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 Abstract 

Inversion deals with inferring information about the subsurface (by reconstructing its physical 

properties), given: 1) observed data (usually collected at the surface) and 2) available forward 

modelling tools (describing physics of the used geophysical methodology). Inevitably, these 

forward modelling tools are always characterized by some level of approximation, and, in turn, this 

inaccuracy, unavoidably, affects the inversion results. This thesis presents, in particular in the 

context of airborne electromagnetic data, the impact and relevance of quantifying this source of 

(coherent) error. Specifically, a possible strategy to quantify the modelling error is discussed in the 

thesis. 

 

The adopted strategy for the estimation of the modelling error makes use of prior knowledge about 

the investigated system. The same prior knowledge is necessary in stochastic inversion frameworks. 

Stochastic inversion provides a natural way for 1) the assessment of the uncertainty of the final 

results and 2) for incorporating complex prior information into the inversion, from sources that are 

not the geophysical observations. Since the assessment of the modelling error is based on prior 

information that is also used in the stochastic inversion approaches, it is a natural choice to adopt 

these probabilistic strategies.   

 

By taking into account the modeling error, the stochastic inversions can eliminate or, at least, 

minimize, the effects of the forward approximation in the inversion results. In this thesis, through 

synthetic and field tests, we discuss the stochastic inversion considering the modeling error. 

 

What is called prior in the framework of stochastic inversion is assimilable to the training dataset 

in the context of Neural Networks: to some extent, in both cases, the final solution is by 

construction “stationary” with respect to the initially provided ensemble used to feed (or train) the 

inversion algorithm. Based also on these premises, and in the attempt to find a way to address the 

“definitive” problem of a fully 3D stochastic inversion, we verify the possibility of extremely 

efficient Neural Network strategy for the inversion of massive airborne geophysical datasets. Some 

preliminary, but, still, very promising results on this matter are discussed in the second last chapter 

of this thesis. Also in this case, the conclusions are drawn based on synthetic and experimental 

data. 

 

Keyword: inversion, modeling error, stochastic, neural network. 
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Thesis outline 

Chapter 1: For the inversion of the large airborne geophysical datasets, deterministic approaches 

are usually considered the standard strategies; this despite extremely efficient stochastic 

algorithms are available. In Chapter 1, we briefly discuss different inversion approaches in which 

the modelling error estimation will be, later on, incorporated. 

 

Chapter 2: We discuss a possible way to quantify the modelling error caused by forward modelling 

approximation, and to incorporate this estimated modeling error into a stochastic framework. 

Synthetic and field tests are performed and the results and the inversion parameters are discussed. 

 

Chapter 3: Motivated by the correspondence between the concepts of prior distribution and 

training dataset, we implemented a Neural Network inversion scheme for airborne 

electromagnetic data inversion. The discussed approach provides geophysical models that are 

largely compatible with the outputs of state-of-the-art full-nonlinear 1D deterministic inversions. 

But the Neural Network results can be obtained in seconds rather than in hours (as in the 

deterministic case). 

 

Chapter 4: Conclusions about the stochastic inversion incorporating modeling error and the Neural 

Network approach are summarized and discussed.  
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Chapter 1.  Introduction 

1.1. Airborne Electromagnetics overview 

Airborne electromagnetic (AEM) technology was originally developed for the mining industry 

where it continues to be used extensively. There is no need for the transmitter or the receiver to 

touch the ground, so electromagnetic systems can be mounted on aircraft and used to cover large 

areas quickly and efficiently. For this reason, airborne electromagnetic surveys could provide high-

density data economically over large areas. Because of these big advantages, AEM methods are 

also used in geological and groundwater mapping, and environmental investigations.. 

 

AEM techniques have been used in the industry for more than seven decades. The early systems 

were utilized in Canada in the early 1950s and were firstly used for the prospection of base metal 

deposits (Palacky, 1993). During the last years, AEM applications have started to increasingly move 

towards also environmental investigations (for example, groundwater mapping). Because of the 

dependency of the conductivity on both the lithology and the salinity of the water, AEM methods 

could potentially provide useful information about the water quality and aquifer structures 

(Siemon et al., 2009). The earliest tests concerning the hydrogeological investigations via AEM 

systems can be traced back to 1978, on the island of Spiekeroog, Germany, using an early 

Helicopter-borne electromagnetic (HEM) system operated by the German Federal Institute for 

Geosciences and Natural Resources (BGR) (Siemon et al., 2009). Other examples of groundwater 

studies via AEM systems are documented in Paterson and Bosschart (1987), Sengpiel and Fluche 

(1992). The review paper Paine and Minty (2005) discusses further applications and examples of 

AEM data collections. 

 

AEM theory is based on Faraday’s law of induction: a current can be induced to flow by a changing 

magnetic field and vice versa. Based on this, time-domain AEM systems generate a primary time-

varying EM field via a time-dependent current flowing in the transmitting loop. In turn, the time-

varying EM field generates eddy currents in the subsurface. These eddy currents cause a secondary 

electromagnetic (EM) field, which can be detected by the receiver coils of the AEM systems (Figure 

1-1). The primary EM field can be caused by “pulse” or more complex current waveforms 

(Karshakov et al., 2017; Moilanen et al., 2013; Palacky, 1993; Volkovitsky and Karshakov, 2013). The 

secondary field can be recorded in frequency-domain (over several frequencies) or in time-domain 

(tens of time-gates, generally after the shutdown of the transmitter current). The secondary field 

response clearly depends (mainly) on the subsurface conductivity. Hence, the secondary field 

measurements can be used to infer the underground electrical property distribution. For example, 

the secondary responses of good conductors decay slowly, whereas their decay over resistivity 

bodies can be extremely fast. 
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Figure 1-1 Schematic illustration of the principles of electromagnetic surveys: the chances in the 

primary field induce eddy currents in the conductors in the subsurface; the eddy currents, in turn, 

generate a secondary magnetic field whose evolution is recorded by the receiver coil. 

 

AEM exploration consists of three phases: data collection, data processing and, finally, inversion. 

Despite the common practice of a purely sequential implementation, these three phases of the 

translation of the raw measurements into physical property distribution should be iterative 

(Dzikunoo et al., 2020). During the data collection, the aircraft is equipped with a coil that is 

suspended below it (Figure 1-2) or that is running from nose to wingtips to tail (Figure 1-3), through 

which, the electrical current is made flowing. The secondary EM field measurements are collected 

by a receiver located on the transmitting loop (Figure 1-2) or towed behind the aircraft (Figure 1-3) 

along the flight lines. 
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Figure 1-2 The aircrafts equiped with a coil draw below it (Dentith and Mudge, 2014). 

  

 
Figure 1-3 The aircraft equiped with a coil running from nose to wingtips to tail (Dentith and Mudge, 

2014). 

 

After the data collection in the field, the raw data not only include the information of the 

subsurface, but, in general, also anthropic noise produced by, for example, power lines, pipes, 

metal fences, windmills. Thus, the data processing procedure is indispensable – especially, in 

populated areas – to eliminate or, at least, to minimize, the noise effects and to obtain good quality 

data effectively representative of the earth conditions. In general, data processing includes four 

steps: navigation data (GPS, altitude and tilt measurements) processing; voltage data processing; 

further refinement of voltage data; and a fast, preliminary, inversion (Siemon et al., 2009). In the 

navigation data processing, navigation data are filtered and averaged automatically even if, 

occasionally, manual corrections may need to be applied to the altitude data (Siemon et al., 2009). 

In the voltage data processing, raw data are filtered and “averaged” by “square” or “trapezoid” 

stacking window. After the voltage data processing, voltage data conditioning needs to be further 

refined manually, especially in the area with infrastructures affecting the measurements. At the 

end, a fast inversion is necessary to fine-tune and quality check the processing steps done before 
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(Siemon et al., 2009).  

 

The processed data can be used to obtain information about the subsurface as the recorded 

responses depend on the physical properties and contrasts in the earth. Inversion provides a 

mathematical framework for reconstructing physical property models consistent with those data. 

Generally, the processed data are inverted into conductivity and depths using a layered half-space 

model (Siemon et al., 2009). Usually, 1D inversion of AEM data is sufficient (even if it can be 

demonstrated that this common practice can produce misleading results: in fact, 1D reconstruction 

of even mild 3D conductivity distribution may lead to wrong, but very certain, reconstruction – 

kindly, see the following and Bai et al. (2021). In the framework of 1D inversions, spatially 

constrained inversion (SCI) schemes have gained popularity as, despite their rough 1D forward 

approximation, enforce spatial coherency in the reconstruction. The bond between adjacent 1D 

models can be formalized by “smooth” (Viezzoli et al., 2008) or “sharp” (Vignoli et al., 2017) 

regularizations. Clearly, in the case of complex, severely 3D environments (as those often typical in 

mineral exploration), it is hard to believe that 1D approaches can produce satisfactory results. This 

is the main reason for the research to focus more and more often on truly 3D approaches. In this 

respect, the seminal works by Oldenburg et al. (2013) and Cox et al. (2010, 2021) are worth being 

highlighted. Still, because of their computational costs, 3D algorithms are far from being applicable 

(especially to stochastic inversion schemes).   

1.2. Modelling error and inversion, in Airborne 

Electromagnetics 

In the deterministic framework, the inversion problem is solved by minimizing an objective 

function that consists of a data misfit and a stabilizer, with a trade-off parameter controlling their 

relative contributions (Tikhonov and Arsenin, 1977). Eq.1-1 is a possible mathematical expression 

of this objective function: 

 𝜙(𝒎) = 𝜙𝑑(𝒎) + 𝛽𝜙𝑚(𝒎)  1-1 

where 𝜙𝑑(𝒎)  is data misfit, 𝜙𝑚(𝒎)  is regularization and 𝛽  is the trade-off parameter. 

Specifically, AEM inversion consists of finding a model of the earth conductivity distribution that is 

consistent with the observed data and the prior (possibly, geological) information. For the 

evaluation of the consistency between the hypothetical solution and the observed data, the data 

misfit is calculated between the observed and the predicted data produced by the forward 

modeling when applied to the hypothetical conductivity distribution. Therefore, for the AEM 

inversion, we may write the data misfit in Eq.1-1 as: 

 𝜙𝑑(𝒎) =
1

2
‖𝑾𝑑(𝒅𝑜𝑏𝑠 − 𝐹(𝒎))‖𝐿2

2   1-2 

where 𝒅𝑜𝑏𝑠 consists of observed data, 𝐹(𝒎) is a forward modeling that simulates the predicted 
data of the guessed model 𝒎. 𝑾𝑑 is a matrix connected to the estimated noise in the data (or, 
as it will be clear in the following, also to the noise associated with the used forward approximation 
– Bai et al. (2021)). 

 

Currently, the minimization of the objective functions that are commonly used in standard AEM 

inversions are deterministic, gradient-based approaches. These approaches start with an initial 
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model and updates it iteratively along the gradient direction of the objective function; this 

minimization process proceeds until the difference between the observed and the predicted data 

is less than a predetermined tolerance. 

 

Because AEM surveys may include thousands of flight lines (Ley-Cooper et al., 2020), the inversion 

process must be fast enough to deal with these kinds of massive datasets. Clearly, 1D forwards 

have been, for their computational efficiency, the first choice for the minimization of the objective 

function in Eq.1-1. The theory behind the 1D time-domain AEM forward is based on solving 

Maxwell’s equation given a set of conditions and assumptions. The mathematical formulation is 

presented in Ward and Hohmann (1988). Accordingly, for most of the earth problems, the physical 

properties can be assumed to be (locally) changing in the vertical direction (depth). For this 

“layered earth”, the Maxwell’s equation can be solved in the Fourier transform space. The final 

solution, in the time-domain is obtained by the inverse Fourier or Hankel transformation. 

 

Although 1D inversions have been proved effective in many practical cases, significant inaccuracies 

may occur when true geoelectrical structures are essentially multidimensional (Goldman et al., 

1994). And 1D solutions can only be regarded as an approximate calculation (having said this, in 

any case, we will always deal with approximation, even in the case of very sophisticated 3D forward 

as, for example, the discretization and parameterization will be always finite). Even with an (ideal) 

perfect forward, when problem is linearized - e.g., at every iteration of the iterative minimization, 

an error is introduced. With the rough 1D forward approximation, the inaccuracy is even more 

severe. 

