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HOXD8 hypermethylation as a fully sensitive and specific
biomarker for biliary tract cancer detectable in tissue and bile

samples
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BACKGROUND: Biliary tract cancers (BTC) are rare but highly aggressive tumours with poor prognosis, usually detected at
advanced stages. Herein, we aimed at identifying BTC-specific DNA methylation alterations.

METHODS: Study design included statistical power and sample size estimation. A genome-wide methylation study of an
explorative cohort (50 BTC and ten matched non-tumoral tissue samples) has been performed. BTC-specific altered CpG islands
were validated in over 180 samples (174 BTCs and 13 non-tumoral controls). The final biomarkers, selected by a machine-learning
approach, were validated in independent tissue (18 BTCs, 14 matched non-tumoral samples) and bile (24 BTCs, five non-tumoral

samples) replication series, using droplet digital PCR.

RESULTS: We identified and successfully validated BTC-specific DNA methylation alterations in over 200 BTC samples. The two-
biomarker panel, selected by an in-house algorithm, showed an AUC > 0.97. The best-performing biomarker (chr2:176993479-
176995557), associated with HOXDS, a pivotal gene in cancer-related pathways, achieved 100% sensitivity and specificity in a new

series of tissue and bile samples.

CONCLUSIONS: We identified a novel fully efficient BTC biomarker, associated with HOXD8 gene, detectable both in tissue and bile
by a standardised assay ready-to-use in clinical trials also including samples from non-invasive matrices.

British Journal of Cancer; https://doi.org/10.1038/s41416-022-01738-1

BACKGROUND

Biliary tract cancer (BTC) comprises a group of highly aggressive
malignancies clinically classified as intrahepatic and extrahepatic
cholangiocarcinomas (CCAs) and gallbladder cancers (GBCs).

BTC incidence and mortality vary according to geographic
regions and are related to the distribution of risk factors
associated with this cancer [1]. In Western countries, the main
risk factors for CCA include biliary tract diseases such as benign
stenosis, primary sclerosing cholangitis (PSC), hepatolithiasis and
choledochal cysts, and these tumours display low but gradually
increasing incidence rates [2]. Early detection of CCA in PSC

patients is difficult since the associated-inflammatory process
leads to biliary strictures mimicking early neoplastic changes [3].

Due to its silent evolution and clinical manifestations only at
advanced stages, BTCs are usually diagnosed when the tumour is
locally advanced or metastatic, thus unresectable.

The current diagnostic strategy for BTC includes a combination
of clinical, radiological, biochemical and histological approaches
[4]. Endoscopic retrograde cholangiopancreatography (ERCP)
combined with biliary brush cytology and cyto-histological
analysis of tumour tissue could be performed to confirm a
suspected case of BTC [5].
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Regrettably, current diagnostic methods have shown limited
specificity and sensitivity [6, 7]. The use of biomarkers is a
promising alternative for the detection of BTC and some of them
have already been implemented in the clinic, i.e., the carcinoem-
bryonic antigen and the carbohydrate antigen 19-9 (CA 19-9).
However, elevated levels of these markers have also been found in
benign conditions challenging their specificity [4]. As a conse-
quence, accurate diagnosis may prove challenging, highlighting
the need for a detection method for BTC.

DNA methylation alterations are early events during tumor-
igenesis and may be detected as early as in preneoplastic lesions
in many types of tumours [8-12], including CCA [13-15] and even
several years prior to tumour diagnosis [16].

Several DNA methylation-based biomarkers, with the specificity
of 100% and sensitivity values ranging between 75 and 89%, have
been proposed to detect BTC in tissue samples [17-19]. However,
many of these studies focused on biomarkers that are frequently
hypermethylated also in other types of cancers, often with a
higher incidence than BTC.

Genome-wide methylation profiling represents a promising
strategy for the discovery of new biomarkers specific to BTC. To
our knowledge, very few studies have conducted a global
methylation analysis on BTC samples [20, 21].

An important advantage for clinical implementation is that
methylation alterations can also be detected in cell-free DNA
(cfDNA) from different matrices such as blood, urine and stool
[8, 22-25], greatly facilitating their implementation in the clinical
setting.

Several studies demonstrated that DNA methylation alterations
can be detected in bile [13, 26], biliary brush cytology specimens
[27, 28], plasma [18] and serum samples [29] from patients with
BTC, although not always representing BTC-specific biomarkers.

