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Abstract: We consider the B0
s → µ+µ−γ effective lifetime, and the related CP-phase

sensitive quantity Aµµγ∆Γs , as a way to obtain qualitatively new insights on the current B-
decay discrepancies. Through a fit comparing pre- to post-Moriond-2021 data we identify
a few theory benchmark scenarios addressing these discrepancies, and featuring large CP
violation in addition. We then explore the possibility of telling apart these scenarios with
Aµµγ∆Γs , once resonance-modeling and form-factor uncertainties are taken into account. We
do so in both regions of low and high invariant di-lepton mass-squared q2. For low q2,
we show how to shape the integration range in order to reduce the impact of the φ-
resonance modelling on the Aµµγ∆Γs prediction. For high q2, we find that the corresponding
pollution from broad-charmonium resonances has a surprisingly small effect on Aµµγ∆Γs . This
is due to a number of cancellations, that can be traced back to the complete dominance
of semi-leptonic operator contributions for high q2 — at variance with low q2 — and to
Aµµγ∆Γs behaving like a ratio-of-amplitudes observable. Our study suggests that Aµµγ∆Γs is —
especially at high q2 — a potentially valuable probe of short-distance CP-violating effects
in the very same Wilson coefficients that are associated to current b→ s discrepancies. Its
discriminating power, however, relies on progress in form-factor uncertainties. Interestingly,
high q2 is the region where B0

s → µ+µ−γ is already being accessed experimentally, and the
region where form factors are more accessible through non-perturbative QCD methods.
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1 Introduction

The decay B0
s → µµγ has recently attracted new attention in connection with, but also

independently from, the discrepancies currently observed in b → s transitions [1–5]. One
reason is the fact that, once sizeable new-physics effects on B0

s → µµ have been excluded by
recent measurements of its branching fraction, the decay B0

s → µµγ becomes interesting,
as it allows to probe a larger set of Wilson coefficients than B0

s → µµ, in particular all
those of current interest in connection with the mentioned discrepancies [6–14]. Moreover,
B0
s → µµγ enjoys an enhancement due to the lifting of the chiral suppression by the photon

coupling, which translates into a branching ratio of the order of 10−8 [15–18].
Admittedly, from a theory point of view B0

s → µµγ is not nearly as clean as B0
s →

µµ [19–21] because of the required B0
s → γ form factors (f.f.’s), and the limited knowledge

thereof [16, 18, 22–26]. However, this difficulty can be circumvented in selected regions
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of the measurable phase space [27], and/or by defining ratio observables whereby the f.f.
uncertainties cancel to a large extent [17, 18]. Besides, from an experimental point of
view the high-q2 B0

s → µµγ spectrum may be accessed from the very same, abundant
dataset as B0

s → µµ [27], i.e. without direct detection of the photon. In fact, a search with
this method has been performed recently by the LHCb experiment [28, 29], with the full
statistics collected so far, for dimuon masses above 4.9 GeV, yielding the first experimental
limit on the branching fraction of this decay of 2.0× 10−9 at 95% CL for the mass region
considered. This confirms that prospects of detection or of improved limits at LHCb are
favourable with future datasets.

One under-explored feature of B0
s → µµγ is its capacity to probe new CP violation,

i.e. complex Wilson coefficients. Actually, and as well-known [30], in most constraining
b→ s-sector branching ratios and CP-averaged angular observables, only NP contributions
aligned in phase with the SM can interfere with the SM contributions. As a consequence,
NP with non-standard CP violation is in fact constrained more weakly than NP where CP
violation stems only from the CKM phase. As a further consequence, for the coefficients
present in the SM, i.e. C7, C9 and C10, the constraints on the imaginary part of the NP
contributions end up being looser than on the real part, as we will discuss later.

The effective lifetime of B0
s → µµγ allows to access the quantity known as Aµµγ∆Γs , which

offers a sensitive probe of new CP-violating effects in b→ s-sector Wilson coefficients. We
introduce and calculate explicitly this quantity.1 Aµµγ∆Γs is naturally a ratio-of-amplitudes
observable, so that sensitivity to hadronic uncertainties may be accordingly reduced. We
explore this question in detail. Specifically, this quantity may be studied in two separate
regions, to be indicated as low- and high-q2, located beneath and respectively above the J/ψ
and ψ(2S) resonances. In the low-q2 region, a calculation of the long-distance dynamics
based on factorisation methods was recently made available [22]. Besides, for both low
and high q2, a further recent parameterization based on light-cone sum rules (LCSRs) has
recently appeared in ref. [33].2 For low q2 we are thus able to perform an explicit comparison
between the two parameterizations, and thereby explore the sensitivity of Aµµγ∆Γs to the
f.f. choice. Although a similar comparison is not yet possible for high q2, we are however
able to address the question of the Aµµγ∆Γs sensitivity to broad-charmonium resonances, which
we find to be reassuringly small. This region is the most sensitive to the operators O9 and
O10 allegedly responsible for b → s discrepancies, and is the region where B0

s → µ+µ−γ

may be accessible in the short/medium term with the method in ref. [27].
The plan of the paper is as follows. In section 2 we collect the basic facts about effective

lifetimes and rederive the related CP-violating observable for the case of B0
s → µµγ, as

an example of a decay with more than two particles in the final state. We specifically
discuss the necessity of including phase-space integrals, separately in the numerator and
denominator of the Aµµγ∆Γs definition. In section 3 we discuss to what extent b → s and
related data as of Moriond 2021 allow for complex contributions to the Wilson coefficients

1The effective lifetime was first introduced in ref. [31], and it was specifically discussed as a B0
s → µµ

observable in [32] as a probe of new CP violation in scalar operators.
2Before this parameterization was made public, it was applied in ref. [26]. For a related discussion

see [34]. A further f.f. determination, based on a phenomenological model, is due to refs. [18, 23, 24, 35].
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C7,9,10. We identify several benchmark new-physics scenarios. Our aim is to compare their
effect on Aµµγ∆Γs with the effect of hadronic uncertainties, including f.f. parameterisations,
as well as resonant effects from the φ and from broad charmonium. We perform such
comparison in section 4, devoted to low q2, and section 5, on high q2. Finally, in section 6 we
provide a discussion of the experimental prospects as well as our conclusions. We relegate
to appendices: notational details on the necessary amplitudes and f.f.’s (appendix A);
a discussion of f.f.’s within the BBW approach [22] and a comparison with the LCSR
parameterisation in ref. [33] (appendix B); explicit Aµµγ∆Γs formulæ (appendix C); a detailed
analytic argument on why the uncertainty induced by broad-charmonium resonances is
small (appendix D); our input table (appendix E).

2 Basics and main formulæ

Given a final state f common to both the B0
s and the B̄0

s , the most ‘natural’ experimental
observable assuming equal production rates for a B0

s and a B̄0
s is the ‘untagged’ rate [32, 36]

〈Γ(Bs(t)→ f)〉 ≡ Γ(B0
s (t)→ f) + Γ(B̄0

s (t)→ f) =
∫

PS

(
|Af (t)|2 + |Āf (t)|2

)
, (2.1)

where ∫
PS
≡
∫ (2π)4

2MBs

dΦf , (2.2)

with dΦf an element of n-body phase space for the final state f [37], and where
(–)

Af (t)
denote the amplitudes of decay to f for a Bs-meson that was a

(–)

B
0
s at t = 0.

The explicit time dependence of the two amplitudes squared appearing on the r.h.s. of
eq. (2.1) is well-known. One introduces

|BL,H〉 = p|B0
s 〉 ± q|B̄0

s 〉 ,(
q

p

)2
= e−2iφM (1 + a) ,

∆Ms = MH −ML , Γs = ΓH + ΓL
2 , ∆Γs = ΓL − ΓH , (2.3)

where the deviation of |(q/p)2| from unity measures CP violation in B0
s − B̄0

s oscillations,
and is quantified by a ≈ ASL ' −3.5× 10−3 [37], with ASL the ‘wrong-charge’ asymmetry
for

(–)

B
0
s → `∓+X decays. From eqs. (2.3), the amplitudes squared |

(–)

Af (t)|2 can be calculated
as follows [36]

|
(–)

Af (t)|2 = e−Γst

2
[(
|Af |2 + |q/p|2|Āf |2

)
cosh(∆Γs t/2)±

(
|Af |2 − |q/p|2|Āf |2

)
cos(∆Ms t)

− 2 Re
(
q/p ĀfA∗f

)
sinh(∆Γs t/2)∓ 2 Im

(
q/p ĀfA∗f

)
sin(∆Ms t) , (2.4)

where we omitted terms of O(a) in the |Āf (t)|2 case. Clearly, the sin and cos terms in
eq. (2.4) will cancel in the sum on the r.h.s. of eq. (2.1), and one gets [32]

〈Γ(Bs(t)→ f)〉 =
(
RfH +RfL

)
e−Γst

[
cosh

(
yst

τs

)
+Af∆Γs sinh

(
yst

τs

)]
, (2.5)
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with RfH +RfL =
∫

PS

(
|Af |2 + |q/p|2|Āf |2

)
. For Af∆Γs one then gets

Af∆Γs =
−2
∫

PS Re
(
q/p ĀfA∗f

)
∫

PS

(
|Af |2 + |q/p|2|Āf |2

) . (2.6)

The Af∆Γs expression usually found in the literature is the r.h.s. of eq. (2.6), without the
phase-space integrals. We note explicitly that these phase-space integrals are separate in
the numerator and the denominator of Af∆Γs , see eq. (2.6). Therefore, for decays to more
than two particles in the final state, they cannot be accounted as the overall normalization
factor that is usually understood in the literature. In fact, the products ĀfA∗f , |Af |2 and
|Āf |2 will depend on kinematic invariants if f consists of ≥ 3 particles, and this dependence
is different for the different Wilson-coefficient combinations that these amplitude products
depend on. The integrals allow to integrate out such kinematic dependence, in accord with
the l.h.s. of eq. (2.5), which depends on t only.

