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Intrinsic thermoelectric figure of merit of bulk compositional SiGe alloys: A first-principles study
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A systematic study based on state-of-the-art first-principles calculations has been carried out to determine
intrinsic thermoelectric properties in n- and p-type SiGe alloys. Both electronic and thermal transport coefficients
have been evaluated using the Boltzmann transport equation, applied on the electronic and phonon band structure,
respectively. The Seebeck coefficient, electrical conductivity, and thermal conductivity have been analyzed
focusing on the effect of carrier concentration, temperature, and alloy composition. The resulting figure of merit
is highest for heavy doping and at elevated temperatures (>1000 K) in the SiGe alloy with Ge content from
50% to 80%.
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I. INTRODUCTION

The rapid depletion of fossil fuels as a result of increasing
and vast energy consumption should motivate a responsible
use of energetic resources. At the same time, it is cru-
cial to develop alternative and sustainable energy resources.
In this framework, increased interest has been paid in re-
cent years to the development of improved thermoelectric
devices. Thermal energy in the form of waste heat is largely
available in combustion-driven vehicles, food production,
chemical processes, and in particular in power plants. In this
respect, thermoelectric conversion provides the possibility of
recovering a possibly large fraction of such waste heat and
transforming it into electrical energy.

The overall efficiency of a thermoelectric device is gov-
erned by a complex interplay between materials issues and
device characteristics [1]. As for the former ones, the dimen-
sionless figure of merit ZT summarizes the thermoelectric
properties of a material: It is defined as ZT = S2σ/κT , where
S is the Seebeck coefficient, σ is the electrical conductivity,
and κ is the thermal conductivity. Optimization of ZT is far
from trivial as a result of the interdependence of the governing
parameters. Substantial research has emerged to increase the
figure of merit ZT of thermoelectric materials [2–4], often
focusing on the minimization of the thermal conductivity of
semiconducting materials while preserving good electronic
conduction properties [5,6].

Mixed crystals based on Si and Ge have been studied for
their thermoelectric properties starting more than half a cen-
tury ago [7–9], and they have been of great interest since then
[10–13]. The potential of Si1−xGex alloys for thermoelectric
conversion lies in the fact that the thermal conductivity is
drastically reduced in the alloy with respect to the pure parent
crystals already at small impurity concentration x (or 1 − x,
respectively) [7,8,14–17] while maintaining high performance
in electronic transport. Additional reduction of the thermal
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conductivity can be achieved by nanostructuration, hence
suppressing the propagation of long-wavelength phonons. Ex-
tensive studies have discussed thermoelectric properties in
SiGe superlattices, nanowires, nanotubes, or porous SiGe
materials [18–24]. Recently, the great interest in nanostruc-
tured materials has diverted attention from bulk materials,
while computational methods have continued to evolve.

Several important experimental studies of bulk SiGe were
performed in the second half of the 20th century. They
investigated the effect of composition, carrier concentra-
tion, and temperature on thermoelectric material properties
[9,25]. The most elaborate study, by Dismukes et al., covered
several Si-rich compositions and carrier concentrations from
2.2 × 1018 to 3 × 1020 cm−3 of n- and p-type doping [9].
Thermal resistivity, the Seebeck coefficient, electrical resistiv-
ity, and Hall mobility were measured. The samples included
p-type Si0.7Ge0.3 and Si0.85Ge0.15 doped with boron. Carrier
concentrations from 2.1 × 1019 to 3.5 × 1020 cm−3 were ex-
amined for Si0.7Ge0.3. For Si0.85Ge0.15 only heavily doped
samples were generated with 2.1 × 1020 and 3 × 1020 cm−3

doping concentration. For n-type materials, Si0.7Ge0.3 samples
were produced with intermediate arsenic doping resulting in
carrier concentrations 2.2 × 1018 and 2.3 × 1018 cm−3 and
heavy doping with phosphorus resulting in carrier concen-
trations 6.7 × 1019 and 1.5 × 1020 cm−3. In addition, two
other n-type samples were doped with phosphorus, resulting
in Si0.8Ge0.2 with a carrier concentration of 1.4 × 1020 cm−3

and Si0.85Ge0.15 with a carrier concentration of 2.7 × 1020

cm−3. The pure parent materials Si and Ge were not inves-
tigated in this study. The compositions of the studied SiGe
alloys all differed slightly from one another, and all samples
had different carrier concentrations. For some compositions,
only one or two carrier concentrations have been studied.
This demonstrates the experimental limitations of conducting
a systematic study with the three varying parameters: alloy
composition, carrier concentration, and temperature.

Based on these experimental data, empirical models have
been developed with the intention of covering a wider and
more systematic range of parameters [10,26]. Slack and
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Hussein [10] described separate empirical expressions for
the carrier mobility and electrical conductivity, the Seebeck
coefficient, and thermal conductivity as a function of tem-
perature and carrier concentration with adjustable parameters
optimized to match available experimental data. These models
were proposed for both n- and p-type materials in order to es-
timate the figure of merit of a thermoelectric generator couple
(connected n- and p-type unit) focusing only on Si0.7Ge0.3.
On the other hand, a model based on the Boltzmann trans-
port equation (BTE) was presented by Vining [26], where
some material-specific parameters were used together with
adjustable parameters that were fitted to experimental data.
As stated in the study, the proposed model is valid only for
heavily doped systems. It was optimized using the data of Dis-
mukes et al. [9] focusing only on Si-rich n-type SiGe alloys.

