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Abstract: For decades, bad practices in municipal and industrial waste management have had negative
environmental impacts, generating high health risks for people and the environment. The use of badly
designed, not engineered, and not well-operated landfills has, around the world, produced a large
number of potentially contaminated sites, for which there are urgent needs to assess the actual risk
and to proceed, in case, with reclamation activities. One of these sites, an abandoned waste disposal
site located near a Site of Community Importance on the central-eastern coast of Sardinia (Italy),
is the subject of the case history described in this work. As a part of a multi-method geophysical
characterisation, a frequency-domain electromagnetic (FDEM) mapping survey was carried out with
the specific aim of detecting the presence of buried materials (waste) and of delineating the lateral
extent of the landfill by identifying the electrical conductivity anomalies produced, for the most part,
by the conductive waste fill. Using an EM31 device in the vertical-dipole configuration, at a height of
0.9 m above the ground, both quadrature and in-phase electromagnetic responses were collected over
a 7-hectare area with elevation varying between 6 m and 2.8 m above sea level. After removing the
measurements identified as data coming from any recognisable surface man-made features within the
survey area or near its perimeter, the filtered quadrature response (expressed as apparent conductivity)
ranged from 5.5 mS/m to about 188.6 mS/m. All values are beyond the low induction number (LIN)
condition and valid for the classical EM31 mapping, thus requiring advanced data processing. To
obtain undistorted, meaningful, and interpretable high-resolution maps, measured data have been
processed to correct the bias, introduced by the nonlinearity of the device, as a function of height above
ground and the topography. The comparative analysis of the apparent conductivity map, obtained by
the properly processed EM31 data and some aerial photos that clearly documented the site history, has
allowed unequivocal delineation of the landfill extent, in good agreement with the results obtained
with other geophysical methods (not described in this paper) and with the ground truthing data
provided by three boreholes, which were core-drilled at the end of the study at three locations selected
on the basis of the apparent conductivity map.

Keywords: landfill; FDEM mapping; electromagnetic induction; low induction number; nonlinear
modelling; topographical correction; geostatistical analysis

1. Introduction

In developed and industrialised countries, landfills for municipal and industrial solid
waste disposal are, nowadays, well-designed, constructed, and operated so as to ensure
minimal environmental impact in the surrounding areas. For many decades, however,
and before the hazards associated with waste disposal were well understood, they have
been neither designed, nor engineered, nor operated to meet the requirements for safe
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disposal of solid waste and to minimise the impact on the environment. Poor governmental
management and/or lack of social and industrial organisation have been the reasons for
the very large number of sites developed without any control on the selection of site,
and the collection, transport, and final disposal of waste. The choice of landfill locations,
which should be suggested by environmental, geologic, and engineering considerations,
was usually dictated on the basis of convenience, proximity of waste source, and private
business considerations.

To prevent or reduce health risks for the population and the environment related to
the past bad practices in landfill management, the Council of the European Union has
enacted stringent measures (Directive 1999/31/EC) [1] for landfill management, enforcing
reclamation of all existent landfill areas in European countries. To implement these Euro-
pean instructions and guidelines, in 2003 the Sardinian Regional Government (“Regione
Autonoma della Sardegna”) drew up a waste management plan (“Piano di Bonifica dei Siti
Inquinati”), which also contained a list of priorities based on the risk assessment for the
sites representing potential pollution. According to this plan, the number of illegal landfills
in Sardinia was 404, of which 59 were considered dangerous and thus to be prioritised.
One of these sites, the Bacàsara site, also known as the Bacchidda-Salinas site, is the site
study of the present work. At the time, little documented information was available and
the plan itself only reported some expected values about the landfill extension (69,800 m2),
the thickness of the buried waste materials (7 m), and the total volume of fill (302,370 m3).
However, due to the location of the site, critically near the Tortolì Pond, which is a surface
water body considered a Site of Community Importance according to the Council Directive
92/43/EEC [2], and also due to the geological and hydrogeological conditions of the site,
which have the potential to spread out possible contamination within the aquifer or to
nearby surface waters, the landfill site was placed at the 4th position in the regional priority
list. Thus, in the regional priority list, an urgent need for a detailed environmental charac-
terisation was stressed to assess the actual risk associated with the landfill and to proceed,
in case, with the subsequent remediation activities.

