catalog and the interactions, and that 
the more similar the two representations are for a group, the lower the resulting dis-
parate relevance is. It is unlikely that this property is met in interactions collected 
from real-world platforms, as we will later show. It follows that controlling the bal-
ance among catalog-interaction representations for a group could require to act on 
the interactions. To this end, we will upsample interactions of the minority group, to 
reduce existing imbalances.
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Balanced representations of the minority group between the catalog and the 
interactions would not necessarily ensure a lower disparate relevance in real-
world situations. Differently from the synthetic data we generated, interactions 
in the real world show several imbalances (e.g., due to presentation, preferences, 
user interfaces), which are hard to simulate, that may still distort the output rele-
vance. It follows that, when an upsampling mechanism is not sufficient to accom-
plish our goals, we need a regularization approach to account for the distribution 
of relevance across groups during learning. Only regularizing the distribution 
of relevance across groups, with no upsampling, may not be enough as well, if 
minority interactions are too few. Hence, our treatment will control the interplay 
between upsampling and regularization.

To deal with upsampling, we play with the data sampling strategies that gener-
ate interaction instances (i.e., observed user–item pairs); conversely, to account 
for relevance, we will define a training loss function aimed to minimize the pair-
wise error specified in Eq. 8 and the disparate relevance defined in Eq. 4. We will 
show empirically that, although the optimization relies on a given set of interac-
tions, even artificially upsampled, the approach generalizes to real and unseen 
interactions. The treatment builds upon the following steps:

Interaction Upsampling. We propose to upsample interactions related to the 
minority group with different user–item selection techniques, with the aim of 
covering a range of alternative setups:

–	 real consists of an upsampling of existing interactions belonging to the 
minority group, with repetitions. Specifically, we select the item of the exist-
ing user–item interaction to be upsampled, based on a probability function 
that takes into account the contribution of the minority samin

i
 , for each item i. 

The higher the contribution of the minority group, the higher the probabil-
ity to be selected. Then, the real interactions involving the selected item i are 
retrieved, and the one to be upsampled is randomly selected.

–	 fake stands for a random upsampling on synthetic interactions, with no rep-
etitions. This strategy adds new interactions related to items from the minority 
group. Similarly to real, the item involved in the upsampled interaction is 
selected based on a probability function that accounts for the contribution of 
the minority samin

i
 , for each item i. Then, the user to be included in the upsam-

pled interaction is randomly selected among those users of U who have not 
already interacted with item i.

–	 fake-by-pop refers to an upsampling of synthetic interactions based on 
item popularity, with no repetitions. Given items with at least one provider 
from the minority, the item to be inserted in the upsampled observation is 
selected according to an item–popularity probability. The higher the popular-
ity is, the higher the probability to be selected is. The user of the upsampled 
interaction is randomly chosen among those users of U who have not already 
interacted with item i.

These strategies assume to upsample pairs (u,  i), until the representation of the 
minority group in the interactions meets a target percentage of the total interactions. 
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This percentage, investigated in the experimental section, will first target the repre-
sentation of the minority group in the catalog.

Regularized Optimization: Given a range of batches of training data samples 
Tbatch (i.e., either pairs for a point-wise approach or triplets for a pair-wise approach), 
built on top of the upsampled interactions, each training batch is fed into a model 
that follows a regularized paradigm, derived from a traditional optimization setup. 
The loss function can be formalized as follows:

where acc(Tbatch) is the original accuracy loss, computed over Tbatch . In our experi-
mental study, we deal with a pair-wise optimization, thus the accuracy loss is com-
puted as in Eq. 8. The � ∈ [0, 1] parameter expresses the trade-off between accuracy 
and disparate relevance. With � = 0 , we yield the output of the recommender, not 
taking disparate relevance into account. Conversely, with � = 1 , the output of the 
recommender is discarded, and we focus on minimizing disparate relevance.

The regularization term, reg(Tbatch) , operationalizes our strategy of disparate rel-
evance minimization, based on Eq. 4. The proposed criterion is equivalent to com-
pute, in percentage, the relevance received by minority group items in a batch with 
respect to the total relevance received by all items in that batch and then balance it to 
the percentage of contribution of the minority group in the catalog. Let Camin be the 
contribution of the minority group in the catalog, computed as in Eq. 2, the regulari-
zation can be defined as follows:

where SA
i
(amin) = sA

i
(amin)∕

∑
a∈A s

A
i
(a) is the percentage of minority providers who 

have been involved in the production/creation of item i. These regularized optimiza-
tion implies that the model is penalized if the difference in relevance and contribu-
tion for the minority group of providers is high. The choice of the squared value, 
instead of an L2 norm or an Earth mover distance as examples, has been proved to 
be of benefit in optimization, while being simple and effective. Our framework can 
be easily extended to other options. The contextualization with respect to the litera-
ture is presented in Sect. 6.2.

5 � Experimental treatment evaluation and analysis

In this section, we empirically study the effects of each component of our treatment 
and of the treatment as a whole on the needs of both users (i.e., recommendation 
utility) and providers (i.e., disparate relevance, visibility, and exposure). We answer 
the following four research questions: 

RQ1.	� How much should we upsample minority group interactions to improve the 
trade-off between recommendation utility and disparities?

(9)argmax
�

(1 − �) acc(Tbatch) − � reg(Tbatch)

(10)reg(Tbatch) =

�∑
(u,i,_)∈Tbatch

f�(u, i) ⋅ S
A
i
(amin)

∑
(u,i,_)∈Tbatch

f�(u, i)
− Camin

�2
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RQ2.	� To what extent do upsampling and regularization impact on the trade-off 
between recommendation utility and disparities, individually and jointly?

RQ3.	� How does our treatment concretely reduce disparities for the minority 
group? How does it impact on internal mechanisms?

RQ4.	� To what extent does our treatment affect disparities, utility, and coverage, 
compared with others? Can the latter benefit from regularized relevances?

5.1 � Experimental setup

5.1.1 � Datasets

In order to validate and ensure the reproducibility of our proposal, we selected data-
sets that are publicly available, covering different domains. We remark that this 
experimentation is made difficult because there are very few datasets targeting our 
scenario, and the datasets we consider are highly sparsed.

