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Modeling charge transport in gold nanogranular films
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Cluster-assembled metallic films show interesting electrical properties, both in the near-percolation regime,
when deposited clusters do not form a complete layer yet, and when the film thickness is well above the electrical
percolation threshold. Correctly estimating their electrical conductivity is crucial, but, particularly for the latter
regime, standard theoretical tools are not quite adequate. We therefore developed a procedure based on an
atomically informed mesoscopic model in which ab initio estimates of electronic transport at the nanoscale are
used to reconstruct the conductivity of nanogranular gold films generated by molecular dynamics. An equivalent
resistor network is developed, appropriately accounting for ballistic transport. The method is shown to correctly
capture the nonmonotonic behavior of the conductivity as a function of the film thickness, namely, a signature
feature of nanogranular films.
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I. INTRODUCTION

Cluster-assembled metallic (or, simply, “nanogranular”)
films may play an important role in the development of
emerging technologies. In particular, they show a resistive
switching behavior [1] that can be exploited in the fabrication
of electrical devices able to process and store data in the
same physical unit [2–4], as requested by the neuromorphic
computing paradigm [5,6]. Such behavior emerges in the near-
percolation regime [7–9], when deposited clusters do not form
a complete layer of the film yet, as well as when the film thick-
ness is well above the electrical percolation threshold [10–13].
In particular, for this latter situation a well-established expla-
nation of the underlying physical mechanisms is still missing.

Atomistic simulations may help to get insights on the
microscopic mechanisms responsible for such phenomena.
Correctly estimating the electrical conductivity becomes
therefore crucial [13,14]. To this end, we developed an atom-
ically informed mesoscopic model which provides accurate
conductivity estimates for systems composed by intercon-
nected gold nanoclusters.

The conductivity of nanogranular films is strongly affected
by the high degree of porosity and defects in the metallic com-
ponent. As the first step, we resort to atomistic simulations
based on molecular dynamics to create realistic structures
that capture the complexity of nanogranular films at the
nanoscopic scale, a method that has been successfully used in
the past to analyze the morphology and mechanical properties
of such systems [15]. Provided with a realistic representation
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of the atomic-scale complexity of the system, we proceed
by calculating its conductance by means of an equivalent
resistor network (ERN). Within such an approach, a system
is typically approximated with a network of interconnected
resistors whose impedance is determined by its local values;
the overall resistance is therefore calculated using Kirchhoff’s
circuit laws applied to the network.

The typical scale of the inhomogeneities of a nanogranular
film is, however, comparable to that of the electron mean
free path, le, in the corresponding crystalline phase, i.e., le =
37.5 nm for Au [16]. Specializing in films with thickness
well beyond the percolation threshold, we include in the ERN
the ballistic component of electronic transport, which dom-
inates at the length scale at which inhomogeneities occur,
according to the following picture. Inhomogeneities in the
metallic component of a nanogranular film are mainly due to
the cluster landing impacts occurring during the deposition
stage. They can be characterized as layers of highly disordered
(amorphous) matter either between adjacent clusters or within
the clusters themselves. We therefore model the metallic
component as a collection of amorphous regions mixed with
pristine crystalline ones and assume that electronic transport
within each region and between regions of the same phase
(whose length scale is typically just of a few nanometers) is
mainly ballistic, while between regions of different phase the
transport is diffusive. Such a picture is encoded in an ERN
by requiring that resistors contribute to the overall resistance
either ballistically or diffusively, whether they connect regions
with the same or different phases, respectively. While the dif-
fusivelike behavior is readily obtained by letting the resistors
abide by the classical Kirchhoff circuit laws, the ballisticlike
behavior is enforced by assigning to each resistor a value of
resistance that does not simply depend on the local structure
of the system but on the entire region it belongs to and reflects
the size scaling typical of ballistic transport.