Keeping in mind that a good site characterisation is mandatory for effective remedia-
tion works, we started with a geophysical characterisation to supply fast, non-invasive, and
yet detailed evaluations of the lateral and vertical extent of the impacted volume at the site.
Geophysical investigations cannot totally replace drilling and sampling in environmental
site characterisation, as they do not allow assessment of whether contaminants are present
in soils and water above given concentrations defined by regulations. Yet, geophysical
surveys represent a useful tool, as they help plan the drilling and sampling programs,
cutting down the associated costs. Moreover, geophysical surveys provide high-resolution
information with a much greater spatial coverage than boreholes, and ensure that no
spatial aliasing is present in the maps of interpolated geophysical data. Aliasing occurs
when the sampling frequency is inadequately low compared with the frequency of signal
variation [3]. This can happen in any “direction”, be it time or space (or both). As a result
of spatial aliasing, the sampled variable assumes smooth variations in space, with a spatial
frequency that is much lower than the true one, thus appearing different from what the
reality is (i.e., an alias). The impact of such aliasing on the assessment of the spatial patterns
of the objective variable can be dramatic, typically resulting in the overestimation, e.g., of
the contaminated volumes (e.g., [4]).

Two geophysical surveys were carried out using different geophysical methods
(frequency-domain electromagnetics, electrical resistivity and induced polarisation to-
mographies, magnetometry, and refraction seismics) with the aim of (i) delineating the
vertical extent, as well as the boundaries of the suspected area of the landfill; (ii) determin-
ing the potential presence of buried waste materials and leachate in the suspected area of
the landfill; (iii) tentatively identifying the type of dumped materials; (iv) assessing possible
interactions of the landfill with the nearby aquifer; and (v) characterising the encasing
rocks. The first preliminary survey, which involved the frequency-domain electromagnetic
induction (EMI) method as a mapping tool, is the focus of the present work.
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EMI methods have been used extensively for near-surface characterisation [5–10], as
the use of small-measurement systems with rapid responses allow dense surveying over
large areas in a cost-effective manner. Recent multi-coil and/or multi-frequency devices,
which are able to record multi-depth electromagnetic complex-valued responses, are in-
creasingly used to obtain quantitative interpretation of EMI data by linear inversion, when
soil properties (electrical conductivity and magnetic permeability) and device parameters
(working frequency and inter-coil separation) combine in a low induction number (LIN)
condition [11–15], or, otherwise, by nonlinear inversion in the cases of high-conductivity
terrain, where the LIN approximation breaks down [5,16–18].

In the past, the most widespread traditional EMI devices, such as, for example, the
Geonics EM38 and EM31, were mostly used as instruments for apparent electrical conduc-
tivity mapping, as they were designed to record a single depth response, usually associated
with a conventional depth of penetration. Actually, they can also be used to perform
sounding surveys to get quantitative estimates of depth variations in true electrical con-
ductivity [19,20], but with a time-consuming, and thus unfeasible, procedure. Several case
studies have tested the capability of EMI for landfill characterisation by mapping [21–23],
often in combination with other geophysical techniques [22–34].

The goal of the present study is to describe and apply a methodology to improve
the accuracy of EMI mapping for landfill characterisation. As landfill waste is generally
characterised by a high electrical conductivity, it is often the case that the LIN assumption
is violated in this kind of environment. Therefore, in these situations, mapping electro-
magnetic data requires appropriate processing in order to reduce errors from bias due to
the nonlinear device response, the height above ground, and the topography. This allows
for a quantitative assessment of electrical conductivity values, and thus a more accurate
delineation of the landfill extent and waste thickness is possible. We applied the approach
above to a case study in Sardinia, where ground truthing data provided by historical aerial
photographs and by three boreholes core drilled on the basis of the apparent conductivity
map provided independent evidence concerning the soundness of the obtained results.

2. Materials and Methods
2.1. Site Location and Geological Background

The Bacàsara landfill is located on the coastal plain of Tortolì, in central-east Sardinia
(Italy), near the Tortolì Pond (Figure 1).

The area affected by landfill operations has a nearly trapezoidal shape and covers an
area of about 7 hectares (Figure 2). It is bordered to the west by an old local road and to
the south by a recent road that separates the site from a crushing and treatment plant for
aggregate production. At the time of the survey, a metal fence bordered the north, west
and southern sides, while an open canal for water drainage, which, from the nearby plant
is directed towards the pond, marked the eastern boundary. Also, several metal containers
were present near the western boundary and the northwest corner. In addition, near the
south-western corner, there was a metal electricity pylon (marked by the red circle in Figure 2).
Finally, it is worth noting that the north-western corner of the landfill is only sixty metres
away from the Tortolì Pond, that is, at a distance far shorter than the influence ray of a landfill
which was fixed at 300 m by the local authorities in the waste management plan.

