
Received December 16, 2021, accepted January 3, 2022, date of publication January 7, 2022, date of current version January 18, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3141216

A Realistic Model to Support Rescue Operations
After an Earthquake via UAVs
TIZIANA CALAMONERI 1, FEDERICO CORÒ 2, (Member, IEEE), AND SIMONA MANCINI 3,4
1Department of Computer Science, Sapienza University of Rome, 00161 Rome, Italy
2Department of Computer Science, Missouri University of Science and Technology, Rolla, MO 65409, USA
3Department of Science, Innovation and Technology, University of Eastern Piedmont, 15121 Alessandria, Italy
4Department of Operations, Energy, and Environmental Management, University of Klagenfurt, 9020 Klagenfurt, Austria

Corresponding author: Federico Corò (federico.coro@mst.edu)

This work was supported in part by the Sapienza University of Rome through the project Exploiting Hybrid Networks for Saving People
after a Natural Disaster under Project RM11715C44AB9878.

ABSTRACT In this paper, we consider the problem of completely flying over an area just hit by an
earthquake with a fleet of Unmanned Aerial Vehicles (UAVs) to opportunely direct rescue teams. The
cooperation between UAVs ensures that the search for possible survivors can be faster and more effective
than the solutions currently implemented by civil protection. To study this scenario, we introduce the Cover
by Multitrips with Priorities (CMP) problem, which tries to keep into account all the main real-life issues
connected to the flight and coordination of the UAVs. We conduct a theoretical study to estimate the best
number of UAVs and additional batteries, to give indications to the organization that leads the rescue teams to
be able to guarantee rapid and effective rescue. Finally, based on some theoretical considerations, we propose
some heuristics that tackle the problem of flying over the whole area with a fleet of UAVs in the shortest
possible time. Simulations show that they work efficiently in both the proposed scenarios and provide better
performance than previous solutions once they are arranged to work in our scenarios. The main advantages
of our approach w.r.t. the current drone-based solutions used by the civil defense are that UAVs do not need
drivers so the time of all available rescue workers can be invested in doing something else. In our model,
we take into account that some sites (e.g. buildings with a high fire risk or schools and hospitals) have a
higher priority and must be inspected first, and the possibility that UAVs can make a decision based on what
they detect. Finally, our approach allows UAVs to collaborate so that the same sites will be flown over exactly
once in order to speed up the rescue mission.

INDEX TERMS Unmanned aerial vehicle networks, battery-aware cycle covering, UAV routing problem.

I. INTRODUCTION
In case of natural disasters, such as earthquakes, rescue teams
must complete their operations within a few hours of the
event to avoid increased loss of life. Furthermore, in the
aftermath of these disasters, we cannot count on the presence
of infrastructure (e.g., there is no guarantee that internet will
be available), and there may not be time to re-establish it to
undertake coordinated activities. In this context, Unmanned
Aerial Vehicles (UAVs) can make a difference to ensure rapid
and effective aid. We recognize that the current legislation
of several countries is not ready to immediately accept the
implementation of solutions exploiting UAVs [1]. Neverthe-
less, civil defense, policies, and lawmakers are positively
responding to the tremendous advantages given by innovative
solutions based on the cooperation capabilities of UAVs [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Halil Ersin Soken .

Researchers strongly believe that, as we have already seen
for artificial intelligence and robotic systems in many fields,
UAVs will gain the trust of common people and lawmakers.
This is also the reason why, with recent advances in UAV
technologies, many papers have been published proposing
different theoretical models for handling many algorithmic
optimization problems related to UAV rescue operations.
Nevertheless, since the problems related to these real-life
issues are very complex, most of such models appear too
simplified and assume some hypotheses that are not reason-
able in practice. For example, in the majority of the papers
dealing with Search and Rescue (e.g., [3], [4]), UAVs are
supposed not to have battery constraints at all, while these
are usually rather pressing; in other cases, UAVs are assumed
to be able to fly back to the base in a very short time
(e.g. in [5] UAVs go to recharge their battery when they are at
less than 5 minutes out of 28 of battery life left) but there is no
certainty that this time will be enough; in [3], [6], [7] mobile

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 6109

https://orcid.org/0000-0002-4099-1836
https://orcid.org/0000-0002-7321-3467
https://orcid.org/0000-0001-5287-2255
https://orcid.org/0000-0002-4796-8188

T. Calamoneri et al.: Realistic Model to Support Rescue Operations After Earthquake via UAVs

phone signals are exploited to localize a person, but it is not
certain that people keep their cell phones close to them when
they are at home, especially at night; in [8], [9] UAVs send
stream videos to the base station through a cellular network in
mountain environments, where usually there is no guarantee
of coverage; often UAVs have to fly over an entire area and
not focus on certain buildings, making it impossible to assign
priorities to certain places [10], [11]; finally, the costs that a
UAV will face during its trip are usually considered as fully
known [12]–[14], while in real-life scenarios, a UAV could
spend a time even very different from the expected one to
explore or traverse an area.

This paper addresses the problem of completely flying over
an area just hit by an earthquake with a fleet of UAVs to
opportunely direct rescue teams. The main advantages of our
approach w.r.t. the current drone-based solutions used by the
civil defense are that UAVs do not need drivers, so the time of
all available rescue workers can be better invested; moreover,
we take into account that some sites (e.g. buildingswith a high
fire risk or schools and hospitals) have a higher priority and
must be inspected first. Finally, in order to speed up the rescue
mission, our approach allows UAVs to collaborate so that the
same sites will be flown over exactly once and consider the
possibility that UAVs make a decision based on what they
detect. This is important in order to have fast and efficient
rescue operations.

More in detail, our main contributions are the following:
• we define a new problem, called Cover by Multitrips
with Priorities (CMP), that tries to keep into account
all the main real-life issues connected to the flight and
coordination of the UAVs;

• we provide a complete graphmodel for it in two different
realistic scenarios;

• we make a theoretical study to provide an a priori esti-
mate on the completion time of the rescue operations
and to estimate the best number of UAVs and additional
batteries that guarantee a fast and effective rescue to the
organization leading the rescue teams;

• we propose a mixed-integer linear programming formu-
lation of our graph model;

• based on some theoretical considerations, we propose
some heuristics that address the problem of flying over
the whole area with a fleet of UAVs in the shortest
possible time;

• we extend the algorithm proposed by Kim et al.
[4], [15], which is one of the most complete solutions
known in the literature, to make it work under the same
operative scenarios addressed by our heuristics; we call
this extension ATSPN ;

• we perform extensive simulations that show that our
heuristics work efficiently in both the proposed sce-
narios; furthermore, we experimentally compare our
heuristics with ATSPN and we show that our heuristics
significantly outperform it in all the key performance
metrics.

This paper is organized as follows. In the next section
we describe our problem and compare it with some routing
problems already studied in the literature that can appear
somehow similar; we detail two possible real-life scenarios;
for each, we propose the associated graph model, the adopted
performance metrics, and a mixed-integer linear program-
ming formulation. Section III is devoted to the description
of a meta-algorithm that we exploit to design new heuristics.

In Section IV, we consider the possibility of replacing
exhausted batteries with already loaded ones: we associate
each possible value of the number of additional batteries with
the corresponding completion time so that the civil defense
organizers can have an immediate idea of the time needed
to complete the operations. Knowing all the parameters, the
minimum number of batteries necessary to guarantee the
minimum completion time is also obtained (i.e. we impose
to have no time in which the UAVs remain inactive waiting
for their battery to be recharged).

In Section V we study the possibility of concluding the
overflight of the area within a single flight (that is, without
the need to recharge batteries) and we propose an algorithm
to exactly determine the number of necessary UAVs.

Section VI is devoted to the design of five heuristics that
we experimentally compare in Section VII.

Section VIII concludes the paper with a list of open
problems.

II. THE PROBLEM: FROM REAL LIFE SITUATION TO
MODELS
In this section, we first describe the real-life situation that
we want to model in two possible scenarios, then we detail
our corresponding graph problem, including a discussion on
some useful optimization functions, and finally, we provide a
mixed-integer linear programming formulation of it.

A. REAL LIFE SITUATION
We consider the very critical situation after a natural disaster
(e.g. an earthquake) and the main problem of flying over the
entire area using a fleet of UAVs equippedwith sensors and/or
cameras, acquiring information as soon as possible to have a
clear idea of where rescue teams are most needed.

It is reasonable to assume that civil defense has an updated
map of each area considered at risk and, for every relevant
building, has an estimate of the information on the time
needed to fly over it entirely and the level of importance.
With the latter, we want to prioritize the most critical build-
ings, such as hospitals and schools or buildings with a high
fire risk.

We consider to have a fleet of q homogeneous UAVs
u1, . . . , uq that can work independently, taking off from the
operations center v0. Each UAV has a battery corresponding
to B ∈ R+ units of flying time; when the battery is dis-
charged, it takes R ∈ R+ time units to be fully recharged,
and this can only be done at v0. Technology currently sets
1.5B ≤ R ≤ 2B, see for example [16], so it is suitable to
assume R ≥ B.

6110 VOLUME 10, 2022

T. Calamoneri et al.: Realistic Model to Support Rescue Operations After Earthquake via UAVs

It is worth noting that, instead of a fleet of homogeneous
UAVs, we could consider also heterogeneous devices, each
one with a different battery constraint Bi and different cruise
speeds and endurance. In this case, handling parameters
becomes more complicated (e.g., not necessarily battery units
would correspond to units of flying time). For the sake of sim-
plicity, we avoid this case but we discuss it in Subsection II-E
how to change the MILP formulation in order to adapt it to
this more general situation.

Since our scenario is a time-critical situation, we allow
having a certain number b ≥ 0 of batteries that can be
recharged separately while the UAVs are in flight and can
replace the discharged ones in a few seconds, without causing
a delay in the takeoff for the next flight. Indeed, already
in 2015, Lee et al. [17] used a small robot arm to do the
battery swap, the whole process taking about 60 seconds;
more recently, the authors of [18], [19] propose a low-cost
system only taking 10 seconds to finish the battery swapping
process, from landing to take off.

We explicitly avoid handling the collision problem (which
is not the focus of this document and for which there is a
large literature [20]). Connected to this, we assume that the
UAVs are not equippedwith infrared cameras, in fact, thermal
imaging cameras have proven to be reliable in detecting
humans over short distances (hence low and fixed altitude is
required, making it more difficult to avoid collisions), but it
results in an ambiguous blob formation when used from long
distances or in the presence of numerous obstacles [21].