Accurate characterizations of the ballistic component of
electronic transport in metal nanostructures can be obtained
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FIG. 1. View of the film growth at three different deposition stages. Left: Just a few Au clusters landed on the substrate (grey atoms).
The corresponding thickness of the sample is <6 nm and no percolation path connecting two opposite sides of the sample has been created
yet. Middle: The creation of the first percolation paths is already achieved, corresponding to a film thickness of 20 nm. Right: The film in an
advanced growth stage with a film thickness >60 nm.

using ab initio methods [17]. In particular, we use den-
sity functional theory (DFT) combined with nonequilibrium
Green’s function (NEGF) techniques (i) to study ballistic
transport in structures mimicking the inhomogeneities found
in the nanogranular film and (ii) to determine appropriate val-
ues of resistance for the ERN. Provided with such an input, the
ERN can be finally used to get an estimate of the conductance
of the entire simulated system.

To demonstrate the robustness of our procedure, we have
simulated the growth of a nanosized sample of a nanogranular
film assembled by cluster deposition, close to the experimen-
tal conditions of Ref. [10], and calculated its resistance at
various stages of growth.

The paper is organized as follows: In Sec. II we describe
the methodology used to simulate the growth of the nanogran-
ular Au film by means of classical molecular dynamics (MD).
In Sec. III we discuss the procedure to accurately estimate
the conductance of the specific gold microstructures observed
in the simulated film. In Sec. IV the ballistic ERN used to
compute the total resistance of the film is presented. Finally,
in Sec. V we present the results provided by our electrical
model and compare them to a set of experimental results.

II. SIMULATED FILM GROWTH AND
STRUCTURAL ANALYSIS

The cluster-assembled metallic film was obtained by sim-
ulating the multiple landing of 210 Au clusters deposited in
six different steps [15], by classical MD. All the gold clusters
were first thermalized at 300 K for 150 ps. The size population
of the clusters was constructed with 70% of the clusters of di-
ameter 8.8 nm and 30% of diameter 1.3 nm, thus reproducing
the experimental size distribution [13].

As for the growth process, the first 35 Au clusters were
deposited at random positions and normal impact direction on
top of the substrate. The average kinetic energies per atom of

the landing clusters were fixed to 0.25 eV/atom consistently
with the results obtained from the experiments [9]. Periodic
boundary conditions were applied in the in-plane directions
normal to the growth one. Finally, the clusters were left free
to evolve according to Newtonian dynamics. The snapshots
of the film corresponding to three different deposition stages
are displayed in Fig. 1: after the first deposition steps we
observe a film characterized by isolated grains, with most of
the substrate surface being unoccupied. We can observe in the
subsequent deposition steps the formation of cavities giving
rise to the expected film porosity, i.e., ∼30%.

MD simulations have been performed using the LAMMPS

code [18], integrating the equations of motion by the velocity
Verlet algorithm. The Nosé-Hoover thermostat with relaxation
time equal to 100 fs was used to control the temperature.
The Au-Au interactions were sampled using a 12-6 Lennard-
Jones potential with a cutoff at 0.8 nm. The Lennard-Jones
parameters have been optimized in order to reproduce several
properties such as surface tension density in good agreement
with experiment [19], i.e., ε = 5.29 eV and σ = 2.62904 Å.
The Au substrate (grey atoms in Fig. 1) with dimensions of
24.5 × 24.5 × 5 nm3 was constructed with the (111) surface
exposed to the deposition of the clusters. The four bottom
layers were kept fixed in order to mimic a bulk material and
a slab region (1.7 nm thick) adjacent to the fixed slab was
thermalized at room temperature.