From eq. (2.1) one may define the general relation between the experimental and the
theoretical branching ratio as [32, 36, 38]

B(Bs → f)exp ≡
1
2

∫ ∞
0
〈Γ(Bs(t)→ f)〉dt =

1 +Af∆Γsys

1− y2
s

B(Bs → f)th , (2.7)

where
B(Bs → f)th ≡

τs
2 〈Γ(Bs(0)→ f)〉 . (2.8)

The parameter Af∆Γs relating the two branching ratios is final-state as well as model de-
pendent. Interestingly however, Af∆Γs can be extracted directly from another observable,
the effective lifetime [31, 32], defined as

τ feff ≡
∫∞

0 t〈Γ(Bs(t)→ f)〉dt∫∞
0 〈Γ(Bs(t)→ f)〉dt = τs

1− y2
s

1 + 2Af∆Γsys + y2
s

1 +Af∆Γsys

 . (2.9)

In the above relations we introduced, as customary, the average Bs-system lifetime τs and
the fractional lifetime difference ys ≡ ∆Γs/(2Γs).

2.1 Aµµγ∆Γs
calculation

The calculation of Aµµγ∆Γs is a special case of eq. (2.6). The integral over the 3-body phase
space reads ∫

PS,µµγ
= MBs

28π3

∫
dŝ dt̂ , (2.10)

where, after defining the decay kinematics
(–)

B
0
s(p) → µ+(p1) + µ−(p2) + γ(k), we intro-

duce [23] the kinematic invariants s = (p1 + p2)2, t = (p − p1)2, and a hatted quantity
denotes that it has been normalized to the appropriate power of MBs to make it dimen-
sionless. Further using

t̂ = m̂2
µ + 1− ŝ

2

1−

√
1−

4m̂2
µ

ŝ
cos θ

 , (2.11)
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with θ = arccos ~p2·~k
|~p2||~k|

, one has

∫
PS,µµγ

= MBs

28π3

∫
f(ŝ, m̂2

µ) dŝ d cos θ , with f(ŝ, m̂2
µ) ≡ 1− ŝ

2

√
1−

4m̂2
µ

ŝ
. (2.12)

We obtain

Aµµγ∆Γs = −
∫

PS,µµγ Re
(
q/p ĀA∗

)
∫

PS,µµγ |A|
2

[0.3cm] = −
∫
dŝ d cos θ f(ŝ, m̂2

µ) Re
(
q/p ĀA∗

)
∫
dŝ d cos θ f(ŝ, m̂2

µ) |A|2
, (2.13)

where, to ease notation, we used the abbreviation
(–)

A ≡
(–)

Aµµγ , (2.14)

took into account that |Ā| = |A|, and again neglected terms of O(a) (see eq. (2.3)). An
explicit formula for A and the relation between A and Ā are reported in appendix A. The
corresponding formula for Aµµγ∆Γs is provided in appendix C.

A few comments are in order. First, the CKM phase in the weak-Hamiltonian coupling
in ĀA∗ exactly cancels the q/p phase, as expected. More specifically, after introducing the
CP transformation

CP|B0
s 〉 = eiφCP |B̄0

s 〉 , (2.15)

with φCP a convention-dependent phase (φCP = 0 in FLAG [39] and = π in [36]), the phase
φM appearing in the q/p ratio (see eq. (2.3)) is given by (see e.g. [40])

φM = π + 2 arg(VtbV ∗ts)− φCP . (2.16)

Making the flavour of the initial state explicit, we then have Āf/Af ≡ Ā(q)
f /A(q)

f =
e+iφM ξ

(q)
f , with ξ

(q)
f , (q = d, s), a convention-independent quantity that depends on the

initial state B0
q as well as on the final state f . The quantity ξ

(q)
f can be determined in

terms of two of the three observables

Af∆Γq ≡
−2
∫

PS |Af |2 Re ξ(q)
f∫

PS |Af |2 (1 + |ξ(q)
f |2)

, Af,mix
CP ≡

−2
∫

PS |Af |2 Im ξ
(q)
f∫

PS |Af |2 (1 + |ξ(q)
f |2)

,

Af,dir
CP ≡

∫
PS |Af |2 (1− |ξ(q)

f |2)∫
PS |Af |2 (1 + |ξ(q)

f |2)
, (2.17)

where, for q = s, the first relation coincides with eq. (2.6). Since the φM dependence is
the same in Āf/Af and in ĀfA∗f , the latter appearing in eq. (2.13), we see that Af∆Γs is
phase-convention independent, as well-known [36, 40].

We observe that, given the very Aµµγ∆Γs definition, complex phases in any of the
Wilson-coefficient combinations contribute to ‘misaligning’ numerator and denominator

– 5 –
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in eq. (2.13), in turn causing Aµµγ∆Γs to depart from unity.3 This makes Aµµγ∆Γs a very sen-
sitive probe of new, short-distance, CP-violating effects; besides, the fact that Aµµγ∆Γs is
a ‘ratio-of-amplitudes-squared’ quantity helps reducing its sensitivity to certain hadronic
effects for high q2, as we will see in detail in section 5.2.1 and appendix D. Of course,
the above mentioned ‘misalignment’ depends on the theory scenario assumed, e.g. the SM
vs. a given new-physics shift to the Wilson coefficients, in particular on the imaginary
component of such shifts. Hence, to address the hadronic sensitivity of Aµµγ∆Γs in detail, we
have to first establish theory scenarios to use as benchmarks. We discuss the latter in the
next section.

3 Parenthesis: a CPV global fit in the light of recent data

This section lies somewhat outside the main line of discussion of this paper, which is
centered around Aµµγ∆Γs . This section, however, emphasises that large CP-violating effects
on certain b → s Wilson coefficients [14, 30, 41] are still possible with updated data, and
that Aµµγ∆Γs offers a new, theoretically clean observable to put them to the test.

To make our point, we consider the b → sµµ effective Hamiltonian (for notation
see appendix A), and we compare real vs. complex deviations on one-Wilson-coefficient
combinations including C(′)

7,9,10, as well as on the chiral-basis combinations C(′)
9 − C

(′)
10 =

CLL(RL) and C
(′)
9 + C

(′)
10 ≡ CLR(RR). These scenarios include a few that are well-known

to describe the persistent set of deviations in b → s data remarkably well, in particular
CNP

9 and CNP
9 = −CNP

10 . Blissfully, this is still the case after the most recent LHCb
analyses including the full Run-2 dataset [28, 29, 42]. These updates, recently presented at
Moriond EW 2021, are included in our analysis, which is summarised in table 1. Existing
studies discussing the complex-Wilson-coefficient case include [14, 30], as well as the very
recent [41]. Below we add comments of comparison with these studies.

We use the common notation Ci = CSM
i + CNP

i , with the renormalization scale set to
4.8GeV. We constrain CNP

i with a maximum-likelihood approach, as implemented in the
Python packages smelli and flavio [43–45]. We scan the likelihood of each scenario in the
Re(CNP

i )/ Im(CNP
i ) plane, using all observables directly relevant to the b→ s sector, which

are summarised in table 2. In particular, we include the RK and B0
s → µ+µ− updates as

of Moriond 2021.4
The important qualitative message from table 1 is that, for a given Wilson coefficient

or Wilson-coefficient combination, sizeable imaginary contributions are entirely compatible
with data. Representative shifts can be read off from the second column in table 1, which
refers to the NP contribution only. These shifts show that the wealth of available b → s

data is still relatively under-constraining for Wilson-coefficient shifts with a large phase not
3We also note that kinematic structures are different for different Wilson-coefficient combinations. In

eq. (2.13), the phase-space integrals take care of integrating over the kinematic variables — see also comment
made below eq. (2.6). Concretely, we integrate cos θ in the full range [−1, 1]. We then integrate ŝ in
appropriate ranges, chosen to minimise pollution from resonant regions while maximising event rates.

4The recent B0
s → µ+µ− update includes the first (ever) limit on B0

s → µ+µ−γ in a limited portion of
the q2 spectrum, following the method in ref. [27]. This decay is sensitive to all Wilson coefficients relevant
to the current discrepancies [23, 46]. The new bound is not yet constraining for our analysis.
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Pre-Moriond 2021 Post-Moriond 2021
Scenario Best-fit Pull p-value Best-fit Pull p-value

C7
IR −0.0079 0.58σ 0.11% −0.0079 0.57σ 0.12%
lC −0.0045− 0.056 i 0.61σ 0.11% −0.0044− 0.056 i 0.61σ 0.11%

C9
IR −0.97 6.4σ 10.0% −0.93 6.7σ 12.0%
lC −0.98− 0.22 i 6.1σ 9.4% −0.93− 0.25 i 6.4σ 12.0%

C10
IR 0.72 5.8σ 6.1% 0.68 6.0σ 5.7%
lC 0.80 + 0.74 i 5.6σ 6.0% 0.76 + 0.75 i 5.8σ 5.6%

CLL
IR −1.1 6.9σ 18.0% −0.96 7.0σ 16.0%
lC −1.2− 1.5 i 6.7σ 18.0% −1.1− 1.4 i 6.8σ 16.0%

CLR
IR 0.34 1.2σ 0.13% 0.28 1.1σ 0.09%
lC 0.34 + 0.032 i 0.74σ 0.11% 0.28 + 0.017 i 0.59σ 0.08%

C ′7
IR 0.004 0.28σ 0.12% 0.005 0.29σ 0.07%
lC 0.004− 0.001 i 0.05σ 0.10% 0.005− 0.0003 i 0.05σ 0.06%

C ′9
IR 0.14 0.74σ 0.13% 0.0044 0.06σ 0.09%
lC 0.13 + 0.24 i 0.54σ 0.12% 0.0012 + 0.2 i 0.24σ 0.08%

C ′10
IR −0.18 1.7σ 0.14% −0.09 0.81σ 0.08%
lC −0.20− 0.14 i 1.3σ 0.13% −0.063− 0.11 i 0.45σ 0.07%

CRL
IR 0.22 1.5σ 0.17% 0.088 0.23σ 0.07%
lC 0.24 + 0.40 i 1.3σ 0.16% 0.085 + 0.32 i 0.40σ 0.07%

CRR
IR −0.37 1.4σ 0.17% −0.28 1.1σ 0.09%
lC −0.37− 0.003 i 0.93σ 0.15% −0.28− 0.004 i 0.65σ 0.08%

Table 1. Comparison table of real vs. complex one-Wilson-coefficient scenarios for the b → sµµ

Hamiltonian. The best-fit columns refer to the NP contribution only. The pull is meant with
respect to the SM likelihood. Pre- vs. post-Moriond 2021 results refer to the exclusion vs. inclusion
of the updates in the last row of table 2. For reference, the p-value of the SM with the considered
set of observables is 0.12% with pre-Moriond results and 0.09% after Moriond 2021, meaning that
scenarios other than C9, C10 or CLL are no better than no NP at all.

aligned to the corresponding one in the SM contribution. As we discuss in later sections,
Aµµγ∆Γs is a novel, efficient probe of precisely this case.