Movielens-10M (ml-10m) (Harper and Konstan 2016) includes 10M ratings 
applied to 10k movies by 72k users. In order to be fed into a pair-wise model, 
interactions are binarized using a threshold (i.e., ratings equal or higher than 3 are 
marked as 1, the other ones are changed to 0). This dataset does not contain sensi-
tive attributes of the providers and there is no notion of provider. Our study consid-
ers movie directors as providers to reflect a real-world scenario. To link movies to 
their corresponding directors, we capitalized on the methods offered by the TMDB 
APIs2. Specifically, we used the getCredits(tmdbId) method to retrieve data about 
people involved in the movie3. We filtered records for individuals with “Director” as 
a role. Then, we called the getDetails(peopleId) method, passing the id retrieved for 
each director. The latter method outputs a list with the name and the gender of the 
director. Note that there are movies with more than one director. The representation 
of women directors is around 6% in the catalog and 3.9% in the interactions.

COCO Course Collection (coco) (Dessì et  al. 2018) includes 74k learners, 
who gave 600k ratings to 10k online courses. Similarly to ml-10m, ratings are 
binarized using a threshold (i.e., ratings equal to 5 are marked as 1, the other ones 
are changed to 0). We selected this threshold due to the extremely high imbalance 
among rating values, as reported in the original paper. In this scenario, we assume 
that instructors act as providers. Providers representing a company or an institution 
were removed, since there was no practical way to associate their items to gender 
representations. One or more instructors could cooperate in the same course. How-
ever, no information about their gender is reported. To extract this attribute, we 
considered their naming information4. Specifically, we used the methods offered 

2  https://​devel​opers.​themo​viedb.​org/3.
3  Please note that the links.csv file in Movielens includes movieId-tmdbId associations.
4  We point out the challenges seeking to include genders determined by naming information, consider-
ing that the retrieved gender might not match the expected gender for someone. Related to that issue is 
the problem of the assumption of a binary gender. Most datasets and tools only consider two genders, 
“male” and “female”, so we have no chance to also consider non-binary attributes. While keeping this 
in mind, we recognize all genders should be respectfully treated and our framework naturally adapts to 

https://developers.themoviedb.org/3
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by GenderAPIs5, that allow to determine the gender by naming information, with a 
certain confidence. Such a practice has been conducted in prior work to deal with 
the absence of gender labels (Chen et al. 2018; Mansoury et al. 2019). Only predic-
tions with a confidence higher than 75% were kept. The representation of women 
instructors in the catalog is around 17% , reduced to 12% in the interactions.

5.1.2 � Evaluation metrics

In this section, we present the metrics we considered to assess the impact of our 
work. In addition to the disparity metrics introduced in Sect. 2.4, which cover the 
aspects associated with providers’ fairness, several other perspectives of the rec-
ommender system should be considered. Our study in this paper also includes an 
assessment (i) of personalization in terms of recommendation utility and (ii) of cov-
erage of items for the provider groups and as a whole.

Personalization: To evaluate personalization, we compute the utility of recom-
mended lists via Normalized Discounted Cumulative Gain (NDCG) (Järvelin and 
Kekäläinen 2002).

where ��(u, pos) is the item i recommended to user u at position pos, and the values 
in R̃ formalized in Sect. 2.1 are considered as user–item relevances, while comput-
ing DCG. The ideal DCG is calculated by sorting items based on decreasing true rel-
evance (i.e., for an item, the true relevance is 1 if the user interacted with the item in 
the test set, 0 otherwise). The higher the NDCG score achieved by the recommender 
system is, the more effective the generated recommendations are for consumers.

Item Coverage: In addition to personalization and disparate impacts, we measure 
the total coverage of items ( Covtot ) and of items delivered by providers in the minor-
ity ( Covamin

 ) and the majority ( Cov
a
min

 ) group. Coverage is an important property 
(Kaminskas and Bridge 2017), since an approach that only increases the recommen-
dation of one item provider of the minority group would not likely fair within the 
minority group.

(11)DCG(k|�) =
∑

u∈U

R̃u,�� (u,1)
+

k∑

pos=2

R̃u,��(u,pos)

log2(pos)

(12)NDCG@k(k|�) = DCG(k|�)
IDCG(k|�)

Footnote 4 (continued)
multi-class attributes and non-binary genders; we believe that our study will deserve attention in this 
context.
5  https://​gender-​api.​com/.

https://gender-api.com/
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where Iamin = {i ∶ sA
i
(amin) > 0} is the set of items that have at least one provider 

belonging to the minority group. Each coverage score ranges in [0, 1], with values 
close to 1 for higher coverage values.

5.1.3 � Experimental setting

We considered several optimization settings, each one characterized by a different 
combination of upsampling and regularization treatments, as proposed in Sect.  4. 
They are briefly identified as follows:

•	 baseline: training without any upsampling and regularization treatment;
•	 real: only real upsampling;
•	 fake: only fake upsampling;
•	 fake-by-pop: only fake-by-pop upsampling;
•	 reg: only regularization;
•	 real+reg: real upsampling, followed by regularization;
•	 fake+reg: fake upsampling, followed by regularization;
•	 fake-by-pop+reg: fake-by-pop upsampling, followed by regularization.

5.1.4 � Implementation details

For each dataset, a temporal train–test split was performed by including the last 20% 
of interactions released by a user into the test set, 10% of interactions were included 
into the validation set, and the remaining 70% oldest ones into the training set (Cam-
pos et al. 2014; Sánchez and Bellogín 2020). Embedding matrices, with vectors of 
size 100, were initialized with values uniformly distributed in [0, 1]. The optimiza-
tion function was transformed to the equivalent minimization dual problem. During 
training, the model was served with batches of 1, 024 training triplets, chosen from 
a pre-computed set of triplets. To populate it, for each user u, we create 10 triplets 
(u,  i,  j) per observed item i; the unobserved item j is randomly selected for each 
triplet. Before each epoch, we shuffle the training batches. The learning rate for the 
Adam optimizer is 0.01. The dot function was used to compute the similarity (i.e., 

(13)Covtot =
1

|I|
∑

i∈I

min

(
1,
∑

u∈U

|̃Iu ∩ {i}|
)

(14)Covamin
=

1

|Iamin |
∑

i∈Iamin

min

(
1,
∑

u∈U

|̃Iu ∩ {i}|
)

(15)Covamin
=

1

|I ⧵ Iamin |
∑

i∈I⧵Iamin

min

(
1,
∑

u∈U

|̃Iu ∩ {i}|
)
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the relevance) between user and item vector. Each model was trained until conver-
gence on the validation set, for a maximum of 100 epochs.