We consider two scenarios, depending onwhether the UAV
fleet consists of a set of small-scale UAVs or some high-
cost UAVs that can be equipped with additional sensors.
These represent the two extremes among the many realistic
possibilities: on the one hand we assume that the rescue teams
have many cheap UAVs that cannot take decisions, on the
other hand, they may have a lower number of more powerful
UAVs, that can both communicate with the base and take
decisions.

In the first scenario, each UAV is equipped with a commer-
cial RGB camera and has very small computing power and
no communication devices. In this case, the q UAVs can only
follow an assigned path through some sensible targets, take a
video, and bring it back to the operations center where image
detection/recognition tools will be able to detect, in parallel,
possible survivors needing help in real-time. The positive side
of this scenario is that the fleet can easily consist of a large
number of UAVs due to their low cost.

In the second scenario, we consider high-cost UAVs, which
have a processing unit with good computing power and can be
equipped with a device that allows them to communicate with
the base at any time (e.g. a radio); therefore they can produce
and scan the videos in real-time(see e.g. [22]–[24]) in order
to immediately detect and recognize if there is an emergency;
if people needing help are detected, the UAVs will promptly
get closer to possible survivors, to acquire more informa-
tion and send a message to the base for a rescue team to
be sent.

It should be noted that, due to legal constraints, both
proposed scenarios are more advanced than those currently
adopted by the civil defense, which either uses human-guided
drones and/or allows UAVs to fly only by sight from the base.

B. RELATED PROBLEMS
Before detailing the graph model, the performance metrics,
and theMILP formulation for our problem, we briefly discuss
here similarities and differences between our scenarios and
some routing problems already studied in the literature.

Although the problem addressed in this paper deals with
limited autonomy of the vehicles due to battery capacity,
it is deeply different from the routing problems involving
e.g. electric vehicles, which have been broadly analysed in the
literature [25]. In fact, those problems allow in-route battery
recharging (or swapping) at specific locations (recharging
stations) spread across the territory. Instead, in our case,
batteries can be swapped only at the depot and not during the
trip’s execution.

A problem that could seem close to ours is the multi-trip
vehicle routing problem (MTVRP) [26], in which vehicles,
whose trips are not limited by the driving range but by the load
capacity, may perform several trips in sequence. At the end
of each trip, the vehicle returns to the depot in order to load
other goods and perform the next trip. Generally, a maximum
cumulative working time is imposed for each vehicle. The
main difference between MTVRP and our problem concerns
the objective function. In fact, while in MTVRP the goal is to
minimize covered distances, in our case, we look for weighted
completion time minimization. Moreover, MTVRP appli-
cations are mainly related to freight delivery (or pick-up).
In such a context, the minimization of costs, which are strictly
dependent on the traveled distance, is the goal of the com-
pany. In our setting, consisting in monitoring an area hit
by a natural disaster (such as an earthquake), the primary
objective is to serve the points of interest in the shortest
possible time, considering that some sites must be flown
over before than others. Indeed, most densely populated areas
and some crucial buildings are marked with a higher priority
because the probability of finding injured people is larger
in these zones. Although completion time minimization has
been already considered in the literature for a single vehicle
problem [27], we are the first researchers to apply it in amulti-
trip and multi-vehicle context.

C. THE GRAPH MODEL
In order to model the described context, we consider a com-
plete node- and edge-weighted graph G = (V ,E, dist, σ, p),
where:
• V = {v0, v1, . . . , vn}, and v1, . . . , vn are the sites rep-

resenting the points of interest inside the area, i.e., buildings
(or areas) that need to be explored, while v0 represents the
operations center.
• Functions p : V → {pmin, pmed , pmax}, with pmin <

pmed < pmax , and σ : V → R+ associate to each node
two values, representing the priority and the time needed to

VOLUME 10, 2022 6111

T. Calamoneri et al.: Realistic Model to Support Rescue Operations After Earthquake via UAVs

FIGURE 1. List of symbols used along the paper.

explore the site, respectively. The value of σ (v) is computed
based on the shape and dimension of the target and is given as
part of the input (We do not further detail how σ is computed
because it is out of the scope of this paper, and simply assume
that it is a known value.) In the first scenario, it represents the
only (fixed) time to fly over each site. In the second scenario,
σ (v) includes both the time necessary to fly over the site and
to process the images; moreover, it may be necessary to add a
second contribution to σ (v), i.e. the time σ ′(v) needed for the
UAV to decrease its altitude, take more precise information
concerning detected people possibly in difficulty and send
to the base a radio message. We will denote by σ e(v) the
effective time used by a UAV to completely fly over a site,
i.e. σ e(v) = σ (v)+σ ′(v) and σ e(v) becomes known only after
that a UAV has finished to fly over v. As far as the effective
overflight time is conceived, it always holds σ (v) ≤ σ e(v);
indeed, if no people needing help are detected, σ e(v) = σ (v);
on the contrary, if a rescue team is deemed necessary, σ e(v) =
σ (v)+ σ ′(v) with σ ′(v) > 0.
In both scenarios, it is not restrictive to define σ (v0) = 0;

indeed, even if the base had to have a not negligible area, and
each UAV had to take a time s to fly over it and reach the
destination, this would be equivalent to set σ (v0) = 0 and
battery constraint equal to B− s.
• Every (directed) edge e = (vi, vj) ∈ E , with i 6= j,

is associated a distance function dist that represents the trav-
eling distance between two nodes.

Moreover, we assume that for dist the triangle inequality
holds. For the feasibility of the problem, we need that each
site is reachable and completely flown over by a UAV, i.e. for

each site v ∈ V it must hold 2 dist(v0, v)+ σ (v)+ σ ′(v) ≤ B.
If there is a very large site v that is reachable but takes a too
long time to fly over (so that 2 dist(v0, v)+σ (v)+σ ′(v) > B),
we replace v with a set v1, . . . , vmv of mv nodes, so that the
overflying time is split among the duplicates: σ (vi) = σ (v)

mv
for each i = 1, . . . ,mv; these mv sites are considered as
different sites at null mutual distance and they keep the same
set of adjacent nodes as v. The value of mv must be enough
to guarantee that every vi is reachable and completely flown
over by a UAV; in other words, mv is such that, for every vi,
it holds 2 dist(v0, vi) + σ (vi) + σ ′(vi) ≤ B, i = 1, . . . ,mv.
Trivially, p(vi) = p(v), i = 1, . . . ,mv and it is not necessary
to highlight which nodes in the input graph are of this kind.
Hence, in the rest of this paper, we implicitly assume that all
the edges respect the feasibility requirement.

Since we can translate the value of dist in terms of flight
time, as in [28], [29], we assign to each node an edge weight
function l : E → R+ defined as l(vi, vj) = dist(vi, vj) +
σ (vi)
2 +

σ (vj)
2 for each i, j 6= 0. The triangle inequality still

holds for l. In this way, from now on we will handle the only
edge weight function l instead of dist and σ .

The goal of our problem is to inspect all points of interest in
the shortest possible time, trying to explore sites with higher
priority first; to this aim, we partition the sites into disjoint
sets and assign each UAV one of such sets to fly over, so that
the entire fleet can cooperate to the complete exploration, and
avoid that some sites are flown over by more than one UAV.

Since UAVs are prone to their battery constraint, they may
not be able to visit all assigned sites in one flight but may
need to perform multiple flights, in order to either recharge

6112 VOLUME 10, 2022

T. Calamoneri et al.: Realistic Model to Support Rescue Operations After Earthquake via UAVs

or substitute their batteries. So, we have to assign to each
UAV an ordered set of cycles, whose weights are bounded
by B, and all nodes of the graph are flown over, giving
precedence to those with higher priority, in such a way that
an appropriate optimization function isminimized. Of course,
in the two scenarios, the situation is different and hence also
the solution is. In particular, it is worth noting that, while in
the first scenario the time it takes to explore each site is exact
(i.e. σ ′(v) = 0 ∀v), in the second one it is not (and hence
σ ′(v) can be either positive or null). The optimization prob-
lem is not run on-board but on a dedicated computer at the
operations center in order not to require the usage of wireless
connectivity among UAVs.

To consider this difference and, at the same time, to give
definitions suitable for both scenarios, we introduce the con-
cepts of presumed and effective cycles.

Informally, a presumed cycle is a cycle that can be flown
over in a time-bounded by B assuming that, for each node
involved in the cycle, the value of σ ′ is null; after this cycle is
assigned to a UAV and it begins to fly over it, if some values
of σ ′ are not null, it may become impossible to complete
the exploration of the cycle within time B; so only a proper
subset of sites involved in the presumed cycle will be really
flown over, and the UAV will have to go back to the base: the
flown over part of the presumed cycle is the effective cycle.
Trivially, in the first scenario presumed and effective cycles
coincide, while in the second scenario they can be different.
We now formalize these definitions and state the properties
of a feasible solution and the objective functions in the two
scenarios.
Definition 1: A (presumed) cycle is a tuple C =

〈v0, vi1 , . . . , vim , v0〉 of sites that a UAV can explore in this
order in a single flight, assuming σ ′(v) = 0 ∀v ∈ C .
We fix time 0 at the beginning of operations for the whole

system; denoting by ts(C) and tf (C) the starting and finishing
times of each cycle C , and setting i0 = im+1 = 0, in both
scenarios it holds that

t(C) = tf (C)− ts(C) =
m∑
j=0

l(vij , vij+1) ≤ B. (1)

This inequality is not guaranteed to be true, when passing to
the effective times, i.e. for

l(v0, vi1)+
m∑
j=1

(
l(vij , vij+1)+ σ

′(vij)
)
. (2)

We hence introduce the following:
Definition 2: The effective cycle associated to a presumed

cycle C = 〈v0, vi1 , . . . , vim , v0〉 is a cycle containing a subset
of sites of C : Ce

= 〈v0, vi1 , . . . , vim′ , v0〉 where m
′
≤ m, and

m′ is maximum to guarantee that

l(v0, vi1)+
m′∑
j=1

(
l(vij , vij+1)+ σ

′(vij)
)
≤ B. (3)

We define ts(Ce), tf (Ce) and t(Ce) analogously to
ts(C); tf (C) and t(C). (In general, if Ce is the effective cycle

associated to C , ts(C) = ts(Ce) but tf (C) 6= tf (Ce) and
t(C) 6= t(Ce).)
Definition 3: The presumed (effective) sequence associ-

ated to a UAV ui, Sui = {C1(ui), . . . , Cyi (ui)} (Seui =
{Ce

1(ui), . . . ,C
e
yi (ui)}) is defined as an ordered set of pre-

sumed (effective) cycles assigned to UAV ui.
A set SOL (SOLe), defined as a collection of pre-

sumed (effective) sequences, one for each UAV, is called
presumed (effective) solution if it covers V , i.e. if for every
v ∈ V there exists a cycle in a sequence of SOL (SOLe)
containing v.