In figure 1 we also show the 1, 2, 3σ CL contours for the global fit in four selected
scenarios, as solid black lines. These scenarios are CNP

7 , CNP
9 , CNP

10 , and CNP
9 = −CNP

10
= CNP

LL /2.5 We also plot individual constraints coming from the subsets of observables
that are the most constraining among all those included in both smelli and flavio.
These subsets are indicated in boldface in table 2. We make the following comments about

5These scenarios will henceforth be referred to by dropping the NP superscript, i.e. as C7, C9, C10 and
CLL, respectively. In addition, the ‘SM scenario’ will denote the case with all CNP

i = 0.
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b→ sµµb→ sµµb→ sµµ CP-even obs. Ref. Λb → ΛµµΛb → ΛµµΛb → Λµµ obs. Ref.〈
dB
dq2

〉
(B+ → K(∗)µµ)

[47]

〈
dB
dq2

〉
(Λb → Λµµ) [48]〈

dB
dq2

〉
(B0 → Kµµ) 〈AFBl,lh,h〉 (Λb → Λµµ) [49]〈

dB
dq2

〉
(Bs → φµµ) [3, 50] b→ sγb→ sγb→ sγ obs. Ref.〈

dB
dq2

〉
(B0 → K∗µµ) [51] B(B+ → K∗γ)

[52]〈B〉 (B → Xsµµ) [53] B(B0 → K∗γ)
〈FL〉 (B0 → K∗µµ) [5, 50, 54, 55] SK∗γ

〈P1〉 (B0 → K∗µµ)
[5, 54, 56]

ACP(B → Xγ)
〈P ′5〉 (B0 → K∗µµ) B(B → Xsγ) [57]
〈P ′4〉 (B0 → K∗µµ) [5, 54] B(Bs → φγ) [58]
〈AFB〉 (B0 → K∗µµ) [50, 55] B(B0 → K∗γ)/B(Bs → φγ) [59]
〈P2〉 (B0 → K∗µµ) [5] Sφγ [60]
〈FL〉 (B+ → K∗+µµ)

[61]
A∆Γ(Bs → φγ)

〈P1,2〉 (B+ → K∗+µµ) RK/K∗ [1, 2, 62, 63]〈
P ′4,5

〉
(B+ → K∗+µµ) RK/K∗ [42] ← [2]

B0 → K∗µµB0 → K∗µµB0 → K∗µµ CPV obs. Ref. B(Bd,s → µµ) [64–66, 83]
A7,8,9(B0 → K∗µµ) [4] B(Bd,s → µµ) [28, 29] ← [64]

Table 2. List of the most constraining observables and their measurements implemented in the
flavio and smelli Python packages at the date of publication. In the last table line (light gray)
we specify the measurements that were updated as of Moriond 2021, and with the notation ← [. . .]
the measurements [. . .] that these updates supersede.

these results:

• The fit improvement with respect to the purely SM solution (Re(CNP
i ) = Im(CNP

i ) =
0) is quite significant for the real part of the Wilson coefficient in the C9, C10 and CLL
scenarios, as quantified by the pull, and as well-known [6–12]. On the other hand, in
each considered scenario there is no significant pull on the sheer imaginary part of
the NP Wilson coefficient considered: in each scenario, the SM solution is consistent
with the available data. More CP-sensitive data would therefore be welcome in
this respect.

• The allowed region in the C9 and CLL scenarios is smaller in our case as compared
to the results of [14]. The difference can be traced back to both updated measure-
ments and the addition of new observables to the global fit. In particular, the recent
measurements of the branching ratios and angular observables in B → K∗µµ decays
increases the constraining power along the imaginary axis; the addition of Λb → Λµµ
branching ratio and angular observables pulls the allowed region towards the SM
prediction; the updates in RK/K∗ and in the Bs → µµ branching ratio modifies the
constraint on the real axis.
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• The imaginary part of C10 and CLL is mostly constrained by the updated measure-
ments in B → K(∗)µµ observables. In particular, the addition of B0 → K∗µµ CP
asymmetric angular observables [4] (yielding the contours displayed in darker blue)
shows a preference for Im(CNP

10 ) > 0 and Im(CNP
LL ) < 0. On the other hand, RK(∗)

and B(Bs → µµ) constrain more the real part.

• C7 is mostly constrained by B → K∗µµ and b → sγ observables.6 We do not
find a significant deviation from the SM prediction for either the real or imaginary
parts. Among the b → sγ observables implemented in flavio and smelli, the
most constraining ones are the branching ratios of B0,+ → K∗0,+γ, Bs → φγ and
B → Xsγ. On the contrary, A∆Γ(B0

d,s → φγ), SK∗γ and Sφγ do not yield competitive
constraints on the real and imaginary parts of C7.

From the above fits, we infer the following benchmark scenarios to be considered in
the sections to follow:

Scenario CNP
7 CNP

9 CNP
10

C7 0.02− 0.13i 0 0
C9 0 −1.0− 0.9i 0
C10 0 0 1.0 + 1.4i
CLL 0 −0.7− 1.4i 0.7 + 1.4i

(3.1)

These benchmark points are chosen to lie within the 1σ region of the fit, and to have an
imaginary part as large as possible.

4 Aµµγ
∆Γs

at low q2

The scenarios collected in eq. (3.1) serve us to establish reference shifts to Aµµγ∆Γs with
respect to its SM value. We can then investigate to what extent these shifts are resolved
once we keep into account hadronic uncertainties due to f.f.’s and to resonance modelling.

We first consider the region of low q2, located between the lower kinematic limit 4m2
µ

and an upper bound around 6GeV2, determined in order to minimise possible pollution
from the J/ψ-resonance sideband. The low-q2 region is of interest because of the sizeable
enhancement of the C7 contribution due to the ‘nearby’ photon pole, and because a deter-
mination of the f.f.’s using factorisation methods has recently become available [22]. Away
from resonant regions, this determination allows for a rigorous assessment of theory errors.

Besides the analysis in ref. [22] (BBW in what follows), another B̄s → γ f.f. deter-
mination, based on Light-Cone Sum Rules (LCSR) has recently appeared in ref. [33], and
will henceforth be denoted as JPZ. The JPZ parameterization also holds for the high-q2

region to be discussed in section 5. Before the BBW and JPZ parameterizations, the only
other existing f.f. parameterisation, ref. [18], was based on a phenomenological model.

6In the fit to C7 we also included B0 → K∗e+e− decays angular observables [67]. This constraint is at
present very weak, and is not displayed in the C7 plot. In fact, the 1σ region covers the full area shown.
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Figure 1. 1σ constraints on the NP Wilson coefficients from Λb → Λµµ (yellow), b→ sµµ (green),
b→ sγ (grey), RK/K∗ (light blue), Bs → µµ (orange) and B → K∗µµ CPV (dark blue). Pre- and
post-Moriond 2021 global-fit regions are denoted in dotted purple (1σ only) and solid black (1, 2
and 3σ). The corresponding crosses indicate the best-fit point. Pre- and post-Moriond global-fit
contours exactly overlap in the C7 case (last panel).

We are thus in a position to perform a direct comparison between the BBW and JPZ
f.f.’s in Aµµγ∆Γs . To this end, we first re-express the full amplitude calculated in [22] in terms
of the FV,A,TV,TA f.f.’s used in [18] as well as in related literature [24, 35]. We thereby obtain
‘effective’ BBW f.f.’s, FBBW

V,A,TV,TA, in the sense that the amplitudes in eqs. (A.3)–(A.4), with
the effective f.f.’s FBBW

V,A,TV,TA, reproduce the BBW amplitude. A detailed discussion, along
with explicit formulæ, and a numerical comparison of FBBW

V,A,TV,TA with the JPZ f.f.’s [33], is
presented in appendix B.

Here we would like to study the question how the f.f. choice, BBW vs. JPZ, impacts
the prediction on Aµµγ∆Γs in the different scenarios of eq. (3.1) as well as in the SM. Before
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presenting such comparison, an important qualification is in order. The low-q2 region we
are considering includes a narrow resonance, the φ, which escapes at present a description
in terms of fully rigorous QCD methods, and on the other hand accounts for a substantial
fraction of the low-q2 signal. One has therefore to establish a compromise between min-
imising the theoretical error and maximising the experimental statistics. In our numerical
study, we use sliding s1 and s2 values such that 4m2

µ < s1 < M2
φ < s2 < 6 GeV2, and we

identify the Aµµγ∆Γs integration region [4m2
µ, s1] ∪ [s2, 6 GeV2] with the above compromise

in mind.
The φ region is at present accounted through phenomenological approaches, whereby

the relevant amplitude is shifted by a Breit-Wigner(BW)-like shape, and the latter is
suitably parameterised. We follow the approach in ref. [17], that we very briefly summarise
here. One first identifies the relevant reduced amplitude

a⊥,‖
(
q2
)

=
(
C7 ±

ms

mb
C ′7

)
T⊥,‖

(
q2
)

+
(
C8 ±

ms

mb
C ′8

)
G⊥,‖

(
q2
)

+
6∑
i=1

CiLi⊥,‖
(
q2
)
, (4.1)

where T⊥,‖(q2), G⊥,‖(q2) and Li(q2) denote long-distance contributions, and

T⊥,‖(q2) = T⊥,‖(q2, 0) + T⊥,‖(0, q2) , (4.2)

takes into account diagrams where the e.m.-penguin photon emits the lepton pair and
diagrams where the e.m.-penguin photon is the final-state one. Note that in more common
notation T̄

B̄0
s→φ
⊥,‖ (0) = 2T B̄

0
s→φ

1 (0) = 2T B̄
0
s→φ

2 (0), see e.g. [68]. One then rewrites this
amplitude as an n-times subtracted dispersion relation, such description being necessary
because of the resonant behaviour. Taking n = 1 yields

aι(q2) = aι(0) + q2

M2
φ

fφMφÂ
B̄0
s→φγ

ι

q2 −M2
φ + iMφΓφ

+ . . . . (4.3)

This relation corresponds to the one also used in [23] in the approximation ÂB̄
0
s→φγ
⊥,‖ =

2T B̄
0
s→φ

1 (0) × C7 with the identification T
B̄0
s→φ

1 (0) = −gB̄
0
s→φ

+ (0) [23] (see also [24, 35]).
The f.f. is known most precisely from LCSR,7 yielding [68–70]

T
B̄0
s→φ

1 (0)|LCSR = 0.309± 0.027 . (4.4)

Finally, theO8 and four-quark contributions in eq. (4.1) are known in the 1/mb-limit [71, 72]
and in LCSR [73, 74].