Figure 2 displays a gold grain landed on the substrate;
while before landing, by construction, the cluster is perfectly
spherical, the collision with the substrate strongly affects
its shape and structure. We observe in the deposited film
two kinds of atomic arrangements: cubic (fcc) and noncubic
(non-fcc) gold. A polyhedral template matching (PTM) anal-
ysis performed with OVITO [20], a scientific analysis software
for molecular simulation models, allows to distinguish be-
tween those Au atoms sitting in fcc sites and those which
are not (related to planar and bulk defects). In the left panel
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FIG. 2. An xz view of a single Au deposited cluster with radius
r = 4.4 nm after landing. The collision against the substrate strongly
modifies its original spherical shape, creating different microstruc-
tural defects. Left: A polyhedral template matching analysis allows
to localize with atomic resolution the distribution of the defects in the
cluster. Orange atoms are found in fcc sites while red ones cannot be
classified as such. Middle: The PTM analysis is averaged over the
grid elements of the ERN allowing to distinguish fcc (orange) and
non-fcc (red) regions. Right: Distribution of fcc (orange) and non-fcc
regions (red) based on the local density of the granule showing a
good agreement with the averaged PTM analysis.

of Fig. 2 we show a section of the PTM analysis performed
on the gold cluster after landing. For the sake of clarity we
have excluded from the analysis those atoms belonging to
the substrate. We observe that, due to the collision with the
substrate, the fcc symmetry is broken, thus originating regions
with different crystal structure. These defects are local and
separate different fcc regions (orange colored atoms) within
a single grain. In addition to that, the fcc symmetry is also
broken at the surface of the cluster, creating a non-fcc shell
all around the grain. The shell is found before and after the
collision; thus, it is not produced by the exceeding kinetic
energy after landing. However, we do observe an increase of
the shell thickness after cluster landing. Moreover, the non-
fcc shell is responsible for having non-fcc layers separating
adjacent deposited clusters in the film.

The PTM analysis provides very accurate atomically re-
solved structural phase maps of the clusters assembled to
form the film. However, its heavy computational cost prevents
from using PTM to distinguish the different phases during the
evolution of the simulated film, which is made up of more
than 106 atoms. Therefore, we rather measure the local atomic
density, nl , of the film: we observe that the presence of defects
induces a slight increase in the Au-Au bond length which
shifts from bm = 2.89 Å for fcc Au regions to bm = 2.99 Å for
non-fcc ones. This effect can be seen in Fig. 3(a), where the
radial distribution function calculated on a subregion of the
granule containing fcc atoms (orange line) and non-fcc atoms
(red line) is shown. A more evident effect is the broadening of
the peaks for the non-fcc region. The upward shift of the first
peak for non-fcc regions is directly translated to a decrease
of the local density that we define as nl = Nr/Vr , where Nr is
the number of gold atoms contained in that particular region
of volume Vr . Two specific local density threshold values, nv

and nc, are used to set the density ranges corresponding to
vacuum, non-fcc, and fcc gold. We consider a region to be
vacuum if its local density falls below nv , while cubic gold
is defined as nl > nc. Finally, noncubic gold corresponds to
nv < nl < nc. In order to evaluate the agreement between the
two methods we have averaged the former PTM analysis over
the regions on which the local density approach is performed,
i.e., a regular grid with element size 5 × 5 × 5 Å3; thus
Vr = 0.125 nm3. By doing so we obtain the color map dis-
played in the middle panel of Fig. 2. In the right-hand panel,

FIG. 3. (a) Pair correlation function g(r) computed on the high-
lighted regions of the cluster showing a first peak at r = 2.89 Å and
r = 2.99 Å for fcc (orange) and non-fcc (red) phase, respectively.
(b) g(r) for the DFT simulation cells showing a main peak placed
at r = 2.95 Å and r = 3.04 Å for fcc and non-fcc, respectively. The
cells are prepared to match the ratio obtained in the g(r) distributions
from the simulated sample shown in (a), i.e., bnon-fcc/bfcc = 1.03.

the corresponding local density map is shown with nv =
0.0005 atoms/Å3 and nc = 0.048 atoms/Å3. Despite the
much lower computational cost a good agreement in the ratios
between the fcc, non-fcc, and vacuum occupied volume and
the total volume is observed. A side effect is a slight overes-
timation of the non-fcc shell’s thickness for the local density
approach.