5.2 � Experimental results

5.2.1 � Comparing upsampling techniques (RQ1)

With this experiment, we aim to understand to what degree upsampling influences 
recommendation utility and disparate impacts on group relevance, on visibility, and 
on exposure and investigate how and how much we should upsample to obtain a 
good trade-off among the metrics. Although our exploratory study revealed that 
paring the percentage of interactions for the minority group with the percentage of 
contribution in the catalog may be the best choice, interactions in real world show 
several imbalances that may distort the output relevance. Hence, we experiment with 
different degrees of upsampling, not just targeting a minority group representation in 
the interactions equal to its representation in the catalog.

To this end, for each dataset and upsampling technique, we created a range of 
model instances fed with a different amount of upsampled data, using the upsam-
pling techniques described in Sect.  4. Results in Fig.  4 depict NDCG and �E at 
increasing percentage of minority observation upsampling. Patterns related to 
�R and �V were similar to the ones obtained on �E , so we do not report them 
for conciseness and readability. The considered plots show us that NDCG tended 
to decrease, when the amount of upsampled data became larger. The loss in 

(a) Real on coco (b) Fake on coco (c) Fake-by-pop on coco

(d) Real on ml-10m (e) Fake on ml-10m (f) Fake-by-pop on ml-10m

Fig. 4   Influence of Upsampling Degree on Trade-off. The trade-off between Normalized Discounted 
Cumulative Gain (NDCG: red line with bullet markers) and Disparate Exposure ( � E : blue line with star 
markers) based on the degree of upsampling, varying the upsampling techniques and datasets. Dotted 
lines indicate the degree of upsampling resulting in a good trade-off (i.e., high NDCG and low � E ). 
Disparate visibility and relevance showed similar patterns and are omitted for the sake of clarity and 
readability
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recommendation utility depends on the dataset and the technique, with fake suffer-
ing from the largest loss. Conversely, we observed that � E achieved the lowest value 
for an upsampling between 15%-20% , depending on the dataset. This latter behavior 
came from the fact that, for small upsampling amounts, the model tended to show 
a disparate impact in favor of the majority group. Increasing upsampling leads the 
minority to get more and more exposure; this can get to the point where the major-
ity is affected by a disparate impact, i.e., the minority group is favored more than 
expected (e.g., in Fig. 4a, when upsampling is greater than 4%).

Moving to the comparison of the results with different datasets, coco experiences 
a lower loss in NDCG for the same upsampling technique against ml-10m. Inter-
estingly, for small upsampling amounts, NDCG ends up increasing in coco, with 
respect to the baseline, which does not make use of upsampling. Furthermore, coco 
is more susceptible to the amount of upsampling, resulting in larger variations of 
�E . Considering the same dataset and observing patterns for different upsampling 
techniques, it can be observed that real preserves a good level of NDCG, even 
for high amounts of upsampling. Conversely, � E follows similar patterns for all the 
upsampling techniques. An exception is made for real on ml-10m, which showed 
a decreasing while noisy trend on �E . Therefore, while upsampling in general is 
beneficial for controlling � E , each of the techniques differently preserves the NDCG 
originally achieved, changing the trade-off between effectiveness and disparate 
impacts.

To characterize the peculiarities of each upsampling technique, Table 1 reports 
information on recommendation utility, disparate impact, and coverage for repre-
sentative settings, which achieved a good trade-off. Results show us that, in gen-
eral, upsampling brings benefits to disparate impacts and coverage, while preserving 
recommendation utility. Specifically, on coco, real experienced a disparate impact 
lower than 1% at all levels (i.e., relevance, visibility, exposure) and doubles the cov-
erage of minority group items (i.e., column Covamin

 ). Conversely, fake-by-pop 

Table 1   Impact of Upsampling on Recommended Lists.

Normalized Discounted Cumulative Gain (NDCG); Disparate Relevance ( �R ), Disparate Visibility 
( �V ) and Disparate Exposure ( � E ) based on minority contribution in the catalog; Coverage of the cata-
log ( Cov

tot
 ), of items from a

min
 ( Cov

a
min

 ) and of items from a
min

 ( Cov
a
min

 ). For each setting, we report 
results for the upsampling levels identified with dotted lines in Fig. 4. Bold values refer to the best value 
across algorithms for a given dataset. (‘*’) indicates scores statistically different with respect to the base-
line

Data Type NDCG �R �V � E Cov
tot

Cov
a
min

Cov
a
min

coco Baseline 0.0153    0.0770    0.0733    0.0686    0.2165 0.1413 0.2321
Real 0.0157    0.0067 * 0.0077 * 0.0018 * 0.2523 0.2906 0.2443
Fake 0.0140 * 0.0347 * 0.0351 * 0.0302 * 0.2494 0.2504 0.2491
Fake-by-pop 0.0197 * 0.0231 * 0.0243 * 0.0129 * 0.2202 0.1444 0.2361

ml-10m Baseline 0.0344    0.0253    0.0361    0.0347    0.1654 0.1224 0.1682
Real 0.0302 * 0.0037 * 0.0047 * 0.0009 * 0.1734 0.1776 0.1732
Fake 0.0343    0.0085 * 0.0077 * 0.0088 * 0.1725 0.1879 0.1715
Fake-by-pop 0.0336 * 0.0188 * 0.0163 * 0.0171 * 0.1638 0.1069 0.1675
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allowed us to improve the original recommendation utility, but disparate impact 
and coverage did not experience the same gains of real. On ml-10m, similar pat-
terns were observed for real, even though the loss in NDCG was larger. Compared 
with coco, fake and fake-by-pop achieved a better trade-off among metrics on 
ml-10m.

5.2.2 � Benchmarking combined treatments (RQ2)

Even though upsampling made it possible to achieve good trade-offs, there are still 
disparities that should be reduced. Hence, in this experiment, we are interested in 
understanding the impact of regularization on the representative settings consid-
ered in the previous section. To this end, we applied the regularization described in 
Sect. 4 to each of the settings reported in Table 1. Given that the disparate impacts 
to get reduced are often small, we adopt a � = 1e−6 as a regularization weight. Our 
empirical results with lower or larger � values led to unreasonable variations in the 
validation set.

Results in Table  2 show us recommendation utility, disparate impact, and cov-
erage achieved by the model instance trained with upsampling and regularization 

Table 2   Impact of Regularization on Recommended Lists.