In order to select BTC methylation alterations also detectable in
non-invasive matrices such as blood and faeces, it becomes of
crucial importance to identify extremely specific biomarkers for
BTC and not for other cancers, especially those of gastrointestinal
origin.

The primary aim of this work was to identify BTC-specific DNA
methylation biomarkers, with high sensitivity and specificity
regardless of the tumour localisation. We performed a whole-
genome methylation profiling of 50 BTC tissue samples from
different localisation (intrahepatic, extrahepatic and gallbladder)
and ten matched-normal tissue samples using lllumina EPIC”
arrays. Secondly, we aimed at assessing the performance of the
best biomarker, associated with HOXD8 gene, in bile samples
from BTC patients, using droplet digital PCR (ddPCR), currently
the most sensitive technology. Finally, we tested whether this
biomarker was specific for BTC or could also be detected in
subjects at high risk of developing BTC, such as patients with
benign stenosis.

METHODS
Samples and data collection
Tissue samples
Discovery cohort for whole-genome methylation assay: Fifty
formalin-fixed paraffin-embedded (FFPE) tumour tissue samples and ten
matched-normal controls from BTC patients (25 males and 25 females,
mean age at diagnosis: 70.4 = 10.9, 22 intrahepatic, 20 gallbladders and 8
extrahepatic) were obtained from the Oncology Service, Department of
Medical Sciences and Public Health of the University of Cagliari (Italy) and
IRCCS-Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”,
Meldola (ltaly). Multiple haematoxylins and eosin slides were reviewed by
an expert pathologist and sections including at least 50% of neoplastic
tissue were selected as tumour samples, while sections devoid of
malignant cells were selected as normal samples.
Samples were tested for CA 19-9 in the respective clinical centres.
Clinical characteristics of BTC patients are shown in Supplementary
Table ST.

Validation cohort for droplet digital PCR assay: Explorative tissue test
series: For an explorative analysis, 32 samples (14 paired BTC/normal
samples, four BTC samples) were included. Nine out of 18 BTC were GBC
and nine were CCA (6 extrahepatic, 3 intrahepatic). Five were overlapping
with those analysed by lllumina EPIC arrays. FFPE samples were collected
at Meldola centre mentioned above (Italy) (N = 28) and at the Department
of Gastroenterology and Hepatology, Navarra University Hospital Complex,
Pamplona (Spain) (N = 4).

Samples were tested for CA 19-9 in the respective clinical centres.

Clinical data are presented in Supplementary Table S2.

Publicly available datasets. Methylation data from The Cancer Genome
Atlas (TCGA) and GEO portal dataset were retrieved for the validation of
the identified methylation alterations. Additional details are provided in
Supplementary Document S1.

Bile samples. Twenty-nine bile samples, comprising 24 samples from a
new series of CCA patients (21 extrahepatic and 3 intrahepatic; four of
which were paired with tissue samples), and five from patients with benign
stenosis, were included. Bile samples were collected during ERCP at
Pamplona (Spain) centre mentioned above as previously described [30].
After collection bile samples were maintained at 4°C, centrifuged for
10 min (4°C) at 3500 x g and stored in aliquots at —80°C in a biobank
facility. The whole process was performed in less than 2 h.

Samples were tested for CA 19-9.

Clinical data are reported in Supplementary Table S3.

Experimental assays
DNA extraction and quantification. DNA was extracted from FFPE tissues
using QlAamp DNA FFPE Tissue kit (Qiagen) or the QlAamp DNA kit
(Qiagen). DNA was extracted by microdissection of five FFPE tissue slides of
10um and 20 um. DNA concentration was quantified by UV spectro-
photometry (NanoDrop Products, Thermo Scientific) and by fluorometric
reading (Quant-iT™ PicoGreen” dsDNA Assay Kit).

cfDNA was extracted from 1 ml of bile. Prior to cfDNA isolation, bile was
thawed at 4 °C and centrifugated at 14,000 x g for 10 min at 4 °C to ensure
the removal of impurities in the supernatant. Bile cfDNA was extracted
using the Maxwell RSC ccfDNA Plasma Kit (Promega) according to the
manufacturer’s instructions. Bile cfDNA concentrations were determined
using a QuantiFluor dsDNA System (Promega), and cfDNA size distributions
were analysed by Agilent 2100 Bioanalyzer (Agilent Technologies).