III. ELECTRON TRANSPORT IN GOLD NANOJUNCTIONS

The ballistic component is supposed to dominate the
electronic transport within individual nanoparticles at the con-
sidered length scales. Other transport mechanisms such as tun-
neling and hopping are not included since a strong-coupling
regime [21] is expected at the considered temperature and
lengths, here neither Coulomb interaction nor quantum inter-
ference effects occur (see the Supplemental Material [22]).
We assume the two individuated gold phases, i.e., fcc and
non-fcc, to have different electronic transport characteristics.
This is justified by the fact that non-fcc Au regions are char-
acterized by a lack of symmetry that effectively reduces the
number of opened conduction channels for ballistic transport
[23]. Moreover, we also assume that the estimation of the
ballistic conductance of the two phases is sufficiently accurate
to build up a reliable resistive model. The conductance of
fcc and non-fcc Au is estimated by a blended NEGF-DFT
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FIG. 4. (a) Schematic view of the simulated device. Two semi-
infinite [100] Au electrodes (grey atoms) and the scattering region
formed by a repetition of the electrodes plus the gold junction
(yellow atoms). (b) Computed conductance G for fcc-Au junctions
with different lengths, L, for two different wire cross sections,
A: plateaus at 1.2G0 and 2.9G0 are obtained in agreement with
Ref. [26]. (c) Computed conductance, G/G0, for different cross sec-
tion A for fcc (orange line) and non-fcc (red line) Au junctions with
L = 100 Å.

approach. In particular, the computation of the conductance
of gold nanosized systems [17,24,25] has been boosted by
recent experiments on electronic properties of atomic-sized
gold structures [26–32]. The remarkable agreement between
estimates and experimental values for different lengths, cross
sections, and crystallographic orientations proves the accu-
racy of this approach in the study of electron transport in gold
systems at the nanoscale.

Using such an approach, we are therefore able to perform
a comprehensive study of the conductivity of a two-terminal
device containing gold junctions mimicking the structures
individuated in the structural analysis of the MD samples,
i.e., fcc and non-fcc. More specifically, in order to compute
the conductance of gold junctions that might be representative
of those found in the simulated film, we proceed as follows:
We first set the crystallographic orientation of the device elec-
trodes of the two-terminal device, once for all. Atomic-scale
Au junctions are built up with different lengths, L, and cross
sections, A, in between the two electrodes. To mimic the fcc
phase, we require the atoms belonging to the central scattering
region to keep the crystallographic orientation of the elec-
trodes [as shown in Fig. 4(a)], while non-fcc ones are required
to (i) present no specific crystallographic orientation under the
PTM analysis and (ii) to present a broader radial distribution
function than fcc as observed in Fig. 3(a). This is equivalent
to requiring each added atomic layer to change orientation
with respect to the previous one. In such a scheme, the first

allows electrons to see the symmetry of the lattice along the
device, while the latter incorporates the nonhomogeneity of
the medium found in the deposited clusters. The g(r) for fcc
and non-fcc gold junctions are displayed in Fig. 3(b). Another
possible approach to evaluate the conductance of the defects
individuated in the simulated film is to simply carve out from
the film those regions we are interested in. The reason to avoid
this approach is the fact that the nonhomogeneities found in
the film extend only for few atomic layers, while the required
calculations that allow to specify a unique value for the con-
ductance depending on A and L require the consideration of
lengths and cross sections beyond that limit [see length scales
in Figs. 4(b) and 4(c)].

We describe the gold electronic structure self-consistently
using DFT within the generalized gradient approximation
(GGA) as implemented in the SIESTA package [33]. Core
electrons are modeled with Troullier-Martins nonlocal pseu-
dopotentials, while the valence electrons are expanded with
a double-ζ basis set. The mesh cutoff is 300 Ry and a
10 × 10 × 10 k-point mesh is used for the four-atom unit
cell. We relax all the atomic coordinates till atomic forces
are below 0.04 and 0.10 eV/Å for fcc and non-fcc Au,
respectively.