The final result we would like to obtain is an effective
solution SOLe. In particular, in the first scenario, we are
able to compute a priori a set of (presumed = effective)
sequences that will take part in the (presumed = effective)
solution. On the contrary, in the second scenario, we will not
compute all cycles of a sequence at the same time: as we will
detail in Section III, we will compute a presumed cycle of a
sequence only after that the corresponding UAV is back from
the effective previous cycle.

D. PEFORMANCE METRICS
We want the completion time of a site to represent the time
necessary to know whether there are people needing help on
it. In the two scenarios, we consider a site as ‘‘served’’ by
a solution SOL if different conditions are verified. Namely,
in the first scenario, a node is ‘‘served’’ only after that the
video of the cycle including it has been delivered to the base
and the portion corresponding to it has been analyzed, while
in the second scenario a node is ‘‘served’’ as soon as it has
been completely flown over since UAVs can immediately
detect people needing help. We formalize these facts in the
following:
Definition 4: Given a solution SOLe and assuming that

site vk is the k-th in the effective cycle Ce (belonging to a
sequence of SOLe), the completion time of vk in a solution
SOLe in the first scenario is:

cost (I)(vk ,SOLe) = tf (Ce)+ t (I)(vk) (4)

where

t (I)(vk) =
k−1∑
j=0

l(vij , vij+1)+
σ (vk)
2
; (5)

while in the second scenario is:

cost (II)(vk ,SOLe) = ts(Ce)+ t (II)(vk) (6)

where

t (II)(vk)=
k−1∑
j=0

l(vij , vij+1)+
σ (vk)
2
+

k∑
j=1

σ ′(vj); (7)

Note that the first term of cost (I) is the time necessary
to completely fly over the cycle containing vk (Ce) and the
second term is the time necessary to analyze the recorded
video from the beginning to the moment when vk has been

VOLUME 10, 2022 6113

T. Calamoneri et al.: Realistic Model to Support Rescue Operations After Earthquake via UAVs

flown over. On the contrary, the first term of cost (II) is the
time spent before starting flying over Ce and the second term
is the time necessary to fly over the portion of Ce preceding
vk and vk itself (including both the time necessary to fly over
vk and to process the images).

We now define two functions that exploit the concept of
completion time of a site and are useful to evaluate the good-
ness of a solution: in the first one we generalize a classical
parameter (i.e. latency) in order to take into account the
priority, while the second one is the classical definition of a
very natural optimization function, that is completion time.
Definition 5: The weighted latency of a solution SOLe,

wL(SOLe), is the mean of the completion times of all sites
(either in the first or in the second scenario), taking into
account their priorities:

wL(i)(SOLe) =
1
n

∑
v∈V

p(v)cost (i)(v,SOLe), i = I , II . (8)

Changing parameters pmin, pmed , pmax influences how
much it is pressing to serve higher priority sites first. Namely,
sites with the highest priority should be served first, in order
to associate a higher multiplicative factor (corresponding to
the priority) to a lower sum of costs. Hence, we can claim the
following:

Problem Requirement HPSF (Higher Priority Sites
First): The sites with higher priority should be flown over
before than the ones with lower priority.
Definition 6: We denote as the completion time of a solu-

tion SOL as:

ct (i)(SOLe) = max
v∈V

cost (i)(v,SOLe) where i = I , II . (9)

Clearly, we consider a solution better than another one
if it has smaller values of both ct and wSOL. Observe that
wL(i)(SOLe) and ct (i)(SOLe) are not independent indeed,
calling wA(p) = 1

n

∑
v∈V p(v) the weighted average of the

priorities over all nodes, it holds that wL(i)(SOLe) ≤ wA(p) ·
ct (i)(SOLe).

Note that ct (i) does not take into account the priority of
nodes; nevertheless, it is a primary parameter to evaluate the
goodness of the solution.

We conclude this subsection with the formal definition of
our problem:
Definition 7 (CMP): Given a complete node- and edge-

weighted graph G = (V ,E, dist, σ, p), defined as in
Subsection II-C, and a set of q homogeneous UAVs
u1, . . . , uq, the problem Cover by Multitrips with Priorities
(CMP) consists of finding a set SOLe of q effective sequences
such that ct (i)(SOLe), where i = I , II , is minimized and
Requirement HPSF is addressed.

It is easy to see that CMP is a generalization of the well
known multiple Travelling Salesperson Problem,m-TSP [30]
(achievable with B = ∞, p(v) = 1 and σ ′(v) = 0 ∀v)
so, in its turn, it is strongly NP-hard. Nevertheless, the wide
literature devoted to m-TSP and all its variants cannot be
exploited in this case; indeed, this class of problems misses

an important parameter, that is the battery constraint B. Mod-
ifying algorithms for m-TSP to address the battery constraint
does not seem an easy issue as pointed out in [28] for a
different problem, and it seems neither possible to inherit
from m-TSP any approximability result without relaxing the
battery constraint (and accepting, for instances, cycles with
completion time B+ ε for some ε > 0), that in our context is
inadmissible.

E. A MIXED-INTEGER LINEAR PROGRAMMING
FORMULATION
We exploit the nomenclature defined in Subsection II-C to
formulate CMP as a mixed-integer linear programming prob-
lem in the first scenario.

The following sets and parameters are known from the
problem: (i) V : set of n + 1 sites; (ii) Q: set of q UAVs;
(iii) B: UAVs’ battery capacity; (iv) p(vi): priority of site vi.

Moreover, we define the following: (i) K : set of feasi-
ble (effective) cycles and K ′ = K ∪{k0}where k0 is an empty
cycle introduced for modeling reasons; for all Ck ∈ K , tk (vi)
(completion time for site vi on cycle Ck) and t(Ck) (flying
time of cycle Ck) are considered as known; (ii) Covi: set of
cycles passing through site i; (iii) ε: a very small constant;
(iv)M : a very large constant.
We introduce the following decision variables: (i) Xk ∈
{0, 1}, k = 1, . . . , |K |, is a binary variable assuming value
equal to 1 if cycle Ck is selected in the solution and 0 oth-
erwise; (ii) Ykj ∈ {0, 1}, k = 1, . . . , |K | and j = 1, . . . , q,
is a binary variable assuming value equal to 1 if cycle Ck is
executed by UAV j; (iii) Z jk1k2 ∈ {0, 1}, k1, k2 = 0, . . . , |K |
and j = 1, . . . , q, is a binary variable assuming value equal
to 1 if cycle Ck1 and cycle Ck2 are executed in sequence by
UAV j and 0 otherwise; (iv) ts(Ck), k = 0, . . . , |K |, is a non-
negative variable representing starting time of cycle Ck ; (v) τ
is a non-negative variable representing the total completion
time; (vi) cost(vi) is a non-negative variable representing
latency of site i.
Note that ts(Ck) and cost(vi) are not independent vari-

ables, on which we can directly act, as they are expressed
as a function of other decision variables. Nevertheless, in a
mathematical programming model, they must be defined as
decision variables as well. Indeed, in an integer programming
model, two types of entities are considered: input data, which
are fixed and cannot be modified by the model, and decision
variables, whose value must be decided by the model. The
latter group includes both independent variables (such as
those related to the selection and assignment of cycles) and
variables that are expressed as a function of them (such as the
total cost or the starting time of a cycle).

We claim that, in the first scenario, CMP can be completely
described by the following set of constraints:

min τ + ε
∑
vi∈V

cost(vi)p(vi) (of)

∑
Ck∈Covi

Xk = 1 ∀vi ∈ V (C1)

6114 VOLUME 10, 2022

T. Calamoneri et al.: Realistic Model to Support Rescue Operations After Earthquake via UAVs

∑
j∈Q

Ykj = Xk ∀Ck ∈ K (C2)

∑
k1∈K ′

Z jk1k2 = Yk2j ∀Ck2 ∈ K ∀j ∈ Q (C3)

∑
k1∈K ′

Z jk1k2=
∑
k1∈K ′

Z jk2k1 ∀Ck2 ∈ K ∀j ∈ Q (C4)

∑
Ck∈K ′

Z j0k =
∑
Ck∈K ′

Z jk0 = 1 ∀j ∈ Q (C5)

ts(Ck2) ≥ ts(Ck1)+ t(Ck1)−M (1−
∑
j∈Q

Z jk1k2)

∀ Ck1 ∈ K ∀ Ck2 ∈ K
′ (C6)

ts(Ck) ≥ 0 ∀Ck ∈ K (C7)

τ ≥ ts(Ck)+ t(Ck)−M (1− Xk) (C8)

cost(vi) ≥ ts(Ck)+ tk (vi)−M (1− Xk)

∀ vi ∈ V ∀ Ck ∈ K | Ck ∈ Covi (C9)

The hierarchic objective function is reported in Equa-
tion (of). This function firstly aims at minimizing the
total completion time and secondly at minimizing targets’
weighted latency. The very small constant ε is defined such
that a solution with a lower total completion time would be
always preferred w.r.t. one with a higher one, whichever is the
value of the secondary objective. This is a standard technique
commonly used in multi-objective optimization dealing with
hierarchical objective functions [31]–[33].

Constraints (C1) guarantee that each target is covered by
exactly one cycle while Constraints (C2) impose that, if a
cycle is selected, it must be assigned to exactly one UAV.
Similarly, a cycle must occupy a position in the schedule
list for a given UAV j if and only if it has been assigned to
that UAV (Constraints (C3)). Constraints (C4) delineate the
sequence of cycles for each UAV. If variable Z j0k is equal
to 1 it means that k is the first cycle executed by UAV j.
Similarly, if variable Z jk0 is equal to 1, k is the last cycle
executed by j. Constraints (C5) imply that each UAV is used
and explicates that, for each UAV, there is a cycle that is flown
over as the first one and a cycle that is flown over as the last
one. These two cycles can coincide in the case of single-cycle
UAV routes.

Starting times of cycles are ruled by Constraints (C6)
and (C7): a cycle can start only after the previous cycles
assigned to the same UAV has been completely flown over.
Note that the order relationship between the starting times
of the different cycles k1 and k2 is given by the term
M (1−

∑
j∈Q Z

j
k1k2

), that guarantees the correctness of this
constraint. Indeed, if Ck1 and Ck2 are executed in sequence
by the same UAV, then Z jk1k2 = 1 and thus we have
ts(Ck2) ≥ ts(Ck1)+ t(Ck1), thus guaranteeing that cycle Ck2
can only starts after the end of the previous cycle. On the
other hand, if Ck1 and Ck2 are either executed by different
UAVs or are not consecutive, we have that Z jk1k2 = 0 and
thus ts(Ck2)≥ ts(Ck1)+t(Ck1)−M , making this constraint not
binding.