A similar approach was applied by Minnich et al. [18] for
the simulation of thermoelectric properties in Si0.7Ge0.3 bulk
and Si0.8Ge0.2 nanocomposites. In their study, additional data
of the electronic conductivity made it possible to estimate the
change of carrier concentration with temperature, which was
not used in the previous study by Vining [26].

Because of their very nature, empirical studies such as
the ones just described rely on selected experimental data:
therefore, they can hardly be used as predictive computational
studies. In this respect, first-principles calculations based on
density functional theory (DFT) have a great potential to be
used for systematic studies of abstract properties such as the
figure of merit ZT in thermoelectric materials. Given the
electronic structure, the Boltzmann transport equation can
be solved to yield the electronic transport coefficients. This
approach has been applied successfully for the study of Si
and SiGe nanowires [27,28], in thermoelectric SrTiO3 and
SrRuO3 [29,30], and in thermomagnetic MnGeCo [31], to
name just a few. The evaluation of the Boltzmann transport
equation has been implemented recently in the BOLTZTRAP
toolbox [32], allowing postprocessing of the results from DFT
calculations.

Shi et al. [27] used DFT calculations and the Boltzmann
transport equation to determine the electronic transport coef-
ficients in Si nanowires. At a fixed cross section of 2.3 nm2,
ZT had a maximum for a carrier concentration at 1019 cm−3.
The calculations were only carried out at room temperature,
excluding analysis of the temperature effect on the thermo-
electric figure of merit ZT . The thermal conductivity in this
study was taken from previously conducted nonequilibrium
molecular-dynamics simulations [33]. In another study using
the same method, the authors investigated the figure of merit
ZT in SiGe nanowires at room temperature for a fixed cross
section [34]. The effect of alloy composition and carrier con-
centration on ZT was analyzed showing a maximum with
respect to ZT of a corresponding Si nanowire at around 0.5 Ge
content and a carrier concentration of 2 × 1020 cm−3. Similar
to their previous study on Si nanowires, the thermal conduc-
tivities were taken from available studies based on molecular
dynamics [35].

Very recently, a detailed study was presented by Murphy-
Armando [13] describing the electronic transport coefficients
from ab initio calculations analyzing the effect of carrier
concentration and temperature in n-type Si0.7Ge0.3 and the
effect of Si1−xGex alloy composition x at a given temper-

ature (1300 K) and carrier concentration (1020 cm−3). The
study also investigated the figure of merit in the strained
Si1−xGex alloy. An empirical expression for the lattice thermal
conductivity was fitted instead to the experimental data of
Dismukes et al. [9].

In the studies described above, the lattice thermal conduc-
tivity has either been taken from experimental data, described
by empirical models fitted to experiments or calculated us-
ing molecular-dynamics (MD) simulations [36,37], which
are also based on empirical force fields. In this latter case,
equilibrium [38–40], nonequilibrium [39–42], and approach-
to-equilibrium MD simulations [17,43,44] have been used. A
consistent basis for the study of thermoelectrics is thus not
provided.

A promising alternative approach to classical simulations
is the application of density functional perturbation theory
(DFPT) for the determination of second- and third-order in-
teratomic force constants applied to the phonon Boltzmann
transport equation for three-phonon scattering terms. This
fully first-principles approach has been successfully applied
for bulk SiGe [16] and implemented within the single-mode
relaxation time approximation and a variational approach in
the QUANTUM ESPRESSO program package [45,46]. A similar
computational setup was applied recently to the calculation
of the thermoelectric figure of merit in Si0.75Ge0.25 [12].
In the latter study, the nearly-free-electron model was used
to determine electronic transport, and, in addition to anhar-
monic scattering events from the third-order interatomic force
constants, boundary scattering and harmonic scattering from
mass disorder, vacancies, and other impurities was considered
for the calculation of the lattice thermal conductivity. The
figure of merit as a function of temperature was calculated
for the n-type Si0.75Ge0.25 sample with a carrier concentration
of 9.4 × 1019 cm−3.

In summary, a large number of experimental and the-
oretical studies have been published on the thermoelectric
properties in SiGe-based materials, each one, however, limited
either by the factors (temperature, carrier concentration, alloy
composition) considered in the evaluation of ZT or by the
consistency of the methods applied separately for electronic
transport and lattice thermal conductivity.

Motivated by this state of affairs, we provide a system-
atic and consistent study based on first-principles calculations
of the intrinsic thermoelectric properties in ideal (i.e.,
defect-free) n- and p-type bulk SiGe compositional alloys.
Electronic and thermal transport coefficients have been eval-
uated using the electronic and phonon Boltzmann transport
equation, respectively. The Seebeck coefficient and electrical
and thermal conductivity have been calculated focusing on
the effect of alloy composition, carrier concentration, and
temperature, eventually leading to the determination of the
thermoelectric figure of merit as a function of the three
parameters.