 

The problem caused by approximate calculation in 1D inversion has been investigated, for example, 

by Goldman et al., (1994): there, several synthetic tests are performed and are summarized in 

Figure 1-4. Indeed, Figure 1-4 shows both the true geoelectric model and the recovered one 

obtained by using a 1D inversion. In both cases, the depth and the resistivity of the first layer are 

accurately reconstructed far from the lateral resistivity changes, whereas portions of the model 

close to the horizontal heterogeneities (where the true structure cannot be assumed as “layer 

earth”) are misestimated. These synthetic tests directly and vividly remind us the approximate 

calculation problem cannot be ignored especially in those multidimensional geoelectrical 

structures survey. 
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Figure 1-4 1D inversions of two different synthetic datasets: (a) the first dataset corresponds to a 2-layer 

resistivity model with a 10 Ohm-m for the upper layer and 300 Ohm-m for the bottom one; (b) the 

second to a 2-layer resistivity model with 10 ohm-m for the upper layer and 300 ohm-m for the bottom 

(after Goldman et al., 1994). 

1.3. Possible (deterministic) inversion strategies: pseudo-

3D, full-3D, and 1D inversion with modeling error 

From the beginning of the new century, there are several attempts to improve the accuracy of the 

inversion result, such as full-3D inversion with moving footprint (e.g., Cox et al., 2010), 

lateral/spatial constrains in 1D version (pseudo-3D inversion) (e.g., Viezzoli et al., 2008). 

 

Obviously, the most direct way to deal with modeling error introduced by poor approximations is 

to use 3D forward instead of 1D schemes in the inversion process (however we will always be 

dealing with some approximation error, even in case of very sophisticated 3D forward algorithms). 

In the early attempts, such as in Haber et al. (2007), the authors developed an inversion algorithm 

that allowed the 3D inversion of data from at the maximum a very few transmitter locations. The 

forward problem was solved using an iterative Krylov space method, and the computation time 

increased linearly with the number of transmitter locations (Oldenburg et al., 2013). Therefore, for 

a typical ground or airborne survey which includes many source locations, the algorithm was too 
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computationally expensive to be practically used. Also, similar problems are described in Zaslasky 

et al. (2011). More recently, Oldenburg et al. (2013) presented another 3D inversion methodology 

for time-domain electromagnetic data. In Oldenburg et al. (2013), depending on the availability of 

matrix-factorization software (the package Multifrontal Massively Parallel Solver or MUMPS) and 

high-performance (parallel calculation) computing, the 3D time-domain EM problem solution can 

be found by using direct solvers. By solving the forward problem with finite volume or finite 

integration techniques, they transform the Maxwell’s equations into the expression (more details 

of the derivation process in Oldenburg et al., 2013): 

 𝐴(𝜎, 𝛿𝑡)�⃗⃗� 𝑖+1 = 𝑟ℎ𝑠  1-3 

where 𝐴  is a symmetric positive definite forward modeling matrix that can be rewritten via 

Cholesky decomposition as 𝐴 = 𝐿𝐿𝑇 , 𝜎 is the conductivity, 𝛿𝑡  is the time step, �⃗⃗�  is the 

magnetic field and 𝑟ℎ𝑠is the right hand side of the equation. The core idea of the direct solver is: 

by using the same time step 𝛿𝑡, the linear system above is identical for all time and all sources, 

hence, a single factorization can be used to solve all the linear systems. In practice, several 

factorizations were calculated by MUMPS, since several different time steps needed to be used. 

This direct solver has a big advantage with respect to the iterative ones when it is used in the 

inversion process Since it obviously removes the need for numerous iterations. Oldenburg et al. 

(2013) declare that, by the above-mentioned direct solver approach, small and midsized problems 

can be handled on a single node having six cores and 16 GB per core. However, larger problem 

requires multi-nodes with extended memory.  

 

Another 3D inversion technique was tested by Cox et al. (2010). It is widely known that AEM data 

are sensitive to a limited footprint (Liu and Becker, 1990). The footprint is defined as the lateral 

extent of the sensitivity of the AEM system. Cox et al. (2010) introduced the concept of moving 

footprint for practical 3D inversions. They used a 3D volume integral equation method (Hohmann, 

1975) to solve 3D forward modeling, and a regularized conjugate gradient method for minimizing 

objective function. 

 

Because of moving footprint, each data point is sensitive to a limited number of components of 

the 3D model parameterization. Therefore, at each iteration step of the inversion process, the 

sensitivity matrix of the entire AEM survey could be a sparse matrix. In this sparse matrix, the 

number of non-zero elements corresponds to the size of each footprint (Cox et al., 2010). 

Consequently, the computation time and memory requirements reduced by several orders of 

magnitude. The moving footprint approach has been tested on several dataset. For example, in 

Cox et al. (2010), the authors claim that their 3D reconstruction (based on the moving footprint 

approach) is more consistent with the actual geology of the investigated area when compared 

against alternative 1D reconstructions. However, as it is clear, for example, from the results in Ley-

Cooper et al. (2015), 3D inversions might have convergence problems and might not be able to fit 

the data adequately. So, in general, a starting model quite close to the final solution could be 

necessary. And it clearly not trivial to provide a decent starting model to feed the 3D inversion. 
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Alternatives based on 1D forward modelling but designed to enforce some level of spatial 

consistency via regularization terms connecting adjacent 1D model locations have still 

performances competing with the available 3D approaches. In this respect, focusing on the 

Bookpurnong area, Viezzoli et al. (2010) show that pseudo-3D approaches based on Spatially 

Constrained Inversion (SCI) strategies are still valuable. Similar conclusions are drawn, for example, 

also in the recent work by Munday et al. (2018). 

 

SCI is a least-squares inversion of a layered earth regularized through spatial constraints, which give 

smooth lateral transitions (Viezzoli et al., 2008). In the following, the principles of the Spatially 

Constrained Inversion are discussed briefly. By the first term of the Taylor expansion, in the 

inversion process, the observed data can be written as: 

 𝒅𝑜𝑏𝑠 − 𝒆𝑜𝑏𝑠 ≅ 𝑮𝛿𝒎 + 𝒈(𝒎𝑟𝑒𝑓)  1-4 

where 𝒅𝑜𝑏𝑠 is the observed data vector, 𝒆𝑜𝑏𝑠 represents the error on the observed data, 𝒈 is 

the forward modelling, and 𝛿𝒎 is the difference between the selected model 𝒎  and the 

reference model𝒎𝑟𝑒𝑓. In SCI, the spatial constraints help to resolve model parameters using the 

information coming from the neighboring soundings. Instead of inverting the observed data 

individually, SCI inverts all data soundings synchronously.  

 

The elements of Jacobian matrix 𝑮 can be written as: 

 𝑮𝑖𝑗 =
𝜕𝒅𝑖

𝜕𝒎𝑗
  1-5 

for the i-th data component and the j-th model (Viezzoli et al., 2008). In short, Eq.1-4 can be written 

as  

 𝑮𝛿𝒎 = 𝛿𝒅𝑜𝑏𝑠 − 𝒆𝑜𝑏𝑠  1-6 

where 𝛿𝒅𝑜𝑏𝑠 = 𝒅𝑜𝑏𝑠 − 𝒈(𝒎𝑟𝑒𝑓). The constraints connecting adjacent models (associated with 

adjacent measurement sounding locations) can have the following form: 

 𝑹𝛿𝒎 = −𝑹𝒎𝑟𝑒𝑓 + 𝒆𝑟  1-7 

where 𝒆𝑟 is the “error” in the constraints (it provides an estimation of how much reliable we 

consider the constraints; they are related to the model covariance (Bai et al.,2021) and 𝑹 is the 

roughening matrix which contains 1 and -1 for the constrained parameters: 

 𝑹 = [

1 0 … 0 −1 0 … 0 0 0
0 1 0 … 0 −1 0 … 0 0
⋮ ⋮ ⋮
0 0 0 … 0 1 0 … 0 −1

] 1-8 

By the Eq.1-6 and 1-7, the objective function of SCI can be written as: 

 [
𝑮
𝑹
] 𝛿𝒎𝑡𝑟𝑢𝑒 = [

𝛿𝒅𝑜𝑏𝑠

−𝑹𝒎𝑟𝑒𝑓
] + [

𝒆𝑜𝑏𝑠

𝒆𝑟
] 1-9 

or, more compactly, 

 𝑮′𝛿𝒎 = 𝛿𝒅′ + 𝒆′ 1-10 

The covariance matrix becomes 

 𝑪′ = [
𝑪𝑜𝑏𝑠 0
0 𝑪𝑅

] 1-11 

where 𝑪𝑜𝑏𝑠 refers to observed noise and 𝑪𝑅 refers to the constraint’s uncertainty. Hence, the 

objective function 
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 𝑄 = (
1

𝑁+𝐴
[(𝛿𝒅′𝑇𝑪′−1𝛿𝒅′)])

1

2
 1-12 

where 𝐴 is the number of constraints and 𝑁 is the number of data (Viezzoli et al., 2008), can be 

minimized by 

 𝛿𝒎 = (𝑮′𝑇𝑪′−1𝑮′)−1𝑮′𝑇𝑪′𝛿𝒅′ 1-13 

Because of the lateral constraints factor, the information from adjacent sounding could migrate to 

the closest ones. Hence, in SCI, not only the inversion problem is solved by minimizing an objective 

function that consists of a data misfit and a stabilizer, but also the inversion problem is constrained 

by neighboring information. Additionally, prior information, e.g., originating from electric logs, can 

be added at any point of the profile and migrates. Often a 1D solution with spatial constraints is 

sufficient in quasi-layered sedimentary environment (Auken and Christiansen, 2004). 

 

In this thesis, instead of deterministic inversions, we choose stochastic strategies. For our 

approach, we directly estimate the modeling error caused by approximate calculation of forward 

modeling. The assessment of the modeling error is performed via the evaluation of the responses 

of a set of realizations of the prior. On the other hand, one of the advantages of the stochastic 

inversion is in the possibility of introducing “arbitrary” prior information for constraining the 

inversion. So, the same (potentially complex) prior information can be used to feed the stochastic 

inversion and, at the same time, to calculate the appropriate modelling error. This does not mean 

that the assessment of the modeling error cannot be used in deterministic approaches, but, since 

a complex prior is needed for the modeling error assessment, why not take full advantage of it (via 

the utilization of statistical approaches)?   

1.4. Stochastic inversion approaches 

Tarantola and Valette (1982) is generally considered the seminal paper concerning the 

development of stochastic inversion of geophysical data. In that framework, all information 

(described by a distribution 𝑝(𝐦)) must be qualified probabilistically through a likelihood function 

𝐿(𝐦). The prior probability distribution 𝑝(𝐦) is the probability distribution representing prior 

knowledge about the model parameters which can be derived, for example, from geological expert 

knowledge (Mosser et al., 2020; Nawaz and Curtis, 2016), rock-physics ( de Figueiredo et al., 2018; 

Grana, 2016), nearby outcrops (Pereira et al. 2016), previous surveys (Høyer et al., 2017) and 

similar sources. This prior knowledge can be formalized in different ways; for example via single 

Gaussian distribution (de Figueiredo et al., 2017), Gaussian mixture (Grana et al., 2017), 

multivariate Gaussian priors (Chen et al., 2012) or Multiple Point Statistics (Høyer et al., 2017). The 

likelihood function 𝐿(𝐦)  represents the expected data residual 𝐿(𝒎) = 𝐿(𝒅 − 𝐹(𝒎)) 

(Hansen, 2021). Once the available information is quantified, the combined state of information 

(in form of the prior distribution and the likelihood) can be obtained. Therefore, the solution of 

stochastic inversion is a probability density (posterior probability distribution 𝑝(𝐦|𝐝), which can 

be written as: 

 𝑝(𝒎|𝒅) = 𝑘𝑝(𝒎)𝐿(𝒎) 1-14 

where 𝑘−1 = ∫𝑝(𝒎)𝐿(𝒎)𝑑𝒎 is a normalizing constant such that ∫𝑝(𝒎|𝑑) 𝑑𝒎 = 1, 𝒅 is the 

observed data vector.    

 

Generally, it is impossible to find an analytical expression for 𝑝(𝐦|𝐝). Instead, the posterior 
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distribution 𝑝(𝐦|𝐝) can be efficiently described by a set of samples generated by the adopted 

sampling method.  