As pointed out in ref. [17], an alternative and possibly more effective strategy towards
improving the prediction for the amplitudes ÂB̄

0
s→φγ
⊥,‖ appearing in eq. (4.3) is to extract

them from experiment. This approach is promising since the branching ratio [37]

B(B̄0
s → φγ) = (3.52± 0.34)× 10−5 (4.5)

7Another approach is based on relativistic quark models, with meson wave-functions constrained by
leptonic decay constants. Predictions depend on the parameters used. The latest determination is provided
in ref. [18].
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is known to 10% accuracy. An update including the entire dataset is in progress. Hence the
statistical component of the error on this measurement — about half of the error quoted
in eq. (4.5) — will decrease steadily. As a consequence one can expect to extract the
amplitudes at the 5% level, which is well below a theory error above 10%.8 In other words,
rather than taking T B̄

0
s→φ

1 (0) from eq. (4.4) — which translates into an error around 15%
on the low-q2 B0

s → µ+µ−γ branching ratio — one may trade T B̄
0
s→φ

1 (0) for eq. (4.5).9
This translates into

T
B̄0
s→φ

1 (0)|exp = 0.375± 0.018 (4.6)

which is over 1 standard deviation above eq. (4.4).
The above discussion allows to identify the central value in eq. (4.4) as reference, as

well as the two values (T1)min = 0.282 and (T1)max = 0.393, which are respectively the
1σ lower bound from eq. (4.4) and the 1σ upper bound from eq. (4.6). These two values
determine a realistic range for T B̄

0
s→φ

1 , that in particular takes into account the ‘tension’
between the determinations (4.4) and (4.6).

A first task is thus to identify the Aµµγ∆Γs integration region [4m2
µ, s1] ∪ [s2, 6 GeV2]

such that a variation of T B̄
0
s→φ

1 in the [(T1)min, (T1)max] range affects the Aµµγ∆Γs prediction
negligibly with respect to the rest of the error components. We display such dependence
in figure 2 for the SM case as well as for all the NP scenarios in eq. (3.1).

The figure shows that the choice of T B̄
0
s→φ

1 in the quite generous range discussed has
little impact on the prediction of Aµµγ∆Γs even for s1 as large as 0.035 and s2 as small as
0.037 — for reference, q2 = M2

φ corresponds to s = 0.036. This conclusion holds generally
true in all considered theory scenarios. The figure suggests however to choose ŝ1 ≤ 0.03
and ŝ2 ≥ 0.05 (ŝi ≡ si/M

2
Bs
, see text below eq. (2.10)), given the rapid variation of the

Aµµγ∆Γs prediction above and respectively below such values. With these ŝ1 and ŝ2 values in
mind, we choose T B̄

0
s→φ

1 as the central value in eq. (4.4) for definiteness.
We next discuss the comparison between the BBW and the JPZ parameterisation on

the Aµµγ∆Γs prediction in the low-q2 region of integration. Of course, such comparison depends
on the errors associated to either parameterisation.

The error on the BBW parameterisation is determined as the envelope of the errors
discussed in detail in appendix B, and in most of the integration interval is entirely domi-
nated by the uncertainty on the inverse moment of the Bs-meson distribution amplitude,
λBs . The JPZ parameterization comes with an estimation of the associated errors, as well
as of the correlations between the different form factors, and we adhere to these estima-
tions. In the range ŝ ∈ [0, 1], f.f. errors are around 10% for FV and FTV , and comprised
between 9% and 17% (28%) for FA (FTA).

8As discussed in ref. [17], one may apply the above approach to other resonances, in particular the φ′. In
spite of a potentially sizeable TB

0
s→φ

′

1 coupling, the large φ′ width turns out to suppress the φ′ contribution
to the B0

s → µ+µ−γ spectrum to be a below-1% correction to the total branching ratio. Finally, the above
approach may be applied to narrow charmonium as well. However, the required radiative branching ratios
are, again, not yet measured. Besides, short-distance dynamics in this region is dominated by the O(′)

9,10
operators, that one can more cleanly extract from the region ŝ > 0.55.

9Of course, such approach overlooks systematic effects that go beyond f.f. dominance.
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Figure 2. Aµµγ∆Γs
prediction, integrated in the interval [4m2

µ, s1] (left panels) or [s2, 6 GeV2] (right
panels), within the scenarios indicated. We use JPZ f.f.’s [33] as well as three choices of T B̄

0
s→φ

1 —
see below eq. (4.6).
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The Aµµγ∆Γs prediction integrated in the low-q2 region [4m2
µ, s1]∪ [s2, 6 GeV2] with BBW

vs. JPZ f.f.’s is displayed in figure 3, the two columns of panels denoting the region below and
respectively above the φ peak, and the rows referring to the different scenarios, including
the SM and those in eq. (3.1). The figure shows that, whatever the choice of s1 and s2,
the two parameterisations yield generally consistent results, within the large errors. There
are a few notable exceptions though. The clearest is the C7 scenario in the full [4m2

µ, ŝ1]
range. The JPZ parameterization tends to predict lower values for Re(FTA) and especially
Re(FTV ) than the BBW counterparts, see figure 6 in appendix B. This difference translates
into lower Aµµγ∆Γs predictions in the full [4m2

µ, ŝ1] range for any scenario (see left column of
figure 3). These predictions become sizeably lower in the C7 scenario, where the NP shift
multiplies the FTV,TA f.f.’s. The other appreciable difference occurs in the CLL scenario for
ŝ2 . 0.10 and in the C9 scenario for ŝ2 . 0.07. We note in this respect that the JPZ shape
visibly decreases for decreasing ŝ2, whereas the BBW shape is nearly constant throughout
the ŝ2 range. This difference holds true in the full ŝ2 interval considered, and for any
scenario, hence it is not attributable to features specifically related to the φ-resonance
region. On top of this difference, the BBW error in Aµµγ∆Γs tends to squeeze for decreasing
ŝ2 in the SM, C9, and CLL scenarios, due to an accidental cancellation between λBs- and
rLP-induced components of the uncertainty, namely the two dominant ones. The fact that,
aside from these somewhat accidental instances, the two parameterizations give consistent
results on Aµµγ∆Γs is, we believe, a non-trivial finding.

5 Aµµγ
∆Γs

at high q2

In this section we discuss the high-q2 region, the one most sensitive to O9,10, and the
region where Bs → µµγ may be accessed in the short/medium term with the method in
ref. [27]. Throughout the numerics in this section, we use JPZ f.f.’s [33] only, as BBW f.f.’s
are deemed valid only for q2 values below the narrow-charmonium threshold [22].

5.1 NP sensitivity at high q2

We would like to first display the sensitivity of Aµµγ∆Γs to the new-physics scenarios sum-
marised in (3.1). To this end, we fix for definiteness the ŝ integration range as

ŝ ∈ [ŝmin, ŝmax] = [0.59, 1] . (5.1)

The lower bound, corresponding to
√
s ' 4.1GeV, has been chosen to minimise the possible

contamination by broad-charmonium resonances, while maximising statistics. This value
will be justified better in section 5.2.1. Conversely, we fix the upper bound to be the end-
point ŝ = 1. More generally, the upper bound may be expressed as ŝmax = 1− 2Ecut/MBs ,
where Ecut may be interpreted as the smallest photon energy detected by the experimental
apparatus. This quantity is actually inferred from the apparatus’ resolution in s, and is of
the order of 50MeV.10 Concretely, the region of the Bs → µµγ spectrum very close to the

10This figure may be estimated by noting that the experimental resolution in the muon momenta gives
the Bs → µ+µ− peak an approximately Gaussian shape, the width being for example of about 25MeV for
the LHCb experiment and ranges from 32 to 75MeV for the CMS experiment [75].
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Figure 3. Aµµγ∆Γs
prediction, integrated in the interval [4m2

µ, s1] (left panels) or [s2, 6 GeV2] (right
panels), within the scenarios indicated. We superimpose BBW [22] (yellow) and JPZ [33] (blue)
f.f.’s. See text for further details.
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endpoint (i.e. with 2Ecut/MBs � 1) is completely dominated by bremsstrahlung (a.k.a.
final-state radiation) contributions [76, 77], that experimentally are routinely subtracted
by a MonteCarlo [78]. Throughout this paper, we accordingly consider the Bs → µµγ

spectrum with the bremsstrahlung contribution set to zero, whereas we keep interference
terms, that the MonteCarlo does not subtract.

With these qualifications, a first interesting question is the Aµµγ∆Γs central-value predic-
tion as a function of Re(CNP

i ) vs. Im(CNP
i ), with i = 7, 9, 10, LL, where we recall that the

i = LL case denotes CNP
9 = −CNP

10 . We display such dependence in the panels of figure 4.
We also show as solid, dashed or dotted red contours the 1, 2 and 3σ regions allowed by
the global fit described in section 3.

As expected, in the chosen integration region the dependence of Aµµγ∆Γs on C
NP
7 is fairly

weak, although shifts in Im(CNP
7 ) allowed by present global fits would lead to departures

with respect to (Aµµγ∆Γs)SM of O(10%), thereby in principle detectable. Effects in the C9,
C10 scenarios, and especially in the CLL one are more sizable, because in this region the
dependence of Aµµγ∆Γs on these Wilson-coefficient combinations is stronger than it is on C7,
similarly as for the Bs → µµγ differential width.

The effects just discussed have to be compared with the theory error associated to
Aµµγ∆Γs , which we do next.

5.2 Aµµγ∆Γs
theory error at high q2

The two outstanding sources of theory error for Aµµγ∆Γs in this region are the possible pol-
lution from broad-charmonium resonances and the f.f. uncertainty. We address these two
sources in turn.

5.2.1 Impact of broad charmonium

In eq. (5.1) we fixed ŝmin somewhat arbitrarily. The lower the ŝmin value, the larger
the potential contribution of broad-charmonium resonances, including in particular ψ(2S),
ψ(3770), ψ(4040), ψ(4160) and ψ(4415). For reference, their peaks correspond to ŝ =
{0.47, 0.49, 0.57, 0.61, 0.68}. Inclusion of these resonances within the ŝ integration range
may represent an important source of theory systematics [79] (see [80] for a dedicated
LHCb study). Here we would like to address the question how this systematics impacts
the Aµµγ∆Γs prediction.