The total completion time is computed through Con-
straint (C8). Finally, Constraints (C9) allow one to identify
the latency of each site.

Note that M is a big constant, large enough to make Con-
straints (C6) actually binding only if cycle k2 is performed by
UAV j just after cycle k1. A similar role is played by M also
in Constraints (C8), which are actually binding only if cycle
k is performed, i.e. only if Xk = 1.

The model involves |K |+|K |q+|K |2q binary variables and
|K |+n+1 continuous variables. The number of constraints is
n+|K |+2|K |q+q+|K |2+n|K |+1.

If we want to model the second scenario, we can run the
following recovery procedure: we solve the model as if we
were in the first scenario and send all the UAVs following the
optimal solution one cycle at the time; whenever a UAV is
not able to fly over all the sites assigned to it, we construct
a reduced graph starting from the input one and removing all
the sites effectively visited together with their incident edges;
we solve again the model on this reduced graph and send
again all the UAVs following the new solution.

Finally, the model can be adapted to the case of a hetero-
geneous fleet of UAVs, characterized by a different battery
duration and consumption rate. Indeed, feasible trips can be
generated considering the less binding type of UAV, i.e. the
one performing the longest duration trips. Then a set of con-
straints can be added in order to allow us to assign a cycle j to a
UAV k only if the battery of k is enough to completely fly over
j. We can define the compatibility between cycle j and UAV
k as an input constant φkj, equal to 1 if UAV k can perform
cycle j and equal to 0 otherwise. Then, to avoid forbidden
assignments, we add the following set of constraints to the
model:

Ykj ≤ φkj ∀j ∈ J ∀k ∈ K . (10)

III. A META-ALGORITHM FOR CMP
In this paper, we will propose several heuristics, each one
based on a different consideration. Nevertheless, all of them
are built upon on the same meta-algorithm that is run at the
operations center; it consists of a number of iterations going
on until all sites have been flown over; at each iteration,
a presumed cycle for each UAV is produced as output.

Here we describe an outline of this meta-algorithm,
through some facts on which it is based:
• At the beginning, v0 has complete knowledge of the

structure of graph G, including the distances between the
sites and the presumed values σ (v), but (only in the second
scenario) not the effective values σ e(v).
• The solution is computed in any case at v0, in order not to

overburden UAVs with computation and intercommunication
issues. This is possible because UAVs require to come back
to v0 to either recharge or substitute their battery and there
they can get new information, e.g. a new cycle to perform.
• The meta-algorithm consists of several iterations to

be executed until all sites have been flown over. At each

VOLUME 10, 2022 6115

T. Calamoneri et al.: Realistic Model to Support Rescue Operations After Earthquake via UAVs

iteration, a certain algorithm A is run; A computes a set
of (presumed) cycles, one for each UAV, and for each such
cycle C , t(C) ≤ B. Changing A, either in one or in all the
iterations, produces a different heuristic, as wewill detail later
in Section VI.
• In the second scenario, each UAV is equipped with a

device (e.g. a radio) to directly communicate with the base.
Such a device is primarily exploited to call rescue teamswhen
it realizes that there are survivors to be rescued. Moreover,
as soon as a UAV decides to go back to v0, for example,
because it has not had enough battery to continue, it sends
a message indicating its latter overflown site, and v0 will
immediately update the set of sites to be still flown over.
In this way, v0 has in real-time a precise knowledge about the
(im)possibility to successfully complete the flown over of the
assigned cycle by each UAV.
• In the first scenario, presumed and effective cycles coin-

cide, so the iterations of the meta-algorithm can be run all
together, outputting a final solution.

In the second scenario, presumed and effective cycles
can be even very different, so the iterations are performed
one by one, and the next iteration is run only after that
UAVs inform the operations center v0 of the effective cycles.
Namely, at each iteration, a cycle for each UAV is computed
at v0 and it is assigned as a presumed cycle; it is assumed
that all the sites in these assigned cycles will be flown over;
therefore sites currently assigned to a UAV are considered
committed and cannot be assigned to any other UAV. Based
on the effective value of σ ′ on the already flown over sites
in the current cycle and of the remaining battery, every UAV
can periodically infer whether some sites assigned to it will
remain not flown over. Specifically, before visiting the next
node, a UAV is able to calculate if the remaining energy
is not enough to continue the trip and thus it has to return
to v0. All the remaining nodes in the presumed cycle will
be automatically discarded from the current effective cycle.
The UAV communicates this information to v0, where the
not flown over sites will be released and included again in
the current graph; then, a new set of presumed cycles is
computed. In this way, as soon as eachUAV comes back to the
base, it will have ready a new presumed cycle to be assigned
to it. This iteration continues until all the sites have been
flown over.

In the following sections, we will show that this meta-
algorithm can also be used as a preprocessing algorithm to
make some preliminary estimates of the required completion
time and the best number of additional batteries and UAVs
required.

IV. CHANGING VS RECHARGING BATTERIES
Suppose that b ≥ 0 additional batteries are available for the q
UAVs. Assume that the meta-algorithm is run immediately
after an earthquake as a pre-processing and a (presumed)
solution SOL = {Su1 , · · · ,Suq} is output; we call N (SOL) =∑q

i=1 |Sui | the total number of cycles in SOL. As SOL is clear
from the context, we call it simply N .

In all this section we assume that maxui |Sui | > 1, other-
wise there were no need of additional batteries, and Suct =
{C1(uct), . . . ,Cyct (uct)} is the sequence flown over by UAV
uct whose cost equals the completion time of SOL, and its last
site before coming back to v0 is vct ; in other words, Cyct (uct)
is the last cycle to be oversight in the sequence assigned to
uct and vct is the last site lying on it. (Note that sequence Suct
does not necessarily coincide with the one with the maximum
number of cycles.)

We now analyze each possible value of b and associate to it
the corresponding value of the completion time, so that civil
defense organizers can have an immediate idea about the nec-
essary time to conclude operations, knowing all the param-
eters. We derive also the minimum number of batteries b
necessary to guarantee minimum completion time (i.e. no
time in which UAVs remain inactive waiting for battery
recharging).

We focus first on the first scenario and, for the sake of
simplicity in calculations, we assume that every cycle of each
sequence of every UAV is flown over in time exactly B. This
is an upper bound on the completion time of cycles, but
this approximation is, in fact, negligible especially for some
heuristics, as shown in Table 1, so we use it to simplify our
calculations. It is not difficult to see that more precise values
give anyway similar results.

TABLE 1. Average times of the cycles of a solution computed by the
different heuristics proposed in this paper. This table is computed with
q = 5, B = 50, uniform distribution of the sites; the average is computed
on 20 runs. (We refer to Section VI for the formal definition of HTSPN ,
HTOP , HGreedy , Hmixed ,HIP .)

We distinguish different cases according to the relation
between b and q.

case b = 0: If there are no additional batteries, the com-
pletion time is trivially given by

∑yct−1
i=1 (t(Ci)+R)+t(Cyct)+

t (I)(vct)≤ (yct−1)(B+R)+2B. Informally, we can read this
result as follows: we consider time as marked in intervals B+
R long, and an immediate upper bound on the maximum time
necessary to complete operations by solution SOL is given by
the product between (B+R) and yct ; in view of the definition
of completion time, a more precise approximation substitutes
the lastR long interval with t (I)(vct) that is bounded byB. As a
side effect, this calculation proves also the following finite-
time result:
Theorem 1 (Termination 1st sc): In the first scenario,

there always exists a solution to CMP and an upper bound to
its completion time is given by (yct−1)(B+R)+2B (reached
in absence of additional batteries and when t(C) = B for
every C in SOL).

6116 VOLUME 10, 2022

T. Calamoneri et al.: Realistic Model to Support Rescue Operations After Earthquake via UAVs

case 0 < b < min{dRBeq,N−q}: If there are few additional
batteries (where ‘‘few’’ means that they are not enough to
cover all the operations without UAVs’ inactivity time due
to recharging batteries), b is necessarily less than:

• N − q, that is the total number of flights in SOL after
the subtraction of the first one for each UAV, performed
with the supplied battery;

• d
R
Beq, because more batteries would imply no UAVs’

inactivity due to recharge operations.

Observe that the value of ct (I)(SOL) as function of b is not
decreasing (in other words, for any k > 0, the completion
time using b + k additional batteries is not greater than the
completion time using b additional batteries). We will use
the monotonicity of this function to simplify calculations and
consider only the cases when b is a multiple of q. In this
special case, the whole fleet of UAVs will be able to go on
and back exactly b

q + 1 times without waiting for recharging
batteries. Every time the q UAVs come back to the base,
exactly q batteries are put to be recharged. After bq+1 flights,
all UAVs (and among them uct , so it is not restrictive to focus
on it) necessarily have to wait for the first batteries to be
completely recharged; in this case, the waiting time of uct
due to battery recharge after cycle C b

q+1
(uct) represents the

waiting time after the first group of flights and is wtb(1) =

R −
∑ b

q+1
i=2 t(Ci(uct)). After this time, uct (and analogously

all the other UAVs) will be able to perform another group
of b

q + 1 flights without any waiting time. More in general,
the waiting time after the r-th group of flights is wtb(r) =

R−
∑r(bq+1)

i=(r−1)(bq+1)+2
t(Ci(uct)).

The number of groups of flights that need to be followed
by a waiting time are

⌈ yct
b
q+1

⌉
− 1, so the completion time is

ct (I)(SOL) =
yct∑
i=1

t(Ci(uct))+

⌈
yct
b
q+1

⌉
−1∑

r=1

wtb(r)+ t(vct) (11)

≤

(⌈yct · q
b+ q

⌉
− 1

)
(R+ B)+ B(

b
q
+ 2). (12)

case b ≥ min{dRBeq,N − q}: It is not difficult to see
that, with so many additive batteries, it is possible to let
UAVs fly without pauses, because there are always enough
charged batteries. In this case, the completion time is upper
bounded by ct (I)(SOL) =

∑yct−1
i=1 (t(Ci))+t(Cyct)+t

(I)(vct) ≤
B(yct + 1).
This proves the following result:
Theorem 2 (Completion Time Minimization): In the first

scenario, a guarantee for minimizing the completion time is
to have at least dRBe · q additional batteries and to minimize
the value of yct .

Figure 2 depicts the comparison between the function
describing completion time in the first scenario when b grows

up from 0 to dRBe · q on an example instance and the upper
bounds provided above. The gap between the two plots in the

FIGURE 2. Plots of the function describing ct (I) (solid line) in minutes in
an instance with B = 50, R = 120, q = 5, n = 200 whose solution has
N = 26 and yct = 6 and of the found upper bounds (dotted line) in the
first scenario.

interval between 0 and dRBeq is due to the approximation we
did upper bounding ct (I)(SOL) with its values reached when
q divides b; this is also the reason why the corresponding
function is a step function. Nevertheless, our computation is
quite good when we need to estimate the number of needed
additional batteries to avoid waiting times due to recharging
operations.