 

In the airborne geophysical surveys, the observed data (secondary EM field) collected by the 

recording equipment are finite in number (e.g., limited time gates) with contaminated noise. 

Because of this, even the relatively simple 1D deterministic inversion of EM data (in presence of 

noisy measurements and a limited amount of data points) is an ill-posed problem. Hence, for the 

deterministic inversion, regularization is an indispensable part of finding the optimal solution. 

 

However, it is not easy to estimate the impact of regularization parameters on model uncertainty, 

and they are difficultly related to geological information (Hauser et al., 2015). Consequently, the 

solution reliability of the deterministic inversion cannot be evaluated.  

 

On the contrary, stochastic inversion has an advantage to estimate the reliability of the solution. 

Because the solution of stochastic inversion is the posterior probability density, it can be naturally 

used to infer the result uncertainty ( Minsley et al., 2021). Moreover, stochastic inversions could 

also account for the uncertainty associated to each step of the modeling workflow (Fjeldstad and 

Grana, 2018; Grana and Della Rossa, 2010). 
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Chapter 2.  1D stochastic inversion of AEM 

data with realistic prior and accounting for 

the forward modelling error 

This Chapter is largely based on the material discussed in the manuscript Bai et al. (2021). As 

mentioned in the introduction, airborne electromagnetic surveys may consist of hundreds of 

thousands of soundings. In most cases, this makes 3D inversions unfeasible even if it would be 

necessary because of the high level of heterogeneity of the subsurface. Instead, approaches based 

on 1D forwards are routinely used as they are extremely computational efficient. However, it is 

relatively easy to fit 3D responses with 1D forward modelling and retrieve apparently well-resolved 

conductivity models. But those detailed features may simply be caused by fitting the modelling 

error connected to the approximate forward. In addition, it is, in practice, difficult to identify this 

kind of artifacts as the modeling error is correlated. Chapter 2.  demonstrates a possible strategy 

to assess the modelling error introduced by the 1D approximation and how to include this 

additional piece of information into a probabilistic inversion. Not surprisingly, it turns out that 

incorporating the modeling error into the inversion provides not only much better reconstructions 

of the targets but, maybe more importantly, guarantees a correct estimation of the corresponding 

reliability. 

2.1. Methodology 

The calculation of the response of a physical system is always characterized by some level of 

modelling error. For example, even in the case of very sophisticated 3D forward modelling tools 

used to calculate the 𝑑𝐵/𝑑𝑡 responses of an electrical conductivity distribution caused by the 

excitation induced by a “perfectly” described ATEM system (is it really possible to characterize a 

priori an acquisition system? (Christiansen et al., 2011; Moilanen et al., 2013; Sørense and Auken, 

2004; Volkovitsky and Karshakov, 2013)), the parameterization used and the size of the discretized 

domain might affect the retrieved response. In this respect, every time we use a 1D forward 

modelling approximation (Auken et al., 2015) for the inversion of ATEM data (inherently 3D), we 

introduce some errors that need to be handled; neglecting this source of additional uncertainty 

would inevitably lead to artifacts paving the road to successive geological misinterpretations. In 

the best scenario, the magnitude of the modeling error will be negligible compared to uncertainty 

in the data, and can be ignored (Tarantola, 2005). More often, modeling errors will be significant, 

and must be taken into account. 

 

Here, we briefly recall a formal framework in which the modelling error is described through a 

multivariate normal correlated probability distribution, that can be naturally used when the 

measurement errors are also Gaussian (Tarantola, 2005). In probabilistic formulations of inverse 

problems, the goal is to retrieve the posterior probability density function 𝑝(𝐦|𝐝) measuring the 
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probability of having the model 𝐦  compatible with the measurements 𝐝 . In accordance with 

Bayes’ theorem, 𝑝(𝐦|𝐝) is proportional to the product between the prior probability density 

function of the model parameters 𝑝(𝐦), and the conditional probability density function 𝑝(𝐝|𝐦). 

Hence, 𝑝(𝐦|𝐝) ∝ 𝑝(𝐝|𝐦)𝑝(𝐦), with 𝑝(𝐝|𝐦)  connecting the measured data and the model 

parameters, and, in the specific case of a Gaussian noise distribution, that can be written as 

 𝑝(𝒅|𝒎) = 𝑘𝑑 𝑒𝑥𝑝 (−
1

2
(𝒅 − 𝐹(𝒎))𝑇𝑾𝑑

𝑇𝑾𝑑(𝒅 − 𝐹(𝒎))) 2-1 

where: (i) 𝑘𝑑 is just a normalization factor, (ii) 𝐹 is the forward modeling operator used during 

the inversion, and (iii) 𝐖d  is related to the data covariance 𝐂, and, often, by assuming mutually 

independent data, can be considered equal to 𝐖𝑑 = diag(𝛔d)
−1 =  𝐂−1 2⁄   where the i-th 

component of the vector 𝛔d is the standard deviation of the i-th data component (in the specific 

case of the ATEM data, [𝛔d]𝑖 is the standard deviation of the 𝑑𝐵/𝑑𝑡 value associated with the 

i-th time-gate). 

 

If also the model parameters are assumed to follow a Gaussian distribution, then, the prior 

information about the solution can be formalized as follows: 𝑝(𝐦) = 𝑘𝑚exp (−
1

2
(𝐦 −

𝐦0)
𝑇𝐖𝑚

𝑻𝐖𝑚 (𝐦 − 𝐦0)), in which: (i) 𝑘𝑚 is another normalization factor and (ii) the Gaussian is 

centered on the reference model 𝐦0. In this specific case of Gaussian distributions assumed both 

for the data noise and the model parameters, we obtain that the maximizer of the probability 

𝑝(𝐦|𝐝)  is also the minimizer of the regularized inversion objective functional ‖𝑾𝑑 (𝐝 −

𝐹(𝒎))‖
𝐿2

2
+ ‖𝑾𝑚(𝐦 − 𝐦0)‖𝐿2

2
 . In fact, this is a very well-known result (e.g., Tarantola and 

Valette, 1982; Vignoli et al., 2021; Zhdanov, 2002), to some extent, reconciling probabilistic and 

deterministic approaches; in particular, if 𝐂𝑚
−𝟏  is taken equal to𝜆𝟐𝑳𝑻𝑳  with 𝜆   being the 

Tikhonov parameter controlling the relative importance of the regularization term with respect of 

the data misfit, and 𝑳 a discrete approximation of the spatial derivative – then, the minimization 

of the objective functional coincides with the standard Occam’s inversion (Constable et al., 1987). 

 

However, the approach discussed in the present research loosens several of these ansätze, and, in 

the following:  

1) we do not restrict ourselves to the Gaussian assumption for the model parameters distribution 

𝑝(𝐦)  as we are going to consider quite general prior distributions defined through the 

realizations of those distributions and that will be generated via a geologically informed 

procedure; 

2) the 𝐖𝑑 = 𝐂−1 2⁄  will not consist uniquely of the component attributable to the noise in the 

observations, but it will include also a term incorporating the modelling error. In particular, the 

modelling error will be assumed to be consistent with a Gaussian probability density 

𝒩(𝐝Δ, 𝑪Δ) defined by the mean 𝐝Δ and the covariance 𝑪Δ. Hence, the 𝑝(𝐝|𝐦) in Eq.2-1 

will have now the following expression (Hansen et al., 2014) 
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 𝑝(𝒅|𝒎) = 𝑘𝑑 𝑒𝑥𝑝 (−
1

2
(𝒅 + 𝒅𝛥 − 𝐹(𝒎))𝑇𝑾𝛥

𝑇𝑾𝛥(𝒅 + 𝒅𝛥 − 𝐹(𝒎))) 2-2 

with 𝐖Δ = (𝐂 + 𝑪Δ)
−1 2⁄ . By construction, as it will be detailed in what follows, also these new 

terms 𝐝Δ and 𝑪Δwill depend on the prior geological knowledge available about the investigated 

area. 

 

It is important to stress that despite we demonstrate the effects of taking into account the 

modelling error within a probabilistic framework, the 𝐖Δ =(𝐂 + 𝑪Δ)
−1 2⁄  can actually, be, in a 

very immediate way, incorporated into a deterministic framework as well. The evident advantage 

of using a stochastic approach is that we can naturally incorporate complex prior information 

(rather than enforcing simple - e.g., smooth or sharp - constraints) and those pieces of complex 

information need to be available in any case since they are used for the assessment of the 

modelling error. As a matter of fact, given the arbitrariness we can benefit from by defining the 

prior directly via its samples, in general, we could potentially have the maximum flexibility and 

even use very powerful strategies as, for example, those based on Multiple-point statistics (MPS) 

approaches (Høyer et al., 2017); in that case, the prior geological information can be formalized by 

means of the so-called Training Image (TI) that is, basically, representing the conceptual geological 

model of the expected target subsurface; MPS algorithm can then generates samples of the prior 

that are statistically stationary with respect to the original TI and that can be used as detailed in 

the following Subsection 2.1.1. In the present research, however, we use other geostatistical 

strategies to populate the prior (and consistently estimate the associated modelling error). They 

will be described in the following as well. 

2.1.1. Estimation of Gaussian correlated modeling errors 

Here we follow the strategy detailed in Hansen et al. (2014) to (i) simulate and (ii) quantify 

modeling errors caused by using a 1D forward as opposed to a full 3D forward for simulating ATEM 

data. 

 

Firstly, a sample of the underling probability distribution representing the modeling errors is 

generated. This is done by generating a relatively large sample of 𝑁Δ  realizations of the prior 

distribution 𝑝(𝐦) as 𝑴 = [𝒎1
′ ,𝒎2

′ , … ,𝒎𝑁Δ

′ ]. The forward response is then calculated by using 

the approximate 1D forward model, 𝐹𝑎𝑝𝑝, and the (assumed) exact 3D forward model, 𝐹𝑒𝑥. This 

provides a set of ‘approximate’ and ‘exact’ data in form of 𝑫𝑎𝑝𝑝 =

[𝐹𝑎𝑝𝑝(𝒎1
′ ), 𝐹𝑎𝑝𝑝(𝒎2

′ ),… , 𝐹𝑎𝑝𝑝(𝒎𝑁Δ

′ )] and 𝑫𝑒𝑥 = [𝐹𝑒𝑥(𝒎1
′ ), 𝐹𝑒𝑥(𝒎2

′ ),… , 𝐹𝑒𝑥(𝒎𝑁Δ

′ )]. Hence, the 

difference between the approximate and the exact forward models represents a realization, 

[𝑫𝑑𝑖𝑓𝑓]𝑖 = [𝑫𝑒𝑥 − 𝑫𝑎𝑝𝑝]𝑖, of the modelling error associated to the specific i-th sample of the prior. 

As it will be discussed also in the following, to feed the 1D forward 𝐹𝑎𝑝𝑝 , unidimensional 

conductivity models have been extracted from the original 3D realizations of the prior in the 

location just below the acquisition system. 

 

Assuming that the modeling error can be characterized by a multivariate Gaussian distribution 

𝒩(𝐝Δ, 𝑪Δ), the mean and covariance can be trivially computed from the samples 𝑫𝑑𝑖𝑓𝑓. Finally, 
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the assessment of the 1D modeling error can be plugged into Eq.2-2. The number of realizations 

needed, 𝑁Δ, and the validity of the Gaussian assumption on the modeling errors will be addressed 

below. 

 

In the present research, as the best approximation 𝐹𝑒𝑥, it has been considered an implementation 

of the forward modelling discussed in detail in Haber (2014). Clearly, the actual simulation has 

been preceded by a checking phase, in which the 3D forward modelling results have been 

compared against known solutions assumed to be exact. In our specific case, we performed 

preliminary tests of the 3D forward against semi-analytical solutions for unidimensional 

conductivity distributions; the chosen 3D simulation settings have led to mismatches of a few 

percentage points (generally around 5%). Consequently, as it will be shown later in the chapter, the 

modelling error inherited from the 3D modelling has been assumed negligible with respect to the 

other noise sources and it has not been further considered in our analysis. 