Following a standard approach to account for these effects, we note that they enter
our decay of interest via the subprocess B0

s → V (→ ``)γ, where V denotes any of the
aforementioned resonances. The associated long-distance contributions may be modelled
as a sum over Breit-Wigner (BW) poles [24], i.e.

C9 → C9 −
9π
α2 C̄

∑
V

|ηV |eiδV
m̂V B(V → µ+µ−) Γ̂Vtot
q̂2 − m̂2

V + im̂V Γ̂Vtot
. (5.2)

In this relation, C̄ = C1 + C2/3 + C3 + C4/3 + C5 + C6/3. In order to address the
theory uncertainty due to this modelling, we subsequently scan simultaneously over the BW
normalisation factors |ηV | ∈ [1, 3] as well as on the phases δV ∈ [0, 2π) with independent

– 16 –



J
H
E
P
1
2
(
2
0
2
1
)
0
7
8

0.4 0.45

0.5

0.5
0.55

0.55

0.6

0.6

-��� -��� -��� -��� ���
-�

-�

�

�

�

��[��
��]

��
[�

�
�
�
]

�ΔΓ ��� �
 ϵ [����� �]

0.25

0.25

0.3

0.30.35

0.35

0.4

0.4

0.45

0.450.5

0.5

0.55

0.55

0.6

0.6

0.65

-��� ��� ��� ��� ��� ���
-�

-�

-�

�

�

�

�

��[���
��]

��
[�

�
�
�
�
]

�ΔΓ ��� �
 ϵ [����� �]

-0.2

-0.2

-0.1

-0.1

0

0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

-��� -��� -��� -��� ���
-�

-�

-�

�

�

�

�

��[��
��] = - ��[���

��]

��
[�

�
�
�
]
=
-
��

[�
�
�
�
�
]

�ΔΓ ��� �
 ϵ [����� �]

0.60.6050.61

0.615
0.62

0.625

0.625

0.63

0.63

0.635

0.64

0.645

-���� -���� ���� ���� ����
-���

-���

-���

���

���

���

���

��[��
��]

��
[�

�
�
�
]

�ΔΓ ��� �
 ϵ [����� �]

Figure 4. Aµµγ∆Γs
contours in the Re(CNP

i ) vs. Im(CNP
i ) plane, for i = 7, 9, 10, and for the scenario

Re vs. Im of CNP
9 = −CNP

10 . The solid or dashed or dotted contours denote respectively the 1, 2
and 3σ regions allowed by the global fit discussed in section 3. See text for further details.

uniform distributions.11 Such procedure is expected to provide a conservative way to
measure the deviation from naive factorisation (|ηV | = 1 and δV = 0).12 We perform the
above scan for ŝmin ∈ [0.50, 0.70], and for all the NP scenarios in eq. (3.1), as well as for the
SM case. The result is shown in figure 5 as yellow bands. For each given value of ŝmin the

11On the other hand, in the discussion of any Aµµγ∆Γs
error component other than broad-charmonium

pollution, we will assume |ηV | = 1 and take, for the rest of the parameters, the numerical values in table 3.
12As a matter of fact, it was found that |ηV | ' 2.5 and δV ' π gives a good description of B → Kµ+µ−

data [79, 81].
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central value and the values in the upper and lower bands are calculated as, respectively,
the mean and ±1σ of the distribution obtained through the corresponding scan.

The panels in figure 5 show that the broad-charmonium modelling uncertainty due to
eq. (5.2) (yellow ‘bands’) has no appreciable impact on the prediction of Aµµγ∆Γs , compared
with the uncertainty (blue bands) induced by f.f.’s, to be discussed in section 5.2.2. Since
the shift induced by eq. (5.2) is typically of O(5%), and its phase is completely misaligned
with the C9SM phase, it is not obvious why most of this uncertainty cancels out in Aµµγ∆Γs .
On closer inspection, one can understand this cancellation as the result of specific features,
in particular the complete dominance, in this kinematic region, of quadratic contributions
in C9 and C10; the fact that the multiplying form factors FV and FA are real; the fact
that the broad-charmonium shift in eq. (5.2) can be treated as a ‘small’ modification of
the numerically large SM value for C9. These features ease cancellations between the
numerator and the denominator of Aµµγ∆Γs — suggesting that, with respect to this class of
long-distance contributions, Aµµγ∆Γs behaves well like a ratio observable. We present a more
detailed analytic argument in appendix D.

Because of the above conclusions, the C9 and C10 dominance in this region may be
regarded as one key advantage with respect to the low-q2 region, where the C7 contribu-
tion becomes important, without being dominant in the full kinematic range. It is quite
encouraging that, as a result, Aµµγ∆Γs is an observable largely immune to broad-charmonium
uncertainties, given that they escape a rigorous description. The control of the theory
prediction rests thus entirely in the f.f. error, to which we turn next.

5.2.2 Impact of form-factor modelling

A further source of uncertainty that needs be addressed is the error attached to the f.f.’s
FV,A,TV,TA that parameterise the B̄0

s → γ amplitudes, see eq. (A.5). As discussed in sec-
tion 4, the JPZ parameterization includes an estimate of the error on each of the FV,A,TV,TA
f.f.’s [33].13 We accordingly vary these f.f.’s within uncorrelated normal distributions around
their respective errors. The impact of these errors on Aµµγ∆Γs is shown in figure 5, as blue
bands. In calculating these bands, the narrow-charmonium contributions are modelled with
eq. (5.2), with |ηV | = 1 and the δV phases as in table 3, although we verified that a simulta-
neous variation of broad-charmonium and form-factor parameters leads to tiny differences.

Figure 5 allows to visually compare the impact of the two sources of uncertainty, broad
charmonium vs. f.f.’s, for each theory scenario.

We see that, in the whole ŝmin range considered and for any theory scenario, the
f.f. uncertainty is always much larger than the uncertainty induced by broad-charmonium
modelling. The basic difference between the two sources of error may be appreciated as
follows. On the one hand, the broad-charmonium correction enters ‘only’ as a shift to C9,
hence efficient cancellations can take place, as discussed in detail in appendix D. On the
other hand, f.f.’s enter in different ways, all numerically relevant, for the different Wilson-
coefficients combinations, as already mentioned at the end of section 2.1. As a consequence,
cancellations of f.f. effects are much less efficient. The Aµµγ∆Γs error induced by f.f.’s is still

13For recent progress on radiative leptonic decays in lattice QCD in this kinematic region, see [82].

– 18 –



J
H
E
P
1
2
(
2
0
2
1
)
0
7
8

SM scenario f.f.cc

���� ���� ����
���

���

���

���

���

���

����

�
Δ
Γ

C9 scenario f.f.cc

���� ���� ����
���

���

���

���

���

���

����

�
Δ
Γ

C10 scenario f.f.cc

���� ���� ����
���

���

���

���

���

���

����

�
Δ
Γ

CLL scenario f.f.cc

���� ���� ����
���

���

���

���

���

���

����

�
Δ
Γ

C7 scenario f.f.cc

���� ���� ����
���

���

���

���

���

���

����

�
Δ
Γ

Figure 5. Aµµγ∆Γs
prediction in the kinematic interval [ŝmin, 1]. The blue vs. yellow bands refer to

the f.f. error, and respectively on the uncertainty associated to the modelling of broad-charmonium
resonances. See text for details.

too important to allow to tell apart the chosen theory scenarios from each other. However,
it is noteworthy that, in this kinematic region, the dominance of, jointly, C9 and C10 gives
rise to a particularly high sensitivity to the CLL scenario, which could be resolvable with
an improvement on f.f.’s uncertainties.

6 Experimental outlook and conclusions

In this paper, we have discussed the theoretical interest of pursuing effective-lifetime mea-
surements for B0

s → µ+µ−γ. With the method of ref. [27] these measurements, in the
high-q2 part of the spectrum, can be performed on the very same event sample as for
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B0
s → µ+µ−, i.e. di-muon events with no detected photon. The case of B0

s → µ+µ−γ is
actually one of many possible examples. In fact, the underlying idea — the idea that if
one can estimate all other B0

s → µ+µ− backgrounds as q2 departs downwards from the
M2
Bs

peak, one may extract B0
s → µ+µ−γ ‘parasitically’ as one particular background —

is in principle applicable to any event of the kind B0
s → µ+µ−X. Such decay allows to re-

construct a primary and a secondary vertex (the latter through the di-muon), and thereby
to perform time-dependent measurements, in turn usable to reconstruct the corresponding
effective lifetime.14

The specific task of measuring the effective lifetime for B0
s → µ+µ−γ introduces a

number of daunting challenges — although not insurmountable. The measurement of the
effective lifetime of a B0

s decay requires a clean signal sample, a task that for B0
s → µ+µ−γ

decays is non-trivial, and a well measured secondary vertex, which is typically the case for
displaced di-muons at LHC experiments. At present, two possible, different approaches
exist to reconstruct these decays: a full reconstruction, more suited for the low-q2 part of
the spectrum, where the photon energy is larger and, as such, easier to reconstruct; and a
method relying on partial reconstruction [27], mostly relevant for the high-q2 range, where
the photon energy is small, making photon reconstruction inefficient. The two methods
present different challenges as concerns possible backgrounds.

In the high-q2 region, the partial-reconstruction method allows high efficiency, com-
parable to the B0

s → µ+µ− decay for which, as mentioned, a first measurement of the
effective lifetime has been performed by the LHCb [64] and CMS [66] experiments, com-
bined in ref. [83].15 Assuming this method, the closer the di-muon mass to the B0

s mass the
more similar the experimental performances in B0

s → µ+µ−γ will be to the B0
s → µ+µ−

case. Alas, the backgrounds are considerably different, due to the absence of a clear nar-
row peak on which to perform a statistical background subtraction from the invariant mass
sidebands. In particular the semileptonic B → hµν, with the hadron h = π,K misidenti-
fied as a muon, constitute a large background, together with the rarer B → hµµ decays,
where the additional hadron is not reconstructed. The latter in particular will constitute
almost an irreducible background, although one possible handle to tame it may be the
shape of the di-muon mass distribution. A measurement of the B0

s → µ+µ−γ effective
lifetime thus requires both a precise knowledge of the yield and of the di-muon mass dis-
tribution of the listed backgrounds. This is not unrealistic, for example a large sample of
B0
s → K−µ+νµ decays has been recently seen at LHCb [84] and can be used to constrain

its equivalent misidentified yield. The lifetime of this decay, being a flavour-specific decay,
is precisely known. Similar backgrounds from B0 and B+ decays will also have precisely
known lifetimes. In this partially reconstructed method, a small uncertainty can arise
from the absence of the photon momentum in the full B reconstructed momentum used

14If one sums over X, one may even think of an ‘inclusive’ effective lifetime. However, the definition of the
corresponding theoretical observable would require accurate knowledge of the yield for each X. Besides,
the constraining power of such observable would be diluted by the proliferation of channels, implying a
proliferation of couplings.