All the previous considerations cannot be applied to the
second scenario as they are, because the pre-processing phase
outputs only presumed cycles. In the following, we esti-
mate the average of an additional contribution that cannot
be ignored when passing from a presumed to an effective
solution.

Assume that, immediately after the earthquake, we are able
to approximately quantify a uniform probability p to find
people needing help during the flight and that, for simplicity,
σ (v) is a constant σ and σ ′(v) is either 0 or a constant σ ′,
for every v ∈ V . Given a presumed solution SOL, with N
presumed cycles output by a pre-processing computation, the
average of the number of sites in each cycle is E[m] = n

N and
the E[m]+1 sites lie on every cycle at an average distance of
B−E[m]·σ
E[m]+1 . For every presumed cycle C of SOL, on average,

in E[m] · p sites a UAV will detect a need to spend a further
time σ ′ long.

When passing from C to the corresponding effective cycle
Ce (containing m′ ≤ m sites), m − m′ sites will not be in
fact flown over, and the average value for m′, E[m′], is the
maximum value for which it holds:

E[m′]σ + (E[m′]+ 1)
(B− E[m]σ)
E[m]+ 1

+ pE[m]σ ′ ≤ B. (13)

Executing some algebraic calculations, we get:

E[m′] ≤
Bn+ BN−p n

2

N σ
′
−pnσ ′−BN + nσ

nσ + σN + BN − nσ

≤
n
N
−

n
N
·
pσ ′(n+ N)
N (B+ σ)

. (14)

VOLUME 10, 2022 6117

T. Calamoneri et al.: Realistic Model to Support Rescue Operations After Earthquake via UAVs

In average,E[m−m′]·N = (E[m]−E[m′])·N sites remain not
served and, in average, they will require a further number of

cycles equal to (E[m]−E[m′])N
E[m′] that is lower bounded as follows

(upper bounding E[m′] with E[m]=n/N):

(E[m]− E[m′])N
E[m′]

≥
pσ ′(n+ N)
B+ σ

. (15)

Now, calling N ′(SOL, p, σ, σ ′) = pσ ′(n+N)
B+σ , the total num-

ber of estimated cycles is at least N + N ′(SOL, p, σ, σ ′).
If we substitute this value instead of N in the computations
related to the first scenario and modify them according to
the definition of completion time of a site in the second
scenario, we have an estimate on ct (II)(SOL)w.r.t. the number
of batteries b. We explicitly write only the following, that is
the analogous of Theorem 1 and provides also a finite-time
result because Theorem 2 can be re-written identical for the
second scenario:
Theorem 3 (Termination 2nd sc): In the second scenario,

there always exists a solution to CMP and an estimate to its
completion time is given by d(N+N ′(SOL, p, σ, σ ′))/qe(B+R)−R
(reached in absence of additional batteries and when t(C)=B
for every C ∈SOL).

In our experimental evaluation we observed that, although
the derived formulas would provide lower bounds to the
estimates of ct (II)(SOL), in practice they are quite close to
the exact values, especially for small values of p, as shown in
Table 2.

V. NUMBER OF UAVs TO GUARANTEE A SINGLE CYCLE
In this section we give a simple method to immediately
estimate the number of UAVs that civil defense should own to
ensure that all the operations can be concluded within a single
UAV flight, i.e. without any changing or recharging batteries
and within time B. To do this, we recall the definition of a
well-known problem in the literature.

The Team Orienteering Problem (TOP) [34] comes from
an outdoor sport played on mountains where a team of hikers,
with the help of a map and a compass, must visit as many
nodes as possible within a specified time limit, getting a profit
from each visited node. Since the goal is to maximize the total
gain that the hikers all together collect, if the gains associated
with nodes are equal, equivalently the problem is tomaximize
the number of nodes visited. TOP is also known as selective
m-TSP since not all nodes are visited in a solution.

More in detail, using our nomenclature, the Team Ori-
enteering Problem (TOP) [34] can be defined as follows:
let G = (V ,E, l, p) be a complete graph, where V =

{v0, v1, . . . , vn} is the set of nodes, v0 is the base and the
remaining nodes are objectives. Each node vi, i = 0, 1, . . . , n,
is associated with a profit p(vi) (p(v0) = 0), corresponding to
our priority. There are q hikers and each one gains a profit
p(vi) if visits a still unvisited vi. A travel time l(vi, vj) is
associated to each edge (vi, vj), that is assumed to satisfy
the triangular inequality. The hikers must complete their tour
within a predetermined time B. It follows that some nodes

may not be visited due to the B constraint, so TOP consists
in determining a set of q cycles, each passing through v0 and
respecting the time constraint such that each node is visited at
most once and the total profit collected is maximized. If the
profit of all sites is the same, TOP maximizes the number of
visited sites.

It is evident that, if after solving TOP on our instance, all
the sites are visited, we are guaranteed that a single flight
(i.e. a time-bounded by B) will be enough to complete all the
rescue operations. We want to give an estimate on the number
q of UAVs needed to make this possible.
Let us focus on the first scenario, and first put forward the

hypothesis to have n UAVs. Because of the feasibility of the
problem, l(v0, v) + l(v, v0) ≤ B, so we are guaranteed that
each UAV will fly over a single site, concluding the whole
operations with a single flight andwithin timeB. Now, we can
insert the computation of an algorithm solving TOP on our
instance inside a loop that mimics a binary search on the value
of q; so, we assume now that q = n/2, run the algorithm
and output a solution for TOP; if all the sites are visited
by this solution, then we eliminate all the values larger than
current q, otherwise, we eliminate all the values smaller than
current q, and then we will proceed again recursively with
a new q equal to the median of the remaining values. This
algorithm, together with the fact that presumed and effective
cycles coincide in the first scenario, guarantees that, in a
number of iterations logarithmic in n, we have the exact value
of q allowing us to get a solution in which all UAVs fly for a
single cycle.

Concerning the second scenario, we have no knowledge
in advance about the exact number of cycles in an effective
solution, so we can only estimate this number similarly to
how we did in the previous section adding the contribution
of N ′(SOL, p, σ, σ ′) and mime again a binary search. In this
case, we will get an expected value of q.

We formalize the result of this section as follows:
Theorem 4 (Number of UAVs for a Completion Time

Bounded by B): By running an algorithm solving TOP a
number of times upper bounded by log n, it is possible:
(i) in the first scenario, to exactly determine; (ii) in the
second scenario, to have an estimate on the number of UAVs
needed to ensure the end of the rescue operations within
time B.

Unfortunately, TOP is NP-hard and APX -hard [35]. So,
there is a wide literature solving the problem either opti-
mally or with good approximations (see e.g. the survey [36]).
Nevertheless, even these latter algorithms require very long
times, though theoretically polynomial. Thus, we use a very
simple and fast heuristic for TOP [37], which guarantees
an immediate calculation of the cycles, at cost of a slightly
worse solution; indeed the obtained results of this heuristic
have a similar quality as the results of the best-known heuris-
tics while the computational time is reduced significantly.
Of course, the better the guaranteed approximation of the
algorithm used to solve TOP, the more accurate the number
of UAVs produced by the algorithm described above will be.

6118 VOLUME 10, 2022

T. Calamoneri et al.: Realistic Model to Support Rescue Operations After Earthquake via UAVs

TABLE 2. Average presumed (left), real (middle) and estimated (right) total number of cycles computed by HTSPN ,HTOP , HGreedy and Hmixed , for
B = 50, p = 0.25, uniform distribution of nodes in the second scenario; the average is computed on 20 runs with σ, σ ′ ∈ (0,3]. (We refer to Section VI for
the formal definition of HTSPN , HTOP , HGreedy and Hmixed .)

VI. HEURISTICS
In this section, we present five heuristics to solve our problem
both in the first and in the second scenario. Every time each of
them is executed, it produces as output q node-disjoint cycles
(except v0, from which all of them pass), C(u1), . . .C(uq)
with the properties that t(C(ui)) ≤ B and Problem Require-
ment HPSF is somehow addressed.

Once more we observe that the meta-algorithm presented
in Section III produces a feasible and definitive solution in the
first scenario, after which the algorithm A is defined. As for
the second scenario, the meta-algorithm is run in iterations so
that the cycles of the next iteration are computed only after
that it is known which portion of the cycles of the previous
iteration has been in fact flown over and the input graph ofA
at each iteration is the subgraph induced by the sites that are
still uncovered.

A. TOP BASED ALGORITHM ATOP
Before describing algorithm ATOP, we present a case study
from which it is possible to derive a general rule that we
would like to follow to get better solutions.

Assume to have an instance (either of the first or of the
second scenario) in which many nodes v1, v2, . . . vn−1 lie
very close to v0, while a single node vn is far from it;
moreover, due to the distances between v0 and all the other
nodes, it is possible to group the sites in only two cycles:
C1 = 〈v0, v1, v2, . . . , vn−1, v0〉 and C2 = 〈v0, vn, v0〉; of
course, it holds that t(C1) ≤ B and t(C2) ≤ B. For simplicity,
we assume that q = 1, that the n nodes have all the same
priority (w.l.o.g. equal to 1) and that σ (vi) = σ e(vi) for
each i = 1, . . . , n. There are only two possibilities for the
solutions: C1 is executed either as first (SOL1) or as a second
cycle (SOL2). It is easy to see that ct(SOL1) = ct(SOL2)
while wL(SOL1) is much lower than wL(SOL2), indeed in
SOL2, the time contribution of flying over the first cycle
followed by the possible recharge time turns out to be mul-
tiplied for the number of sites flown over in the successive
cycle. More precisely, in the first scenario: n ·wL(I)(SOL1)=
n · t(C1)+R + t(C2) +

∑n
i=1 t(vi) and n · wL

(I)(SOL2) =

n · t(C2)+(n−1)(R+ t(C1))+
∑n

i=1 t(vi) while in the second

scenario: n · wL(II)(SOL1)=
∑n

i=1(t(vi)+σ
′(vi))+ t(Ce

1) and

n · wL(II)(SOL2)=
∑n

i=1(t(vi)+σ
′(vi))+ (n−1)(t(Ce

2)+ R).

This is a very special example with many simplifications,
but the result can be generalized as follows: The cycles with
a greater number of sites should be ante-posed to the other
cycles in a solution.