II. THEORETICAL FRAMEWORK

We present a comprehensive study of electronic and
thermal transport coefficients leading to a consistent and sys-
tematic description of the thermoelectric figure of merit ZT in
bulk SiGe. Most of the calculations are performed relying on
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first-principles consistence. For computational cost-efficiency,
the only ingredient obtained from empirical expressions is the
electron lifetime as discussed thoroughly in section I, Theo-
retical Framework, of the supplemental material [47] together
with all other implementation details.

Both electronic and thermal transport coefficients are
calculated based on the electronic and phonon properties
obtained from DF(P)T calculations. In particular, DFT calcu-
lations have been carried out using the QUANTUM ESPRESSO

suite of programs [48] for ground-state calculations of several
SiGe alloys. The local density approximation has been ap-
plied to model the exchange and correlation interaction [49],
together with norm-conserving Trouiller-Martins type pseu-
dopotentials [50]. Monkhorst-Pack sampling has been applied
for the k-point grid [51].

To account for varying Si and Ge concentrations, the
virtual crystal approximation (VCA) has been applied as
implemented in the QUANTUM ESPRESSO program package
allowing the use of a primitive unit cell containing two atoms
for any concentration in the alloy. This implies that the core
of the atoms in the virtual crystal is described by an average
pseudopotential generated from the pseudopotentials of the
elemental components weighted by their concentration in the
alloy (see the supplemental material [47] for more details).
A pseudopotential of the virtual crystal for the Si1−xGex al-
loy was generated for each x prior to the DFT calculations.
The lattice structure of the virtual crystal has translational
invariance and periodic properties (space group Fd 3̄m). In
the VCA, a solid solution composed of different atom types
is approximated with an elemental crystal made of just one
sole virtual element (see Fig. S1 of the supplemental material
[47]) whose scattering matrix is a combination of the matrices
from the component elements [52]. VCA has proved to be
both efficient and reliable for the calculation of electronic
and structural properties of alloyed structures [16,53,54].
It describes an ideal, boundary-free, and defect-free crys-
tal considering the average electronic properties of the
composing atoms.

Based on the electronic structure obtained from the DFT
calculations and the VCA approach for different SiGe al-
loys, the electronic Boltzmann transport equation has been
solved within the relaxation time approximation (RTA) using
the BOLTZTRAP toolbox [32]. Use of the RTA is justified
in systems close to equilibrium, which is the case in solids
and is equally applicable for phonon transport. The relaxation
time has been derived from an empirical expression of the
temperature- and carrier-dependent alloy mobility [10,55,56]
as already successfully applied to determine the relax-
ation time in SiGe-based thermoelectric materials [34]
in intermediate-to-high temperatures (T � 100 K) where
Coulomb scattering can be neglected. Details about the theory
behind it are described in the supplemental material [47].

Electronic transport coefficients are highly sensitive to the
magnitude of the band gap. In standard DFT calculations,
as performed here, the band gap of a semiconductor is un-
derestimated as a result of the self-interaction error. For the
calculation of the electronic transport coefficients, this er-
ror has been corrected by suitably shifting the conduction
bands to result in a Si1−xGex band gap given by a previously
proposed relation [57].

The phonon transport processes have been evaluated us-
ing the D3Q plug-in of the QUANTUM ESPRESSO program
package, which provides the possibility to estimate third-order
interatomic force constants allowing for the determination of
three phonon scattering processes and eventually the calcula-
tion of the phonon relaxation time and thermal conductivity
as described below. In this approach, the thermal conductiv-
ity is determined using DFPT within the so-called “2n+1”
approach [58,59] and accordingly calculating the anhar-
monic scattering coefficients for three arbitrary wave vectors
[45,46,60–62]. Compositional defects in the alloys have been
described through a two-step procedure: at first, the actual
stoichiometry is used to define the virtual atom, then mass
disorder is accounted for by adding a harmonic scattering
term that properly takes into consideration the mass differ-
ence between Si and Ge and their respective concentration.
The harmonic scattering term resulting from mass disorder
is more extensively described in the supplemental material
[47]. Lattice defects (namely, imperfections with respect to
an ideal diamond lattice decorated by VCA atoms such as,
e.g., vacancies, self-interstitials, grain boundaries, amorphous
pockets, or impurities), other than intended doping ones, are
not considered in this study. The obtained intrinsic lattice
thermal conductivity can therefore be considered an upper
limit with respect to experimental results obtained from real
materials.

The phonon BTE has been applied within the single
mode relaxation time approximation (SMA) [63–65]. Here,
temperatures from 100 to 1200 K have been considered, fo-
cusing, however, on the technologically relevant temperatures
�300 K. At such temperatures, umklapp processes dominate
the phonon scattering justifying the use of the SMA [66].
The variational approach described by Fugallo et al. [46] has
been applied to selected Si, Ge, and SiGe systems showing
no substantial difference in the resulting thermal conductivity
with respect to SMA in the temperature range of interest.

Based on this framework, transport coefficients and the
corresponding figure of merit ZT have been systemati-
cally studied for carrier concentrations from 1015 to 1020

cm−3, temperatures from 100 to 1200 K, and seven different
Si1−xGex alloys (x = 0, 0.1, 0.25, 0.5, 0.75, 0.9, 1). Both
n- and p-type materials have been calculated. Results of
p-type SiGe alloys can be found in the supplemental
material [47].