Normalized Discounted Cumulative Gain (NDCG); Disparate Relevance ( �R ), Disparate Visibility 
( �V ) and Disparate Exposure ( � E ) based on group contribution in the catalog; Coverage of the catalog 
( Cov

tot
 ), of items from a

min
 ( Cov

a
min

 ) and of items from a
min

 ( Cov
a
min

 ). We report the gain/loss of each 
regularized setting with respect to the non-regularized setting in Table 1. Bold values refer to the best 
value across algorithms for a given dataset. (‘*’) indicates scores statistically different w.r.t. the non-
regularized version

Data Type NDCG �R �V � E Cov
tot

Cov
a
min

Cov
a
min

coco Reg 0.0182 * 0.0668 * 0.0666 * 0.0659 * 0.2581 0.1965 0.2708
(Gain/Loss) +18.95%   −13.24%   -9.14%   −3.93%   +19.21% +39.06% +16.67%
Real+Reg 0.0178 * 0.0134 * 0.0148 * 0.0087 * 0.2425 0.2728 0.2357
(Gain/Loss) +13.37%   ≥ +100% +92.20%   ≥ +100% −3.88% −6.12% −3.52%
Fake+Reg 0.0136    0.0044 * 0.0065 * 0.0102 * 0.2584 0.2586 0.2582
(Gain/Loss) −2.85%   −87.31%   −81.48%   −66.22%   +3.60% +3.27% +3.65%
Fake-by-

pop+Reg
0.0190    0.0181 * 0.0193 * 0.0063 * 0.2602 0.1796 0.2772

(Gain/Loss) −3.55%   −21.64%   −20.57%   −51.16%   +18.16% +24.37% +17.40%
ml-10m Reg 0.0338    0.0215 * 0.0213 * 0.0198 * 0.1625 0.1207 0.1654

(Gain/Loss) −1.74%   −15.01%   −40.99%   −42.93%   −1.75% −1.38% −1.66%
Real+Reg 0.0381 * 0.0033    0.0059    0.0029    0.1664 0.1599 0.1669
(gain/loss) +26.15%   −10.81%   +25.53%   ≥ +100% −4.03% −9.96% −3.63%
Fake+Reg 0.0337    0.0031 * 0.0023 * 0.0052 * 0.1765 0.1941 0.1752
(gain/loss) −1.74%   −63.52%   −70.12%   −40.90%   +2.31% +3.29% +2.15%
Fake-by-

pop+Reg
0.0328    0.0019 * 0.0023 * 0.0004 * 0.1684 0.1173 0.1718

(gain/loss) −2.38%   −89.90%   −86.50%   −97.66%   +2.80% +9.72% +2.56%
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jointly. When comparing results between baseline and reg, it can be observed 
that a plain regularization, without upsampling, fails to bring a proper reduction of 
disparate impact. This is caused by the fact that the regularization depends on the 
amount of minority group interactions, and the amount of such a data is small when 
upsampling is not performed. Conversely, the regularization can introduce benefits 
for the other settings, especially for fake and fake-by-pop settings. We can 
draw the following observation.

The regularization is essential to fine-tune the trade-off in cases where the upsam-
pling alone does not allow to reduce it anymore. On both coco and ml-10m, this 
effect is observed for the fake and fake-by-pop. With a small loss in NDCG, 
disparate impact and coverage experienced substantial improvements. Under the 
real scenario, the regularization improves NDCG, with a small loss in the other 
metrics. Each upsampling technique, combined with regularization, leads to a good 
trade-off between utility and disparity.

5.2.3 � Provider‑level walk‑through inspection of the treatment (RQ3)

Next, we analyze how our treatment affects the internal mechanisms of the user–item 
relevance learning step, and how these internal changes influence the recommended 
lists. To this end, we focus on a walk-through example of the problem and how our 
treatment addresses it. The goal is to understand where and how our treatment sup-
ports minority providers.

To characterize our treatment, we consider the baseline recommender opti-
mized on coco data. We are interested in showing how our treatment based on 
fake upsampling ( +0.09 of minority data), followed by a regularization (with 

(a) Minority instances (b) Provider triplets (c) Provider margin

(d) Provider relevance (e) Provider visibility (f) Provider exposure

Fig. 5   Walk-through Example. Model properties concerning minority providers on coco, consid-
ering a baseline recommender and treatments with fake upsampling ( +0.09 of minority data) and 
a regularization (with � = 1e10

−6 ). a number of triplets where the minority group is involved for the 
observed/unobserved item; b average number of triplets where a minority provider is involved for the 
observed item; c average margin between observed and unobserved items in a triplet, for triplets involv-
ing observed items of a minority provider; d–f average relevance, visibility, and exposure proportion 
assigned to items of the minority
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� = 1e10−6 ), changes the internal and external properties shown by the baseline. 
Similar observations can be still applied to other settings. Figure 5a depicts the num-
ber of training triplets wherein an item delivered by a minority provider appears as 
an observed item (positive) or unobserved item (negative). Being under-represented 
in the interactions, items of minority group providers appear less frequently as an 
observed item under the baseline setting (leftmost pair of bars). It follows that the 
average number of triplets per provider, where a given minority provider is involved 
for the observed item is limited, as reported in Fig. 5b (leftmost box plot). These 
imbalances strongly influence the ability of the pair-wise optimization of computing 
good margins between the observed and the unobserved item, when the former is 
delivered by a minority provider (Fig. 5c—leftmost box plot). With our upsampling, 
we introduce new user–item interactions involving minority providers, with more 
triplets for the minority group and a higher number of triplets per minority provider, 
on average (Fig. 5a and 5b—two rightmost box plots). This results in larger positive 
margins between observed and unobserved items for items of a minority provider 
(see Fig. 5c, fake setting). Despite relying on the same upsampled data, the regu-
larized version further condenses the margins for observed items of minority provid-
ers around the average value (Fig.  5c, fake+reg setting). This treatment funda-
mentally changes the relevance assigned to items for each minority provider and, by 
extension, their visibility and exposure, as highlighted in Fig. 5d–f.