15The LHCb measurement has been recently updated in refs. [28, 29] but the combination has not been
updated yet.
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to calculate the boost (and hence the lifetime from the decay distance): the higher the
q2 considered the smaller is this uncertainty. This would add a small component to the
experimental uncertainty on the lifetime on an event-by-event basis, which will average
out with statistics. In addition, kinematic fits exploiting the known flight direction of the
B can further improve this resolution and relative measurements can cancel out these ef-
fects, and indeed partially reconstructed semileptonic decays are used for precision lifetime
measurements [85].

Conversely, at low di-muon mass, in order to distinguish B0
s → µ+µ−γ signal decays

from background it will be crucial to efficiently reconstruct the photon. While this reduces
the overall signal efficiency, it allows to statistically separate it from background through
the invariant mass peak at the B0

s mass. In this region, performances can be benchmarked
against the B0

s → φγ decay, that can also be reconstructed in the muonic final state, and
that is well studied in its kaonic final state.

Clearly, a quantitative study is needed to translate these considerations into a luminos-
ity vs. Aµµγ∆Γs-accuracy plot. In particular, in either of the above two cases detailed studies
of the backgrounds are required to assess the performance on this new observable. Such
survey requires a full experimental simulation and is thus beyond the scope of this paper.
But it is clear that the measurement of this observable will require high statistics and is
thus feasible in the upgrade phase of the LHC experiments.

In synthesis, the present paper introduces the B0
s → µ+µ−γ effective lifetime. This ob-

servable offers the possibility of probing all Wilson coefficients that are currently of interest
in view of the B anomalies, and, in particular, of novel CP-violating effects. Interestingly,
scenarios with new weak phases not aligned with the corresponding ones in the SM con-
tributions are under-constrained. Besides, the relevant CP-sensitive quantity — Aµµγ∆Γs —
encoded in the effective lifetime is per definition a ratio-of-amplitudes (squared) observable.
One can therefore expect a partial cancellation of the hadronic uncertainties inherent in
the B0

s → µ+µ−γ amplitude. We find that this cancellation is surprisingly efficient at high
q2 for broad-charmonium-modeling uncertainties, whereas errors induced by form factors
are still sizeable and represent the main limitation at present. However, the high-q2 region
is especially favorable for non-perturbative, first-principle approaches to the calculation of
the concerned form factors, e.g. within lattice QCD. Also interestingly, this is the same
region where B0

s → µ+µ−γ is already being accessed from the B0
s → µ+µ− dataset.
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A Amplitudes and form factors: basic notation

The dynamics of the B̄0
s → µµγ amplitude may be parameterised by the following b→ s``

effective Hamiltonian [87–89]

Heff = 4GF√
2

( 2∑
i=1

(λuCiOui + λcCiO
c
i )− λt

6∑
i=3

CiOi − λt
10∑
i=7

(CiOi + C ′iO′i)
)
, (A.1)

where λi ≡ V ∗isVib and V the CKM matrix. The operators relevant to our discussion read

Oq1 = (s̄αγµqβL)(q̄βγµbαL) , Oq2 = (s̄αγµqαL)(q̄βγµbβL) ,

O7 = e

16π2mbs̄σµνF
µνbR , O8 = gs

16π2mbs̄σµνG
µνbR , (A.2)

O9 = e2

16π2 (s̄γµbL)(¯̀γµ`) , O10 = e2

16π2 (s̄γµbL)(¯̀γµγ5`) ,

with α, β color indices and the primed operators obtained from eq. (A.2) by the re-
placements {L → R, mb → ms}. We use the covariant-derivative definition Dµ =
∂µ + ieQfAµ + igsGµ (where e.g. Qe = −1). This definition, and the chosen normali-
sations of O7,8 yield CSM

7,8 < 0.
With the above definitions, the amplitudes

(–)

Aµµγ ≡ A(
(–)

Bs
0 → µµγ) entering eq. (C.1)

may be expressed as the sum of a ‘direct-emission’ (DE) and a bremsstrahlung compo-
nent [18, 23], which read

ADE(B̄0
s → µµγ) = GF√

2
VtbV

∗
ts

α

2π

×
{
−2imbC7

q2 〈γ(k, ε)|s̄σµν(1 + γ5)qνb|B̄0
s (p)〉 ū(p2)γµv(p1)

+ C9 〈γ(k, ε)|s̄γµ(1− γ5)b|B̄0
s (p)〉 ū(p2)γµv(p1)

+ C10 〈γ(k, ε)|s̄γµ(1− γ5)b|B̄0
s (p)〉 ū(p2)γµγ5v(p1)

}
, (A.3)

ABrems = +iGF√
2
VtbV

∗
ts

α

2πe XffBs 2mµC10

{
ū(p2)

(
/ε∗/p

t−m2
µ

− /p/ε
∗

u−m2
µ

)
v(p1)

}
. (A.4)

The O(′)
7,9,10 matrix elements are parameterised by f.f.’s of dilepton momentum transfer

q2 [18, 23, 24]16

〈γ(k, λ)|s̄γµb|B̄0
s (q + k)〉 = e εµλ

∗qkFV (q2)
MBs

,

〈γ(k, λ)|s̄γµγ5b|B̄0
s (q + k)〉 = ie (λ∗µ qk − kµ λ∗q)FA(q2)

MBs

,

〈γ(k, λ)|s̄σµνbqν |B̄0
s (q + k)〉 = ie εµλ

∗qkFTV (q2, 0) ,
[0.2cm]〈γ(k, λ)|s̄σµνγ5bqν |B̄0

s (q + k)〉 = e (λ∗µ qk − kµ λ∗q)FTA(q2, 0) , (A.5)
16Here we assume the convention ε0123 = −1.
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and fBs is defined through

〈0|s̄γµγ5b|B̄0
s (p)〉 = ipµfBsXf . (A.6)

The amplitudes in eqs. (A.3)–(A.4) can be generalized to include primed coefficients
through the substitutions

C7 → C7 ±
ms

mb
C ′7 , C9,10 → C9,10 ± C ′9,10 , (A.7)

where the +(−) refers to terms proportional to FV,TV (FA,TA or fB0
s
).

Eq. (A.3) exactly reproduces the result in [23]; eq. (A.4) matches the result in [23]
provided Xf = +1. We note however that the PDG [37] and FLAG [39] imply Xf = −1.
This point is accounted for in refs. [18, 46].

The calculation of Aµµγ∆Γs involves also the amplitudes for an initial B0
s . The B0

s → γ

hadronic matrix elements are related to the B̄0
s → γ ones through a CP transformation,

hence they depend on the phase φCP appearing in eq. (2.15). The amplitude for B0
s → µµγ

is related to the amplitude for B̄0
s → µµγ by replacing CKM matrix entries and Wilson

coefficients with their complex-conjugates, and by the following substitutions

F (B̄0
s )

V → −e−iφCPF (B0
s )

V , F (B̄0
s )

A → +e−iφCPF (B0
s )

A , (A.8)

where F (B̄0
s )

V denote any of FV or FTV , whereas F (B̄0
s )

A denote any of FA, FTA, and fBs

in eqs. (A.5)–(A.6), whereas F (B0
s )

V,A denote the f.f.’s and decay constant for B0
s matrix ele-

ments.17

As concerns the dependence on weak phases, we note that a B̄0
s (B0

s ) initial state
corresponds to a b→ s (b̄→ s̄) Hamiltonian, with Wilson coefficients C7,9,10 (C∗7,9,10). As
a consequence, both of Ā and A∗ are proportional to C7,9,10 and the numerator of Aµµγ∆Γs
depends on C2

i . Hence the dependence on the Wilson-coefficients’ phases does not cancel
in Aµµγ∆Γs as it would in, e.g., |A|2. However, and as remarked in the main text, the CKM-
phase dependence in ĀµµγA∗µµγ cancels exactly with the analogous dependence in q/p, so
that the r.h.s. of eq. (C.2) is proportional to |N |2. As a consequence, Aµµγ∆Γs is sensitive to
CP-violating phases coming from Wilson coefficients only.

B BBW vs. JPZ form factors

For the hadronic matrix elements relevant to our study we use two alternative approaches.
The first one relies on parameterising the required matrix elements as in eq. (A.5). This
parameterisation [18, 23, 24] defines the f.f.’s FV,A,TV,TA. These f.f.’s are subsequently
estimated using a relativistic quark model (see [90–92] for details). We use the latest
determination in [18] as reference for this approach. Importantly, FTV (q2, 0) and FTA(q2, 0)
denote only the contributions where the e.m. penguin emits the di-lepton pair. In order to

17The analogous relations in the A‖,⊥ notation can be found in [22, 33]. As discussed in the main text,
the φCP dependence cancels in Aµµγ∆Γs

. For the translation of A‖,⊥ amplitudes into the notation of eq. (A.5),
see e.g. [17].
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also include topologies where the e.m. penguin emits the real, final-state photon, as well
as so-called weak-annihilation contributions [93] one replaces

FTV,TA(q2, 0)→ F̄TV,TA(q2) (B.1)

in eqs. (A.5), with the F̄TV,TA functions defined in ref. [18].
Recently, Beneke, Bobeth and Wang [22] have performed the first evaluation of the

B̄s → µµγ amplitude at low q2 < 6 GeV2 using rigorous factorisation methods. The
amplitude is expressed as the sum of initial- plus final-state-radiation terms. The final-
state-radiation terms correspond to B̄0

s -to-vacuum matrix elements proportional to O10,
hence helicity-suppressed and completely negligible [22, 27, 94]. On the other hand, from
the initial-state-radiation terms one can read off the ‘equivalent’ of the FV , FA, F̄TV and
F̄TA functions, to be denoted as FBBW

V , FBBW
A , FBBW

TV , FBBW
TA . We find18

Ci F
BBW
V,A (q2) = −QsFBs

MBs

2Eγ
V eff
i (q2)

∫ ∞
0

dω

ω
φ+(ω) J(2Eγ , 0, ω)

− Ci

{
ξBs ±

fBsMBs

2Eγ

(
Qb
mb

+ Qs
2Eγ

)}
, (B.2)

where i = 9, 10 and Ci stands for Ceff
9 (q2) and C10 [95, 96], respectively, and

Ceff
7 FBBW

TV,TA(q2) = −QsFBs

{
MBs

2Eγ
V eff

7 (q2)
∫ ∞

0

dω

ω
φ+(ω) J(2Eγ , 0, ω)

+ V eff
7 (0)

∫ ∞
0

dωφ+(ω) J(MBs , q
2, ω)

ω − q2/MBs − i0+

}
(B.3)

− Ceff
7

{(
ξBs + ξ̃Bs +Qb

fBs
Eγ

)
±Qs

fBs
MBs

q2

4E2
γ

}
∓ MBs

mb

fBs
Eγ

fV,A(1− ŝ) .