Genome-wide methylation assay. The quality of DNA extracted from FFPE
samples was evaluated prior to bisulfite conversion using Infinium HD FFPE
QC Assay (lllumina). DNA samples that passed this quality control step
were treated with bisulfite using EZ DNA Methylation Gold Kit (Zymo
Research). Bisulfite-converted DNA samples were subjected to a DNA
restoration process using Infinium FFPE DNA Restore Kit (lllumina).

DNA samples were analysed by lllumina Infinium Human Methylation
EPIC BeadChips (EPIC) interrogating over 850,000 CpG sites, according to
the lllumina Infinium® HD Methylation protocol. lllumina iScan was used to
scan and record high-resolution images of the emitted fluorescence.

Droplet digital PCR assay
Bisulfite treatment: DNA samples were treated with bisulfite using EZ
DNA Methylation Gold Kit (Zymo Research).

Droplet digital PCR DNA methylation assays: Primer and probes
were designed for the two assays targeting CpG islands (CGls) at
chr2:176993479-176995557 and chr5:145713641-145713913.

The assays were designed on the genomic regions selected based on
the methylation information of the CpG sites interrogated by the
methylation array probes in the CGls of interest. In particular, only regions
including CpG sites displaying low methylation values in normal samples
and high methylation values in tumour samples from the Discovery, TCGA-
CHOL and GSE89803 datasets, were selected. DNA methylation status was
analysed by ddPCR using the QX200™ Droplet Digita™ PCR System
(BioRad) as previously described [31]. The ddPCR reaction comprised
primers (900 nM each), probes (250 nM each), 30 ng bisulfite-converted
DNA template from tissues and 70 ng bisulfite-converted DNA template
from bile and 1x ddPCR Supermix for Probes (BioRad) in a final volume of
22 uL. The 4Plex control was included in all wells (for sequences for the
4Plex control see ref. [31]). Droplets were generated in the QX200 Droplet
Generator (BioRad), with 70 pL of droplet generation oil (BioRad) and 20 pL
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ddPCR mixture and the PCR was carried out in a T100 Thermal Cycler
(BioRad) using the cycling programme recommended by the manufac-
turer. Finally, the QX200 Droplet Reader (BioRad) was used to read the
fluorescence signals.

Data analyses
The detailed analysis of genome-wide and ddPCR methylation data is
described in Supplementary Document S1.

For the selection of the most informative biomarkers, an in-house
algorithm named TASTOPAL (The Accurate System TO Predict A Lump) was
developed. Additional details and the selection pipeline are available in
Supplementary Document S1. Supplementary Fig. S4 shows an example of
methods applied by the algorithm to select the best biomarkers.

Statistical analyses and power calculation

Chi-square and Fisher's exact tests (two-sided) were used to determine
statistically significant associations between DNA methylation patterns and
vs clinical parameters. Statistical analyses of methylation data and power
calculation are described in the relative data analysis paragraphs in
Supplementary Document S1.

RESULTS

The experimental strategy to identify highly specific and sensitive
BTC methylation-based biomarkers consisted of: (1) global DNA
methylation analysis of the Discovery cohort samples; (2)
validation of the results in TCGA-CHOL cohort and GSE89803
cohort samples; (3) selection of methylation alterations not shared
with other gastrointestinal tumours, particularly those with high
incidence, i.e. colon cancer (TCGA-COAD), rectal cancer (TCGA-
READ) and gastric cancer (TCGA-STAD); (4) application of a
machine-learning approach to select the minimum number of
the most specific and sensitive alterations; (5) identification of the
best-performing biomarker, tested in bile samples.

Figure 1 summarises the analysis workflow.

Identification of DNA methylation alterations in the Discovery
dataset

A genome-wide methylation analysis of 50 tumours and ten
matched-normal tissue samples from 50 BTC patients was
performed using lllumina EPIC arrays. According to sample size
calculation (see Supplementary Document S1), the analysed
number of samples would guarantee to identify biologically
relevant differences in methylation (|AB|=0.2) with a statistical
power of 100%. After filtering samples based on the {-values
distribution (Supplementary Fig. S1), 26 good-quality samples,
comprising 17 tumours and nine matched-normal samples, were
selected for the downstream analyses.