5.3 � Comparing against other treatments (RQ4)

We next compare our treatment against representative state-of-the-art alternatives to 
assess (i) how the considered treatments differently influence recommendations in 
terms of disparities, utility, and coverage, and (ii) whether the regularized relevance 
scores obtained through our treatment can lead to benefits for state-of-the-art mitiga-
tion procedures that operate in post-processing settings. Our goal in this section is 
to assess how far an in-processing strategy that reduces disparate relevance is from 
a post-processing strategy that directly controls exposure or visibility in rankings, 
in achieving good trade-offs. This experiment will provide evidence on the benefit 
of controlling the relevance distribution via upsampling and regularization. To this 
end, for each of the considered datasets, we decided to compare the recommenda-
tions generated after applying our real+reg treatment, which still use only real 
users’ interactions, against those generated by the following three state-of-the-art 
mitigation procedures:

–	 far (Liu et  al. 2019) is a fairness criterion that combines a personalization-
induced term and a fairness-induced term, with a parameter � controlling the 
trade-off between the two. The relevance score determined by the base recom-
mender indicates the probability of a user being interested in an item. The fair-
ness score promotes the items that belong to currently uncovered gender groups. 
We set up the size of ranked lists k = 10 , the trade-off parameter � = 8.0 , and the 
desired percentage of minority items p = Camin.



443

1 3

Interplay between upsampling and regularization for provider…

–	 fa*ir (Zehlike et  al. 2017) is a fairness criterion based on maximizing utility 
while ensuring that the proportion of minority items in every prefix of the top-k 
ranking remains statistically above or indistinguishable from a given minimum, 
as long as there are enough minority items to achieve that minimum proportion. 
We set up the size of the considered ranking window k = 50 , the statistical sig-
nificance parameter � = 0.1 , and the parameters controlling the ranking prefixes 
p = 0.35 for ml-10m and p = 0.50 for coco. This will ensure that at least two and 
one ranking prefixes are used by the re-ranking, where two and one should be 
the minority items in a top-10 ranking for the datasets, respectively, according to 
their Camin values.

–	 fair-rec (Patro et al. 2020) is a fairness criterion that, while maximizing utility 
and consumer fairness, aims to guarantee a uniform exposure distribution across 
providers. The first phase ensures user fairness among all the customers and tries 
to provide a minimum guarantee on exposure of the providers. Given that the 
first phase may not allocate exactly k items to all the consumers, a second phase 
ensures this property while simultaneously maintaining provider fairness. We set 
up the size of the considered rankings k = 10 and the fraction of share guarantee 
to be guaranteed to every provider � = 0.5.

These algorithms have been selected due to their different underlying approach and 
their ability to work with recommended lists. Each parameter in the correspond-
ing algorithm has been reported after monitoring the trade-off between utility and 
disparate exposure. The first of the three algorithms has been re-implemented from 
scratch. The other ones were based on the original code provided by the authors in 
the paper6.

Table 3   Comparison against Other Treatments.

Normalized Discounted Cumulative Gain (NDCG); Disparate Relevance ( �R ), Disparate Visibility 
( �V ) and Disparate Exposure ( � E ) based on minority contribution in the catalog; Coverage of the cata-
log ( Cov

tot
 ), of items from a

min
 ( Cov

a
min

 ) and of items from a
min

 ( Cov
a
min

 ). Bold values indicate the best 
value across algorithms for each dataset. (‘*’) indicates scores statistically different with respect to the 
baseline

Data Type NDCG �R �V � E Cov
tot

Cov
a
min

Cov
a
min

coco real+reg 0.0178 * 0.0134 * 0.0148 * 0.0087 * 0.2425 0.2728 0.2357
far 0.0150 * 0.0810 * 0.0812 * 0.0763 * 0.2206 0.1440 0.2368
fa*ir 0.0148 * 0.0820 * 0.0823 * 0.0783 * 0.2146 0.1403 0.2303
fair-rec 0.0139 * 0.0800 * 0.0800 * 0.0776 * 0.3039 0.1984 0.3262

ml-10m real+reg 0.0381 * 0.0033 * 0.0059 * 0.0029 * 0.1664 0.1599 0.1669
far 0.0318 * 0.0370    0.0361 * 0.0367    0.1787 0.1395 0.1814
fa*ir 0.0299 * 0.0374 * 0.0368 * 0.0359 * 0.1820 0.1463 0.1844
fair-rec 0.0300 * 0.0331 * 0.0314 * 0.0275 * 0.4335 0.3827 0.4369

6  We have tailored our framework in order to produce the inputs needed by the algorithms.
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In order to answer to the first question, Table 3 provides ranking utility, disparity, 
and coverage scores for (i) our setting real+reg and (ii) the three other re-ranking 
algorithms fed with the relevance scores returned by the original recommender. It 
can be observed that our treatment real+reg has a good trade-off between util-
ity and disparity. Specifically, an improvement of 19% in NDCG on both datasets 
is introduced by our setup, when compared with the best NDCG among the other 
alternatives, i.e., far’s NDCG. In parallel, our treatment leads to the lowest dispa-
rate exposure, with a decrease of 97% in coco and 48% in ml-10m against fa*ir (the 
second best treatment in disparate exposure). It follows that our treatment reduces 
disparate exposure by moving up minority items which are also of interest for the 
consumers. In terms of coverage, fair-rec beats all the other treatments. However, 
in coco, such a higher coverage does not involve more items of the minority group. 
Indeed, while achieving an overall lower coverage, real+reg covers more items 
of the minority group with respect to fair-rec. Conversely, in ml-10m, the latter out-
performs our treatment in minority group item coverage, but it leads to a NDCG 
lower of 26% and to a disparate exposure higher of 78% , both being statistically sig-
nificant. This allows us to draw the following observation:

On the other hand, Table 4 allows us to answer to the second question, under-
standing whether the regularized relevance scores obtained through our treatment 
lead to benefits for state-of-the-art mitigation procedures that operate in post-pro-
cessing settings. This table reports the utility, disparity, and coverage scores for the 
three state-of-the-art re-ranking algorithms fed with the relevance scores returned 
by our real+reg treatment, together with the relative improvement with respect 
to not using our non-regularized relevance scores. It can be observed that applying 

Table 4   Benefits of Our Regularized Relevances to Other Treatments.