The topography shows a regular slope from 6 m above the mean sea level (msl) at
the south-west corner, down to a little more than 2 m above msl at the north-east corner
(Figure 2). The aquifer in the area is unconfined and the phreatic level varies seasonally no
more than 0.3 m from its mean value. Groundwater flows from south-east to north-west
toward the Tortolì Pond (Figure 2).
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From a geological point of view, a sequence of Quaternary detrital sediments, mostly
consisting of both ancient and recent alluvial terraces and small fluvio-colluvial Holocene
deposits, fills a depression in the crystalline (granodiorite) bedrock, which has a depth
from the ground surface of about 20 m at the Bacàsara site. Ancient alluvial deposits,
with Pleistocene and Holocene sediments, are composed of compacted sands in a clayey
matrix and of local thin beds of conglomerates, with subrounded clasts of sizes as large as
a decimetre, in a silty–clayey matrix. Recent (Holocene) alluvial deposits consist of slightly
thickened sands with occasional gravels in a silty–clayey matrix. Present alluvial sediments
including littoral sands and gravels complete the top of the Quaternary sequence.

2.2. Site History

Prior to this study, little information was available about the site. Reliable data about
landfill operations are very scarce, as the official records were lost during a fire in the
municipality archives. Historical topographic maps and aerial photographs were used as
the sole source of information.

The 1931 topographic map (Figure 3a) shows that in the early decades of the 20th
century, a pond was present at the Bacàsara site, located south-east of the Tortolì Pond,
and occupying an area partially coincident with the landfill area. In the 1960s, as shown in
Figure 3b, such depressed marshy area, was still present, although its extent was smaller
compared to that of 1931, and nearly totally coincident with the study area.
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Figure 3. (a) Detail of the historical topographic map produced at the scale 1:100,000 (Sheet n. 219—
Lanusei—by the Italian Military Geographic Institute (IGM)), derived from maps at the scale 1:25,000,
surveyed in 1900, and revised in 1931. The red dashed-line circle shows the location of a pond.
(b) Detail of the topographic map surveyed in 1967 (Sheet n. 219, IV, NE—Tortolì by IGM) at the scale
1:25,000.

The marshy area was probably drained some years later, although its extent is still
clearly visible in the 1977 aerial photograph (Figure 4a), maybe because of the vegetation
which had grown on the area. The 1983 aerial photograph (Figure 4b) shows a land
configuration nearly unchanged with respect to 1977. The only visible differences are in the
western part of the area: in 1977 the topography appears rugged, probably due to digging
and earthmoving works, while in 1983 it seems completely flattened out.
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courtesy of Regione Autonoma della Sardegna).

In the period of the photograph in Figure 4b, the landfill was probably already present.
Actually, the start of the waste disposal activities should date back to a period preceding
July 1983, as at that date the landfill manager filed a request to the environmental agencies
and local authorities for authorisation to further proceed with such activities. In 1984, the
request was granted for a provisional six-month period, on the condition that a plan to
bring the landfill up to regulations was presented. In 1987, after the landfill was regularised,
the local authorities granted a site license for a new controlled sanitary landfill body and its
management over a 2-year period, for the disposal of 6000 tonnes of municipal solid waste.

Over the following years the area was modified, and in 1989 it appeared as in Figure 5.
Some works appear to have been carried out: in the southern part, some dump materials
aligned in an east-to-west direction seem to be present (red curve in Figure 5), while the
remaining part seems to have been shaped like a fan (blue curve in Figure 5), probably as
a basement for subsequent piling up of materials. Only a small area near the north-east
corner seems to be relatively undisturbed.

According to the information provided by the landfill manager and owner of the
site, after the 1987 plan approval and the execution of the authorised works, the landfill
operated until the end of 1994 when a fire broke out. From 1990, waste materials were
occasionally dumped; then, between 1995 and 1996, all activities stopped. Actually, the
aerial photographs taken in those years show a version partially different from what
happened. The 1995 aerial photograph (Figure 6) clearly shows a significant dump of
material along a north-to-south direction, about 170 m long and 40 m wide. The 1997
photograph (Figure S1a of Supplementary Materials) shows a wider dump, evidence of the
landfill still being operational over that period.