In the above expressions:19

• For the V eff
i (q2) = Ci×

(
1 +O

(
αs(µh)

4π

))
, where Ci = Ceff

7 , Ceff
9 , C10, with µh the hard

scale, we use expressions in [22]. We take the necessary F j(u)
i functions from [97], the

F
j(c)
i functions from [98](see also [99, 100]), with both sets validated through [86].

• We comply with [22] also as concerns the values of the Wilson coefficients Ci, i =
1, . . . , 6, 9, 10, Ceff

7,8 at the SCET ‘hard’ scale of 5GeV. For Ceff
9 (q2) we use [95, 96].20

• FBs is the HQET Bs-meson decay constant, whose relation with fBs may be found
in [22, 101];

• The hard-collinear matching function J can be read off from [22, 102], with µ (µ0)
the hard-collinear (collinear) scales.

18Eqs. (A.5) use antisymmetric-tensor conventions as in [18], which differ from ref. [22]’s. Below relations
take this difference into account.

19DG warmly acknowledges Christoph Bobeth for enlightening discussions about many details of ref. [22].
20We use the same values for JPZ-case [33] numerics as well. In particular, the Wilson coefficients

appearing in the amplitudes eqs. (A.3)–(A.4) are to be understood as Ceff
7,8, Ceff

9 (q2), C10.
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• For the B-meson light-cone distribution amplitude φ+ we use the exponential model
suggested in ref. [103]. Within this model the evolution from µ0 to µ can be performed
using [101], and the inverse (λBs(µ)), as well as all logarithmic moments σn(µ) are
analytically calculable [101], as is the second convolution integral in eq. (B.3). Using
λBs(µ0) = 0.40(15) [22], we find, as a cross-check, σ1(µ0) = 1.49 and σ2(µ0) = 3.9, in
good agreement with the ranges 1.5± 1.0 and 3± 2 suggested in [101]. We then use

λBs(µ) = 0.44+0.15
−0.16 GeV (B.4)

in our numerics. This parameter represents the main source of error, as well-known.

• The other main source of error comes from the next-to-leading-power f.f.’s ξ and ξ̃.
Following [104], ref. [22] includes in the ξ and ξ̃ definition a term that subtracts the
leading-power contribution in the tree approximation, multiplied by rLP = 0.2± 0.2.
The rLP range yields the second largest source of error in our case.

• For the mb and mc masses, we use the pole-mass values in table 3.21 The distinc-
tion with respect to MS masses is dropped in the next-to-leading-power terms in
eqs. (B.2)–(B.3).

• Any other function or symbol not commented upon can be retrieved from [22].

It is useful to explicitly compare the JPZ f.f.’s in the FV , FA, F̄TV , F̄TA nomenclature,
with the BBW ‘effective’ f.f.’s in eqs. (B.2)–(B.3) in the low-q2 region. We do so in figures 6
and 7 for the real and imaginary parts, respectively. We show separately the BBW-f.f.
range of variation due to the λBs and to the rLP uncertainties discussed in the previous
paragraph. Note that the JPZ parameterization in ref. [33] yields real f.f.’s. The only source
of an imaginary contribution is the shift due to the φ resonance, which affects only the
tensor f.f.’s. The ‘dictionary’, provided in ref. [33], between JPZ and KMN f.f.’s allows to
include such shift in a way akin to the KMN parameterization. We include this contribution
only for the sake of the indicative comparison in figure 7, keeping in mind that the φ region
is basically entirely excluded in the considered kinematic range. The figures show that the
overall agreement between the JPZ and BBW f.f.’s is mostly acceptable within the quite
large errors inherent especially to the BBW parameterization.

C Explicit formula for Aµµγ
∆Γs

Starting from eq. (2.13)

Aµµγ∆Γs = −
∫
dŝ d cos θ f(ŝ, m̂2

µ) Re
(
q/p ĀµµγA∗µµγ

)
∫
dŝ d cos θ f(ŝ, m̂2

µ) |Aµµγ |2
, (C.1)

21Ref. [22] suggests to use the b-mass obtained in the so-called potential-subtracted renormalisation
scheme [105]. We find this choice to have no impact on our Aµµγ∆Γs

numerics.
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Figure 6. Comparison of the real parts of JPZ f.f.’s FV , FA (first row left vs. right), F̄TV (second
row), F̄TA (third row), with the BBW ‘effective’ f.f. counterparts in eqs. (B.2)–(B.3). Note that
the first row shows vector and axial f.f.’s with an index i = 9, 10, as in eqs. (B.2). The BBW-f.f.
range of variation due to the λBs

and to the rLP uncertainties, both discussed in the text, are
shown separately (see legend entries). For rendering reasons, in the instance of tensor f.f.’s we show
separately the cases of ŝ below (left panels) and respectively above (right panels) the φ peak.

we can perform the integration
∫ 1
−1 d cos θ. We obtain

∫
d cos θ Re

(
q/p ĀµµγA∗µµγ

)
= |N |2

7,9,10∑
i,j

Re(fij CiCj) (C.2)

and ∫
d cos θ |Aµµγ |2 = |N |2

7,9,10∑
i,j

Re(f̄ijCiC∗j ) , (C.3)
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Figure 7. Same as figure 6, but for the imaginary parts of the BBW vs. JPZ f.f.’s.

where the functions
(–)

f ij are given by

f77 = 16
3 M

4
Bsm̂

2
b x

2 2m̂2
µ+ ŝ

ŝ2 (F̄ 2
TA− F̄ 2

TV ) , (C.4)

f̄77 = 16
3 M

4
Bsm̂

2
b x

2 2m̂2
µ+ ŝ

ŝ2 (|F̄TA|2 + |F̄TV |2) , (C.5)

f99 = 4
3M

4
Bsx

2(2m̂2
µ+ ŝ)(F 2

A,9−F 2
V,9) , (C.6)

f̄99 = 4
3M

4
Bsx

2(2m̂2
µ+ ŝ)(|FA,9|2 + |FV,9|2) , (C.7)

f1010 =−
4M4

Bs
x2

3 (4m̂2
µ− ŝ)(F 2

A,10−F 2
V,10) , (C.8)

f̄1010 =−
4M4

Bs
x2

3 (4m̂2
µ− ŝ)(|FA,10|2 + |FV,10|2) , (C.9)
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f79 +f97 = 16
3 M

4
Bsm̂b x

2 2m̂2
µ+ ŝ

ŝ
(F̄TAFA,9− F̄TV FV,9) , (C.10)

f̄79C7C
∗
9 + f̄97C9C

∗
7 = 16

3 M
4
Bsm̂b x

2 2m̂2
µ+ ŝ

ŝ
Re
[
F̄TAC7 (FA,9C9)∗+ F̄TV C7 (FV,9C9)∗

]
,

(C.11)
f710 = f107 = 0 (C.12)

f̄710C7C
∗
10 + f̄107C10C

∗
7 = 128fBsM3

Bs m̂bm̂
2
µ

x

ŝ

atan(z)
z

Re
[
F̄TV C7C

∗
10

]
, (C.13)

f910 = f109 = 0 , (C.14)

f̄910C9C
∗
10 + f̄109C10C

∗
9 = 64fBsM3

Bsm̂
2
µ x

atan(z)
z

Re[FV,9C9C
∗
10] , (C.15)

with x = 1 − ŝ and z =
√

1− 4m̂2
µ/ŝ. In the above formulae we abbreviated the FBBW

V (A)
f.f.’s appearing in eq. (B.2) with FV (A),i, with i = 9 or 10. For JPZ f.f.’s it is understood
that the cases i = 9 or 10 coincide.

We finally note that the above formulæ include terms linear in fBs , but not quadratic
ones. In fact, and as already mentioned in section 5, we consider the Bs → µµγ spectrum
with the bremsstrahlung contribution set to zero, whereas we keep interference terms, that
the MonteCarlo does not subtract. These linear terms have actually little impact on the
numerics, as we verified explicitly.

D On the near-cancellation of broad-charmonium uncertainties

From section 5.2.1 and figure 5 we concluded that broad-charmonium modeling turns out
to have an immaterial effect on the Aµµγ∆Γs prediction. This finding is far from trivial, and
calls for a closer inspection of the underlying mechanism. In this appendix we show by an
analytic argument that the above finding is the result of well-defined cancellation patterns
in the Aµµγ∆Γs expression.

Plugging eqs. (C.2) and (C.3) into eq. (C.1), we can write (see also definition (2.12))

Aµµγ∆Γs = −
∫

PS Re
(
q/p ĀµµγA∗µµγ

)
∫

PS |Aµµγ |
2 = −

∫
PS
[
Re(f99C

2
9 )
]

+Nrest∫
PS

[
Re(f̄99|C9|2)

]
+Drest

, (D.1)

where Nrest and Drest denote terms other than quadratic or sesquilinear in C9. Broad-
charmonium contributions are modelled through eq. (5.2). We accordingly write C9 =
C̄9 + δcc̄, where δcc̄ denotes the last term (i.e. the full BW sum) in eq. (5.2), whereas
C̄9 = Ceff

9 (q2) + C9,NP bundles the rest of the SM contribution as well as the NP shift.22

22More precisely [71, 96]

Ceff
9 (q2) = C9,SD + Y (q2)− VubV

∗
us

VtbV ∗ts

(4
3C1 + C2

) [
h
(
q2,mu

)
− h

(
q2,mc

)]
,

with C9,SD = 4.327 the Wilson coefficient calculated at the EW matching scale, and RGE-evolved [106, 107]
to the µb = 5GeV scale, that in [22] is identified with the hard factorization scale in the Nf = 5 theory.
The difference between Ceff

9 (q2) and C9,SD is a complex correction whose real part smoothly decreases from
4·10−4 to −1% in the range of interest for this discussion, ŝ ∈ [0.5, 1], whereas its imaginary part is +5% and
basically constant over the same range. For later reference, we also have C10 = −4.262, whose magnitude
differs from C9,SD by less than 2%, and C7 = −0.303.
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Figure 8. Blue solid line: mean of |δcc̄|/C9,SD as a function of ŝ, obtained from a uniform scan to
|ηV | ∈ [1, 3] and δV ∈ [0, 2π). Dashed orange line: mean plus 3 times the standard deviation.