III. ELECTRONIC TRANSPORT

A. Seebeck coefficient

1. Carrier dependence

With increasing chemical potential (approaching the
minimum of the conduction band), the absolute value of the
Seebeck coefficient in n-type semiconductors decreases: this
occurs by increasing the level of doping (concentration of
carriers). The results obtained here for Si0.75Ge0.25 are in very
good agreement with previous experimental and theoretical
results at 300 K (Fig. S2). An exponential decrease of the
absolute value of the Seebeck coefficient is expected with in-
creasing carrier concentrations for chemical potentials below
the conduction band and above the valence band in n- and
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FIG. 1. Absolute value of the Seebeck coefficient at 300 K as a
function of temperature for n-type (solid lines) and p-type (dotted
lines) Si0.75Ge0.25 at various carrier concentrations.

p-type materials, respectively. This behavior is verified for the
Seebeck coefficient calculated here for all SiGe alloys, both
n- and p-type (some are represented in Fig. S3).

A notable decrease of the Seebeck coefficient is observed
for Si0.1Ge0.9 and Ge, in particular in the n-type samples
(Fig. S4). This can be explained by the switch of the
conduction-band minimum positioned at Δ for x < 0.85 to L
for x > 0.85.

2. Temperature dependence

Figure 1 shows the absolute value of the Seebeck
coefficient for various carrier concentrations in n-type and
p-type Si0.75Ge0.25 as a function of temperature (note that
S is negative in n-type materials). In all materials, the See-
beck coefficient is symmetric, giving a similar temperature
dependence for both n- and p-type doping. At the lowest
carrier concentration calculated here (N = 1015 cm−3), a steep
decrease in the Seebeck is observed at 600 K. This is attributed
to a significant decrease of the chemical potential in the
extrinsic regime converging eventually to the Fermi energy of
the intrinsic material. With increasing doping concentration,
the drop of the Seebeck coefficient shifts to higher tem-
peratures, consistent with the extrinsic regime extending to
higher temperatures at higher doping levels. In heavily doped
materials (N = 1019 and 1020 cm−3), the extrinsic regime ex-
tends beyond the temperatures calculated here (T � 1200 K).

The chemical potential in the extrinsic regime is
μc = EC,V ± kBT ln NC

N , where EC,V is the conduction-band
minimum and the valence-band maximum, respectively, and
NC,V are the effective carrier densities in the respective bands
indicating a steeper gradient with decreasing doping concen-
tration N . This behavior is confirmed by the results presented
in Fig. 1.

The Seebeck coefficient for n-type SiGe has been calcu-
lated as a function of the temperature for various SiGe alloys
at a carrier concentration of N = 1018 cm−3 (Fig. S5). The
maximum found around 800 K in Si0.75Ge0.25 (see Fig. 1)
shifts to lower temperatures with increasing x (Ge content),
and its absolute value decreases slightly. The same trend is
observed for p-type samples (Fig. S6).

Interestingly, the Seebeck coefficient in Ge and Si0.1Ge0.9

is smaller than in SiGe alloys with less Ge content at low
temperatures, but it surpasses the other alloys at higher
temperatures (T > 1000 K). This can be explained by the
differences in the effective mass of electrons, which changes
with the position of the minimum in the conduction band as
mentioned before.

3. Effect of the alloy composition

The effect of the Ge content x in the Si1−xGex alloy
on the Seebeck coefficient in n-type and p-type materials
has been specifically analyzed for a carrier concentration of
N = 1018 cm−3 (Fig. S7). At room temperature (300 K), the
Seebeck coefficient is nearly constant for all Si1−xGex, in
agreement with Ref. [13]. A slight increase in n-type materials
is observed close to x = 0.85, which can be explained by
an increase of the density of states at the band crossover
(from Δ to L).

At a temperature of 1000 K, the Seebeck coefficient shows
a steady decrease with increasing x (Ge content), similar
to previous results [13]. In p-type materials, the decrease
at higher x is more pronounced with respect to the n-type
materials. As discussed before, the reduced decrease in n-type
materials is most likely a result of the band crossover close to
x = 0.85. It is expected that at higher temperatures, even an
increase of the Seebeck coefficient with increasing Ge content
at x > 0.85 can be observed (Fig. S5).

A summary of the behavior of the Seebeck coefficient
affected by carrier concentration, temperature, and alloy com-
position is shown in Fig. 2 for n-type materials (see Fig. S8
for p-type). At constant carrier concentration (first column
of panels), S is nearly independent of the alloy composition.
The highest values around 1.2 mV/K are observed in Si-
rich materials at low carrier concentration and intermediate
temperatures (200–500 K).

B. Electrical conductivity

1. Carrier dependence

An increase of the carrier concentration results in an in-
crease of the electrical conductivity, described by a linear
relation (σ ∼ N , Fig. 3). The electrical conductivity calcu-
lated here using the BTE model confirms the proportionality
of the two (note the semilogarithmic scale in Fig. 3). The
obtained results for Si0.75Ge0.25 are in excellent agreement
with previous experimental [9] and theoretical [67] data for
Si0.7Ge0.3 samples.