In 1998 (Figure S1b of Supplementary Materials), the situation appears quite similar to
that of 1997, while in 1999 a complete change is visible, as per Figure S1c of Supplementary
Materials, showing a totally flattened out surface. The dumps are no more visible but there
are clear marks left by the earthmoving vehicles used for flattening the area and evenly
distributing the materials. In the following years, from 2001 to today, there seems to be no
significant changes, as shown by the aerial photographs in the Supplementary Materials
(Figure S2) document. The main change is that a road was built near the southern boundary
of the area.
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2.3. Electromagnetic Induction Survey
2.3.1. Field Data Acquisition

Frequency-domain electromagnetic data are often acquired with instruments contain-
ing two coils. In one of them, the transmitter, a single low-frequency alternating sinusoidal
current generates an alternating magnetic field (the primary magnetic field), which induces
eddy currents in the surrounding conductors and, in particular, in the subsurface. These
currents, in turn, create an out-of-phase magnetic field (the secondary magnetic field), with
a phase shift dependent upon the electrical properties of the ground (at low frequency,
mainly represented by electrical conductivity and magnetic susceptibility). The other coil,
the receiver, measures the amplitude and the phase of this secondary magnetic field, usu-
ally in terms of in-quadrature (90-degree, phase-shifted component), Q, and in-phase, P,
components, with respect to the primary field. The secondary magnetic field is a nonlinear
function of many parameters, such as the electrical conductivity and the magnetic per-
meability of the ground; the inter-coil distance; the transmitter–receiver coil (horizontal
coplanar coils, HCP, and vertical coplanar coils, or VCP) configuration; the height of the
coils above the ground surface; and the frequency of the primary magnetic field. However,
for a nonmagnetic half-space, when the coils are laid out on the ground and the operating
frequency is small, the complicated relationship can be re-formulated in a simplified form.
Under these conditions and for different coil configurations, Wait [35,36] gave a simplified
expression for the secondary magnetic field over a homogeneous, nonmagnetic half-space
as a function of the induction number (e.g., [36], Equations (1) and (3), p. 632, for the HCP
and VCP configuration, respectively), which is a generalised response parameter defined
as the inter-coil spacing r in units of skin depth δ:

B =
r
δ
=

r√
2

ωµ0σ

, (1)

where ω is the operating frequency, µ0 is the magnetic permeability of the free space, and
σ is the half-space conductivity. Furthermore, starting with the relationship by Wait [36],
McNeill [37] showed that when the induction number is very small (B << 1) and the coils
operate on the surface (zero elevation) of a nonmagnetic half-space, the imaginary part of
the ratio of secondary to primary magnetic fields is linearly proportional to the half-space
conductivity for both HCP and VCP coil configurations, according to the relation

σa =
4

µ0ωr2 Im
[

HS
HP

]
. (2)

This equation embeds the constraints, usually defined as a “low induction number
condition” (LIN), which are incorporated in the design of most of the commercially available
ground conductivity metres, which measure the Q component of the electromagnetic
response directly in mS/m (for this reason the Q component is also named LIN apparent
conductivity—LIN ECa or LIN σa). Under the same conditions, these EMI devices can also
measure the P component (in part per thousand, or ppt), which is usually very small in
comparison with the Q component, at least for the case of nonmagnetic materials with
electrical conductivity less than a few tens of mS/m [38]. Actually, the P component
does not necessarily depend on the magnetic permeability, but it is mainly determined
by the relative values of the inductance property with respect to the resistance property
of the measured material. For a given frequency, at a fixed magnetic permeability, the P
component will increase as the electrical conductivity increases, as shown in Figure S3
(Supplementary Materials).

The field electromagnetic survey was conducted using a Geonics EM31-MK2 terrain-
conductivity meter. The instrument operates with a fixed inter-coil spacing of 3.66 m at a
fixed frequency of 9.8 kHz. Both Q and P responses were recorded carrying the instrument
in the vertical dipole configuration at a height of 0.9 m above ground. Data were collected
with the EM31 boom oriented in-line with the operator’s walking path, along north-to-south
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and east-to-west directions. To record the location (UTM coordinates) of each measurement,
the device was equipped with a Trimble differential GPS receiver that used a differential
correction to ensure a sub-metre accuracy. The surveyor’s path meanders slightly (Figure 7),
a consequence of trying to walk along a rectangular grid with sparse survey markers. The
coverage is so dense, however, that there are no data gaps larger than 10 m. A total of about
29,400 measurements were obtained and georeferenced across the survey area.
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2.3.2. Data Analysis and Processing

Raw data were preliminary analysed using statistics and spatial distribution to check
consistency, detect outliers, and identify statistical distributions, as well as to check for
anomalies coming from any recognisable surface man-made features within the survey
area or near its perimeter. In particular, to inspect and quantify the spatial variability of the
apparent conductivity, as well as to characterise and determine possible distribution pat-
terns, such as randomness, uniformity, and spatial trend, the analysis was carried out using
variogram maps and omnidirectional and directional experimental variograms [39–41].