We observe that TOP (defined in Section V) aims at
maximizing the profit, which results either in choosing high
priority sites or in choosing a larger number of low priority
sites; both cases go in favor of the minimization of wL.
We select as ATOP the heuristic described in [37], having

time complexity O(|E| log |V | + q|V |2) = O(n2(q+ log n)):
indeed, to the best of our knowledge, every approximation
algorithm for TOP has a very high computational time in
practice and so cannot be used; instead the chosen heuristic
turns out to have a similar quality as the results of the best-
known approximation algorithms while the computational
time is reduced significantly.

B. GREEDY BASED ALGORITHM AGreedy
This algorithm finds all the q cycles at the same time accord-
ing to a greedy approach. Namely, it first fixes an a priori
order on the UAVs, then, at each step it considers one by one
all the q current cycles and, for each of them, starting from the
site selected last vlast (at the beginning v0), selects the next site
vnext as the onemaximizing the quotient p(vnext)/l(vlast , vnext)
still guaranteeing that the whole cycle with the addition of
vnext can be flown over within time B.

The reason why we decided to maximize p(vnext)/
l(vlast , vnext) is that we would like to choose sites with high
priority (hence addressing rule HPSF) without going too far,
whenever possible, to keep low the necessary number of
cycles.

Calling s the number of sites involved overall in the q com-
puted cycles, the computational complexity of this heuristic
is 2(ns) = O(n2).

C. IP FORMULATION BASED ALGORITHM AIP
We observe that, although elegant, neither for very small
values of the number of sites the model described in Subsec-
tion II-E can be used in practice, because |K | is exponential
in the number of sites, and the number of Constraints (C3)
and (C4) is quadratic in |K |. This is the reason why we
propose a heuristic based on a modification of this model.

VOLUME 10, 2022 6119

T. Calamoneri et al.: Realistic Model to Support Rescue Operations After Earthquake via UAVs

Namely, we divide the problem into two consecutive sub-
problems: first, we compute an optimal cycle cover of all
the sites (where all cycles pass through v0): the optimization
function minimizes the number of cycles in the solution; sec-
ondly, we perform an optimal scheduling of the only cycles in
this solution; in this case, we minimize the completion time.

Clearly, the solution to this variation is possibly worse than
the optimal one. Since computing an optimal cycle cover is
still a time-consuming issue, to speed up the computational
time, even by deteriorating the quality of the solution, we do
not generate the whole set of possible cycles K but a subset
of it. Namely, when we are generating a cycle, we impose
that every site can be followed in the cycle by one among
the k sites closest to it, where k is a parameter to be manually
tuned. Clearly, the largest is k , the larger will be the number of
generated cycles, the closer the solution will be to the optimal
one, but the larger will be the required computational time.
To reach a good balance between efficiency and effectiveness,
in our experiments we choose k = 5.

The algorithm consisting first of (not optimally) solving
the cycle cover problem and then in (optimally) solving the
scheduling problem on the solution of the first sub-problem
represents algorithm AIP.
Solving the cycle cover phase in this simplified model

corresponds to the minimization of the cumulative length
of the selected cycles, subject uniquely to Constraints (C1).
This model is much simpler to solve with respect to the
complete model since it involves only |K | binary variables,
no continuous variables, and n constraints. In the scheduling
phase, we apply the model proposed in Section II-E but on a
restricted set of cycles, K ? containing only those selected by
the simplified model adopted in the first phase. The cardinal-
ity of K ? can be several orders of magnitude lower than the
cardinality of K making this subproblem much faster to be
solved with respect to the original one.

D. ALGORITHM ATSPN
As discussed in the Introduction, no prior works are dealing
with the scenarios we consider in this article. So, in order
to compare the performance of our heuristics, we modified
one of the best-performing algorithms in the literature, that
is, one of the algorithms described in [4], [15]. In their work,
Kim et al. designed many algorithms for solving different
problems, all related to ours, but no one of them is the
same. Among them, we selected the closest to ours, that is
what they call q-TSPN (q-Travelling Salesman Problem with
Neighborhood). The algorithm designed by the authors for
this problem is one of the best solutions currently available.
Indeed, unlike several previous proposals, it is not a heuristic
but it is an approximation algorithm with a provable constant
approximation ratio. Nevertheless, the considered problem
requires weaker assumptions than ours, i.e. no battery con-
straints and no priorities for sites, so we need to modify their
algorithm to compare it with our heuristics.

Note that the modifications we made to the original algo-
rithm do not compromise its performance in any aspect, but

FIGURE 3. Two examples of instances in which n = 100 sites are
positioned on a squared area, according to: (a) uniform and (b) modified
Poisson distribution.

FIGURE 4. Execution time (average per Meta-algorithm’s iteration) in the
second scenario as a function of the number of sites; q = 10,B = 50,
p = 0.25 and sites are uniformly distributed.

are onlymeant to extend its applicability to our two scenarios:
indeed, running our modified algorithm with a very high
value of B and with all equal priorities produces exactly the
same output as the original algorithm. The original algorithm
gives as part of the input q sites and uses them as children
of the root of a minimum spanning tree rooted at v0; the q
sub-trees of this minimum spanning tree are then transformed
into q cycles covering all sites and intersecting only in the
root using the Christofides’s approximation algorithm for
TSP [38]; finally, some operations are executed in order to
equalize the weight. We do not have in input the q sites, so we
select them as a solution of metric q-center problem [39]:
given set V with n sites and distance function l, the goal
is to find a subset C ⊆ V with |C| = q such that the
maximum distance of any point in V to the closest point in
C is minimized. Unfortunately, the problem is NP-hard, and
the algorithm we use guarantees an approximation ratio of 2
with a time complexity of O(nq).

Moreover, to force this algorithm to take into account the
site priorities, instead of working on the entire input graph,
we consider it as the union of subgraphs, each one induced
by the nodes with the same priority plus v0: G = Gmin ∪
Gmed ∪Gmax , whereGi is the subgraph induced by {v0}∪{v ∈
V | p(v) = pi} and i = min,med,max. The aim is to choose
first as many nodes with high priority as possible and to
choose nodes with lower priority only later while considering
the consumed budget.

Recalling thatG is the graph induced by the set of sites that
are still uncovered, this can be done by selecting the nodes

6120 VOLUME 10, 2022

T. Calamoneri et al.: Realistic Model to Support Rescue Operations After Earthquake via UAVs

FIGURE 5. Average completion time as a function of the number of sites; with parameters q = 20,B = 50 for the first scenario, and
q = 10,B = 50,p = 0.25, σ ′ ∈ (0,3] for the second scenario.

FIGURE 6. Average completion time in the second scenario as a function
of the number of sites; q = 4,B = 60, σ ′ ∈ (7,10],p = 0.25.

to be added to the sub-trees from Gmax first; after choosing
as many nodes as possible in this graph, if the computed
sub-trees have not been completed yet, the nodes will be
selected from Gmed and finally from Gmin; of course, after
that, the meta-algorithm has executed some times ATSPN ,
Gmax will remain empty, hence, only nodes from the other
graphs will be selected. When passing from the sub-trees
to the cycles, the priorities are again kept into considera-
tion, and the sites with high priority are placed along with
the cycles before the sites with a medium priority which,
in turn, are placed before the sites with low priority. This
is necessary especially in the second scenario, in which
there is no guarantee that all the sites in a cycle will be
served in that cycle and, in this way, sites with lower prior-
ities are possibly postponed to the next cycle. We call this
algorithm ATSPN .

Observing that the update of the considered subgraph does
not affect the worst-case time complexity (for which the
dimension of the input is given by O(n) nodes and O(n2)
edges), the total cost of this algorithm is O(nq) to find
the centers, plus the cost of finding the approximate TSP,
O(n2 log n).

Before concluding this subsection, it is worth noting that,
although the resulting algorithm is strongly inspired by [4],
[15], we cannot guarantee anymore that the computed span-
ning tree is minimum; the reason is that we run this algorithm
first on Gmax , then on Gmed and finally on Gmin. It follows
that its nice approximation ratio cannot be inherited in our
scenarios.

E. HEURISTICS
We exploit algorithms ATSPN , ATOP, AGreedy and AIP to
design five different heuristics, calledHTSPN ,HTOP,HGreedy,
Hmixed and HIP: consider the meta-algorithm described in
Section III; if A is equal to ATSPN at each iteration, we get
HTSPN ; if A is equal to ATOP at each iteration, we get HTOP
and ifA is equal toAGreedy at each iteration, we getHGreedy.
Then, observe that TOP is not designed to be iterated, and so it
gives its best during the first iteration, choosing first sites that
are as close as possible to v0 to maximize their number; this
means that, while in the first iteration we select very attractive
cycles, along with the successive iterations the solution of
TOP could degrade in terms of goodness. This is the reason
why we introduce a fourth heuristic, Hmixed , running ATOP
in the first iteration of the meta-algorithm and AGreedy in the
successive ones.

Finally, in the first scenario, HIP coincides with AIP and
we do not need to exploit the meta-algorithm. Vice-versa,
in the second scenario, HIP is obtained by running the meta-
algorithm with AIP if not at each iteration, at least each time
we find a cycle for which presumed and effective versions do
not coincide.

The difference of this algorithm w.r.t. the other ones is
that, in this case, at each iteration of the meta-algorithm,
a whole solution is output. This seems to be unavoidable for
an approach based on the mixed-integer linear programming
model and further contributes to increasing the computational
time of this heuristic.

In Figure 1, a list of symbols used along the paper is
reported. In the next section, wewill show the result of several
experiments geared to compare the performance of these five
heuristics.

VII. EXPERIMENTS
All our experiments have been performed on a computer
equipped with an Intel(R) Core(TM) i5-7200U CPU (4 cores
clocked at 2.5GHz) and 8GB RAM; our programs have been
implemented in C++ (g++ compiler v9.2.1 with optimiza-
tion level O3).

We evaluate the performance of the proposed heuristics
on two types of randomly generated graphs: we position
n ∈ [50, 200] points, placed: (i) either uniformly at random;

VOLUME 10, 2022 6121

T. Calamoneri et al.: Realistic Model to Support Rescue Operations After Earthquake via UAVs

FIGURE 7. Average weighted latency as a function of the number of sites; with parameters q = 20,B = 50 for the first scenario, and
q = 10,B = 50,p = 0.25, σ ′ ∈ (0,3] for the second scenario.

FIGURE 8. Average weighted latency in the second scenario as a function
of the number of sites; q = 4,B = 60,p = 0.25, σ ′ ∈ (7,10].

(ii) or according to a Poisson point distributed method in a
unit square modified as follows: we divide the unit square
into 4× 4 sub-areas and position the points in each sub-area
using a Poisson point process. This distribution is intended
to simulate building collapses concentrated in some specific
zones.