This behavior is confirmed for all SiGe alloys. The
electrical conductivity of n-type materials (Fig. S9) in general
is higher with respect to their p-type counterparts (Fig. S10).
For all calculated n-doping concentrations, σ is highest in Ge.

2. Temperature dependence

The temperature dependence of the electrical conductiv-
ity has been analyzed in detail at an intermediate carrier
concentration of N = 1018 cm−3 (Fig. S11 n-type, Fig. S12
p-type). We provide evidence that a temperature increase
leads to a decrease in the electrical conductivity up to
around 800 K. Further heating results in an increase of the
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FIG. 2. Absolute value of the Seebeck coefficient of n-type Si1−xGex alloys with varying carrier concentration N , Ge content x, and
temperature T .

electrical conductivity. The decrease at lower temperatures
can be attributed to increased phonon scattering and thus
a reduction of the mobility. At higher temperatures, the

FIG. 3. Electrical conductivity at 300 K as a function of carrier
concentration in Si0.75Ge0.25 in comparison with previous experimen-
tal [9] and theoretical [67] studies. The inset shows a magnified
view of the range 1018 � N � 1020 cm−3 for better visualization of
the results.

conductivity is dominated by the total number of carriers
in the material, which increases with increasing temperature
as a result of increasing intrinsic carriers. The minimum in
electrical conductivity at around 800 K is most pronounced in
pure Ge.

3. Effect of the alloy composition

To properly describe carrier transport in semiconductors,
various scattering mechanisms have to be considered. A de-
tailed analysis of several intra- and intervalley scattering
mechanisms in SiGe alloys has been previously presented
[68]. At room temperature (300 K), the mobility of n-type
materials was shown to be reduced in the SiGe alloys with
respect to the pure counterparts Si and Ge in agreement
with experimental results [69,70]. In particular, a remarkable
decrease of carrier mobility was observed already at low
Si content with respect to pure Ge. Despite the complexity
of scattering mechanisms affecting the carrier mobility in
SiGe, the simplified model used here is capable of describ-
ing well the change of carrier mobilities in Si1−xGex with
varying x in particular at intermediate to high doping levels
(N > 1019 cm−3, Fig. S13).

The reduced mobility in SiGe alloys leads to a similar
behavior in the electrical conductivity. Trends of the electrical
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FIG. 4. Electrical conductivity of n-type Si1−xGex alloys with varying carrier concentration N , Ge content x, and temperature T .

conductivity in SiGe alloys calculated here at a carrier con-
centration of N = 1018 cm−3 at 300 and 1000 K (Fig. S14) are
similar to results reported previously for n-type SiGe alloys at
1200 K [13].

In summary, σ is mostly controlled by the carrier concen-
tration giving insignificant values in intermediate and lightly
doped materials (N � 1018 cm−3) as shown in Fig. 4. The
highest values are observed in Ge-rich alloys at low tem-
peratures. A similar behavior is observed in p-type materials
(Fig. S15).

C. Power factor

The power factor given by σS2 describes the electronic
features entering in the thermoelectric figure of merit ZT .
It is independent of the thermal transport properties and of-
fers the possibility of comparing and verifying the electronic
contribution to the thermoelectric properties. We have calcu-
lated it specifically for Si0.75Ge0.25 at 300 and 1000 K as a
function of the carrier concentration (Fig. 5 n-type, Fig. S16
p-type), and we obtained very good agreement with previous
experimental results [9]. At room temperature, it shows a
maximum between 1019 and 1020 cm−3. The maximum is
higher and shifted to higher carrier concentrations (∼1021

cm−3) when increasing the temperature up to 1000 K. Anal-

ysis of the temperature dependence of the power factor in
p-type SiGe shows as well very good agreement with previous
experimental results [71] (Fig. S17). This result stands for the
overall reliability, transferability, and accuracy of the present
theoretical and computational setup.
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FIG. 5. Power factor σS2 as a function of carrier concentration N
in n-type Si0.75Ge0.25 at 300 K (green) and 1000 K (red) in compari-
son to experimental data for samples close to Si0.7Ge0.3 by Dismukes
et al. [9] (triangles).

065403-6



INTRINSIC THERMOELECTRIC FIGURE OF MERIT OF … PHYSICAL REVIEW MATERIALS 5, 065403 (2021)

IV. THERMAL TRANSPORT

A. Effect of mass disorder

As described in Sec. II (Theoretical Framework), the lat-
tice thermal conductivity has been calculated using DFPT
to determine the second (harmonic) and third (anharmonic)
order interatomic force constants, which are then used to solve
the phonon BTE. The DFPT calculations are carried out in
the framework of the virtual crystal approach. Assigning an
average mass to virtual crystal atoms, however, drastically re-
duces phonon scattering events resulting from mass disorder,
and as a result yields an overestimated thermal conductivity.
Mass disorder has been added in the calculations as an ad-
ditional harmonic scattering term as described above and in
the supplemental material [47]. This approach has been used
successfully in SiGe alloys [16] and other materials such as
lead-based alloys [72] and Mg2SixSn1−x [73] showing good
agreement with experiments. It has been demonstrated that in
alloys composed of two group IV elements, perturbation from
mass disorder is sufficient to accurately describe the thermal
conductivity, whereas in alloys composed of III-V or II-VI
group elements, such as In1−xGaxAs, additional force constant
disorder needs to be taken into account [74]. A very recent
detailed study compared several advanced methods including
the T -matrix approach and the supercell unfolding method,
showing good agreement in phonon lifetimes for low-energy
phonons [75]. This confirms that all methods, including the
approach used here, are reliable in SiGe alloys where 90%
of the lattice thermal conductivity can be attributed to low-
energy phonons [75].