EM31 data were used here with the aim of identifying all conductivity anomalies that
can be associated with the presence of the conductive waste fill. To this end, lateral and
vertical variations of apparent conductivity are certainly more significant and diagnostic
than the absolute values of conductivity themselves [42], even though accurate absolute
values of conductivity are requested to obtain quantitative interpretations. However, to
obtain undistorted, meaningful, and interpretable high-resolution maps, measured data
must be free from the “bias” introduced by the nonlinearity of the instrument when the
low induction number condition is not fulfilled (as in the case at hand), by the height of the
instrument and by the topography.

As aforementioned, Equation (2) gives only an approximated form of the electromag-
netic response that comes when B is very small (B << 1). This means that for a given
frequency and inter-coil spacing, the approximated linear form (LIN) is valid when the
conductivity of a nonmagnetic terrain is very small, as shown in Figure 8 for the case of
the EM31 device, where exact (Q) and approximated (LIN ECa) responses over a range of
conductivities extending to 0.5 S/m are compared. Figure 8a shows that the Q response
progressively departs from linearity as half-space conductivity increases (that is, as the
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induction number increases (Figure 8b)). Figure 8a also shows this departure in terms of
the relative error, E, as defined by Caminha-Maciel and Figueiredo [43]:

E = 100·LIN ECa − Q
Q

(3)
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Figure 8. (a) Simulated electromagnetic quadrature response of the EM31 for HCP configuration,
and with coil elevation of 0.9 m, over a range of half-space conductivities extending to 500 mS/m;
(b) induction number versus half-space conductivity; (c,d) are zooms of (a,b), respectively. Black
solid lines represent the reference linear relation; dashed curves are relative errors. Curves have been
simulated with the forward modelling code implemented in FDEMtools [44].

As evidenced by Callegary et al. [45], the literature reports several different val-
ues [37,46,47] that made unclear under what values of B the LIN condition can be consid-
ered valid. This is also what was pointed out by Beamish [38], according to whom a specific
value for B can be only defined if a criterion is set. Here, using the procedure described by
Beamish [38] and considering a minimum required accuracy of 1 mS/m or better (i.e., the
difference between apparent and true half-space conductivity), we found that the threshold
value of the true conductivity below which the HCP EM31 response meets the linearity
(LIN) condition is ~6 mS/m (Figure 8c), that is, for an induction number less than 0.057
(Figure 8d). The relative error associated with this threshold amounts to 19.3% (Figure 8c).

The height at which the ground conductivity meter is used is another survey parameter
significant to understand EMI data, for both imaging and mapping uses. In fact, increasing
the probe height increases the depth of penetration of the system and so the measurements
investigate different, overlapping soil volumes [37,38,48]. This allows use of measurements
at different instrumental heights to get quantitative estimates variations of true electrical
conductivity with depth, by inversion [19,20,37,49,50]. On the other hand, an increase in
the tool height also usually lowers the amplitude of the measured response, which makes it
more difficult to detect spatial variations of apparent conductivity [48]. The bias the height
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introduces in the apparent conductivity is a function of the ground conductivity and usually
increases with the conductivity [48]. However, as for the nonlinearity of the electromagnetic
response, different devices (coil configurations, coil distances, and operating frequency)
experience different biases for the same conductivity. To quantify the bias for the EM31, we
simulated its HCP response over a range of half-space conductivity for different operating
heights (Figure 9). With the single exception of the low-conductive (σ = 10 mS/m) half-space,
where the response is negligibly related to the operating height, Figure 9a shows that in the
other cases, the response changes significantly over the range of coil heights, with biases of
20 mS/m and 57 mS/m for a half-space conductivity of 100 mS/m and 500 mS/m, respectively.
Figure 9b shows the response over a range of half-space conductivity for heights 0.8, 0.9, and
1 m, which are the most frequently used for the EM31, as well as the one simulated at 0 m as
a reference. At a 0.9 m height, for example, the bias amounts to 8.5 mS/m for a 100 mS/m
half-space and reaches the values of 18.3 mS/m when the half-space conductivity is 400 mS/m
(about the same as the maximum measured in this work).
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Figure 9. (a) Apparent conductivity bias for different half-space conductivities over a range of coil
heights extending to 1.5 m; (b) apparent conductivity bias for different coil heights over a range of
half-space conductivities extending to 500 mS/m. Curves have been simulated with the forward
modelling code implemented in FDEMtools [44].