Figure 3 depicts a graphical representation of n = 100 sites
placed in a squared area when the two probability distribu-
tions are applied.

In all the experiments, we use the following parameter
setting: B = 50 minutes (in agreement with the current
technology, see e.g. [16]) and –to ease the reading of the
results– the speed is chosen as 1000 meters per minute, cor-
responding to about 17 meters per second (in line with other
recent papers in the literature, such as [40], [41]); σ (v) is a real
value randomly set (with uniform distribution) in the interval
(0, 3]; when simulating the second scenario, we assign to
sites a not null value of σ ′ randomly chosen with uniform dis-
tribution either in the interval (0, 3] or in the interval (7, 10]
with probability p, p varying among three possible values:
0.25, 0.5 and 0.75. Only when σ ′ ∈ (7, 10], we need to set
B = 60, instead of 50, to guarantee that there exists a feasible
solution.We choose a squared area of interest with dimension
15km × 15km, which always guarantees the feasibility of
the problem, positioning v0 at its bottom-left corner. Finally,
we consider different values of q, coherently with the two
scenarios: in the first one, we set q = 5, 10, 15, 20 while in
the second one q = 2, 4, 5, 10.

In all the experiments dealing with the second scenario,
the results are very similar with different values of p and q so
we show the plots of only one setting, namely the one with
q = 10 and p = 0.25.
All simulation runs have been repeated 20 times with dif-

ferent seeds, the plots showmean valueswith 95% confidence
intervals.

First, we studied the running time of all the heuristics;
as shown in Fig. 4 they do not behave all in the same way
(in particular, we had to plot the running time of HIP
separately for the sake of clarity because it is significantly
higher than the other ones); nevertheless, the times are all low
enough to consider all the heuristics equally suitable to be run
in an emergency situation such as the one proposed in this
paper. We remark that an approximated algorithm for TOP
instead of AT OP would have required a time several orders
of magnitude larger, and this would have been realistically
inapplicable.

Then we studied the two performance metrics completion
time and weighted latency.

As shown in Fig. 5 and 6, for all the heuristics the comple-
tion time grows almost linearly with the number of sites, but
the growth rates of HIP, HGreedy and Hmixed are lower than
the other ones. Note that changing the values of parameters
q and σ ′ 6 does not affect the trend of the completion times.
The behavior similar to a step function of the completion time
in some cases can be perhaps explained with the generation
method of the graph instances (any graph with n nodes is
constructed by an (n − 1) node instance and so contains it
as a sub-graph).

On the contrary, the weighted latency, see Fig. 7, and 8,
does not always show a linear growth, due to its definition and
to Problem Requirement HPSF, for which certain algorithms
keep sites with high priority in the first cycles. Also for this
function,HIP andHGreedy behave better than the other heuris-
tics, and also, in this case, there is no valuable difference
changing the value of q and of σ ′. Although, note that when
increasing the value of σ ′,HIP tends to behave slightly worse
w.r.t.HGreedy, especially when using the poisson distribution.

Finally, to highlight which heuristics best address HPSF,
and to understand the different behavior of the heuristics,
we considered the time in which all sites with a certain

6122 VOLUME 10, 2022

T. Calamoneri et al.: Realistic Model to Support Rescue Operations After Earthquake via UAVs

FIGURE 9. Average completion time in the second scenario on the subgraphs Gmax and Gmin
originated w.r.t. the priority of the sites. The simulation considered: q = 10,B = 50,p = 0.25 with
sites uniformly distributed.

priority have been served (see Fig. 9). Observe that HTSPN
behaves well in completely flying over the nodes of Gmax
but is then the last one to complete the operations (i.e. to
completely fly overGmin); this is due to the adjustment of the
algorithm from [4], [15] which forces it to process the high
priority nodes first. HIP and HGreedy have the lowest com-
pletion times on all three subgraphs because both heuristics
explicitly require site priorities to be taken into account. Note
that the completion time of Gmin does not coincide with the
total completion time, since the time required to return to the
base is not considered in Fig. 9(c).

In general, HTOP is one of the least performing heuristics,
for two different reasons: first, we recall that we are using the
solution output by a heuristic since algorithms guaranteeing
provably good solutions are too slow and cannot be used;
second, TOP aims at maximizing the profit, and no impor-
tance is given to cycle equalization. This is, instead, an issue
addressed by HGreedy, whose philosophy consists of filling
up q cycles together. This is the reason why this algorithm
performs better than all the others, besides being very simple
and particularly fast.

We conclude this section by highlighting thatHIP heuristic
performs better than the others from the point of view of
performance metrics even if it is not far fromHGreedy. On the
other hand, HIP is by far the slowest heuristic (3 orders of
magnitude more than the others, which have similar behav-
ior). So, we conclude that HGreedy is the right compromise
that balances all the metrics considered: its simplicity, low
execution time, and good performancemake it the best heuris-
tic among those considered.

VIII. CONCLUSION AND OPEN PROBLEMS
In this paper we introduced a new problem, called Cover by
Multitrips with Priorities, trying to model most of the param-
eters that emerge from the real-life situation of detecting
people needing help immediately after an earthquake thanks
to a fleet of UAVs.

We studied the problem theoretically, providing a priori
estimates of the number of additional batteries to have wait-
ings due to recharging batteries and the number of UAVs

FIGURE 10. Average completion time and weighted latency in the second
scenario as a function of the number neighbors used to generate cycles in
HIP , obtained using n = 125,q = 10,B = 50,p = 0.25.

needed to have the time to complete all rescue operations
delimited by B.

Then, we have proposed some heuristics on which we have
carried out extensive experimentation, comparing them with
each other and with one of the best-known algorithms that
solve a similar problem; the results show that our heuristics
significantly outperform this algorithm, although we added
to it some parts to let it work well in our settings.

Many issues and possible future improvements naturally
arise from this paper, and we already started to tackle some
of them. Here is a non-exhaustive list:
•We considered a fleet of homogeneous UAVs; if they had

different batteries and different cruise speeds and endurance,
an easy approach would be to substitute in every computation
the value of B with either mini Bi (but we would get a worse
performance of all the heuristics) or maxi Bi (but not all UAVs
could terminate every cycle). An interesting open problem
consists in modifying all the heuristics in order to let them
work efficiently in the case of heterogeneous UAVs.
• We considered static distances; instead, distances could

change in time in order to keep into account the weather and
wind conditions. In this case, we can consider the graph with
dynamic edge weights.
• As stated in Subsection VI-C, when we run heuristic

HIP, we allow each site to be followed by k = 5 other
sites and so generate cycles. We wondered how much the

VOLUME 10, 2022 6123

T. Calamoneri et al.: Realistic Model to Support Rescue Operations After Earthquake via UAVs

goodness of the results is affected by this parameter. To this
aim, we performed the experiments depicted in Fig. 10,
showing that increasing the value of k significantly improves
the performance metrics. Nevertheless, we expect that, for a
certain value of k on, there will no longer be an appreciable
improvement in performance metrics, that these values are
very tight upper bounds for optimal values, and that we could
hence consider them as benchmarks for testing heuristics and
approximation algorithms.

Unfortunately, these limit values are not easy to achieve
because both the execution time and the required RAM grow
exponentially with k and this makes it unfeasible for any
experiment with larger values of k .
• When we compute cycles of a solution we go on until

there are sites that can be added and that guarantee to remain
within the battery constraint B; so a UAV can return to base
with a not-negligible amount of remaining battery that goes
lost. We wondered if it was possible to accept that a site is
partially flown over during a certain cycle to completely drain
the battery of the corresponding UAV and then its exploration
is completed at a later time (possibly by a different UAV).
We decided not to implement this possibility since we have
some case studies showing that this approach can be either
favorable or not, depending on the relation between the main
parameters of the problem. We are trying to give conditions
on the parameters to delimit when partial overflights are
convenient.
• From a methodological point of view, future research

could address the design and development of other effective
heuristic methods, such as Greedy Randomized Adaptive
Search (GRASP) [42] or Multistart Random Constructive
Heuristic (MRCH) [43] to generate potentially good cycles
to be exploited by the IP model in heuristicHIP.
• Complete exploitation of UAVs’ potentialities requires

to introduce cooperation, both among them and between
people and UAVs; these interactions would introduce new
possibilities of producing faster and more flexible solutions.

ACKNOWLEDGMENT
The authors would like to thank Novella Bartolini, for
the very interesting discussions concerning UAVs and their
equipment, and Danilo Avola, updating them on image detec-
tion/recognition tools.

REFERENCES
[1] UAV Coach. Master List of Drone Laws (Organized by State Coun-

try) L UAV Coach. Accessed: Jan. 7, 2021. [Online]. Available:
https://uavcoach.com/drone-laws/

[2] Drones for Disaster Response and Relief Operations, AR Cross, Wynne,
China, 2012.

[3] C. Baker, S. Ramchurn, and W. Teacy, ‘‘Planning search and rescue
missions for UAV teams,’’ in Proc. 22nd Eur. Conf. Artif. Intell., 2016,
pp. 1777–1782.

[4] D. Kim, L. Xue, D. Li, Y. Zhu,W.Wang, and A. O. Tokuta, ‘‘On theoretical
trajectory planning of multiple drones to minimize latency in search-and-
reconnaissance operations,’’ IEEE Trans. Mobile Comput., vol. 16, no. 11,
pp. 3156–3166, Nov. 2017.

[5] R. D. Arnold, H. Yamaguchi, and T. Tanaka, ‘‘Search and rescue with
autonomous flying robots through behavior-based cooperative intelli-
gence,’’ J. Int. Hum. Action, vol. 3, no. 1, pp. 1–18, Dec. 2018.

[6] A. Albanese, V. Sciancalepore, and X. Costa-Pérez, ‘‘SARDO: An auto-
mated search-and-rescue drone-based solution for victims localization,’’
CoRR, vol. abs/2003.05819, pp. 1–12, Mar. 2020.

[7] R. Avanzato and F. Beritelli, ‘‘A smart UAV-femtocell data sensing sys-
tem for post-earthquake localization of people,’’ IEEE Access, vol. 8,
pp. 30262–30270, 2020.

[8] M. B. Bejiga, A. Zeggada, A. Nouffidj, and F. Melgani, ‘‘A convolutional
neural network approach for assisting avalanche search and rescue opera-
tions with UAV imagery,’’ Remote Sens., vol. 9, no. 2, p. 100, Jan. 2017.

[9] J. Sun, B. Li, Y. Jiang, and C.-Y. Wen, ‘‘A camera-based target detection
and positioning UAV system for search and rescue (SAR) purposes,’’
Sensors, vol. 16, no. 11, p. 1778, 2016.