For the conductance calculations, we have used TRAN-
SIESTA [34], which is based on the combination of DFT
with the NEGF technique. Therefore, calculations on trans-
port properties are based on the Landauer scheme of elastic
scattering probability [35]. Within such a scheme, given a
certain bias, V , it is possible to compute the current, I , after
self-consistently solving the NEGF and the electrostatic po-
tential to get the electronic density matrix. The conductance
of the device is then computed as G = I/V . Semi-infinite
8 × 8 100-Au electrodes, four layers thick, sampled with a
converged k-point grid of 3 × 3 × 20, are considered.

In the ballistic transport regime the conductance of a ma-
terial is well known to be independent of the device length.
The first step is to compute the conductance, G, for fcc gold
junctions for different cross sections and increasing lengths
ranging from tens to hundreds of angstroms. The computed
values of G against the wire length, L, are displayed in
Fig. 4(b) in units of the quantum of conductance, G0 =
0.0000775 �−1. We observe fluctuations in the computed G
values for short wires (L < 50 Å) while G converges to a con-
stant value for longer wires, as expected for ballistic transport.
Many experiments [28,36] and computational works [24,25]
have reported an increase of G for wires with increasing A, due
to the increase in the number of opened conduction channels.
A linear relation between G and A is expected with a slope
depending on the crystallographic orientation [26]. We obtain
values close to 1.2G0 and 2.9G0 for the two types of gold junc-
tions considered in Fig. 4(b). In particular, as the cross section
of a wire oriented along the [100] direction is increased from
1.7 Å (corresponding to 4 unit cells) to 7.0 Å (corresponding
to 16 unit cells), an increase of �G = 1.7G0 is observed
corresponding to the transition from 1.2G0 to 2.9G0, close to
the expected value provided by the simplified free electron
model used in Ref. [26], i.e., 1.8G0. Figure 4(c) shows the
conductance for long wires (L = 100 Å) for increasing cross
sections for fcc (orange) and non-fcc Au wires (red). The
linear trend for fcc junctions is characterized by a slope of
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FIG. 5. (a) Left: xz view of the regular 3D grid applied to a
single gold cluster. For a given a mesh element, Ni is the number
of adjacent cells with equal gold phase (fcc or non-fcc) along the i
direction. Right: Total resistance along a given transport direction for
different combinations of fcc and non-fcc cells. Rc and Ra stand for
the resistance value of a single fcc and non-fcc element, respectively.
(b) An xy view of fcc and non-fcc cells of the film at z = 15 nm and
the corresponding Ii jk,x map (k = 30) obtained from the converged
solution of the ERN. Black strips represent the electrodes. (c) The
three components of the current vector (Ix, Iy, Iz ) computed along the
transport direction.

0.04G0/Å2 while it is less pronounced for non-fcc junctions,
i.e., 0.02G0/Å2. As expected, non-fcc Au junctions are less
conductive than fcc ones, for all considered A.

IV. EQUIVALENT RESISTOR NETWORK WITH
BALLISTIC TRANSPORT

An ERN model is used to evaluate the electrical conduc-
tivity of the simulated film. A three-dimensional (3D) regular
grid is superimposed on the deposited film and each ERN
cell is filled with one of the following: fcc Au, non-fcc Au,
or vacuum depending on the local value of nl as explained
in Sec. II. An xy projection of the grid over a single landed
gold cluster is shown in Fig. 5(a). We assign to each ERN grid
element a resistance value as follows: for vacuum elements
this is set to 1015�, while for Au elements, this is computed by
sticking to the geometrical dependencies found in Figs. 4(b)
and 4(c). The rationale behind the value chosen for vacuum
is to ensure those elements do not contribute to the final
resistance value. This can be achieved by setting this value
to infinity, which carries numerical issues. Instead, we choose
to set this to a sufficiently high value with respect to the fcc
and non-fcc ones, both falling in the k� range.