Apparent conductivity maps across areas with variable topography are often dom-
inated by anomalies related to the elevations of the measurement points [51–53]. In fact,
topographical variations can affect the bulk electrical characteristics of the materials sensed
by the instrument inside its penetration depth. This is the case, for example, when a resistive
layer lies above a conductor, such as the water table. In absence of lateral heterogeneities
other than topography, the bulk apparent conductivity would increase roughly with a
potential function with decreasing elevations [51,52]. As the elevation at the Bacàsara site
slopes to the north-east from about 6 m to 2.8 m, the EM31 quadrature response was ex-
pected to increase towards the north-east, reflecting the variation of groundwater levels in
the area. Therefore, to make the spatial correlation of apparent conductivity unquestionably
independent from topography, and then exclusively related to the spatial distribution of
conductive landfill materials, we have applied a topographic correction with the empirical
procedure suggested by Monier-Williams et al. [51]. The procedure involves first determin-
ing a background apparent conductivity trend versus elevation, σbg, which is then used to
give a normalised apparent conductivity, C in decibels (dB), from the measured apparent
conductivity, σa, by applying the following equation [54]:

C(x, y) = 20 log

[
σa(x, y)
σbg(h)

]
, (4)
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where x, y, and h are the spatial coordinates and the elevation of the measurement point. For
our case, however, plotting apparent conductivity against elevation (see below in the section
Results), no clear trend was noticeable so that it was not possible to uniquely determine
the background apparent conductivity as the lower bound of all measurements made at a
particular elevation. This is probably due to the strong lateral heterogeneities at the site,
which violate the basic assumption for the validity of the procedure [51]. Therefore, we
opted for establishing the background apparent conductivity in the area by an alternative
procedure, consisting of modelling the EM31 response over a subsurface model “free” from
heterogeneities other than topography.

To this end, we started observing that the LIN-corrected EM31 dataset had a bimodal
distribution, as successfully assessed by three different criteria known as the bimodality
coefficient (BC) [55], Akaike’s information criterion (AIC) [56], and Silverman’s bandwidth
test [57]. From a statistical point of view, this means that the dataset results from the
combination of two ensembles: one was assumed as composed by background values, and
the other by the heterogeneities introduced by landfill materials. In order to separate the
two ensembles, we assumed the dataset to be a mixed distribution of the form:

M = pφ1 + (1 − p)φ2, (5)

where p is the mixing weight and φ1 and φ2 are the probability density functions of
the searched component distributions, with mean µi and standard deviation σi. The
components and all parameters were estimated using a maximum-likelihood-based method
implemented in MATLAB. To estimate the background apparent conductivity, we built a
simple subsurface model consisting of one resistive layer over a nonmagnetic conductive
half-space. At each measurement point, assuming the groundwater level was at zero
elevation, we fixed the thickness of the resistive layer above the water table equal to
the ground elevation. Then, the electrical conductivity of the two layers were set up to
obtain apparent conductivities across the area with a mean value corresponding to the
peak value of the first component of the mixed distribution. Finally, the background
apparent conductivities were estimated using the electromagnetic forward modelling
code of FDEMtools [44], a free MATLAB software package implementing the numerical
algorithms discussed by Deidda et al. [17,20,58].

3. Results
3.1. Preliminary Descriptive Analysis

Descriptive statistics including mean, median, standard deviation (SD), variance, in-
terquartile range (IQR), minimum and maximum values, coefficient of variation (CV), skew-
ness (S), and kurtosis (K) for quadrature and in-phase EM31 responses from 29,428 sampling
points are summarised in Table 1.

The raw Q response, expressed as apparent conductivity, averaged 82.4 mS/m, ranging
from 5.5 to 207.9 mS/m, while the P response averaged 5.13 ppt ranging from +/− 20.47 ppt,
which spans the whole measuring range (full-scale values) of the device. The median values
of both data are a little lower than the mean values, indicating that data distributions are
positively skewed, as confirmed by skewness values. Moreover, kurtosis indexes show that
both data have leptokurtic distributions (with a more acute peak around the mean than a
normal distribution). For the in-phase data, in particular, the high kurtosis indicates the
substantial presence of outliers.