The differential methylation analysis between tumour and
matched-normal samples identified 648 differentially methylated
(|AB| > 0.20, combined P value < 0.05) CpG islands (CGls),
comprising 631 hypermethylated (AB > 0.20) and 17 hypomethy-
lated (AR < —0.20) CGlIs (Fig. 2a, b). No statistically significant
differentially methylated CGI was detected after P value correction
for multi-hypothesis testing (using FDR). This was not entirely
unexpected given the reduced sample size in the analysis
[8, 16, 32, 33].

Two heatmaps were generated using CGI methylation values
(Fig. 2¢, d). Unsupervised hierarchical clustering analysis (UHC)
yielded two main clusters: a small cluster comprising the most
hypermethylated tumour samples (cluster a) and a second cluster
further divided into a cluster of tumours showing intermediate
methylation values (cluster b) and a cluster including the normal
samples along with three tumour samples showing low methyla-
tion values (cluster ¢) (Fig. 2c, d). No statistically significant
association was observed between clusters and tumour location.
Stage | and Il tumours predominantly clustered with normal
controls (cluster ¢) compared with tumours of higher Stages (Il
and V) that were in the cluster including only tumours (clusters a
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and b) (Fisher’s test P value =0.015). Grade 2 tumours were
predominantly in cluster a, while grade 3 tumours were in cluster
b (Fisher's test P value = 0.029).

We focused on CGls that become hypermethylated in tumours,
under the rationale that they would be more easily detected in
liquid biopsies than CGls that become hypomethylated. Moreover,
CGls showing B-values higher than 0.20 in normal samples (likely
reflecting methylation heterogeneity among non-tumour cells)
were filtered out, obtaining a final set of 171 somatically
hypermethylated CGls.

Methylation analysis using TCGA-CHOL dataset

To increase the robustness of the identified methylation altera-
tions, methylation data from TCGA-CHOL dataset (including 36
tumour samples and nine normal tissue samples) were analysed.
Differential methylation analysis revealed 2203 differentially
methylated CGls (JAB| > 0.20, adjusted combined P value < 0.05)
(Fig. 2e, f). This dataset yielded a higher number of both
hypermethylated (2078) and hypomethylated (125) CGls com-
pared to the Discovery dataset.

UHC of the TCGA-CHOL samples was similar to that observed in
the Discovery dataset, with only one tumour sample clustering in
the normal sample subgroup (Fig. 2g, h). No significant associa-
tions with tumour stage or grade were observed.

Again, we focused on hypermethylated CGls in tumours. CGls
showing B-values higher than 0.20 in normal samples were filtered
out resulting in 998 hypermethylated CGls. Notably, 125 out of
171 hypermethylated CGls (P value = 1.5 x 10~°) identified in our
Discovery dataset were validated in the TCGA-CHOL dataset
(Fig. 1).

Selection of BTC-specific methylation alterations

To select only BTC-specific alterations, we analysed the methyla-
tion changes of the putative biomarkers in other gastrointestinal
cancer types using data from TCGA. Of the 125 previously
validated CGls, we excluded those that also exhibited differential
methylation (JAB| > 0.20) in any of the colon (COAD), rectal (READ)
or gastric (STAD) cancer datasets of the TCGA, obtaining a set of
30 BTC-specific somatically hypermethylated CGls (Supplementary
Table S4). Heatmaps generated with methylation values of these
CGls in the Discovery (Fig. 3a) and TCGA-CHOL (Fig. 3b) datasets
showed very similar clustering (Fig. 2¢, g).

Specificity and sensitivity of the 30 BTC-specific methylation-
based biomarkers were evaluated by ROC analysis. In the
Discovery dataset, 11 CGlIs showed an area under curve (AUC)
equal or higher than 0.90 (Fig. 3c), while 21 CGIs had an AUC >
0.90 in TCGA-CHOL dataset. Seven CGls had an AUC equal or
higher than 0.90 in both datasets (Supplementary Table S5).

BTC-specific altered CGls in the excluded samples

To explore the behaviour of the selected methylation alterations
in the 33 tumour samples that were initially excluded due to their
abnormal B-value distributions (Supplementary Fig. S1), UHC was
carried out using CGI methylation values of the 30 BTC-specific
altered CGls. The rationale of this analysis was that despite the
abnormal genome-wide B-value distribution of these samples, the
B-values exclusive of the selected CGls could still provide useful
information. The results revealed that the clustering of these
samples (Fig. 4b) was similar to that of the good-quality selected
tumour samples (Fig. 4a), reinforcing the potential value of these
alterations for BTC detection.