Our calculations confirmed that mass disorder scattering
drastically reduces the thermal conductivity in Si1−xGex alloy.
Negligence of the latter resulted in a more than sevenfold
overestimation of the thermal conductivity in certain samples.

Increased scattering from mass disorder is expected with
increased doping concentration and accordingly has been in-
cluded in the calculations of the lattice thermal conductivity
for heavily doped systems. In the SiGe alloys studied here
(x = 0.1, 0.25, 0.5, 0.75, and 0.9), even the highest carrier
concentration considered (N = 1020 cm−3) resulted in a vari-
ation of the lattice thermal conductivity by only 1%. In the
alloys it has thus been neglected. In pure Si and Ge, how-
ever, the doping concentration needs to be considered in the
calculation of the lattice thermal conductivity. Several dop-
ing concentrations N have been calculated for doping with
arsenic (As) in Si (Fig. S19). A remarkable decrease in the
thermal conductivity is observed for doping concentrations of
1019 cm−3 and higher.

In heavily doped Ge (4.6 × 1020 cm−3), As-doping results
in an insignificant reduction of the thermal conductivity by
0.6%. This confirms the impact of mass difference between
host and dopant, which is very low between Ge and As, having
atomic masses of 72.64 and 74.92 a.u., respectively. However,
the thermal conductivity in Ge is notably reduced when doped
with phosphorus (P). At a P concentration of 4.6 × 1020 cm−3,
the thermal conductivity is reduced by 52% with respect to
undoped Ge (Fig. S19).

Based on these results, the lattice thermal conductivity for
the calculation of the figure of merit has been considered
unaltered with respect to the undoped material for all SiGe

alloys and for pure Si and Ge up to a doping concentration
of 1017 cm−3. At doping concentrations of 1018 cm−3 and
higher, a relative reduction of the thermal conductivity has
been assumed based on the results for As and P doping in
Si and Ge, respectively.

Phonon-electron interactions have not been considered in
the calculation of the lattice thermal conductivity. Such inter-
actions have been shown to be negligible for charge carrier
concentrations below 1018 cm−3. On the other hand, it has
been reported that the calculated lattice thermal conductiv-
ity for higher carrier concentration is in fact affected by
phonon-electron scattering [76]. The results presented here
can therefore be regarded as an upper limit of the lattice
thermal conductivity.

B. Temperature dependence

The present calculations have been performed in the tem-
perature range from 100 to 1200 K. At low temperatures, the
lattice thermal conductivity increases with increasing tem-
perature as a result of higher phonon group velocities. Heat
transport in this temperature range is dominated by nor-
mal processes. The maximum of thermal conductivity in Si
and Ge is found around 25 and 10 K, respectively [77]. In
the temperature range calculated here (T � 100 K), lattice
thermal conductivity is dominated by umklapp scattering,
which increases with increasing temperature resulting in a
decreasing thermal conductivity. A drastic decrease is ob-
served in particular between 100 and 300 K. Results of Si
and Ge are in excellent agreement with experimental results
(Fig. S20) [77–79].

C. Effect of the alloy composition

The effect of the SiGe alloy composition on its lattice
thermal conductivity has been studied extensively both exper-
imentally [8,14] and theoretically [16,17]. Already at small
Si or Ge content, i.e., close to pure Ge and Si, respectively,
the thermal conductivity is notably reduced with respect to
the pure materials. This remarkable decrease is mainly caused
by mass disorder, confirmed by the calculations performed
here. Without considering the effect of mass disorder, the
thermal conductivity would decrease linearly with increasing
Ge content.

The lattice thermal conductivity calculated here is in ex-
cellent agreement with experimental data from Steele and
Rosi [80] at room temperature (300 K) (Fig. 6) and below.
Several other experimental studies have shown lower values
of the thermal conductivity [9,25,81], in some cases less than
half of the values calculated here. Reported values for Si-rich
alloys (0.15 � x � 0.3) at room temperature range from 6
to 19 W/mK [9,80,81]. The differences in the production
method and the resulting amount of impurities and defects in
the samples is likely the reason for the discrepancies between
experimental studies. This guess is confirmed by a study
demonstrating that the thermal conductivity in sintered SiGe
alloys can be half that of crystalline SiGe produced by other
methods [25].