We estimate the complex shift δcc̄ from a simultaneous scan to the ten resonance parameters
|ηV | ∈ [1, 3] and δV ∈ [0, 2π) (see section 5.2.1 for details). For the sake of the present
discussion, we need an absolute upper bound on the size of this shift. To this end we choose
ŝ = 0.49, which yields the 1σ-range

|δcc̄| ∈ (4.3± 1.6)%× C9,SD , (D.2)

with an arbitrary phase. In the discussion to follow, we will conservatively assume eq. (D.2)
as the size of the δcc̄ complex correction throughout the integration range, ŝ ∈ [0.5, 1],
considered for high q2. Such assumption will prove to be enough for the sake of our
argument. We note, however, that this is a truly conservative assumption. In fact, figure 8
displays the mean over the scan of |δcc̄|/C9,SD as a function of ŝ (blue solid line) as well
as the mean plus 3 times the standard deviation (dashed orange line). The figure shows
clearly that the size of the correction steadily decreases for ŝ > 0.49, and that the correction
is below 1% for ŝ > 0.75, i.e. in half of the actual integration range.

With this in mind, we will consider δcc̄ as constant over this range, and given, in size,
by eq. (D.2). We can then write

Aµµγ∆Γs '
−
∫

PS f99C̄
2
9

[
1 + 2 Re

(
δcc̄/C̄9

)]
+Nrest∫

PS f̄99|C̄9|2
[
1 + 2 Re

(
δ∗cc̄/C̄

∗
9

)]
+Drest

(D.3)

where, in view of eq. (D.2), we neglect terms quadratic in the δcc̄ shift, and we use the
fact that f99 (see eq. (C.6) and figure 7) is real. We note that the δcc̄ shift also affects
C7 × C9 (eqs. (C.10) and (C.11)) as well as C9 × C10 (eq. (C.15)) interference terms, that
are bundled in Nrest and Drest. We will come back to these terms later on.

Denoting Re
(
δcc̄/C̄9

)
= ε/2, and treating C̄9 and δcc̄ as constant over the q2 range of

interest (see footnote 22), we can rewrite eq. (D.3) as

Aµµγ∆Γs '
N99 C̄

2
9 (1 + ε) +Nrest

D99 |C̄9|2(1 + ε) +Drest
. (D.4)
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Because of eq. (D.2), we can expand eq. (D.4) for small ε, obtaining

Aµµγ∆Γs '
N99 C̄

2
9 (1 + ε) +Nrest

D99 |C̄9|2(1 + ε) +Drest

' N99 C̄
2
9 +Nrest

D99 |C̄9|2 +Drest

[
1 +

(
Drest

D99 |C̄9|2 +Drest
− Nrest

N99 C̄2
9 +Nrest

)
ε

]
. (D.5)

The N and D coefficients in the above expression can now be read off from relations (C.4)–
(C.15). In particular, for N99 and D99 we have

N99 = −4
3M

4
Bs

∫
dŝd cos θ f(ŝ, m̂2

µ)x2(2m̂2
µ + ŝ)(F 2

A − F 2
V ) , (D.6)

[0.4cm]D99 = +4
3M

4
Bs

∫
dŝd cos θ f(ŝ, m̂2

µ)x2(2m̂2
µ + ŝ)(|FA|2 + |FV |2) . (D.7)

Besides, we can express Nrest and Drest as

Nrest = +4
3M

4
BsC

2
10

∫
dŝd cos θ f(ŝ, m̂2

µ)x2(4m̂2
µ − ŝ)(F 2

A − F 2
V ) + δN (δcc̄) , (D.8)

Drest = −4
3M

4
Bs |C10|2

∫
dŝd cos θ f(ŝ, m̂2

µ)x2(4m̂2
µ − ŝ)(|FA|2 + |FV |2) + δD(δcc̄) . (D.9)

In the Nrest and Drest relations we have not written explicitly terms that either involve C7,
or are bilinear in C9C10, that are also concerned by the δcc̄ shift. These terms, indicated
in eqs. (D.8)–(D.9) by δN,D(δcc̄), are suppressed by the small size of the C7 coefficient in
comparison with |C9,10| (see footnote 22), or by the small ratio fBs/MBs ' 0.04. We find
that the δN,D(δcc̄) contributions are around 15% of those explicitly written. Hence, recalling
eq. (D.2), the broad-charmonium shift within these contributions may be estimated as a
≈ 4%× 15% effect, i.e. well below 1%.

We can further simplify eqs. (D.6)–(D.9) by noting that, for ŝ ∈ [0.5, 1], we can com-
pletely neglect 4m̂2

µ = 1.6 · 10−3 with respect to ŝ. We have

N99 ' +
∫

PS
(F 2

V − F 2
A) , (D.10)

[0.4cm]D99 ' +
∫

PS
(F 2

V + F 2
A) , (D.11)

[0.4cm]Nrest ' +C2
10

∫
PS

(F 2
V − F 2

A) + δN (δcc̄) , (D.12)

[0.4cm]Drest ' +C2
10

∫
PS

(F 2
V + F 2

A) + δD(δcc̄) , (D.13)

where we used the abbreviation
4
3M

4
Bs

∫
dŝd cos θ f(ŝ, m̂2

µ)x2ŝ ≡
∫

PS
. (D.14)

We see that, if we identify C̄9 with C9,SD — which holds to within 5%, see footnote 22 —
and we further use the (accidental) near-equality between C2

9,SD and C2
10 — which holds

to 3% — we can rewrite the denominators in the rounded parenthesis of eq. (D.5) as

N99 C̄
2
9 +Nrest ' 2C2

9,SD

∫
PS

(F 2
V − F 2

A) + δN (δcc̄) , (D.15)

D99 |C̄9|2 +Drest ' 2C2
9,SD

∫
PS

(F 2
V + F 2

A) + δD(δcc̄) . (D.16)
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In the same approximations, the term in the square brackets in eq. (D.5) reads

1 +
(

N99 C̄
2
9

N99 C̄2
9 +Nrest

− D99 |C̄9|2

D99 |C̄9|2 +Drest

)
ε

' 1 + 1
2

(
δD(δcc̄)

2C2
9
∫

PS(F 2
V + F 2

A) −
δN (δcc̄)

2C2
9
∫

PS(F 2
V − F 2

A)

)
ε

. 1± 0.075 · ε . 1± 0.7% , (D.17)

where the last equality is obtained as follows. As discussed below eq. (D.9), each of the two
terms in the rounded parenthesis in eq. (D.17) is around 15%. Although the difference of
these two terms would reveal further cancellations, we conservatively bound this difference
with 15% itself. We further assume ε = 9% from eq. (D.2) — which, as discussed below
that equation is a very conservative assumption.

One final comment deserves the fraction multiplying the square bracket in eq. (D.5).
Plugging in eqs. (D.10)–(D.13), we may expand around small δN and δD. This would
change the correction in eq. (D.17) by further terms well below 1%, see paragraph following
eq. (D.9).

The above analytic argument is meant to make more transparent why broad-
charmonium resonances lead to uncertainties safely below 1% for high-q2, i.e. negligible
vis-à-vis f.f. uncertainties. We emphasize that the above argument results from a series
of very conservative assumptions, and that the less intuitive but more accurate numerical
analysis shows cancellations down to the per-mil level due to (i) the mean value and stan-
dard deviation of δcc̄ being ŝ-dependent and generally much smaller (see figure 8) than the
values in eq. (D.2), which hold at the ŝ = 0.49 threshold, (ii) the ratio-property of Aµµγ∆Γs as
seen from the minus sign in eq. (D.17) and (iii) the importance of C2

10 terms, unaffected by
charmonium resonances and of the same order of magnitude as the C2

9 term. An important
remark is that, on the other hand, this argument does not hold for values of ŝ lower than
the mentioned ŝ = 0.49 threshold; e.g., for ŝ = 0.46, the Ψ(2S) resonance yields much large
contributions than eq. (D.2), and an expansion is no more justified.

E Table of inputs

We collect in table 3 all our inputs. We only quote central values, i.e. we do not quote
errors, as none of the parameters in the table contributes a significant part of the theory
uncertainties we compute. Any omitted parameter is taken from ref. [22]. As concerns the
CKM input, we take the latest ‘New-Physics fit’ available from [108, 109]. Similar results
may be obtained from [110, 111].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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Parameter Value Ref. Parameter Value Ref.

MBs 5.36688 GeV [37] αs(mZ) 0.1179
[37]

fBs 0.2303 GeV [39] αe.m.(mb) 1/133
mb(mb) 4.18 GeV

[37]

λ 0.2255

[37, 108, 110]
mc(mc) 1.27 GeV A 0.785
mpole
b 4.78 GeV ρ̄ 0.147

mpole
c 1.67 GeV η̄ 0.377

mψ(2S) 3.686 GeV

[37]

Γψ(2S) 0.294× 10−3 GeV

[37]
mψ(3770) 3.774 GeV Γψ(3770) 27.2× 10−3 GeV
mψ(4040) 4.039 GeV Γψ(4040) 80× 10−3 GeV
mψ(4160) 4.191 GeV Γψ(4160) 70× 10−3 GeV
mψ(4415) 4.421 GeV Γψ(4415) 62× 10−3 GeV

B(ψ(2S)→ ``) 8.0× 10−3

[37]

δψ(2S) 0

[112]
B(ψ(3770)→ ``) 9.6× 10−6 δψ(3770) 0
B(ψ(4040)→ ``) 10.7× 10−6 δψ(4040) 133× π/180
B(ψ(4160)→ ``) 6.9× 10−6 δψ(4160) 301× π/180
B(ψ(4415)→ ``) 9.4× 10−6 δψ(4415) 246× π/180

Table 3. List of input parameters.
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