According to the classification for the coefficient of variation (CV) proposed by Warrick
and Nielsen [59], the P component of the EM31 response showed a high variability across
the area, as indicated by the CV of 75.52%, while moderate variability (CV of 46.22%) was
observed for the Q response. Their difference, however, is not completely due to material
heterogeneities. Comparatively examining the two CVs, the higher variability of the P
response may partially reflect the presence of small metallic objects randomly spread on
the ground surface or in the very near surface across the area. In fact, the P component
sensitivity to magnetic permeability is much higher than the Q component sensitivity. On
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the other hand, the CV of the Q response is underestimated as the spatial variation of the Q
component is reduced by the nonlinearity response of the EM31 device.

Table 1. Descriptive statistics for raw apparent conductivity and in-phase component of the EM31
response.

Apparent Conductivity
(mS/m)

In-Phase
(ppt)

Mean 82.95 5.13
Median 73.47 4.79

Standard Deviation 38.34 3.88
Variance 1470.13 15.04

IQR 53.83 3.17
Q1 1 54.00 3.32
Q3 1 107.83 6.49

Minimum 5.5 −20.47
Maximum 207.9 20.47

CV (%) 46.22 75.52
Skewness 0.94 0.56
Kurtosis 3.65 12.01

1 Q1 and Q3 are the first (or lower) and the third (or higher) quartiles, respectively.

Following the method of Tukey [60], which is one of the most frequently used tools to
detect outliers, all values lying more than one and a half times the interquartile range (IQR)
below the first quartile (Q1) and above the third quartile (Q3) were considered outliers.
Inspecting both quadrature and in-phase preliminary maps (Figure 10), nearly all outlier
values appear to be associated with known metal objects and fences. The linear anomalies
depicted at the southern and western borders of the area are the signs of the boundary
metal fence. The other anomaly extending from the south-west to the north-east at the
western border of the area is, instead, due to a number of old metallic containers, which
were there during data acquisition. It is not clear, however, what the origin is of the outliers
of the quadrature response in the northern part of the area (Figure 10b). However, it seems
to be excluded that it is due to metallic objects; no such objects were visible during the
acquisition and no high in-phase values were measured in this area.

Apart from these anomalies in the Q response and the other expected ones, the map
in Figure 10 also shows areas of very high apparent conductivities where relatively low
P values were measured. This outcome suggested that high-conductive nonmagnetic
materials, such as clay strata, groundwater, or conductive waste materials, could be the
cause of the signal in these areas.

3.2. Data Processing and Analysis
3.2.1. Correction for the Nonlinearity and for the Height of Measurements

After removing the measurements identified as outliers in both Q and P responses,
the filtered Q response ranges from 5.5 mS/m to about 188.6 mS/m; all these values are
above the conductivity threshold adopted here for the validity of the LIN condition (see
Section 2.3.2). Therefore, all data are more biased towards lower values than the true ones,
but with different biases from one location to another as a function of the actual conductivity.
As a consequence, the spatial distribution of the measured apparent conductivity may
represent a distorted distribution of the correct apparent conductivity, and both shape and
size of the high-conductivity anomalies may come out inaccurate.
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Figure 10. (a) raw quadrature response (in mS/m); (b) outliers of the quadrature response
(>189.90 mS/m); (c) in-phase response (in ppt); (d) outliers of the in-phase response (<−1.44 ppt and
>11.25 ppt). The values of Q1, median, and Q3 for both quadrature and in-phase response are listed
in Table 1.

In order to map the apparent conductivity minimising the above-mentioned distor-
tions, raw data (without the outliers) have been corrected with the procedure suggested by
Beamish [38]. To that end, we firstly simulated measured data in the range from 0 mS/m to
500 mS/m true conductivity, assuming the operation height of the EM31 at 0.9 m above
ground (Figure 8); then, the simulated response was estimated by a least-squares fitting of
the data (σa), using a fourth-order polynomial expressed as:

LIN σa =
n=4

∑
n=0

cn · σn
a , (6)

where cn are the coefficients whose values, together with the 95% confidence bounds, are
listed in Table 2. The root mean squared error (RMSE) of the least-squares fit was 0.0263.



Remote Sens. 2022, 14, 878 15 of 29

Table 2. Coefficients of the fourth-order polynomial obtained by the least-square fitting of simulated
response in Figure 8.

c0 c1 c2 c3 c4

Value −0.2768 1.217 4.243 × 10−3 −6.002 × 10−6 2.512 × 10−8

95% confidence bounds ±0.0092 0 ±0.008 × 10−3 ±0.054 × 10−6 ±0.011 × 10−8

The map of the corrected apparent conductivity, along with that of the raw data
(Figure 10a), is shown in Figure 11 with the same color scale for comparison. To better
appreciate the changes made by the correction for the nonlinearity and, in particular, to
show how these changes are distributed over the area, Figure 11c also shows the map
of the point-by-point (numerical) difference between the LIN ECa and the raw apparent
conductivity (the Q response). Due to the large range of apparent conductivity, the corrected
values increase very differently across the area, enhancing lateral gradients that help in
delineating both size and shape of anomalous areas.
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Figure 11. (a) Raw apparent conductivity (Q) map; (b) LIN-corrected apparent conductivity (LIN
ECa) map; (c) difference between the maps in (a,b).