Normalized Discounted Cumulative Gain (NDCG); Disparate Relevance ( �R ), Disparate Visibility 
( �V ) and Disparate Exposure ( � E ) based on group contribution in the catalog; Coverage of the catalog 
( Cov

tot
 ), of items from a

min
 ( Cov

a
min

 ) and of items from a
min

 ( Cov
a
min

 ). We report the gain/loss of each 
regularized setting with respect to the corresponding non-regularized setting in Table 3. Bold values refer 
to the best value across algorithms for a given dataset. (‘*’) indicates scores statistically different with 
respect to the non-regularized version

Data Type NDCG �R �V � E Cov
tot

Cov
a
min

Cov
a
min

coco far 0.0130 * 0.0302 * 0.0275 * 0.0492 * 0.2295 0.2565 0.2238
(gain/loss) −13.35%   −62.72%   −66.13%   −37.16%   +4.03% +78.12% −5.48%
fa*ir 0.0132 * 0.0295 * 0.0267 * 0.0497 * 0.2208 0.2476 0.2152
(gain/loss) −10.81%   −67.55%   −36.52%   −64.02%   +2.89% +76.47% −6.55%
fair-rec 0.0132 * 0.0230 * 0.0264 * 0.0266 * 0.3101 0.2958 0.3131
(gain/loss) −5.04%   −66.75%   −71.25%   65.98%   +2.04% +49.09% −4.01%

ml-10m far 0.0351 * 0.0005 * 0.0005 * 0.0104 * 0.1795 0.1684 0.1802
(gain/loss) +10.38%   −98.64%   −98.61%   −71.66%   +0.44% +20.71% −0.66%
fa*ir 0.0321 * 0.0003 * 0.0005 * 0.0118 * 0.1821 0.1718 0.1828
(gain/loss) +7.35%   −99.19%   −98.64%   −67.13%   +0.05% +17.43% −0.87%
fair-rec 0.0325 * 0.0043 * 0.0031 * 0.0039 * 0.4342 0.4014 0.4364
(gain/loss) +8.33%   −87.00%   −90.12%   −85.81%   +0.16% +4.89% −0.11%
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our treatment before re-ranking leads to a reduction of disparate exposure between 
37% and 86% . This improvement comes at the price of a negligible loss in accuracy 
in coco ( −5% and −13% ), while the utility improves thanks to our regularized rel-
evance scores in ml-10m (+6% and +10%) . It follows that our treatment acts as a 
driver for improving the trade-off between effectiveness and disparities, highlighting 
the role of relevance scores in this context. In addition to this, all the settings show 
a higher overall coverage and coverage of minority items with respect to the non-
regularized counterpart. Hence, we make the following observation:

Interestingly, comparing the results achieved with our treatment real+reg 
against those obtained with the other treatments under a regularized relevance set-
ting, it can be observed that using the considered post-processing approaches fed 
with regularized relevances does not lead to substantial gains in utility and disparity 
trade-offs.

Despite being related to disparate exposure, the fairness objective originally pur-
sued by the considered countermeasures slightly differs from that targeted by this 
paper. Therefore, we also monitored the influence of our regularized relevances to 
those original fairness objectives. In (Liu et al. 2019), for far, Liu et al. monitored 
that each re-ranked list covers as many provider groups as possible. Under a base-
line setting, the percentage of rankings covering both the providers’ groups is 
55% . This percentage increases to 98.4% with far and to 99% with far fed with the 
relevance scores returned by real+reg. Conversely, Zehlike et al. (Zehlike et al. 
2017) used a ranked group fairness criterion that declares a ranking as unfair if the 
observed proportion of items from the minority group is far below the target one. 
Specifically, this criterion can be abstracted as comparing the number of protected 
items in every prefix of the ranking, with the expected number of protected items, if 
they were picked at random using Bernoulli trials. Under a baseline setting, the 
percentage of rankings that satisfy this criterion is 34.6% . This percentage increases 
to 78.7% with fa*ir and to 80.2% with fa*ir fed with the relevance scores returned 
by real+reg. Finally, given that the total exposure of the platform remains limited 
to k ∗ |U| , Patro et al. (Patro et al. 2020) aimed to guarantee that the items of each 
provider are recommended at least (k ∗ |U|)∕|P| (i.e., this goal refers to the maximin 
marginal score value for the providers). Under a baseline setting, the percentage 
of providers that satisfy this criterion is 23.3% . This percentage increases to 76.4% 
with fair-rec and to 77.2% with fair-rec fed with the relevance scores returned by 
real+reg. It follows that our approach not only leads to lower disparity, but also 
preserves the original objective of the post-processing algorithm and algorithm’s 
utility.

5.4 � Discussion

Our experiments demonstrate that our intuitions were feasible for controlling the 
degree of share conveyed by relevance scores with respect to the contribution of the 
providers in the catalog. Our metric can be also optimized.

Beyond our empirical work, we believe that our mapping approach to associate 
providers’ sensitive attributes to items sheds light on new perspectives of fairness 
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in recommender systems. Many platforms include a range of items, whose map-
ping with the sensitive attributes of the providers is not as direct as in the case 
of items representing individuals. Existing approaches would move towards this 
direction and future fairness-aware recommendation approaches would require 
to embed this mapping to realistically shape real-world conditions. Indeed, this 
aspect will also drive the creation of new evaluation metrics and protocols that 
allow to investigate algorithmic facets so far underexplored.

Our study uncovered key connections among core components of optimiza-
tion of recommendation models, while dealing with provider fairness. These 
results would promote even more the inspection of internal mechanisms in tra-
ditional strategies (e.g., pair-wise and point-wise), with a pro-active reaction to 
unfairness. Despite being relatively simple, our combination of upsampling and 
regularization provides fairness to target groups of providers, which could not 
be achieved individually by such components. Beyond being applied alone, our 
treatment can be envisioned as a pre-processing step for procedures that seek to 
have a fine-grained control of fairness, acting directly on recommended lists. In 
this case, our adjusted relevance scores can be used in post-processing fairness-
aware procedures, possibly leading to a new space of optimization between fair-
ness and recommendation utility. Our treatment is flexible enough to incorporate 
other strategies for controlling the share of relevance obtained through a recom-
mendation algorithm, opening to interesting future work.

Since our study relied on a range of assumptions, we identified the main limi-
tations of the approach presented in this paper, as listed below.

•	 The validity of the fairness notion we used is dependent on the integrity of 
the platform catalog, requiring to audit the catalog curation for sampling bias 
against direct discrimination (e.g., an educational platform that refuses to add 
courses provided by female instructors to its database).

•	 Our empirical work dealt with scenarios with a very small minority, account-
ing for only 5% − 17% , depending on the dataset. There are many domains (or 
attributes) without this kind of minority; and this may lead to novel extensions 
and variants, starting from those suggested in this paper.