From the simulated sample we can roughly distinguish
two types of interface: interfaces separating two grains with

different crystallographic orientation (“fcc-fcc”) and those
separating ordered grains from disordered regions (“fcc-non-
fcc”). In our modeling, the latter type is always recognized
as an interface that disrupts the electronic transport so the
total resistance of a slab of fcc gold in contact with a non-
fcc region is equal to the sum of their resistances, capturing
the decoherence of electrons when reaching the interface and
the interruption of the ballistic transport. In other words, the
interface limits the regions where the electronic transport is
considered ballistic. Instead, fcc-fcc interfaces, on the other
hand, affect the transport only if the change of symmetry
in going from one grain to the other is high enough so the
density analysis detects the intermediation of a non-fcc region
in between; otherwise the interface is effectively neglected. It
must be remarked that clean fcc-fcc interfaces rarely occur, as
one can see in Fig. 2.

Thus, for a given mesh element containing Au atoms in
a fcc (non-fcc) phase, we compute the number, (Nx, Ny, Nz),
of consecutive cells along each Cartesian direction contain-
ing cubic (noncubic) gold. We then give a unique resistance
value for each transport direction as Ri = Rb/Ni, where Rb =
[G(A)]−1 and i = x, y, z. Doing so we ensure the total resis-
tance of a given chunk of gold does not depend on its length,
and only the cross section A determines its final value as
expected for ballistic transport. Therefore, given a transport
direction, if the total resistance value for a single fcc (non-fcc)
mesh element is Rc (Ra), the total resistance for N consecu-
tive fcc (non-fcc) cells along that transport direction equals
Rc (Ra). Instead, the alternative stacking of fcc and non-fcc
elements results in a total resistance that equals the sum of the
constitutive parts, as represented in Fig. 5(a).

The ERN grid is made up of I × J × K elements, the di-
mensions of which have been chosen so as (i) to minimize
the computational cost of solving iteratively the ERN for the
considered structures and (ii) to have enough spatial resolu-
tion to well resolve the intra- and intergranule structure. We
set the element size to 5 Å, so the element volume and the
minimum resolved area are 0.125 nm3 and 0.25 nm2, respec-
tively. With this the ERN has 50 × 50 × K elements with
K increasing at each deposition step in order to include all
deposited clusters. Once all the mesh elements count with a re-
sistance value, a finite bias, Vbias, across the sample is applied:
the voltage is set to V = Vbias for those grid elements be-
longing to one of the electrodes, while it is set to V = 0 V
otherwise. We have used Vbias = 0.06 V to generate all the
data included in Sec. V. We stress at this point that the RT

estimation of the total film resistance produced by the present
linear model does not depend on this parameter.

The obtained electrical network is analyzed by solving the
Kirchhoff equations. We solve them iteratively updating the
node voltages Vi jk using the formula

Vi jk=
Vi−1, j,k

R(i−1) jk,x
+ Vi+1, j,k

Ri jk,x
+ Vi, j−1,k

Ri( j−1)k,y
+ Vi, j+1,k

Ri jk,y
+ Vi, j,k−1

Ri j(k−1),z
+ Vi, j,k+1

Ri jk,z

1
R(i−1) jk,x

+ 1
Ri jk,x

+ 1
Ri( j−1)k,y

+ 1
Ri jk,y

+ 1
Ri jk,z

+ 1
Ri j(k−1),z

,

(1)

where Ri jk,x is the resistance of the (i, j, k) grid element in
the x direction, etc., and keeping fixed the electrode voltage.
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Iterations are performed until the variation of the sample total
resistance between iteration steps is less than 0.01 �.