Validation in a large BTC dataset

In order to validate alterations of the 30 selected CGls, methylation
data of a large dataset (GSE89803) including 138 tumours and four
normal tissue controls from different ethnic groups were analysed.
Methylation alterations (JAB| > 0.20) were confirmed for 27 out of
30 CGls. Of note, two of the three CGlIs that were not validated
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Fig. 1 Analysis workflow. Workflow of DNA methylation alterations selection: from a genome-wide to a targeted CpG island approach.

displayed high methylation values in both tumour and normal
samples (Supplementary Table S6).

UHC of GSE89803 samples yielded similar results to those
observed for the Discovery and TCGA-CHOL datasets, with only
five tumour samples clustering along with the normal ones
(Fig. 4c).

Selection of best-performing biomarkers

The application of a Machine-Learning approach, using the
Discovery dataset as training set to prioritise methylation
biomarkers and build a diagnostic model on them, and TCGA-
CHOL and GSE89803 as validation datasets, resulted in an
extremely compact model which generated a ranking list of the
best combinations of biomarkers (based on AUC, sensitivity and
specificity). We selected the best combination in terms of very
high performance and technical assay feasibility. The two
biomarkers combination (CGls mapping on chr2:176993479-
176995557 and chr5:145713641-145713913), achieved a promis-
ing AUC=0.972, sensitivity =0.944 and specificity=1.00 on
the TCGA dataset, and AUC=0.982, sensitivity=0.964 and
specificity = 1.00, on the GSE89803 dataset. Figure 5 shows
methylation values of the CpG sites interrogated by EPIC probes
in the selected CGls across the three different datasets.

Validation of best-performing biomarkers
As a further step towards the future implementation of these
biomarkers in clinical settings, we explored the application of

digital PCR DNA methylation assays on ten (five matched tumour
and normal) samples previously profiled by lllumina EPIC arrays
and 69 additional tissue and bile samples from new case series.

According to sample size calculation (see Supplementary
Document S1), the estimated statistical power to identify
biologically relevant differences in methylation (|AB|= 0.2) was
100% for the tissue cohort and 99.97% for the bile cohort.
Removing the 10 tissue samples previously analysed by EPIC
arrays, thus reducing the sample size to 13 BTC and 9 normal
tissues, the estimated statistical power remained very high
(99.996%).

Exploratory analyses—tissue samples. The two candidate biomar-
kers were tested in a series of BTC (N = 18) and paired normal (N =
14) tissue samples. Assay chr2:176993479-176995557 showed a
sensitivity of 100% (N=17/17), a specificity of 100% (N=14/14)
and AUC of 100 (Fig. 6a), while the sensitivity of assay
chr5:145713641-145713913 was 76% (N = 13/17), the specificity was
93% (N=13/14) and AUC was 0.870 (Fig. 6a). One tumour tissue
sample was excluded since it resulted negative for both biomarkers.
Of note, this sample was already excluded in the whole-genome
methylation analysis because of its abnormal B-value distribution
(Supplementary Fig. S2). The combined two-biomarker panel resulted
in 100% (N = 17/17) sensitivity and 93% (N = 13/14) specificity.

Exploratory analyses—bile samples. Since assay chr2:176993479-
176995557 exhibited the highest sensitivity and specificity in
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tissue samples, bile samples were tested using only this best
biomarker. Bile series comprised 24 samples from BTC patients
and five samples from patients with benign biliary stenosis.
Despite the reduced number of non-tumoral controls, both the
sensitivity and the specificity were 100% and the AUC was 1.00
(Fig. 6b).
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DISCUSSION