•	 Experiments were based on a binary gender construct, with datasets providing 
only two genders, “male” and “female”. Despite we had actually no chance of 
considering “non-binary” constructs, our formulation can be still applied to 
attributes with more than two genders. We remind readers to (Hamidi et  al. 
2018) for consideration on the possible consequences of gender inference.

•	 Grouping individuals in the COCO dataset relied on gender inference. How-
ever, this inference does not consider important elements, such as the inter-
sectionality of gender with other sensitive attributes (e.g., geographic origin), 
the possibility of inferring non-binary gender labels, and how individuals self-
identify themselves, since they capitalize on large historical databases. Being 
aware of this limitation, we did not provide any observation related to gen-
ders, and we used this dataset to assess the validity of our approach when a 
minority is present, regardless of the given gender being the minority.
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•	 To better characterize our contributions, we focused on a matrix factorization 
approach optimized via pair-wise comparisons. Other variants could be tested 
with our framework as well, since our treatment does not rely on any specific 
peculiarity of the pair-wise optimization. (We used it as it better aligns to top-k 
recommendation problems).

•	 Our approach does not have any mathematical guarantees on other notion of fair-
ness in the recommended lists; however, we showed that it leads to a more bal-
anced share of relevance and provides benefits to disparate impacts on visibility 
and exposure w.r.t. the contribution of the minority in the catalog. Further, our 
approach can be used as a pre-processing step for relevance scores, before using 
them with other treatments, e.g., (Biega et al. 2018).

Despite these limitations, we believe that the intervention on the relevances we per-
formed contribute to a better understanding of recommender systems.

6 � Related work

Our research is inspired by works on two areas that impact on recommender system 
research: (i) notions recently formalized in the context of fairness-aware rankings 
and (ii) unfairness mitigation procedures on recommended lists.

6.1 � Provider fairness notions in ranking and recommendation

Fairness for groups traditionally requires that groups’ exposure should be equally 
distributed between groups characterized by sensitive attributes (e.g., gender, race). 
Biega et  al. (Biega et  al. 2018), Singh and Joachims (Singh and Joachims 2018), 
and Yadav et al. (Yadav et al. 2019) consider a notion of fairness based on equity. 
Despite working on provider groups, our work situates fairness in the context of 
recommender systems, allowing us to (i) account for situations where more provid-
ers lie behind an item and the same provider can appear more than once in a list, 
(ii) relate them with the objectives and formalism of recommendation metrics, and 
(iii) introduce a new experimentation on disparities among provider groups, starting 
from disparate relevance. Indeed, we control unfairness at an earlier stage, target-
ing the catalog contribution and not system-predicted relevance. Further, provider 
unfairness is traditionally mitigated by assuming to have access to true unbiased rel-
evances. In practice, these relevances are estimated via machine learning, leading to 
a biased estimate of the relevance scores. Recommender systems are known to be 
biased from several perspectives (e.g., popularity, presentation, unfairness for users 
and providers). With this in mind, we control how relevance scores are distributed to 
groups.

Comparing an outcome distribution (e.g., ranked lists) with a population distri-
bution was explored by Yang and Stoyanovich (Yang and Stoyanovich 2017) and 
Sapiezynski et al. (Sapiezynski et al. 2019). Differently from us, Sapiezynski et al. 
model uncertainty of group membership of a given individual, not dealing with 
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contexts where more than one provider lies behind an item. Further, the outcome 
distribution is linked to a population distribution, assuming that the items the vendor 
chooses to show in the top-k are a proportional representation of a subset of the cata-
log, subsampled via machine learning. This assumption may underestimate the real 
representation in the catalog, with respect to ours. Further, Yang and Stoyanovich 
compute the difference in the proportion of members of the protected group at top-
k and in the overall population. Compared to them, we internally control relevance 
according with contribution. Their formulations complement our ideas, as they drive 
fairness optimization at different levels.

Other fairness definitions in practice lead to enhanced fairness in exposure, for 
instance, by requiring equal proportions of individuals from different groups in 
ranking prefixes (Celis et al. 2018; Zehlike et al. 2017; Zehlike and Castillo 2020). 
Mehrotra et al. (Mehrotra et al. 2018) achieved fairness through a re-ranking func-
tion, which balances accuracy and fairness by adding a personalized bonus to items 
of uncovered providers. Similarly, Burke et al. (Burke et al. 2018) defined the con-
cept of local fairness and identified protected groups based on local conditions. In 
contrast to this, we study metrics that have a link between contribution, interactions, 
and relevance. The setup we study in this paper is very different, assuming that pro-
viders get relevance and, possibly, visibility and exposure, according to their contri-
bution in the catalog.

Furthermore, Patro et al. (Patro et al. 2020) account for uniform exposure over 
providers, while we deal with a relevance proportional to the providers’ group con-
tribution. Moreover, their definition assumes that items are not shareable, i.e., no 
item is allocated to multiple providers. Kamishima et al. (Kamishima et al. 2018) 
models fairness as an independence between the predicted rating values and sensi-
tive values of the providers, not taking into account any measure against biased rel-
evances (i.e., predicted rating), with respect to the contribution in the catalog. Beutel 
et  al. (Beutel et  al. 2019) shapes fairness of providers in the context of pair-wise 
optimization, claiming fairness if the likelihood of an observed item being ranked 
above another relevant unclicked item is the same across both groups. Similarly, 
Narasimhan et  al. (Narasimhan et  al. 2019) propose a notion of pair-wise equal 
opportunity, requiring pairs to be equally likely ranked correctly regardless of the 
group membership of both items in a pair. Compared with prior work, our approach 
aims to bind relevance and catalog contribution, for reducing disparate visibility and 
exposure.

6.2 � Treatments for provider fairness

There are relationships between our treatment and existing approaches, even though 
it should be trivial to consider that treatments fundamentally vary due to the differ-
ent fairness notion they are driven by.

Pre-processing for fairness in recommender systems has been considered in the 
context of consumer fairness. Rastegarpanah et al. (Rastegarpanah et al. 2019) pro-
posed to add new fake users who provide ratings on existing items, to minimize the 
losses of all user’s groups, computed as the mean squared estimation error over all 
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known ratings in each group. Despite working on the provider side, our upsampling 
extends the interactions of the real users and items and aims at adjusting interactions 
involving minority providers.