2.1.2. Inversion strategies 

Concerning the deterministic inversion results discussed in the following, as mentioned, we use an 

Occam’s inversion scheme (Vallée and Smith, 2009) in which each individual 𝑑𝐵/𝑑𝑡 sounding is 

inverted independently from the adjacent ones and, so, the roughness operator in the 

regularization terms acts only vertically. To be fair, it is true that this specific kind of prior 

information, formalized by the stabilizer, is not in accordance with the investigated models (as it 

will be clear in the descriptions of the tests, characterized by abrupt conductivity changes). 

Nevertheless, the deterministic algorithm retrieve (smooth) models whose 1D responses are in 

almost perfect agreement with the inverted 3D 𝑑𝐵/𝑑𝑡 data. The level of data fitting used for the 

inversion of the noise-free data is, for all synthetic tests, 0.01%. 

 

The stochastic inversion consists of an independent extended Metropolis algorithm simply 

obtained by a slight modification of the SIPPI toolbox (Hansen et al., 2013) to make the pro-posed 

samples independently drawn from the prior ensemble. The 105 realizations of the prior are 

generated in advance since a subset of them needs to be used for the modelling error assessment; 

the appropriateness of this choice, and the convergency properties will be discussed in the Section 

“2.3 Analysis of the inversion parameters”. 

2.2. Synthetic tests 

In this section, we perform two synthetic tests of increasing complexity to investigate the effects 

of including in the inversion process: (i) the proper prior information, and (ii) an estimation of the 

modelling error. In both cases, we compare our results against a solution provided by a more 

standard 1D deterministic inversion. 
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2.2.1. Test 1: 3D conductivity distribution with homogeneous 

layers 

The first test (test 1 – Figure 2-1) consists of a conductivity distribution mimicking possible glacial 

geological settings typical, for example, of Denmark (Høyer et al., 2015; Jørgensen and Sandersen, 

2006; Kehew et al., 2012) and characterized by an intricated network of paleo valleys. 

 

Figure 2-2 compares, for the sounding locations considered in Figure 2-1, the 3D responses 

calculated for the entire 3D model against the corresponding 1D measurements that would be 

obtained by considering exclusively the 1D portion of the original distribution just below the 

acquisition position. The acquisition parameters are those of a typical VTEM system (Kwan et al., 

2016; Legault et al., 2015) (e.g., each sounding consists of 54 measurements). Not surprisingly, the 

1D responses (Figure 2-2b) are characterized by abrupt lateral changes associated with the lateral 

variations of the conductivity model (Figure 2-2a), whereas, in accordance with the physics, the 3D 

𝑑𝐵/𝑑𝑡 data are much smoother (Figure 2-2c). Here, we treat the 3D calculated responses as the 

‘observed data’, and invert them by means of both deterministic and probabilistic inversion 

methods. 

 

In all cases, we assume negligible measurement errors during the inversion as the main purpose is 

to focus on the modeling error effects. In this respect, it is important to highlight the level that the 

modelling error can reach: the difference in the 1D and 3D responses (blue line in Figure 2-2b) can 

be as big as ~20%, and, very seldom, smaller than several percentage points! So, the size of this 

mismatch should make accounting for the modelling error unavoidable whereas, on the contrary, 

as mentioned before, the common practice is to tackle it by discretionally increase the 

measurement noise. Actually, by properly including the modelling error in the inversion, the 

assumed measurement error could be potentially reduced. 

2.2.1.1 Deterministic Occam’s inversion. 

Figure 2-3 shows the result of 1D deterministic inversion – implementing an Occam’s regularization 

strategy. Clearly, the deterministic result fits the observations extremely well (blue line in Figure 

2-3b) and is capable to retrieve the major features of the true model whereas, in some cases, infers 

deceptive discontinuous reconstructions of the true interfaces (e.g., ~1600 to ~2000 m). It is worth 

mentioning that the data sensitivity to the model parameters drops below the first reconstructed 

conductive interface; hence, eventually, all the conductivity variation below that retrieved deep 

interface would not be considered reliable by skilled interpreters. In this respect, the deterministic 

result cannot be considered, at least from a practical point of view, much different from the 

probabilistic result obtained without accounting for the modelling error (and discussed in-depth in 

the following sub-section). Nevertheless, it is true that the retrieved (laterally discontinuous) 

features (caused by fitting the coherent modelling error – as it will be clear later) might be 

challenging to be correctly deciphered and lead to erroneous conclusions. 
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2.2.1.2 Stochastic inversion without modelling error assessment 

The stochastic approach allows incorporation of (in principle) arbitrarily complex prior information, 

as long as realizations from the prior can be generated. In the present research, we generates 

independent realizations of 𝑝(𝐦) representing buried valley structures (similar to those in Figure 

2-1) by means of a Fast Fourier Transform Moving Average (FFT-MA) (Le Ravalec et al., 2000) 

strategy providing unconditional realizations of a Gaussian random field of the interfaces’ locations; 

in particular, the corresponding mean values are chosen to be uniformly distributed: (i) between 

20 and 30 m for the shallowest interface, and (ii) between 65 and 85 m for the deepest, whereas 

the associated covariance models are characterized by a standard deviations and ranges, 

respectively, of: (i) 5 m and 100 m, for the first interface, and (ii) 80 m and 500 m for the second. 

More details about a possible way of constructing the samples can be found in (Hansen and Minsley, 

2019) including, for example, some details about the above-mentioned MPS strategies. 

 

Whilst the geometry is varying, the conductivity values of each layer are kept constant realization-

by-realization. For clarity, two examples of prior distribution realizations can be seen in Figure 2-4. 

It is evident that the parameters defining the realizations of the prior have been selected to be in 

agreement with our expectations about the geological structures we are dealing with. 

 

It is worth highlighting that, since the inversion is one-dimensional, the actual (1D) models used to 

feed the inversion algorithm are the individual columns (and the corresponding 1D response) of 

each 3D realization (e.g., in Figure 2-4). So, each single 1D prior model can be described by five 

parameters (the depths to the interfaces and the three conductivities). 

 

Undoubtedly, the stochastic inversion, with such an informative prior is quite facilitated and is 

basically reduced to the inference of the locations of the interfaces. As a matter of fact, as Figure 

2-5 shows, by using the Metropolis algorithm (Hansen and Minsley, 2019; Mosegaard and Tarantola, 

1995), we can reconstruct quite satisfactorily the first interface at about 25-30 m depth, whereas 

we generally underestimate the depth of the second layer (except for the last ~1500 m on the right). 

But what is most disturbing is that, even in this simple case, the misleading features reconstructed 

by the stochastic inversion (here, performed without accounting for the modelling error) appear 

to be almost certain. 
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Figure 2-1. Conductivity distribution for test 1: (a) 3D view of the model consisting of a sequence 

of three homogeneous layers with varying thicknesses; (b) Vertical section of the model in panel 

(a), along the survey line highlighted by the red dots indicating the locations of the ATEM soundings; 

(c) Plain view at 100 m depth (dash green line in panel (b)). 
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Figure 2-2. Comparison of the 3D and 1D responses for the conductivity model of test 1: (a) Vertical 

section of the 3D conductivity model in Figure 2-1a (it is a portion of the section in Figure 2-1b); (b) 

1D responses calculated for the 1D portions of the original model in Figure 2-1a taken at the 

locations of the ATEM soundings (red dots in Figure 2-1b) – the blue line represents, sounding-by-

sounding, the relative misfit between the 1D and 3D responses (the corresponding axis is on the 

right, in blue); (c) 3D responses measured at the same location in panel (b), but, here, calculated 

for the entire 3D conductivity model (Figure 2-1a). 
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Figure 2-3. 1D deterministic inversion of the 3D data (Figure 2-2c) associated to the conductivity 

model of test 1 (Figure 2-1a): (a) The solution of the 1D deterministic inversion – the black lines 

show the interfaces of the original conductivity model to be reconstructed; (b) The 1D responses 

resulting from the conductivity model in panel (a) – the blue line represents, sounding-by-sounding, 

the relative misfit between the 3D and 31 1D responses (the corresponding axis is on the right in 

blue). 
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Figure 2-4. Two examples of realizations of the prior distribution used for the stochastic inversion 

of test 1’s dataset. 

2.2.1.3 Stochastic inversion incorporating the 1D modelling error 

If instead, we use a subset of the 3D prior samples (Figure 2-4) to calculate their actual 3D 

responses and compare them with the data calculated, this time, by means of the 1D forward 

modelling applied to the 1D conductivity vertical profile in the center of each selected prior 

realization, we can estimate the appropriate mean 𝐝Δ and covariance 𝑪Δ, and incorporate them 

into the 1D stochastic inversion scheme. The results of the application of this new scheme to test 

1 is showed in Figure 2-6. Now, the result almost perfectly matches the true model. And, when the 

mean depth of the interfaces does not fit the true conductivity change – for example, near the 

steep lateral variations around 1000 m and 1400 m – the correct location of the boundaries still 

lies within the uncertainty bands. 
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Figure 2-5. 1D stochastic inversion of the 3D data (Figure 2-2c) associated to the conductivity model 

of test 1 (Figure 2-2a shows one vertical section of that 3D conductivity model). In this case, realistic 

prior is used (Figure 2-4), but no modelling error has been taken into account. The orange bands 

represent the reconstruction uncertainty defined by the mean and standard deviation values (red 

points and vertical bars) deduced by the retrieved realizations of the posterior 𝑝(𝐦|𝐝). As for 

Figure 2-3a, the black lines show the locations of the interfaces to be reconstructed. 

 

Figure 2-6. 1D stochastic inversion of the 3D data (Figure 2-2c) associated to the conductivity model 

of test 1 (Figure 2-1a). In this case, realistic prior is used (Figure 2-4) together with the modelling 

error assessment. As in Figure 2-5, the orange bands represent the uncertainty (the associated 

mean and standard deviations are plotted as vertical red bars) calculated by the retrieved 

realizations of the posterior 𝑝(𝐦|𝐝). The black lines show the locations of the interfaces to be 

reconstructed (Figure 2-2a). 

 

Since we are dealing with 3D conductivity models, it is probably more appropriate to visualize the 

consequences of the different inversion schemes over several flight lines (Figure 2-7) across the 

test 1 model. If we examine Figure 2-7b-c, the same conclusions drawn for an individual vertical 

section are clearly valid also for the other acquisition lines (and, consistently, also for the lateral 

intra-line resolution – kindly, compare Figure 2-7e-g). 

 

A direct assessment of the performances of the different inversion schemes in terms of data fitting 

can be performed by looking at Figure 2-8b; in general, the relative mismatch between each of the 

54 channels of the observed 3D responses and those calculated (via a 3D forward) from the 3D 

conductivity distribution obtained via the stochastic inversion (with modelling error appraisal) lays 

within ∓10%. It is worth noticing that the relatively poor data fitting on the right side of Figure 

2-8b is caused by the higher level of heterogeneity of that end of the model, beyond the surveyed 

area. In fact, Figure 2-7d shows the rapidly varying morphology for 𝑋 > 2500  m in 

correspondence of the section considered in Figure 2-8 (𝑌~500 m); that conductivity variation is 

not in accordance with the inevitable laterally homogeneous extension of the reconstructed 
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solution (Figure 2-7g). This mismatch affects, not surprisingly, mainly the late-gate measurements. 

The same does not happen on the other end of the section, where the data fitting is particularly 

good (Figure 2-8b); in this case, the reason is that, differently from before, the true model 

continues largely unchanged towards low X values, at least for 𝑌~500 m (Figure 2-7d). On the 

other hand, the 3D responses generated by the conductivity volume retrieved by the 1D 

deterministic inversion (Figure 2-8a) demonstrates, once more, that fitting the data with a 1D 

forward (as in Figure 2-3b) does not necessarily guarantee that the corresponding 3D calculated 

data are in agreement with the (3D) observations; indeed, in Figure 2-8a, the relative misfit 

between the 3D calculated responses and the measurements ranges approximately between 

∓30%. 
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Figure 2-7. The inversion results of the 3D data from (a) test 1’s conductivity model (Figure 2-1), 

and obtained with: (b) Occam’s deterministic strategy, and (c) The stochastic strategy incorporating 

the modelling error. The locations of the inverted soundings are showed as red dots in (d), on top 

of the plain view of the topography of the second interface of the true model - showed in (e). In 

(f), the 3D view of the results from (b) is plotted, whereas in (g), it is possible to see a similar 3D 

view but now based on the stochastic results in (c). For clarity, in panels (e-g), only the sounding 

locations of the central flight line are showed (as red dots). 
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Figure 2-8．Comparison of the percentage misfit between the observed 3D responses and those 

calculated from: (a) The 3D conductivity model retrieved by the 1D deterministic approach (Figure 

2-7b and 7f); (b) The 3D conductivity model obtained via the stochastic inversion accounting for 

the modelling error (Figure 2-7c and g). Each of the 50 plotted time-gates (channels) is depicted 

with a different color (for clarity, the last 4 channels – 51 to 54 – are not shown). 