BTCs are extremely aggressive tumours that metastasise
in most of patients. It is therefore urgent to identify stable
and easily traceable biomarkers ideally available by non-
invasive or minimally invasive monitoring approaches. DNA
methylation alterations respond to this need, representing
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Fig. 2 Visualisation of genome-wide analysis results in the Discovery and TCGA-CHOL datasets. a Scatter plot displaying average CGlI -
values distribution in normal and tumour samples of the Discovery dataset. Red dots indicate statistically significant differentially methylated
(|AB| > 0.20, P value < 0.05) CGls. b Volcano plot of CGls Ap of the Discovery dataset. In the x axis, the difference of methylation between
tumours and normal samples. In the y axis, the -logarithm of the P value. Red dots indicate hypermethylated CGls (A > 0.2) and green dots
represent hypomethylated CGls (Ap < —0.2). ¢, d Discovery dataset unsupervised hierarchical clustering analysis based on the average CGI 3
values (c) and on the average CGI somatic changes, defined as the difference between the p-value of every tumour and the average of the
normal samples for each of the aberrantly methylated CGls (d). e Scatter plot displaying average CGI p-values distribution in normal and
tumour samples of the TCGA-CHOL dataset. Red dots indicate statistically significant differentially methylated CGils. f Volcano plot distribution
of CGls Ap of the TCGA-CHOL dataset. Red dots indicate hypermethylated CGls (Ap > 0.2) and green dots represent hypomethylated CGls (Ap
< —0.2). g, h TCGA-CHOL dataset unsupervised hierarchical clustering analysis based on the average CGI f values (g) and somatic changes (h)

;or each of the aberrantly methylated CGls.

specific tumour signatures and much more stable than RNA
and proteins.

Moreover, DNA methylation alterations are very early events in
carcinogenesis, thus representing extremely valuable biomarkers
not only as sentinels of relapse, minimal residual disease or
metastasis but also for primary diagnosis. BTCs are indeed
diagnosed at an advanced stage due to the lack of accurate
diagnostic methods.

While the identification of tumour location-specific methylation
profiles may be important [34-36], in this study we identified DNA
methylation alterations that could enable detection and tracking
of biliary tract tumours regardless of their anatomical location and
natural history. This suggests that the methylation profile of these
tumours might present a lowest common denominator among
different pathological subtypes.

The whole-genome methylation approach allowed us to
identify and validate 27 BTC-specific methylation alterations on
three large case series (Discovery, TCGA-CHOL and GSE89803
datasets).

Several DNA methylation biomarkers have been proposed to
detect BTC. These biomarkers, however, are also frequently
hypermethylated in other more prevalent gastrointestinal cancers
[17, 18, 28]. To increase the specificity of our putative biomarkers,
we selected CGls not altered in other gastrointestinal tumours
(colon, rectal and gastric cancer). The identification of BTC-specific
alterations is crucial when investigated in non-invasive matrices,
such as blood and stool samples, but also in minimally invasive
matrices such as bile, to avoid misclassification with other
malignancies.

A proprietary machine-learning algorithm (TASTOPAL) was
developed to select the most informative CGls among the altered
ones. This approach proved successful because it rendered a panel
of only two markers showing very high sensitivity and specificity
in three independent datasets of BTC patients (from different
ethnic groups, tumour locations, predisposing risk factors).
Importantly, the same algorithm can be applied for the selection
of markers of other tumour types and different diseases, with
manifold advantages compared to the manual biomarker
selection.

lllumina Methylation EPIC arrays have proven to be an excellent
tool to discover novel potential biomarkers. We have assessed the
translatability of the DNA methylation results obtained by EPIC
arrays towards droplet digital PCR (ddPCR), an extremely sensitive,
robust, fast and cost-effective technique, ideal for the absolute
quantification of low-copies DNA molecules of interest.

The two-biomarker panel showed a very high performance in
tissue samples (combined sensitivity of 100% and specificity of
93%). A perfect concordance between the results obtained for the
same five paired tissue samples by the genome-wide and the
targeted methylation assays, specifically designed for a selected
region within the two altered CGls, was observed (data not
shown). Of note, BTC samples were equally represented by bile
ducts (N=9) and gallbladder (N=9) tumours reinforcing the
potential of this biomarker panel to detect tumours from different
localisations.

The performance of the two individual ddPCR assays was not
identical, possibly due to the assay design. The chr2:176993479-
176995557 was more accurate (100% sensitivity and specificity) in
tissue samples. For this reason, it was selected as the best
biomarker to be tested in bile samples to verify its performance as
a minimally invasive detection tool for BTC. Of note, the biomarker
has shown excellent (>0.90) AUC values in all the datasets
analysed. Interestingly, a positive correlation between the
statistical power and the robustness of the biomarker was
observed (Supplementary Fig. S3).