[10] E. T. Alotaibi, S. S. Alqefari, and A. Koubaa, ‘‘LSAR: Multi-UAV
collaboration for search and rescue missions,’’ IEEE Access, vol. 7,
pp. 55817–55832, 2019.

[11] C. Wu, B. Ju, Y. Wu, X. Lin, N. Xiong, and G. X. Xu Liang, ‘‘UAV
autonomous target search based on deep reinforcement learning in complex
disaster scene,’’ IEEE Access, vol. 7, pp. 117227–117245, 2019.

[12] G. Bevacqua, J. Cacace, A. Finzi, and V. Lippiello, ‘‘Mixed-initiative
planning and execution for multiple drones in search and rescue mis-
sions,’’ in Proc. 25th Int. Conf. Automated Planning Scheduling, 2015,
pp. 315–323.

[13] J. Modares, F. Ghanei, N. Mastronarde, and K. Dantu, ‘‘UB-ANC planner:
Energy efficient coverage path planning with multiple drones,’’ in Proc.
Int. Conf. Robot. Autom., 2017, pp. 6182–6189.

[14] F. A. D. A. Andrade, A. R. Hovenburg, L. N. D. Lima, C. D. Rodin,
T. A. Johansen, R. Storvold, C. A. M. Correia, and D. B. Haddad,
‘‘Autonomous unmanned aerial vehicles in search and rescue missions
using real-time cooperative model predictive control,’’ Sensors, vol. 19,
no. 19, p. 4067, 2019.

[15] D. Kim, R. N. Uma, H. B. Abay, W. Wu, W. Wang, and O. A. Tokuta,
‘‘Minimum latency multiple data muletrajectory planning in wireless sen-
sor networks,’’ IEEE Trans. Mobile Comput., vol. 13, no. 4, pp. 838–851,
Oct. 2014.

[16] Airborne Drones. Accessed: Jan. 7, 2021. [Online]. Available:
https://www.airbornedrones.co/natural-disasters/

[17] D. Lee, J. Zhou, and W. T. Lin, ‘‘Autonomous battery swapping sys-
tem for quadcopter,’’ in Proc. Int. Conf. Unmanned Aircr. Syst., 2015,
pp. 118–124.

[18] Z. Liu, Z. Wang, D. Leo, and X. Liu, ‘‘QUADO: An autonomous recharge
system for quadcopter,’’ in Proc. Int. Conf. Cybern. Intell. Syst., Oct. 2017,
pp. 7–12.

[19] Z.-N. Liu, X.-Q. Liu, L.-J. Yang, D. Leo, and H. Zhao. (Oct. 2018). An
AutonomousDock and Battery Swapping SystemMultirotor UAV. [Online].
Available: https://www.researchgate.net/publication/325077351

[20] S. Huang, R. S. H. Teo, and K. K. Tan, ‘‘Collision avoidance of
multi unmanned aerial vehicles: A review,’’ Annu. Rev. Control, vol. 48,
pp. 147–164, 2019.

[21] D. Zhang, S. Sessa, R. Kasai, S. Cosentino, C. Giacomo, Y. Mochida,
H. Yamada, M. Guarnieri, and A. Takanishi, ‘‘Evaluation of a sensor
system for detecting humans trapped under rubble: A pilot study,’’ Sensors,
vol. 18, no. 3, p. 852, Mar. 2018.

[22] P. Rudol and P. Doherty, ‘‘Human body detection and geolocalization for
UAV search and rescue missions using color and thermal imagery,’’ in
Proc. IEEE Aerosp. Conf., Oct. 2008, pp. 1–8.

[23] E. Lygouras, N. Santavas, A. Taitzoglou, K. Tarchanidis, C. Athanasios
Mitropoulos, and A. Gasteratos, ‘‘Unsupervised human detection with an
embedded vision system on a fully autonomous UAV for search and rescue
operations,’’ Sensors, vol. 19, no. 16, p. 3542, 2019.

[24] I. Martinez-Alpiste, G. Golcarenarenji, Q. Wang, and J. M. A. Calero,
‘‘Search and rescue operation using uavs: A case study,’’Expert Syst. Appl.,
vol. 178, Oct. 2021, Art. no. 114937.

[25] T. Erdeliè and T. Carié, ‘‘A survey on the electric vehicle routing problem:
Variants and solution approaches,’’ J. Adv. Transp., vol. 2019, pp. 1–48,
May 2019.

[26] J. C. S. Brandão and A. Mercer, ‘‘The multi-trip vehicle routing problem,’’
J. Oper. Res. Soc., vol. 49, no. 8, pp. 799–805, Aug. 1998.

[27] C. Archetti, D. Feillet, A. Mor, and M. G. Speranza, ‘‘An iterated local
search for the traveling salesman problem with release dates and com-
pletion time minimization,’’ Comput. Oper. Res., vol. 98, pp. 24–37,
Oct. 2018.

[28] R. Jothi and B. Raghavachari, ‘‘Approximating the k-traveling repair-
man problem with repairtimes,’’ J. Discrete Algorithms, vol. 5, no. 2,
pp. 293–303, 2007.

6124 VOLUME 10, 2022

T. Calamoneri et al.: Realistic Model to Support Rescue Operations After Earthquake via UAVs

[29] Z. Xu, D. Xu, and W. Zhu, ‘‘Approximation results for a min-max
location-routing problem,’’ Discrete Discrete Appl. Math., vol. 160, no. 3,
pp. 306–320, Feb. 2012.

[30] T. Bektas, ‘‘The multiple traveling salesman problem: An overview of for-
mulations and solution procedures,’’ Omega, vol. 34, no. 3, pp. 209–219,
Jun. 2006.

[31] M. Özlen and M. Azizoálu, ‘‘Multi-objective integer programming:
A general approach for generating all non-dominated solutions,’’ Eur.
J. Oper. Res., vol. 199, no. 1, pp. 25–35, Nov. 2009.

[32] R. Aringhieri, P. Landa, and S. Mancini, ‘‘A hierarchical multi-objective
optimisation model for bed levelling and patient priority maximisa-
tion,’’ in Optimization and Decision Science: Methodologies and Appli-
cations, A. Sforza and C. Sterle, Eds. Cham, Switzerland: Springer, 2017,
pp. 113–120.

[33] G. Fancello, S. Mancini, C. Pani, and P. Fadda, ‘‘An emergency vehicles
allocationmodel formajor industrial disasters,’’ Transp. Res. Proc., vol. 25,
pp. 1164–1175, Oct. 2017.

[34] I.-M. Chao, B. L. Golden, and E. A. Wasil, ‘‘The team orienteering
problem,’’ Eur. J. Oper. Res., vol. 88, no. 3, pp. 464–474, 1996.

[35] A. Blum, S. Chawla, R. David Karger, T. Lane, A. Meyerson, and
M. Minkoff, ‘‘Approximation algorithms for orienteering and discounted-
reward TSP,’’ SIAM J. Comput., vol. 37, no. 2, pp. 653–670, 2007.

[36] D. Gavalas, C. Konstantopoulos, K. Mastakas, and G. Pantziou, ‘‘A sur-
vey on algorithmic approaches for solving tourist trip design problems,’’
J. Heuristics, vol. 20, no. 3, pp. 291–328, 2014.

[37] P. Vansteenwegen, W. Souffriau, G. V. Berghe, and D. Van Oudheusden,
‘‘Metaheuristics for tourist trip planning,’’ inMetaheuristics in the Service
Industry, K. Sörensen, M. Sevaux, W. Habenicht, and M. J. Geiger, Eds.
Berlin, Germany: Springer, 2009, pp. 15–31.

[38] N. Christofides, ‘‘Worst-case analysis of a new heuristic for the travel-
ling salesman problem,’’ in Proc. Symp. New Directions Recent Results
Algorithms Complex. Pittsburgh, PA, USA: Carnegie-Mellon Univ., 1976,
pp. 1–6.

[39] S. Har-Peled,Geometric Approximation Algorithms. Providence, RI, USA:
American Mathematical Society, 2011.

[40] A. Fotouhi, H. Qiang, M. Ding, and M. Hassan, ‘‘Survey on UAV cellular
communications: Practical aspects, standardization advancements, regula-
tion, and security challenges,’’ IEEECommun. Surveys Tuts., vol. 21, no. 4,
pp. 3417–3442, 4th Quart., 2019.

[41] A. Fotouhi, M. Ding, and M. Hassan, ‘‘DroneCells: Improving 5G
spectral efficiency using drone-mounted flying base stations,’’ CoRR,
abs/1707.02041, pp. 1–5, Oct. 2017.

[42] A. Thomas Feo and G. C. Mauricio Resende, ‘‘Greedy randomized adap-
tive search procedures,’’ J. Global Optim., vol. 6, pp. 109–134, Oct. 1995.

[43] S. Mancini, ‘‘A combined multistart random constructive heuristic and
set partitioning based formulation for the vehicle routing problem with
time dependent travel times,’’ Comput. Oper. Res., vol. 88, pp. 290–296,
Mar. 2017.

TIZIANA CALAMONERI graduated inmathemat-
ics, in 1992, and received the Ph.D. degree in
computer science, in 1997. She is currently a Pro-
fessor with the Department of Computer Science,
Sapienza University of Rome, where she has been
an Assistant Professor, since 2000, and an Asso-
ciate Professor, since 2006. Her research interests
include applications of graph algorithms, includ-
ing problems arising from wired and wireless net-
works and from biology. She was the President of

the Italian Chapter of the European Association for Theoretical Computer
Science, from 2011 to 2017.

FEDERICO CORÒ (Member, IEEE) received
the M.Sc. degree in computer science from the
University of Perugia, Italy, in 2016, and the
Ph.D. degree in computer science from the Gran
Sasso Science Institute, L’Aquila, Italy, in 2019.
From 2019 to 2020, he was a Postdoctoral
Researcher at the Department of Computer Sci-
ence, Sapienza University Rome, Italy. He is cur-
rently a Postdoctoral Researcher at the Missouri
University of Science and Technology, USA. His

research interests include several aspects of theoretical computer science,
including combinatorial optimization, network analysis, and the design and
efficient implementation of algorithms.

SIMONA MANCINI graduated in mathemati-
cal engineering from the Politecnico di Torino,
in 2007. She received the Ph.D. degree in
computers and systems engineering from the
Politecnico di Torino, in 2011. She worked as an
Assistant Professor in operations research at the
University of Cagliari, from 2015 to 2018, and an
Universitaet Assistentin (an Assistant Professor) at
the University of Klagenfurt, from 2020 to 2021,
where she has been in charge of several master

courses in operations management and logistics. She is currently a Tenure-
Track Assistant Professor in computers science at the University of Eastern
Piedmont, Italy.

VOLUME 10, 2022 6125