2.2.2. Test 2: 3D conductivity distribution with heterogeneous 

layers 

In test 2, we apply the same strategy to a more elaborated 3D conductivity model. test 2’s model 

consists of three layers with similar geometries as in test 1, but, now, characterized by 

heterogeneous conductivity values (Figure 2-9). For sake of completeness, analogously to what has 

been done for test 1, also for test 2, we show the 3D responses (Figure 2-10c) along the central 

profile (Figure 2-10a) of the 3D conductivity model (Figure 2-9a). And, in Figure 2-10b, we display 

the 1D response as they would result by considering each column of the true conductivity model 

as independent (for comparison, kindly, see Figure 2-2b concerning test 1). Clearly, for test 2, the 

importance of taking into account the modelling error is even more evident: the error we introduce 

when interpreting the 3D model response in terms of 1D data is never below 4% (blue line in Figure 

2-10b). 

 

Figure 2-11a presents the result of Occam’s inversion of the 3D data (Figure 2-10c). Again, from 

Figure 2-11b, it is clear that it is not difficult to perfectly fit the 3D data with 1D responses, even 

with a model barely capable to get the very major features of the conductivity model to be inferred. 

Also, for this more complex test, a 1D stochastic inversion can be performed by following the 

previously discussed Metropolis approach making use of precalculated samples. The 105 

realizations of the prior distribution are very similar to those shown in Figure 2-4 for test 1; the 

only difference is that, consistently with the new model to be reconstructed, also for the prior 

realizations, the conductivity of each layer is allowed to vary. Figure 2-12 shows the mean map of 



1D stochastic inversion of AEM data with realistic prior and accounting for the forward modelling 
error 

31 

 

the posterior distribution obtained without taking into consideration the modelling error; as for 

Figure 2-5 (about test 1), also for test 2, the retrieved mean model (Figure 2-12a) does not capture 

the lateral variation of the top of the deepest layer and smooth the large majority of the incisions 

out. And, maybe, worse than that is the fact that, as showed by the standard deviations of the 

conductivity of each layer (plotted in Figure 2-12b), the leveled-out reconstruction is given for 

(almost) undeniable. 

 

On the contrary, if we take into account the modelling error, the mean map derived from the 1D 

stochastic inversion provides a quite satisfactory reconstruction of the true model with all its 

complex morphology (Figure 2-13a), and when the inferred mean conductivity values do not reflect 

the true distribution, they are associated with high levels of uncertainty (for example at depth ~100 

m and 𝑋 ~1300 m in Figure 2-13b). 
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Figure 2-9. Conductivity distribution for test 2: (a) 3D view of the model consisting of a sequence 

of three heterogeneous layers with varying thicknesses; (b) Vertical section of the model in panel 

(a), along the survey line highlighted by the red dots indicating the locations of the ATEM soundings; 

(c) Plain view at 100 m depth (dash green line in panel (b)). 
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Figure 2-10. Comparison of the 3D and 1D responses for the conductivity model of test 2: (a) 

Vertical section of the 3D conductivity model in Figure 2-9a (it is a portion of the section in Figure 

2-9b); (b) 1D responses calculated for the 1D portions of the original model in Figure 2-9a at the 

locations of the ATEM soundings (red dots in Figure 2-9b) – the blue line represents, sounding-by-

sounding, the relative misfit between the 1D and 3D responses (the corresponding axis is on the 

right in blue); (c) 3D responses measured at the same location in panel (b), but, here, calculated 

for the entire 3D conductivity model (Figure 2-9a). 
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Figure 2-11. 1D deterministic inversion of the 3D data (Figure 2-10c) associated to the conductivity 

model of test 2 (Figure 2-9a): (a) The solution of the 1D deterministic inversion – the black lines 

show the interfaces of the original conductivity model to be reconstructed; (b) The 1D responses 

resulting from the conductivity model in panel (a) – the blue line represents, sounding-by-sounding, 

the relative misfit between the 3D and 1D responses (the corresponding axis is on the right in blue). 

 

Figure 2-12. (a) Mean map of the 1D stochastic inversion of the 3D data (Figure 2-10c) associated 

to the conductivity model of test 2 (Figure 2-10a shows one vertical section of that 3D conductivity 

model). In this case, realistic prior is used, but no modelling error has been taken into account. The 

black lines show the locations of the interfaces to be reconstructed. (b) The same reconstructed 

conductivity distribution as in panel (a), but, now, with, superimposed, the mean and standard 

deviation vertical profile for each vertical conductivity profile. 
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Figure 2-13. (a) Mean map of the 1D stochastic inversion of the 3D data (Figure 2-10c) associated 

to the conductivity model of test 2 (Figure 2-10a shows one vertical section of that 3D conductivity 

model). In this case, realistic prior is used together with the modelling error assessment. The black 

lines show the locations of the interfaces to be reconstructed. (b) The same reconstructed 

conductivity distribution as in panel (a), but, now, with, superimposed, the mean and standard 

deviation vertical profiles. 

2.3. Analysis of the inversion parameters 

Are 105 samples from the prior enough to guarantee the convergence of the stochastic inversions? 

What about the subset of 500 prior 3D realizations used for the assessment of the modelling error 

for the geological settings considered? Is the retrieved modelling error Gaussian as it should be to 

be able to use the proposed inversion scheme? In this section, we try to answer all these legitimate 

questions. 

2.3.1. About the numerosity of the prior samples for the 

convergency of the stochastic inversion 

Since the propositional scheme of the adopted Metropolis approach is based on a finite number 

of precalculated samples of the prior, it is important to establish if the abundance of those samples 

is sufficient to guarantee the convergence. In this respect, we run several inversions characterized 

by an increasing number of prior’s samples. From Figure 2-14f-h, it is evident that, at least for the 

simple problem of test 1, convergence is reached with a numerosity of the prior samples of a few 

thousand. Hence, an abundance of two orders of magnitude higher should reasonably be 

compatible with our goal. A similar conclusion can be deduced by considering the evolution of the 

correlation coefficient between the depth of the deepest interface inferred and the true one as 

showed in Figure 2-15. 



1D stochastic inversion of AEM data with realistic prior and accounting for the forward modelling error 

36 

 

 
Figure 2-14. Result of the extended Metropolis inversion as a function of the numerosity of the 

considered precalculated prior samples (the title of each panel reports that numerosity). Clearly, 

here, we are incorporating the information about the modelling error into the inversion of test 1’s 

data. 

2.3.2. About the numerosity of the prior’s samples for the 

estimation of the modelling error 

Still considering test 1’s dataset, we try to set up a strategy for the evaluation of the minimum 

number of realizations of the prior to be considered for an effective assessment of the modelling 

error. For all the tests performed in the present research, a maximum number of 500 models 

(similar to those in Figure 2-4) have been used to calculate the difference 𝑫𝑑𝑖𝑓𝑓 and, in turn, the 

parameters defining the Gaussian probability density 𝒩(𝐝Δ, 𝑪Δ)describing the modelling error. 

If we consider the behavior of the mean vector 𝐝Δ calculated for an increasing number of samples 

number 𝑁Δ, we can plot the results as in Figure 2-16a; from that figure, it appears evident that 

the assessment of 𝐝Δ reaches significant stability after considering a few hundred of realizations 

of the prior. 
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Figure 2-15. Correlation coefficient between the retrieved and the true depth of the deepest layer 

as a function of the number of precalculated samples of the prior. Clearly, as for Figure 2-14, we 

are considering the stochastic inversion with modelling error assessment applied to test 1’s dataset. 

 

Figure 2-16. Mean of the modelling error as the number of the prior samples used for its estimation 

increases: (a) the mean 𝐝𝚫 vectors calculated for a number of prior samples ranging, for example, 

from 1 to 100 are represented by the solid yellow lines, whereas, considering another example, for 

a number of prior samples between 401 and 500, the same results for the 𝐝𝚫 vectors are plotted 

in dark red. (b) shows the behavior of the mean misfit between the estimated 𝐝𝚫 and our best 

assessment 𝐝𝚫
(𝟓𝟎𝟎)

 (based on 500 realizations). 



1D stochastic inversion of AEM data with realistic prior and accounting for the forward modelling error 

38 

 

 

A similar conclusion can be even more directly deduced by checking Figure 2-16b, in which the 

mean of the difference between 𝐝Δ  and its best estimation 𝐝𝚫
(𝟓𝟎𝟎)

  (based on 𝑁Δ = 500 

realizations) is plotted against the increasing numerosity 𝑁Δ: approximately after considering 400 

samples, 𝐝Δ does not show significant variations. 

 

Regarding the evolution of the covariance matrix 𝑪Δ, we can, again, study how it changes over the 

number of prior samples. Figure 2-17 demonstrates, once more, that, for the considered case, 

𝑁Δ =500 should guarantee a reasonable estimation of the modelling error. In particular Figure 

2-17b shows that the estimation of 𝑪Δ has already reached convergence after considering ~400 

samples. 

 
Figure 2-17. Covariance 𝑪𝚫 of the modelling error as the number of prior samples used for its 

estimation increases: (a) different 𝑪𝚫’s calculated for the number of prior samples indicated by 

the title of each subpanel (from 𝑵𝚫 =10 for the panel on the top-left to 𝑵𝚫 =500 for our best 

estimation on the bottom-right corner of panel (a)). (b) shows the behavior of the maximum misfit 

between all the components of the matrix 𝑪𝚫  and the corresponding 𝑪𝚫
(𝟓𝟎𝟎)

  based on our 

maximum number of realizations (𝑵𝚫=500). 
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2.3.3. About the Gaussianity of the modelling error 

As mentioned before, the proposed approach is based on the assumption that the modelling error 

is actually Gaussian. In this section, we demonstrate that this working hypothesis is largely met. In 

this respect, each subpanel of Figure 2-18 shows one of the 54 histograms (one for each time-gate) 

of the corresponding component of the vector 𝑫𝑑𝑖𝑓𝑓 of the difference between the 3D and 1D 

responses calculated for the 500 realizations used for the modelling error assessment. In particular, 

the red lines represent the Gaussian that is better fitting the experimental histograms, whereas 

the black lines show the Gaussian profile as inferred from the distribution 𝒩(𝐝Δ, 𝑪Δ). It is worth 

noticing the excellent agreement between the black and red curves, but, more than that, the fact 

that for the large majority of the time-gates the modelling error is indeed compatible with Gaussian 

distributions. Surprisingly, the histograms for the late channels (in particular those for 𝑖  going 

from ~49 to 54 – i.e., basically the last row of Figure 2-18) show some sort of bimodal behavior 

whose possible justification is not evident. A possible reason might be connected with the finite 

size of the 3D simulation domain. However, this highly hypothetical guess will need to be 

investigated and verified. 

 

 
Figure 2-18. Each panel 𝑗 (with 𝑗, time-gate’s index, varying from 1 to 54) shows the histogram of the corresponding 

component[𝑫𝑑𝑖𝑓𝑓]𝑗 of the difference between the 3D and 1D responses for the 500 samples of the prior used for the 

modeling error estimation. The solid black line is the Gaussian curve better fitting the histogram, whereas the red line is 

the Gaussian derived by 𝒩(𝐝Δ, 𝑪Δ). 

2.4.  Field test 

In this section, we show an application on a field dataset of the proposed approach for 1D 
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stochastic inversion with realistic prior and accounting for the forward modeling error. Like for the 

above synthetic tests, we use the solution of standard 1D deterministic inversion as a benchmark. 

 

In the considered survey area, the major host and wall rock units of the deposit comprise peridotite, 

breccia, and volcaniclastic units. Among the wall rock, there are sulfide deposits distributed in 

massive forms. Massive sulfide deposits are significant sources of Zn, Cu and Ag, Au and other 

metals. Therefore, Massive sulfides, likely to be highly conductive, are the main targets for the AEM 

exploration. Clearly, one of the main problems here is the reliable reconstruction of a highly 3D 

environment, by using efficient forward. 