From the node voltages and the resistances, one can calcu-
late the current flowing through the simulated sample. Each
(i, j, k) grid element is made up of a three-component current
vector {Ii jk,x, Ii jk,y, Ii jk,z}. In Fig. 5(b) we show the converged
current map at z = 15 nm (k = 30) for the simulated sample
at a very advanced growth stage along with the corresponding
fcc or non-fcc grid at that film height. The total current vector
along the bias direction [x direction in Fig. 5(b)] is computed
as I = (

∑
jk Ii jk,x,

∑
jk Ii jk,y,

∑
jk Ii jk,z ). The three compo-

nents of the total current vector are displayed in Fig. 5(c).
We observe that, after reaching the converged solution of the
ERN, the x component of the total current vector, Ix, fluctu-
ates around a constant value (1.5 mA with Vbias = 0.06V ) all
along the transport direction [black line in right-hand panel
of Fig. 5(c)]. For Iy and Iz we observe the generation of
internal currents that cancel each other (see ∼0 values close
to the extremes of both curves) so no current gets in or out
of the system through the directions normal to the transport
one. Finally, we compute the total resistance of the film as
RT = Vbias/Ī , where Ī is the mean value of the total current
flowing through the film along the bias direction.

To reach the converged solution for the ERN represents the
most expensive part of the present model in terms of CPU time
(600 s for a 50 × 50 × 75 ERN run in a single core).

V. RESULTS

The hierarchy of MD, NEGF-DFT, and ERN models al-
lows to compute the evolution of the film electrical resistance
as gold clusters are deposited on the substrate. We have repro-
duced the percolation curves for the simulated sample and the
corresponding data are displayed along with the experimental
measurements from Ref. [10] in Fig. 6. We considered two
different electrostatic bias conditions by setting the electrodes
along the x (x bias) and y directions (y bias), as depicted in
Fig. 6. The determination of the film thickness, t , is performed
following the definition used to plot the results of the exper-
iments in Ref. [10]: we count the number of cells containing
Au atoms in the ERN grid, Nc. Given the sample in-plane
dimensions we compute tb = 0.125 nm3Nc/(24.5 nm)2 corre-
sponding to the thickness of a bulk film with the same amount
of matter. Finally, the porosity of the sample is introduced to
obtain the final thickness value, t = 1.35tb. We name tp the
film thickness at which the first percolation path is created.
For t < tp, the film is characterized by isolated clusters and
an infinite resistance (>1013 � for numerical reasons). Since
the current implementation does not take into account electron
tunneling and hopping effects, our data start being meaningful
after the creation of the first percolation path, which creates
a real contact between the electrodes. We observe the first
percolation path occurring at tp,x = 5 nm and tp,y = 10 nm,
for the two considered bias conditions. After that, two growth
stages are identified from the resistance-thickness curve [37].
At first, few intergrain electrical contacts exist, producing a
film characterized by poorly connected aggregates and RT

values in the 1–10 k� range. In this stage, known as the
geometrical percolation stage, RT abruptly decreases down
to hundreds of � due to the increase in the paths becoming

FIG. 6. Top: Percolation curves for the electrical resistance of
cluster-assembled films as a function of the film thickness on the
x axis (semilogarithmic scale). Bottom: Evolution of the surface film
roughness, Rq, for the simulated sample. The dashed line indicates
the tm thickness at which RT t2 reaches its minimum.

available for electron transport as clusters land and intercon-
nect. Next, a transition from insulating to ohmic behavior
is observed; i.e., RT smoothly decreases as t is increased.
This transition is defined as the thickness at which the quan-
tity RT t2 reaches its minimum value tm [38,39]. The good
agreement achieved for the determination of this parameter is
shown in Fig. 7. For all data sets the transition to ohmic behav-
ior is achieved around tm = 20 nm. However, this parameter
can suffer huge fluctuations from one sample to another [10].
The predicted RT values show larger fluctuations in compar-
ison to the experimental curve, these being more important
at the first percolation steps. The fact that the simulated film

FIG. 7. RT t2 as a function of film thickness t . The minimum
position on the simulated curve is determined with a parabolic fit
to be at 20 nm. Black dots correspond to the experimental data and
magenta dots to the simulated sample (x bias).
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has nanoscale dimensions, i.e., 25 × 25 nm2, make granular
effects still visible at all deposition stages and the landing
of a single cluster produces huge variations in the computed
values. Instead, the experimental curve corresponding to a
macroscale sample presents a smoother behavior.