The biomarker showed 100% sensitivity and specificity in bile
samples, proving to be an excellent candidate biomarker for non-
invasive BTC investigation. Moreover, this biomarker yielded
negative results in bile samples from patients with benign biliary
disease, suggesting that this methylation alteration is specific of a
state of malignancy. Interestingly, one sample from a patient with
benign stenosis showed three positive droplets for the marker of
interest and using a threshold based on the best accuracy
(another parameter that can be used for setting the threshold),
rather than the highest sum of sensitivity and specificity, it was
classified as positive. This would suggest that benign biliary
disease patients resulting positive for this alteration may be at
higher risk of developing BTC compared with negative ones and
thus deserve a closer clinical follow-up. Moreover, the screening of
this biomarker in patients with benign biliary diseases would be
recommended. In fact, the presence of DNA methylation
alterations in these patients may potentially represent early
triggers in the carcinogenesis process and/or that they harbour
pre-cancerous-like features many years prior to tumour onset. The
development of BTC after 10-20 years of a previous benign
pathology is not rare [37]. This possible scenario is also in line with
the value of DNA methylation biomarkers as predictive of
neoplasia, managing to forecast the development of cancer even
ten years before onset [16].

According to our results, HOXD8 hypermethylation is the best-
performing biomarker to identify the presence of BTC regardless
of tumour location. In fact, although previous works have
demonstrated that DNA methylation alterations can be detected
in bile and biliary brush samples, the proposed panels included a
higher number of biomarkers and yet they showed lower
sensitivity values. Moreover, the majority of these studies were
focused on CCA or even on a particular CCA subtype, limiting the
application of those panels for the detection of all BTC subtypes.
For instance, Shin et al. proposed a five-biomarker panel, with a
sensitivity of 76% and a specificity of 100%, to detect extrahepatic
CCA in bile using MethyLight [26]. Another work found that
p14ARF and p16/INK4a methylation had respectively a sensitivity of
46% and 53% for the detection of CCA and GBC in bile [13].
However, similar or even higher percentages of PSC samples
showed methylation of the two genes [13]. A six-gene panel
allowed the distinction of malignant biliary strictures from benign
samples with 77% sensitivity and 78% specificity [38]. Moreover,
two studies analysing biliary brush samples, identified a three-
biomarker panel, with specificity and sensitivity respectively of
86% and 80% [27], and a four-biomarker panel with 85%
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Fig. 3 Visualisation of 30 selected altered CpG islands analysis in the Discovery and TCGA-CHOL datasets. a, b Discovery dataset (a) and
TCGA-CHOL dataset (b) unsupervised hierarchical clustering analysis based on the average CGI $-values for the 30 BTC-specific altered CGls.
¢ ROC curves for the 11 CGls showing an AUC = 0.90 in the Discovery dataset. Red arrows indicate CGls showing an AUC > 0.90 also in TCGA-
CHOL dataset.
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Fig. 4 Heatmaps showing the replication results of the selected altered CpG islands in the Discovery and GSE89803 datasets. a, b
Discovery dataset good-quality selected samples (a) and excluded samples (b) unsupervised hierarchical clustering analysis based on the
average CGl p-values for the 30 BTC-specific altered CGls. ¢ GSE89803 dataset unsupervised hierarchical clustering analysis based on the

average CGI B-values for the 27 validated CGls.

sensitivity and 98% specificity [28], distinguishing BTC patients
from patients with other biliary diseases. Importantly, all the
above-mentioned studies employed techniques with lower
sensitivity compared to ddPCR [39].

Interestingly, the selected altered CGI (chr2:176993479-
176995557) is associated with HOXD8 gene, belonging to class |

homeobox gene family, well known to be involved in carcinogen-
esis. This suggests that the selected alteration would fulfil the
requirements of an optimal biomarker being the most informative
but also very likely functionally relevant for the disease. Several
studies have shown that HOX genes are either overexpressed or
downregulated in a variety of cancers, acting respectively as
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Fig. 5 Methylation values of the CpG sites within the two CpG islands selected by a machine-learning approach in the Discovery, TCGA-
CHOL and GSE89803 datasets. a, b Methylation values obtained from the Discovery (EPIC array), TCGA-CHOL (450 K array) and GSE89803
(450 K array) datasets. Mean f-values, resulting from the average of the samples (normal indicated with blue dots and tumours indicated with
red dots), of each probe, belonging to CGI chr2:176993479-176995557 (a) and CGI chr5:145713641-145713913 (b). The red arrows indicate the
CpG sites included in ddPCR experimental assay design. ¢, d Box plots of the CGlI mean f-values for CGI chr2:176993479-176995557 (c) and CGI
chr5:145713641-145713913 (d) in tumour and normal tissues obtained from the Discovery, TCGA-CHOL and GSE89803 datasets.

proto-oncogenes or tumour suppressors depending on the tissue
type. Epigenetic mechanisms, including DNA methylation and
histone modifications, have been shown to be responsible for an
altered expression of these genes in cancer. Specifically, HOXDS is
epigenetically downregulated in lung cancer [40] and used as a
biomarker to detect prostate cancer in urine samples [41].
Interestingly, homeobox genes are among the most hypermethy-
lated genes in BTC [42] and, as reported above, other studies have
identified other HOX genes as DNA methylation-based biomarkers
for BTC, although with lower performances [29, 43].