2.4.1. Deterministic Occam’s inversion 

Figure 2-20 (a) and Figure 2-21 (a) show the result of 1D deterministic inversion - implementing an 

Occam’s regularization strategy (specifically, the Spatially Constrained Inversion - SCI). The 

deterministic inversion reconstruction is characterized by a high conductivity body (anomaly) 

embedded in a heterogeneous background significantly more resistive, and, in which, two main 

structures can be easily detected; in particular, a deepening unit (of approximately 0.0035 𝑆/𝑚) 

that, roughly speaking, leaves the surface (at small 𝑋 values) and intersects the most conductive 

anomaly at 𝑍  ~200 m. The shape of the conductive anomaly is characterized by the typical 

features known as pant-legs artefacts. This makes it particularly evident that the deterministic 

inversion is definitely distorted by 3D effects due to the sub-optimal forward modelling. 

 

Concerning the data misfit, observations are easy to fit by using the 1D forward response (as 

showed in Figure 2-22). Nevertheless, when we calculate the 3D responses corresponding to the 

result retrieved via the deterministic 1D inversion, and we compare them against the actual 

measurements, we can notice the obvious increase of the relative data misfit (Figure 2-23). More 

specifically, Figure 2-23a shows the 3D responses of the 1D SCI result calculated at the locations 

(red dots – upper line - in Figure 2-21a) above the retrieved anomaly (𝑌 = 500𝑚). The blue line 

in Figure 2-23a is the chi-square (𝜒2) curve between the 3D forward responses and the observed 

data. Clearly, the “actual” 𝜒2 based on the 3D responses, in particular over the anomaly location, 

is significantly higher.  

2.4.2. Stochastic inversion without modeling error assessment 

Following the same approach tested before on the synthetic dataset, we created a 4-category prior; 

the categories correspond to the geological units characterizing the investigated site: peridotite; 

breccia; volcanoclastic and massive sulfide. The geometries and mutual positions of the four 

categories within each realization of the prior distribution are stochastically modeled in accordance 

with available geological knowledge of the area. Nine realizations of such a prior are showed in 

Figure 2-19a. For each category, a distribution of the possible conductivity values has been defined 

as showed in Figure 2-19b. It is worth noticing that, despite the curves in Figure 2-19b are 

calculated for 𝑵𝚫=500 - with 500 being the number of samples used for the subsequent modelling 

error estimation, for the 1D stochastic inversion, 5 ∗ 105realizations have been used instead. In 



1D stochastic inversion of AEM data with realistic prior and accounting for the forward modelling 
error 

41 

 

practice, as we did before, the 1D samples of the prior have been picked as the central 1D model 

of each 3D realization (the picking locations of the 1D models for the nine examples in Figure 2-19a 

are indicated with black dot).  

 

Figure 2-20b and Figure 2-21b shows the mean map of the posterior distribution retrieved by the 

1D stochastic inversion (still, not taking into account the 1D modeling error). The prior knowledge 

definitely impacts the final results. This is particularly evident by comparing the horizontal slice at 

𝑍 = 250  m of the deterministic result (Figure 2-21a) against the mean map of the stochastic 

inversion (Figure 2-21b): the conductive body has moved towards larger 𝑌 locations. For example, 

by analyzing the vertical sections at 𝑌 = 800  (Figure 2-20a-b), whereas no conductive body 

appears in the deterministic reconstruction, a very conductive anomaly is clearly visible in the 

stochastic result. 

 

These differences are even more impressive as the data misfits (calculated as the difference 

between the 3D responses of the solutions) lead to very similar 𝜒2  values (please, see Figure 

2-23a-b).  

 

Actually, by comparing the responses also along the section at 𝑌 = 700 m (Figure 2-24) - where, 

accordingly to the deterministic smooth inversion, the conductive body is barely visible at the 

bottom of the vertical section (Figure 2-20a), whereas, for the stochastic inversion reconstruction 

(Figure 2-20b), the anomaly should be significantly shallower - the data misfit (blue line in Figure 

2-24b) of the stochastic mean model is on the same range of the deterministic 𝜒2 (blue line in 

Figure 2-24a).  

2.4.3. Stochastic inversion incorporating the 1D modelling 

error 

What happens when, we include, into the stochastic inversion, also the modelling error associated 

with the prior we are using for the inversion? 

 

To answer this question, we estimated the mean 𝐝Δ and covariance 𝑪Δof the modeling error 

consistent with the 3D prior samples (Figure 2-19) similarly to what we discussed regarding the 

synthetic test. The calculated covariance 𝑪Δ is showed in Figure 2-25 and it is clearly very different, 

both in shape and in values, with respect to its “synthetic” counterpart (Figure 2-17). This is 

consistent with the much more complex (and much three dimensional) geological settings we are 

dealing with now.  

 

Figure 2-20c and Figure 2-21c show the mean map resulting from the 1D stochastic inversion 

incorporating the modeling error: the conductive anomaly is way more focused than in the 

previous two reconstructions (Figure 2-20a-b and Figure 2-21 a-b) and appears uniquely at 𝑌 =

700 m and 𝑌 = 800  m, at relatively shallow depths. In addition, the rest of the investigated 

volume appears to be quite homogeneous. Clearly, this does not mean that the background is 

indeed homogeneous, but, simply, that, across all the realizations of the posterior, the features not 
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affecting significantly the data are largely averaged away. This fact is evident in the probability plot 

of each category in Figure 2-27 (discussed in more details in the next section). 

 

It is worth highlighting that data misfit for the stochastic inversion with modeling error (Figure 

2-23c) is much lower than those of the previous two inversion results (Figure 2-23a-b) across the 

locations where the conductive anomaly seems to be accordingly to the deterministic result (𝑌 =

500𝑚 in Figure 2-21a-b). Of course, the assumed noise of the stochastic inversion accounting for 

the modelling error is significantly higher than for the other two inversion strategies: in the panels 

(c) of Figure 2-23 and Figure 2-24, the data noise does not include only the random component 

but also the correlated portion due to the 1D modelling approximation. Still, where, accordingly to 

the deterministic and stochastic inversion without modelling error, the massive sulfide anomaly 

should be (Figure 2-21a), the agreement with the observed data is in larger in the case of the 

proposed scheme (Figure 2-23c) compared to the in the “standard” approaches (Figure 2-23a-b). 

 

On the other hand, the 𝜒2 values in Figure 2-24c (𝑌= 700 m) is slightly higher than those in Figure 

2-24a-b and homogeneously distributed with no difference between areas where we are almost 

sure to find the sulfide anomaly or not (Figure 2-27). 

2.4.4. Stochastic inversion (w/ and w/o 1D modelling error) as 

petrophysical inversion tool 

Because of the way the stochastic inversions have been designed and implemented, they can 

naturally provide information directly about the categories rather than the conductivity values. 

This is another, very significant, advantage with respect to the more traditional deterministic 

inversion. In fact, the prior is defined throughout realizations in which each category can be 

labelled with a conductivity value (accordingly to the distribution in Figure 2-19b), and retrieving 

the conductivity, automatically, implies that we are capable to reconstruct the distributions of the 

categories as well. 

 

Figure 2-26 and Figure 2-27 demonstrate that we can easily infer what we are more interested in: 

the category rather than the conductivity distribution. In particular, Figure 2-26 and Figure 2-27 

show the probability of having each category (panel (a) - volcaniclastic; panel (b) – peridotite; panel 

(c) – breccia lithologies and panel (d) - massive sulfide rocks) as retrieved by the stochastic inversion, 

respectively, without and with modelling error.  

 

By comparing the probability of having massive sulfide rocks in Figure 2-26d and Figure 2-27d, it is 

clear how the presence of this type of rock is associated with high level of conductivity and that 

the probability map concerning the massive sulfide is in agreement with our previous conclusions; 

i.e., the stochastic inversion with modelling error detects the massive sulfide inclusion between 

𝑌 = 700 and 𝑌 = 800 m (in contrast with the deterministic SCI inversion).  

 

On the other hand, the other categories (Figure 2-27a-c) are characterized by an almost 

homogeneous probability across the entire investigated volume (except, of course, where the 
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presence of the massive sulfide rock is certain), which means that, except for the anomaly, the 

other conductivity features have a very high level of uncertainty. 

 

Figure 2-19. (a) Nine samples of the prior 4-category distribution used for the stochastic inversion of 

field data (and, consistently, used also for the modelling error estimation). (b) Conductivity distributions 

of the 4 categories as they are in the 500 realizations defining the 𝑵𝚫=500 prior.  
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Figure 2-20. The inversion results (vertical section of the inversion model) of the observed data from 

the survey area and obtained with: (a) 1D deterministic Occam’s inversion; (b) 1D stochastic inversion 

without taking into account modeling error and (c) 1D stochastic inversion (specifically, the mean 

map) taking into account modeling error. 
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Figure 2-21. The plain view (at 250m depth) of the inversion results associated with Figure 2-20: (a) the 

conductivity model of 1D deterministic Occam’s inversion; (b) the conductivity model (mean map) of 

1D stochastic inversion without taking into account modeling error, and (c) the conductivity model 

(mean map) of 1D stochastic inversion taking into account modeling error. The red dots are the locations 

where we calculated the 3D forward responses for each inversion result (Figure 2-23 and Figure 2-24). 
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Figure 2-22. Comparison of the observed data and 1D responses for the deterministic conductivity 

model in Figure 2-20a: (a) Vertical section of the conductivity model in Figure 2-20a (at 𝑌 = 500 m); 

(b) 1D responses calculated for the conductivity model in Figure 2-20a (the simulation locations are 

indicated by the upper row (𝑌= 500 m) of red dots in Figure 2-21a) – the blue line in the panel (b) 

represents, sounding-by-sounding, the relative misfit between the observation and 1D responses (the 

corresponding axis is on the right, in blue); (c) the observation measured at the same location in panel 

(b). 
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Figure 2-23. Comparison between the observed data - panel (d) - and 3D forward responses calculated 

from: (a) the 3D conductivity model retrieved by the 1D deterministic approach – the simulation 

locations are indicated by the upper row (𝑌= 500 m) of red dots in Figure 2-21a; (b) the 3D conductivity 

(mean) model from the stochastic inversion not accounting for the modeling error; (c) the 3D (mean) 

conductivity model from the stochastic inversion now accounting for the modeling error. The blue lines 

in the panels (a-c) are the 𝜒2 between the observed data and corresponding 3D forward responses.  
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Figure 2-24. Comparison between the observed data - panel (d) - and 3D forward responses calculated 

from: (a) the 3D conductivity model retrieved by the 1D deterministic approach – the simulation 

locations are indicated by the lower row (𝑌= 700 m) of red dots in Figure 2-21a; (b) the (mean) 3D 

conductivity model obtained via the stochastic inversion without accounting for the modeling error; (c) 

the (mean) 3D conductivity model obtained via the stochastic inversion accounting for the modeling 

error. The blue lines in the panels (a-c) are the 𝜒2between the observed data and corresponding 3D 

forward responses. 
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Figure 2-25. Covariance 𝑪𝚫 of the modelling error calculated based on 500 samples of the prior (nine 

of which are showed in Figure 2-19b) 
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Figure 2-26. Probability associated with the category (for the stochastic inversion without modeling 

error): (a) volcaniclastic, (b) peridotite, (c) breccia and (d) massive sulfide. 



1D stochastic inversion of AEM data with realistic prior and accounting for the forward modelling 
error 

51 

 

 

Figure 2-27. Probability associated with the category (for the stochastic inversion with modeling error): 

(a) volcaniclastic, (b) peridotite, (c) breccia and (d) massive sulfide. 

2.5. Summary 

Throughout this chapter, two synthetic and one field tests are used to demonstrate the capabilities 

(and limitations) of stochastic inversion with geologically informed prior distribution to properly 

reconstruct the complex target conductivity distributions and the associated uncertainties. 