This issue has been addressed recently also from a theo-
retical point of view, focusing on the lowest possible value
(the so-called alloy limit) of the thermal conductivity in SiGe
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FIG. 6. Thermal conductivity in Si1−xGex alloys as a function of
x at 300 K in comparison to previous experimental [9,80] and theo-
retical [16] studies. The inset shows a magnified view of the range
0.1 � x � 0.9 for better visualization of the differences in lattice
thermal conductivity between various experimental and theoretical
studies.

alloys, which has been examined by MD simulations [82].
The latter study showed a notable decrease in the lattice
thermal conductivity when simulation cells were composed
of larger units with irregular atom distribution, demonstrating
the importance of a sufficiently large unit cell. Furthermore,
another study based on MD simulations has shown that the
thermal conductivity is drastically reduced when a second
phase is formed, introducing additional scattering events at
grain boundaries [17]. These theoretical explanations are in
line with experimental studies stating that some specimens
exhibit small amounts of a second phase and consist of elon-
gated grains [9]. Such structural effects cannot be captured
explicitly in first-principles calculations due to limitations of
the simulation unit.

Several approaches have been discussed recently to over-
come this issue. Scattering effects from vacancies and
impurities, for example, have been introduced in a first-
principles study [12]; however, they rely on a parameter that
must be adjusted based on experimental results [83]. More
advanced methods applying the T -matrix method for point
defects have shown that, in particular, vacancies can lead to
a drastic decrease in the thermal conductivity [84,85]. Our
study is intended to give intrinsic values of the lattice thermal
conductivity, therefore such effects have been neglected.

Discrepancies with other theoretical studies using the same
approach as in this study result from a different q-grid used
for the calculation of the thermal conductivity [Eq. (18) in the
supplemental material [47]]. In our study, the lattice thermal
conductivity has been extrapolated to an infinite grid as ex-
plained in the supplemental material [47] (see Fig. S22), while
previous studies often used finite values corresponding to
q-grids between 10 × 10 × 10 and 20 × 20 × 20 mainly cho-
sen for convenience [16,86]. Using a q-grid of 20 × 20 × 20,
our results are in excellent agreement with previous results
[16] (Fig. S23), however they are remarkably lower than those
obtained by an extrapolation to an infinite q-grid (Fig. 6,
inset), which we consider here as the ultimate value.

Finally, we remark that even adopting a similar MD sim-
ulation approach, the predicted lattice thermal conductivity
of a Si0.5Ge0.5 homogeneous alloy is reported to vary in a
wide range of values, namely 1–7 W/mK [17,40,43,87]. This
points out how the MD predicted value of thermal conduc-
tivity depends on many implementation details, such as, for
example, the force field, the simulations cell size, and the
equilibrium (Green-Kubo) or nonequilibrium (direct method)
protocol of the simulation.

The overall thermal conductivity given by the sum of the
lattice thermal conductivity and the electronic thermal con-
ductivity is represented in Fig. 7. At room temperature, the
electronic contribution to the thermal conductivity plays a
minor role. However, it becomes more significant at high
temperatures, particularly in combination with heavy doping
(Figs. S25 and S26). At 1000 K and a carrier concentration
of N = 1020 cm−3, the electronic contribution to the thermal
conductivity in Si0.25Ge0.75 is more than one third in both
n- and p-type materials.

V. FIGURE OF MERIT

A. Carrier dependence

Based on the transport coefficients discussed in the
previous paragraphs, ZT has been calculated for varying pa-
rameters. The values for ZT can be regarded as a lower limit
since the thermal conductivity calculated here is based on
intrinsic properties and represents an upper limit for the latter.
Figure 8 shows ZT as a function of the carrier concentration
in Si0.75Ge0.25 at a temperature of 300 and 1000 K. At room
temperature, a maximum of ZT is observed between 1019 and
1020 cm−3, corresponding to the maximum of the power factor
(Fig. 5), where the maximum in the p-type material is at some-
what lower concentrations and in magnitude slightly smaller
than in the n-type material. In agreement with previous ex-
perimental and theoretical studies [9,13,26], ZT is higher at
elevated temperatures (here 1000 K), and the maximum is
found at higher carrier concentrations. At 1000 K, a maximum
ZT in Si0.75Ge0.25 of 0.3 is calculated for an n-type carrier
concentration of 3.7 × 1020 cm−3. This value is notably lower
with respect to previously reported data mainly resulting from
the differences in the thermal conductivity as discussed in the
previous section and confirmed by the agreement in the power
factor (Figs. 5, S16, and S17).

B. Temperature dependence

In general, ZT in SiGe alloys is higher with respect to the
pure Si and Ge as a result of the reduced thermal conductivity.
However, at 300 K, it is fairly low in all bulk SiGe alloys,
making such materials irrelevant for technological applica-
tions at room temperature. With increasing temperature, the
thermal conductivity decreases in all materials, in particular
in Ge-rich systems, leading to a notable increase in ZT . At
n-type doping of 1018 cm−3, the highest ZT (0.057) is found
for pure Ge at 800 K, followed by Si0.25Ge0.75 with a slightly
lower maximum of 0.05 at the same temperature (Fig. S28).
Increasing Si content in the SiGe alloy in general results in a
decrease of the ZT peak and its shift to higher temperatures.
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FIG. 7. Overall thermal conductivity (κe + κL) of n-type Si1−xGex alloys with varying carrier concentration N , Ge content x, and
temperature T .

C. Effect of the alloy composition

The effect of the alloy composition on ZT has been ana-
lyzed in detail for a carrier concentration of 1018 cm−3 at 300
and 1000 K (Fig. S30). At both temperatures, ZT increases
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FIG. 8. Figure of merit ZT in Si0.75Ge0.25 alloys as a function of
the carrier concentration N at 300 K (red lines) and 1000 K (green
lines) with n-type (solid lines) and p-type (dotted lines) doping.

already at low Ge content, while a further increase of the Ge
content results in only marginal changes of ZT in the n-type
materials, as shown previously [13].