We acknowledge some limitations in our study. First of all, the
Discovery cohort comprised FFPE samples. This kind of sample
represents a precious source for research purposes in those cases
where it is extremely difficult to obtain fresh tumour samples. In
the case of a rare tumour such as BTC, the availability of FFPE
samples is even of greater value since the collection of samples for
a study of adequate statistical power requires extraordinary time
and efforts. However, formaldehyde induces several types of DNA
damage such as crosslinks, DNA fragmentation, abasic sites and
deamination of cytosine bases [44]. Importantly, formaldehyde-
induced crosslinks, inter-strand DNA crosslinks and protein-DNA
crosslinks may affect the efficacy of bisulfite treatment, by
hampering DNA denaturation, crucial for strand-specific bisulfite
conversion [45]. To overcome this limitation, it is imperative to
restore DNA integrity after bisulfite treatment as performed in this
study. Although this strategy has been successful to obtain
reliable data, we cannot exclude that formalin fixation negatively
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affected the quality of the results from samples. In fact, we
observed abnormal B-value distributions in some samples that
were consequently removed from the analysis. Due to this
selection process, the size of the Discovery cohort was substan-
tially reduced, preventing the identification of methylation
alterations resisting multiple-testing correction. We overcame this
limitation by selecting DNA methylation alterations shared
between the Discovery dataset and TCGA-CHOL dataset. There-
fore, the robustness of our results is confirmed by the validation of
the selected alterations in multiple independent datasets. More-
over, we showed that even the tumour samples initially excluded
clustered similarly to the good-quality selected samples, when the
methylation information only from the selected CGls was used,
further reinforcing the validity of our findings.

Another limitation of this study is the unavailability of tissues
and bile samples from healthy individuals, for obvious technical
and ethical reasons. Thus, the normal tissue samples derived from
a section of the paraffin block devoid of malignant cells. Normal
tissue surrounding the tumour could already show cancer
characteristic alterations [46]. However, the normal samples of
the analysed datasets displayed methylation profiles distinct from
tumour samples and very similar among them as found in the
distribution of the standard deviation (SD) of CpG methylation
probes from the TCGA-CHOL dataset (median SD =0.02, 90th
percentile = 0.09). Of note, statistical power calculation has shown
that the discovery cohort including 50 tumours and only ten
matched-normal controls would guarantee 100% power to detect
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methylation alterations (|AB|= 0.2) conventionally considered as
biologically relevant (Supplementary Document S1).

Finally, we acknowledge that ddPCR results on bile samples would
benefit from further validation in a large case series from different
tumour locations and controls. Nevertheless, the number of analysed
bile samples would guarantee a statistical power of 99.97% for the
validation of the identified alterations (Supplementary Document
S1). In agreement with the pathway to bring a candidate DNA
methylation biomarker from the laboratory into molecular diagnos-
tics [47], we have successfully completed the preclinical phase,
including the definition of the biomarker, its external validation (in
publicly available datasets), the assay design and external validation
in independent cohorts (including both tissue and bile samples).
Therefore, the promising results obtained during all these steps
indicate that the biomarker is ready to be tested in a clinical trial.

In summary, we present a novel DNA methylation-based BTC
biomarker, CGI chr2:176993479-176995557, associated with HOXD8
gene, with excellent diagnostic capabilities, which can be applied
both in tissue biopsies and bile samples, outperforming all previously
reported biomarkers. The next challenge is to test this biomarker for
the detection of BTC from completely non-invasive matrices, such as
stools and blood. We also envision to begin a clinical trial to evaluate
the impact of this biomarker in surveillance and early diagnostic tests
of patients at risk for BTC development and to predict patient
prognosis and response to treatments, improving patient stratifica-
tion and personalised therapeutic strategies.
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