 

In particular, we show how crucial the correct quantification of the modelling error (based on the 

prior choices) is. In our specific cases, we deal with ATEM data inverted via a 1D stochastic approach 

with realistic prior and with the assessment of the corresponding modelling error. In the synthetic 

examples, we test our approach on data mimicking the collection of VTEM measurements over 

geologies recalling glacial sedimentary environments typical, for example, of some regions in 

Northern Europe. Regarding the field measurements, they are VTEM data acquired for mineral 

exploration purposes on quite complex highly 3D geologies. The conclusion is that, even in the case 

of stochastic approaches (already improving the results, for example, when compared with 1D 
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deterministic approaches relying merely on the regularization term for including the prior 

knowledge about the targets), neglecting the fact that we are using a brute 1D approximation, 

instead of a more sophisticated 3D one, leads to unrealistically low level of uncertainty in 

correspondence of those features that might turn out to be just artifacts. On the other hand, the 

assessment (and utilization) of the modelling error allows a more effective reconstruction of the 

true models and their associated reliability levels. 

 

This research shows how the initial working hypotheses – concerning the minimum possible 

number of realizations defining the prior distribution and the numerosity of the smallest subset 

useful for an effective estimation of the modelling error – can be checked. Moreover, also the 

ansatz regarding the Gaussianity of the modelling error is largely verified (even if it is not shown 

here, the Gaussianity test for the field measurement inversion led to similar conclusion with 

respect to the synthetic cases). 

 

Thus, the discussed workflow - presented and tested before on other kinds of data (Hansen et al., 

2014) - paves the way to the implementation of 1D probabilistic inversions of ATEM measurements 

capable to incorporate the complex pieces of geological information available and overcomes many 

of the difficulties connected with the utilization of efficient 1D approximations. 

 

It is evident that the inclusion of the modelling error would not slowdown the already available 

(and extremely fast) algorithms for 1D inversions (it does not matter if stochastic or deterministic). 

Hence, this approach will possibly remain useful also when fully 3D stochastic inversions will be 

practical; in fact, it will not be possible to consider any forward modelling tool perfect and, 

consequently, accounting for the modelling error will be, most likely, always beneficial. 

 

It is also worth being highlighted that, at least for the investigated tests, simply a few hundreds of 

3D forward simulations are needed to retrieve a robust assessment of 𝐝Δ and 𝑪Δ, and, actually, 

the same estimation for 𝐝Δ and 𝑪Δ can be used, in principle, in any survey characterized by 

similar conditions (i.e., similar prior). Hence, in those cases, the efforts for the calculation of 𝐝Δ 

and 𝑪Δ would impact merely the first survey and, clearly, would not increase with the size of the 

survey. On the contrary, a full 3D inversion requires at least a few tens of iterations (i.e., 3D 

calculations) for each sounding location; this easily results in thousands of expensive 3D forward 

simulations. From these considerations, it clearly appears how convenient the proposed approach 

is. On the other hand, it is probably true that, severely 3D targets will be, in any case, poorly 

reconstructed by using 1D approaches; however, the proper inclusion of the modelling error will 

be always useful in correctly estimating the high uncertainty of the 1D reconstruction of 3D 

inclusions, whereas not taking into account the modelling error will, most likely, lead to wrong 

solutions that looks (incorrectly) certain.  
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Chapter 3.  (Quasi-)real-time inversion of 

AEM data via artificial neural network 

This Chapter is based on the material discussed in the manuscript Bai et al. (2020).  

The possibility to have results very quickly after, or even during, the collection of electromagnetic 

data would be important, not only for quality check purposes, but also for adjusting the location 

of the proposed flight lines during an airborne time-domain acquisition. This kind of readiness 

could have a large impact in terms of optimization of the Value of Information of the measurements 

to be acquired. In addition, the importance of having fast tools for retrieving resistivity models 

from airborne time-domain data is demonstrated by the fact that Conductivity-Depth Imaging 

methodologies are still the standard in mineral exploration. In fact, they are extremely 

computationally efficient, and, at the same time, they preserve a very high lateral resolution. For 

these reasons, they are often preferred to inversion strategies even if the latter approaches are 

generally more accurate in terms of proper reconstruction of the depth of the targets and of 

reliable retrieval of true resistivity values of the subsurface. In this Chapter, we discuss a novel 

approach, based on neural network techniques, capable of retrieving resistivity models with a 

quality comparable with the inversion strategy, but in a fraction of the time. We demonstrate the 

advantages of the proposed novel approach on synthetic and field datasets. 

 

The approach is based on data-driven Machine Learning (ML) algorithms and, specifically, Artificial 

Neural Networks (ANNs) that potentially combines the advantages of both imaging and inversion 

as it allows near real-time reconstructions of the resistivity distribution of the subsurface with an 

accuracy comparable with the physically based inversion. ANNs are clearly not new in the 

processing of geophysical data (Brykov et al., 2020; Núñez-Nieto et al., 2014; Rymarczyk et al., 2018; 

Van der Baan and Jutten, 2000; Yuan et al., 2018). However, the attempts to apply them to AEM 

observations are limited to the data processing (Andersen et al., 2016) and geological 

interpretation of the geophysical results (Gunnink et al., 2012). In this chapter, we discuss the 

application of ANNs for the reconstruction of the pseudo-3D electrical resistivity distribution in the 

subsurface from the data collected during typical AEM surveys. We test the proposed workflow on 

both synthetic and field datasets and prove that the corresponding results are comparable to an 

inversion based on a full-nonlinear 1D forward modelling algorithm. Moreover, the main advantage 

of our approach is that the geophysical model of the subsurface is obtained almost instantaneously 

on a standard laptop. These levels of accuracy, reconstruction speed, and flexibility could pave the 

road to real-time adjustments of survey planning. In seismic exploration, it is not unusual that 

dedicated optimizations of the survey design are performed in order to save significant resources 

and, at the same time, enhance the value-of-information of the collected data (Bhuiyan and Sacchi, 

2015; Curtis, 1999; Latiff et al., 2017). By having at hand the capability to invert the data in real-

time, we can think of survey plans adapting while the data are collected. Potentially this can save 

the time and efforts connected to subsequent data acquisitions (in the AEM case, maybe, ground 

based) as follow-ups of the original survey. 
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3.1. Methodology 

In the deterministic framework, the inversion problem is solved by minimizing an objective 

function – Eq.1-1 (see the details in Chapter 1. ). In order to have a term of comparison to 

effectively assess the performances of the alternative approach based on ANN, we consider the 1D 

deterministic SCI used in Chapter 2.  Hence, 𝐦  (and consistently also 𝐹  – see, for example, 

Eq.2-1 in Chapter 2. ) is based on the assumption that (locally) the subsurface is not varying laterally. 

Therefore, each individual data sounding, and each associated model, is handled independently 

from the adjacent ones. Still, whereas the forward modelling 𝐹 is always one dimensional, in the 

deterministic inversion there is a connection between the neighboring models imposed through 

the regularization term. Hence, concerning the stabilizer choice, we adopt the probably most 

common option of 𝜙𝑚(𝒎) (in Eq.1-1) being equal to the minimum gradient stabilizer: 

 𝜙𝑚(𝒎) = ‖𝛻𝒎‖𝐿2
2  3-1 

 

Thus, despite the conductivity distribution is considered locally 1D, the stabilizer acts both along 

the vertical (𝑧) and the horizontal (𝑥) direction, promoting solutions that are laterally coherent 

(without being truly 2D/3D). This is indeed the essence of the SCI mentioned in Chapter 1.  

(Vignoli et al., 2015; Vignoli et al., 2017). Moreover, in the 1D deterministic inversion scheme we 

are using, the value of 𝛽 is calculated in order to guarantee a chi-squared value: 

 𝜒2 = (
1

𝑁𝑑
) ‖𝑾𝑑(𝒅𝑜𝑏𝑠 − 𝐹(𝒎))‖𝐿2

2  3-2 

approximately equal 1 (with 𝑁𝑑being the number of time gates) (Vignoli et al., 2012; Vignoli et 

al., 2021). 

 

The ANN is built in order to perform a similar task with respect to the minimization of objective 

functional in Eq.1-1. ANNs use continuous and differentiable activation functions at each unit of 

the network, which makes the network output (𝐦) a continuous and differentiable function of the 

network input (𝐝); this, in turn, leads to the possibility of defining a continuous and differentiable 

error function for the evaluation of the difference between the network output and the target 

output. Consequently, the error function can be minimized over a training set using a relatively 

simple gradient-based procedure. Hence, the problem of building an effective ANN to map the 

recorded measurements into resistivity vector is reduced to the minimization of an error functional: 

 𝐸(𝒘) = ‖𝐾(𝑫,𝒘) − 𝑴‖𝐿2′
2  3-3 

where 𝐃 and 𝐌 consist of the elements of the (data, model) couples (𝐝𝑡, 𝐦𝑡) constituting the 

Training Dataset (TD) (Bishop, 2006). Of course, in this case, the minimization aims at finding the 

optimal weights 𝐰 of the connections between the network units. Thus, the ANN 𝐾 is found via 

the minimization with respect to 𝐰. Once 𝐾 is built based on the TD, it can be applied to the 

elements dobs of the observed dataset to infer the corresponding conductivity models 𝐦. In this 

respect, it is worth noting that the retrieved 𝐾—and, therefore, the corresponding final resistivity 

distribution obtained via the application of 𝐾 on the observed data—depends on the selection of 

the TD. ML approaches are based on the stationarity assumption: the couples in the TD and in the 

solution, dataset need to be independent and identically distributed (i.i.d.) random variables. In 

this sense, TD formalizes the available prior information about the studied system. Consistently, 
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the TD should be selected in order to be representative of the targets (therefore, coherent with 

our expectations about the geology to be reconstructed) (Alpaydin, 2020; Bishop, 2006). Data 

stationarity and TD’s representativeness are very well-known issues of ML (Han et al., 2019). In a 

further attempt to reconcile the ANN approach and the (regularized) deterministic inversion, we 

could think about the selection of the conductivity models for the development of the TD as some 

sort of regularization: the solution provided by the ANN cannot be too different from the models 

(and the associated data) used to train the ANN. Hence, for example, the TD should be based on 

the prior (geological) knowledge available about the investigated area. This might sound 

tautological, but it is actually the key point of regularization theory (and, clearly, also of ML 

approaches). 

 

In the present chapter, the ANN consists of a multilayer perceptron with (i) an input layer with 54 

(i.e., the number of time gates) units; (ii) three hidden layers with, respectively, 100, 500, 200 units; 

and (iii) an output layer characterized by 30 (i.e., the number of conductivity model parameters) 

units. As TD we took the 𝐝𝑡  data generated via the forward modelling 𝐹  for each of the 1D 

resistivity models 𝐦𝑡 making up a realistic resistivity section (Figure 3-1). It is important to stress 

that, despite the apparent lateral coherence of the 1D model, the elements of the TD are, indeed, 

handled as independent soundings and resistivity models. Plotting the TD data and the models as 

2D sections made it easier to assess the representativeness of the (geologically informed) training 

dataset with respect to the actual measurements to be inverted. 

 

Figure 3-1. Portion of the Training Dataset. Panel (a) shows the airborne time-domain electromagnetic 

(AEM) responses associated with the 1D models constituting the conductivity section in panel (b). 

 

It is also important to highlight that the TD used in the present research is based on the technical 

specifications of the particular system used for the experimental data collection. Thus, the 𝐝𝑡’s are 

calculated from the corresponding 𝐦𝑡 ’s by using, for example, the waveform and time gates 

provided by the contractor together with the survey measurements. In total, the utilized TD 

consisted of around 12,000 (𝐝𝑡, 𝐦𝑡) couples (a sample of which is plotted in Figure 3-1). In the 

training phase, a multi-start approach has been adopted to minimize the effect of local minima of 

the error functional. Additionally, following a standard procedure (Liu et al., 2008), the optimal 

number of epochs was selected by studying the error functional value when applied on validation 

subsets (Duda et al., 2000). Differently from the 1D deterministic inversion case (in which the 
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stabilizing terms connect adjacent 1D models), in the inversion performed through 𝐾, no lateral 

information is included, and the individual soundings are inverted separately. The inclusion of this 

further piece of knowledge would be surely beneficial (if available) and should be included in future 

developments. 

3.2. Synthetic test: the ANN result vs. the known model 

In order to assess the effectiveness of the ANN approach, we applied the neural network (based 

on the previously discussed TD) to a known verification dataset. Figure 3-2 shows the true 

conductivity sections whose 1D models were used to generate the noise-free synthetic data to be 

inverted. Therefore, in short, and by using a neural network lingo, Figure 3-2 (together with its 

associated data) is our verification dataset. Figure 3-3 consists of the conductivity sections 

reconstructed via the proposed ANN. In turn, the inferred conductivities (Figure 3-3) have been 

used to calculate their associated electromagnetic response; the comparison between the original 

synthetic data and the calculated response is shown, model-by-model, with a red dot (red axis on 

the right in Figure 3-3). From this data misfit estimation, it is clear that the conductivity distribution 

recovered by the neural network is generally compatible with the inverted data within 4%. 