For t > tm, the total film resistance further decreases (see
Fig. 6). Quantitatively, our electrical model slightly underesti-
mates the total resistance of the film for every deposition step.
For instance, the ratio between the computed and the mea-
sured value at t = 40 nm is 0.6 and 0.7 for x bias and y bias,
respectively. Both experimental and simulated data follow a
power-law decay (RT ∝ 1/tα) as clusters are deposited and
this represents a qualitative agreement with the experimental
data set. The experimental curve provides αexpt = 0.9, imply-
ing that the resulting film resistivity, calculated as ρ = RT t ,
should increase instead of remaining constant as expected for
bulk materials and also observed for atomically assembled Au
films. The power-law exponents for the two simulated curves
are equal to αx = 0.94 and αy = 0.95 for that thickness range,
fulfilling the condition α < 1 to observe an increase of ρ.
Indeed this is a quite remarkable agreement with experimental
results.

This effect is often attributed to an increase of the sample
roughness as suggested in Refs. [40–42]. In order to sup-
port the plausibility of this hypothesis we have computed
the roughness of the film surface, Rq, which we estimate by
means of the standard deviation of the film height measured

on every (i, j) mesh element as Rq =
√∑N (zi j−z̄)2

N−1 , where zi j

is the height profile of the sample and z̄ stands for the mean
sample height. Differently from experimental realizations, we
do have access to Rq at every deposition step so a sound
characterization of the film roughness dynamics is achieved.
In Fig. 6(b) the evolution of Rq is shown, displaying clearly
two alternate regimes: one in which clusters are accumulated
in few spots of the (x, y) plane producing an increase of Rq
corresponding to t < 40 nm and t > 45 nm, and another in
which the deposition of few clusters is enough to drastically
reduce Rq, generating void regions within the film which
results in the expected film porosity. The former, characterized
by a nonuniform deposition of clusters, produces a reduction
of the slope of the RT curve, due to the fact that the clusters
do not contribute to create new conduction paths. The latter, in
which new clusters occupy regions connecting separated gold
regions, effectively reduces the film resistance. The periods of
these two regimes are expected to depend on the ratio between
the sample size and the cluster dimensions, being shorter
for smaller ones. The correlation between the modeled film

FIG. 8. ρ vs Rq curve for the simulated sample for t > 20 nm.

resistivity and its roughness for t > 40 nm can be observed
in Fig. 8. Thus, the present electrical model well captures the
role of surface roughness in the evolution of the film growth.

VI. CONCLUSIONS

We have presented an electrical model able to predict the
resistance of cluster-assembled gold films based upon a well-
resolved description of their nanostructure and related charge
transport at that length scale. By reproducing the deposition of
tens of Au clusters on a substrate by means of MD simulations
we are able to reproduce the growth of a Au nanogranular
film. Next, by using our model at different growth stages we
compute the resistance percolation curve and compare the
model predictions against experimental values, obtaining a
good agreement. In particular, the power-law dependence of
the total resistance with the film thickness is well reproduced
as well as the nonmonotonic behavior of the film resistiv-
ity and its dependence on the film surface roughness. The
modeled film is ∼30% more conductive with respect to the
experimental one, likely due to the simplified synopsis of
transport mechanisms it is based on. Further improvement
of the model could be achieved by including tunneling and
hopping transport mechanisms to extend the applicability of
the model to the t < tp region of the percolation curve.
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