With the data discussed above, the thermoelectric figure
of merit in bulk Si1−xGex can be summarized as a function
of carrier concentration, temperature, and alloy composition
as shown in Fig. 9. The highest values are observed for
heavily doped (N = 1020 cm−3) Ge-rich (x between 0.5 and
0.8) materials at high temperatures (>1000 K). The absolute
values calculated here are lower than the commonly reported
values around 0.8–1 for SiGe alloys at elevated temperatures
[9,13,26]. This difference is only due to extrinsic defects (not
included here) largely affecting the thermal conductivity as
discussed in the previous paragraph.

VI. CONCLUSIONS

The thermoelectric properties described by the figure of
merit ZT of SiGe-based materials have been studied exten-
sively in the literature. Optimization of ZT as a result of
the interdependent parameters, however, is not trivial. From
an experimental point of view, a systematic study screening
all material properties affecting the figure of merit is almost
impossible since the accuracy of the alloy composition and
carrier concentration is limited. Most computational studies
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FIG. 9. Figure of merit of n-type Si1−xGex alloys with varying carrier concentration N , Ge content x, and temperature T .

have focused either on the electronic properties or on the
thermal transport relying on different methods for the two.

Here, we have carried out a consistent and systematic study
based on first-principles calculations for both electronic and
thermal transport properties in bulk SiGe alloys. The effect
of alloy composition, carrier concentration, and temperature
on the Seebeck coefficient, the electrical and thermal conduc-
tivity, and eventually the figure of merit has been evaluated.
Seven different compositions of Si1−xGex (x = 0, 0.1, 0.25,
0.5, 0.75, 0.9, and 1) have been calculated, the carrier con-
centration has been changed from 1015 to 1020 cm−3, and
temperatures from 100 to 1200 K have been considered.

The Seebeck coefficient is found to decrease exponentially
with increasing carrier concentration, as expected. It is lowest
in Ge-rich materials, and in general lower values are observed
in n-type materials with respect to p-type. At intermediate
carrier concentrations, it shows a maximum between 700 and
900 K, which is lower in height and at lower temperatures
for Ge-rich materials. In p-type materials, it steadily shifts to
lower temperatures with increasing Ge content. Other than a
small decrease for Ge-rich materials (x � 0.9), the Seebeck
coefficient hardly changes with varying alloy composition.
Overall, it is found to be highest in both n- and p-type
materials for light doping (1015–1017 cm−3) at intermediate
temperatures (300–500 K) and in Si-rich materials.

At variance with the Seebeck coefficient, the electri-
cal conductivity increases linearly with increasing carrier
concentration. In n-type materials at room temperature it
is highest in pure Ge, whereas in p-type materials it is
highest in Si0.25Ge0.75 for increased carrier concentrations
(N � 1019 cm−3). At intermediate carrier concentrations, it
has a minimum between 700 and 900 K in both n- and
p-type materials. Only marginal effects are observed with
changing alloy composition except for pure Ge, where the
electrical conductivity is found to be higher with respect to all
other compositions. In summary, the electrical conductivity is
highest for heavy doping (>1019 cm−3) and at intermediate
temperatures (<500 K). At elevated temperatures, higher val-
ues are also observed for light doping in Ge-rich materials.

In agreement with numerous experimental and theoretical
studies, the thermal conductivity is calculated to decrease
remarkably with respect to pure Si and Ge already at small
alloy compositions, x and 1 − x, respectively. It is found to be
higher compared to many other experimental studies resulting
from the notable decrease in thermal conductivity already at
small impurities and affected by the production method of the
samples. Based on the theoretical framework used here (an
ideal system with no boundaries and no lattice defects with
periodic boundary conditions), the calculated values of this
study can be considered as intrinsic property giving an upper

065403-10



INTRINSIC THERMOELECTRIC FIGURE OF MERIT OF … PHYSICAL REVIEW MATERIALS 5, 065403 (2021)

limit of the thermal conductivity. The lattice thermal conduc-
tivity decreases with increasing temperature. This decrease is
most pronounced in the pure Si and Ge materials.

The overall thermoelectric performance summarized in the
intrinsic figure of merit ZT in general increases with in-
creasing carrier concentration and increasing temperature as a
result of the increasing electrical conductivity and decreasing
thermal conductivity. Depending on the carrier concentration
and alloy composition, it shows a maximum for temperatures
between 800 and 1200 K. The maximum found with respect
to the carrier concentration increases and shifts to higher
carrier concentrations with increasing temperature. The ul-
timate highest values of ZT are found for heavy doping
(>1019 cm−3) and elevated temperatures (>1000 K) in
Si1−xGex alloys with Ge content from 0.5 to 0.8 in agreement
with previous studies demonstrating the capability of first-
principles calculations to adequately describe thermoelectric

properties without the need of empirical parameters. This
study paves the way to further improve the calculation of
thermoelectric properties in realistic materials with any degree
of structural complexity based on first-principles methods.
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