 

Considering the retrieved conductivity distribution, the ANN reconstruction captures almost all the 

features present in the original model. In addition, Figure 3-3 demonstrates that the proposed 

approach is quite robust as it retrieves the lateral coherence of the conductivity sections despite 

the individual models are inverted separately. A quantitative assessment of the model agreement 

between the reconstructed and the original model can be done through the Figure 3-4 showing, in 

the log-scale, the ratio between the ANN reconstruction and the true model. In general, the values 

in Figure 3-4 are around one, demonstrating the overall accuracy of the ANN reconstruction. The 

areas in Figure 3-4 characterized by major discrepancies between the ANN solution and the true 

model are generally localized at depth (where, in any case, because of the physics of the method, 

the sensitivity of the data to the conductivity values is lower) and on the right side of the 

conductivity sections. This is not surprising if we look at the electromagnetic responses. Regarding 

this, Figure 3-5 shows the original data (blue lines) compared to the calculated measurements (red 

lines) for each of the sections in Figure 3-2 and Figure 3-3; it is clear that many of the soundings on 

the right side of the sections are characterized by a smaller number of time gates (indeed, to 

simulate more realistic conditions, in several of the original soundings, the late time gates have 

been removed, mimicking what often happens with field noisy observations). Of course, with a 

reduced number of time gates, the depth at which the conductivity affects the data values is 

shallower. This is consistent with the larger model misfit on the right side of the panels in Figure 

3-4. 



(Quasi-)real-time inversion of AEM data via artificial neural network 

61 

 

 
Figure 3-2. The verification dataset. The individual 1D conductivity models of these sections have been 

used to generate the noise-free synthetic data to be subsequently inverted with the Artificial Neural 

Networks (ANN) discussed in the section “Methods”. 

 
Figure 3-3. The inversion results obtained by applying the ANN trained on the training dataset (TD) 

in Figure 3-1 to the data generated by the conductive models in Figure 3-2. The data misfit between the 

calculated and the original measurements is shown for each individual 1D model location as a red dot 

(the corresponding axis is on the right in red). 

 
Figure 3-4. The ratio between the conductivity models in Figure 3-3 (the ANN result) and in Figure 3-2 

(the true conductivity distribution). 

3.3. Field example: the ANN result against the “standard” 

deterministic inversion 

The survey area we investigate is rich in Cu-Ni-PGE (Platinum Group Elements) minerals and has 

been selected as one of the test sites aiming at the development of cutting-edge technologies for 

mineral exploration. Time-domain electromagnetic data have been acquired by Geotech using a 
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VTEM system. 

 

In this section, we compare the results obtained with the ANN—already used for the previous 

synthetic test and trained on the TD in Figure 3-1—against a more traditional 1D deterministic 

inversion based on the forward modelling utilized for simulating, for example, the responses in 

Figure 3-5. 

 

Figure 3-5. Comparison between the synthetic data from the true model in Figure 3-2 (blue lines) and 

the calculated data from the conductivity sections retrieved by the ANN in Figure 3-3 (red lines). The 

data in the panels (a–c) in the present figure correspond to the conductivity sections shown in the three 

panels in each of the Figure 3-2 and Figure 3-3. 

 

Therefore, Figure 3-6 demonstrates that the inversion performed via the developed ANN can infer 

reasonable 1D models whose responses fit the observation within a 5% threshold (for each model, 

the data misfit value is represented as a red dot, and the associated red axis is on the right side of 

the panel). When the ANN result is compared with the corresponding 1D deterministic inversion 

in Figure 3-7, it is possible to see that the “traditional” deterministic inversion with vertical and 

lateral smooth constrained is often superior in fitting the data (the data misfit is generally below 

2%, as it is clearly visible from the red dots representing the data misfit). Figure 3-8 might be helpful 

in quantitatively evaluating the differences between the two results as it shows the ratio between 

the different solutions; it worth noting how the larger discrepancies between the two solutions 

occur where the data fitting of the deterministic inversion is larger (e.g., between 1850 and 2400 

m) and/or in areas characterized by high resistivity values. Therefore, the areas in which also the 

deterministic inversion has difficulties in fitting the observations and that are characterized by 

relatively high resistivity values are those where the differences with the ANN solution are more 

pronounced. This is in agreement with the fact that, in general, AEM methods have difficulties in 
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accurately distinguish between different high resistivity values. 

 
Figure 3-6. The ANN inversion of the field data. 

 
Figure 3-7. The 1D deterministic inversion of the field data. 

 
Figure 3-8. The ratio between the conductivity models in Figure 3-6 (the ANN inversion result) and in 

Figure 3-7 (the deterministic inversion result). 

3.4. Summary and discussion 

Clearly, the indubitable advantages of the deterministic inversion come at a price: the ANN 

inversion takes approximately 24 s to invert the entire survey dataset (consisting of 14,346 

soundings with 54-time gates each) by using a standard laptop (equipped with an Intel Core i5-

8250U processor), whereas hours (so an amount of time of the order of magnitude of 104 s) are 

necessary to perform the same task by using the 1D deterministic approach and a 64-CPU server. 

To be fair, it is true that the training phase—crucial for the development of the ANN—requires 

several hours. Despite that, we believe that the proposed workflow has at least a few main pros:  

1. It can allow the optimization of the survey design while the acquisition of the ATEM is on-

going. In fact, the development of an effective training dataset and the associate ANN can 
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be performed before the survey—or it can be even based on the outcomes from the first 

flight(s) of the survey if the area is assumed to be relatively “stationary”—and, once the 

ANN is available, reliable results can be almost instantaneously obtained just after each 

flight. In turn, this can lead to real-time rearrangements of the original tentative survey 

plans in order to maximize the VoI (Value of Information) of the measurements to be 

further collected (Eidsvik et al., 2008). 

2. The ANN speed can be extremely useful for effective Quality Check (QC) of the data during 

the survey. 

3. The availability of a good starting model (derived from the ANN inversion) can be used to 

speed-up the 1D deterministic inversion by reducing the number of iterations. 

 

Of course, if, for producing the final results, post-processing analyses are necessary (e.g., in 3D 

environments), the same will be true also when adopting the proposed ANN approach: ANN based 

on a 1D forward modelling approach cannot guarantee better results compared with the 

corresponding deterministic inversion; it can only provide solutions of similar quality within a 

fraction of the time and by using cheaper computational tools. Moreover, clearly, at least in 

principle, the presented ANN scheme can be extended in order to also include, for example, induce 

polarization (IP) effects: it is a matter of incorporating them in the forward modelling algorithm 

used in the development of the TD. However, as before, we cannot expect the ANN to solve all the 

issues connected IP in ATEM data. Reasonably, we can only expect to solve the same problem, but 

much faster. 

 

We present a novel approach to the inversion of airborne time-domain electromagnetic data based 

on neural networks. We demonstrate the effectiveness of the proposed inversion strategy by 

testing it on both synthetic and field data. Based on these outcomes, we conclude that the 

proposed neural network approach is capable of retrieving the conductivity distribution of the 

subsurface from the measurements collected by the airborne geophysical system with an accuracy 

that is largely comparable with the most commonly used (in the academia and in the industry) 

inversion strategies and that relies on 1D deterministic inversion approaches. These results are 

particularly noticeable as the neural network inversion takes only a fraction of the time required 

for the deterministic inversion (a few seconds versus hours). 

 

The performances of the neural network discussed in the chapter can be potentially enhanced in 

terms of data fitting via data augmentation techniques expanding the TD and building more 

accurate models, provided that effective ways to generate artificial data getting closer to the 

behavior of the test dataset can be found (Biggio et al., 2015; Zhang et al., 2015). In addition, an 

aspect that has not been investigated here is the dependence on the training dataset; in future 

works, studying the robustness of the result as a function of the training dataset would be 

extremely relevant: after all, the definition of the proper training dataset is a way to include prior 

(geological) information into the inversion. 

 

Clearly, the neural network strategy discussed in the chapter deals with each sounding 

independently and does not make use of the possible available knowledge concerning the lateral 

coherence of the targets; it is a pity not to exploit these additional pieces of information in order 
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to get even more effective results. In this perspective, pseudo-2D/3D approaches should be 

explored as well. The dramatic speed up of the inversion by means of the application of the neural 

network (seconds vs. hours, on a standard laptop) potentially paves the road to on-the-fly inversion 

with possible applications on real-time survey design optimizations. On the other hand, in the most 

conservative scenario, the discussed neural network inversion can serve as a starting model for 

faster deterministic inversions and/or as a QC tool during the data collection phases. 
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Chapter 4.  Conclusions 

The initial goal of this thesis was the development of a 3D stochastic inversion algorithm for 

massive airborne time-domain datasets. This is clearly an overwhelming task, especially for a PhD 

program. So, our expectations had to be lowered. Still, the implementation and availability of a 3D 

forward modelling allowed us to incorporate into existing 1D inversion frameworks the assessment 

of the modelling error that inevitably contaminates the inversion process. 

 

Since the assessment of the modelling error is based on available geological information and it 

basically consists of the prior to be used in stochastic frameworks, we decided to exploit the full 

potential of probabilistic approaches in which samples of the prior distribution are used: 1) for the 

construction of the modelling error and 2) to feed the stochastic inversion. 

 

In the present thesis, through two synthetic and one field test, the effectiveness of the proposed 

methodology is discussed and verified. The results with respect to the more standard deterministic 

inversion based on Occam’s regularization are significant. This is true also with respect to the 

stochastic inversion performed without including the modelling error assessment demonstrating 

that it is not only a matter of selecting the correct prior (but is also a matter of exploiting the full 

information content connected with that prior, namely, the associated modelling error).   

 

In short, we can conclude that: 

1. when inverting measurements collected in complex 3D geological regions, the effect of 

approximate forward modelling cannot be ignored; 

2. stochastic inversion approaches can be very useful in incorporating complex prior information 

otherwise very difficult to be formalized in deterministic frameworks (in this respect, please, 

compare the complexity of the prior samples in Chapter 2 with respect to simple smooth or 

sharp spatial constraints of the regularized inversions); still, to fully use the information of the 

prior, we need to include the assessment of the modelling error associated with that prior (and, 

clearly, with the forward modelling used for the actual inversion);  

3. Without including modelling error, the inversion might be able to fit the data very well, but in 

doing that it will also fit the coherent noise connected with the dimensionality of the target; 

this will lead to apparently very well resolved features that are, indeed, just artifacts; 

4. Incorporating the modelling error is a step towards 3D stochastic inversion, and, still, even 

when efficient 3D forward modelling tools will be available, as they will always be 

approximations, our framework can be useful in avoiding data misinterpretations. 

 

Together with the advancements on the inversion side, in order to cope with the impeding 

computational costs of the 3D forward, we tried to develop extremely efficient inversion schemes 

based on Neural Networks. Preliminary tests on 1D inversion are very promising and outperform 

the state-of-the-art deterministic inversion by several orders of magnitude (tens of seconds against 

tens of hours). It is clear that the stochastic inversion and the neural network approach rely on 

similar principles: after all the prior and the training dataset concepts are not that different. 

 



Conclusions 

70 

 

Concerning this second part of the thesis, the conclusions that can be drawn can be:    

1. Based on the outcomes from previous surveys or even from the first flight(s) of an on-going 

survey (under the assumption that the investigated area is relatively “stationary”), the 

proposed Neural Network can be trained. In turn, the obtained Neural Network can invert the 

just acquired airborne electromagnetic data almost real-time; hence, even during the 

collection process. Therefore, the proposed Neural Network inversion can allow the 

optimization of the survey design while the acquisition of the airborne data is on-going 

(literally, on the fly).  

2. The fast and high-quality Neural Network inversion can be effectively used for the Quality 

Check of the data during the data acquisition. 

3. In the most conservative scenarios, the Neural Network inversion results could be utilized as a 

good initial model for the 1D deterministic inversion; this can shorten the deterministic 

inversion time by reducing the overall iterations number. 
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