In-processing regularization in recommender systems has traditionally focused 
on point-wise scenarios. Kamishima et al. (Kamishima et al. 2018) introduce a regu-
larization requiring that the distance between the distribution of predicted ratings for 
items belonging to two different groups is as small as possible. However, this way of 
optimizing does not indicate much about the resulting recommended lists that users 
actually see, with respect to the pair-wise optimization we leveraged, and do not take 
into account to what degree ratings of different groups are proportional to the group 
contribution in the catalog.

Beutel et al. (Beutel et al. 2019) targeted provider fairness optimization, under a 
pair-wise optimization scenario, similarly to us. However, while the pair-wise com-
parisons are at the basis of their fairness definition, our treatment is just tested under 
a pair-wise optimization scenario and does not leverage any peculiarity of this sce-
nario. Further, while both have been tested on binary attributes, we generalize to 
capture a wider variety of groups and generalize to contexts where items are associ-
ated to more than one provider. Their training methodology is also very different. 
The fixed regularization term they added to the loss function is based on a correla-
tion between the residual estimate and the group membership. These conceptual and 
operative differences lead us to investigate clearly different under-explored facets. 
Furthermore, compared to our work, they are driven by a different fairness objec-
tive. It would be interesting to see how they can be integrated, taking the benefits of 
both the notions, but this requires non-trivial extensions left as a future work.

Finally, other fairness-aware approaches, whose notions of fairness were pre-
sented in the previous section, are operationalized in quite different ways. Biega 
et  al. (Biega et  al. 2018) solve an integer linear program. Patro et  al. (Patro et  al. 
2020) implement a greedy-round-robin strategy. Similarly to us, Zehlike and Cas-
tillo (Zehlike and Castillo 2020) use stochastic gradient descent, but they operation-
alize it in a list-wise manner.

7 � Conclusions

In this paper, we assessed the extent to which a recommender system emphasizes 
disparities from three different perspectives. The first one monitors the difference 
of predicted relevance between providers’ groups, according with their representa-
tion in the catalog. The other two operate on the final outcomes of the recommender 
system, by monitoring differences in visibility and exposure across groups, with the 
same proportional setting. To reduce the emerged disparities, we proposed a treat-
ment that combines an upsampling of interactions from the minority group and a 
regularization on the share of relevance across provider groups, throughout the opti-
mization process.

Our experimental study analyzes relevance scores and recommended lists gener-
ated by fifteen synthetic datasets that simulate specific situations of imbalance in the 
catalog and in the interactions, and two real-world datasets that represent existent 
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conditions in modern platforms. Our first exploratory results highlight that the dis-
crepancy between the relevance given to provider groups by recommendation mod-
els and their contribution in the catalog is not negligible. This effect results in less 
than expected visibility and exposure for the minority group. With our treatment, it 
has been possible to reduce disparities in relevance, visibility and exposure, without 
sacrificing recommendation utility. Incorporating our treatment allows to act indi-
rectly on the output of the recommendation model and is a viable strategy to miti-
gate distortions at an earlier step. Our treatment has been proved to be useful also for 
post-processing fairness procedures in order to achieve lower disparities.

Future work will embrace all the insights provided in this paper to further explore 
the connection between relevance, visibility, and exposure. Moreover, we plan to 
design mitigation methods that look at provider fairness promotion as a temporal 
process. The improvement in provider fairness might not be large immediately, and 
we believe that repeating our treatment over time will lead to more and more fair 
recommendations. This would better fit with real-world situations and platforms. We 
will also investigate the relationships between the recommendations returned by the 
algorithm and the tendency of each user to prefer items from different groups of pro-
viders. Finally, it is our goal to devise other treatments that link internal parameters 
to ranking metrics.

Synthetic datasets creation

In order to simulate catalog and interaction imbalance through synthetic datasets, 
we use two stochastic block models (Yao and Huang 2017). We create a catalog 
block model to determine the probability that an item is offered by a provider in 
a particular group. Non-uniformity in this block model will lead to catalog imbal-
ances. We then arrange an observation block model, determining the prob-
ability that a user observes an item from a given provider’s group, simulating an 
implicit feedback scenario. The group ratios may be non-uniform, leading to interac-
tion imbalance. Formally, let vector L ∈ [0, 1]|A| , with A = {a1, a2} , be the block-
model parameters for catalog probability. For an item i, the probability of assigning 
it to a provider with ai is L(ai) . Moreover, given a user u, let O ∈ [0, 1]|A| be such that 
the probability of observing an item i with a provider having ai is O(ai) . Specifically, 
based on groups in A, we consider five catalog block models Lx = [x, 1 − x] and five 
observation block models Oy = [y, 1 − y] , with x, y ∈ V = {0.1, 0.2, 0.3, 0.4, 0.5} . 
To replicate our target recommendation context, where interaction imbalance is 
assumed to be equal or higher than catalog imbalance, our study will consider 15 
setups (Lx,Oy) , with x, y ∈ V  and x ≥ y . Hence, our exploration will cover both situ-
ations with a small minority and where the groups are more balanced. Specifically, 
providers in a1 are identified as the minority group, i.e., amin.

For each setup (Lx,Oy) , we selected a catalog block model and an observation 
block model, (i) generating n = 30, 000 users and m = 3, 000 items, (ii) assigning 
catalog representations based on Lx , and (iii) sampling o = 1, 200, 000 implicit inter-
actions, according with Oy . This step means that we randomly sampled a user u, then 
we selected the provider group a ∈ A of the item in that pair according to Oy , and we 
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sampled an item i from the selected group. To limit anomalous results and distorted 
recommendation outputs, for each provider group, our specific procedure samples 
the item i ∈ Ia simulating a scenario where items in the same provider group have 
a different probability of being selected. To this end, we used an exponential distri-
bution X  with scale � for the distribution function � . The parameter � determines 
the scale of the exponential distribution, with �(�) = E(0, (

|Ia|
�
)2) . Given the list LIa 

of items in Ia and the distribution �(�) , the index of the sample item i in LIa is rep-
resented by the absolute rounded value of the random variable �(�) . Decreasing � 
means that we make the selection more uniform across items. Our exploratory study 
was carried out with � = 450 , with the aim of reflecting realistic popularity tails. 
At the end, we obtained 15 synthetic datasets with different representations of the 
minority group in the catalog and the interactions.
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