To inspect unimodality or bimodality of both the LIN-corrected apparent conductivity
and in-phase (without the outliers) data, of which a summary statistics is reported in
Table 3, we computed the values of the bimodality coefficient (BC) and the Akaike’s
information criteria (AIC) using the codes mentioned in [61] (Appendix), while we applied
the Silverman’s bandwidth test using a MATLAB function [62] based on the bootstrap
method described in [63]. The BC got values of 0.5598 for the apparent conductivity (ECa)
and 0.3334 for the in-phase component, while AIC returned values of 0.0253 and 0.0020,
respectively. As shown by [61], the empirical BC, which ranges from 0 to 1, suggests
bimodality when it assumes values greater than 0.555; instead, AIC indicates bimodality
for positive values. Silverman’s bandwidth test results, shown in Table A1 (Appendix A),
suggest bimodality for the ECa and unimodality for the in-phase component. Therefore,
based on these results and on the BC and AIC values, we assumed the LIN ECa and
in-phase distributions as bimodal and unimodal distributions, respectively. For the LIN
ECa, applying the relationship (5) we found a mixed-to-normal distribution defined with a
vector µ = [81.42; 177.07] of means, a vector σ = [25.13; 60.46] of standard deviations, and
a vector p = [0.52; 0.48] of weights (Figure 12).
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Table 3. Descriptive statistics for the LIN apparent conductivity and the filtered in-phase component
of the EM31 response.

KERRYPNX LIN ECa
(mS/m)

Filtered In-Phase 1

(ppt)

Mean 127.28 4.88
Median 108.84 4.74

Standard Deviation 66.06 2.19
Variance 4364.54 4.81

IQR 94.57 2.91
Q1 1 76.43 3.37
Q3 1 171.00 6.28

Minimum 6.54 -1.43
Maximum 371.06 11.22

CV (%) 51.91 44.95
Skewness 0.88 0.16
Kurtosis 3.16 3.08

1 ECa values without the outliers.
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Figure 12. (a) Histogram of the LIN ECa with (b) the overlay of its probability density function (red
curve) along with the mixture fitting curves (the blak curve is the probability density function of the
component φ1 in equation (5); the blue curve is the probability density function of the component φ2

in equation (5)).

3.2.2. Geostatistical Analysis

Spatial statistics were then used to produce reliable maps and the relevant estimation
errors. All variograms were computed with a lag distance of 3.3 m, with a tolerance
of ±0.5 the lag distance, to a maximum distance of about 120 m, which is about one
third of the diagonal length of the investigated area. The graphical representation of the
omnidirectional variograms for both filtered (without outliers), LIN ECa, and filtered P
component are shown in Figure 13. The notable feature of both omnidirectional variograms
is that they do not have a stable sill so that both LIN ECa and P component data have a
global trend. A nested spherical and power model was fitted to the apparent conductivity
variogram while the variogram of the P data was fitted well by a nested spherical and
linear model with a nugget effect, which is an indicator of short-range randomness due to
the presence of small metallic objects randomly spread in the area. Table 4 summarises the
parameters of the variogram models (Appendix B) fitted to the data and their validation
information.
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Figure 13. Omnidirectional variograms of the apparent conductivity (a) and the in-phase component (b).

Table 4. Variogram parameters and their validation.

Variable Model Slope Exponent Nugget C0 Partial Sill C Range a (m) Sill C0 + C R2

ECa 1 Spherical 0 1800 37
2380 0.9978Power 1.2 580 (*) 30 (*)

In-phase 1 Spherical 1.5 2 15.5
3.5 0.9829Linear 0.0085

ECa 2 Spherical 30 2300 37 2330 0.9504
ECa 3 Spherical 30 2000 37

2730 0.9995Power 1.63 700 38

1 Omnidirectional; 2 Directional N136◦; 3 Directional N46◦; Slope and Exponent are parameters for linear and
power models, respectively; R2 measures the goodness of fit. (*) Equivalent partial sill, Ceq, and equivalent range,
aeq [64].

In order to better visualise the spatial variability along different directions and to find
the direction of the trend, we also calculated variogram maps and directional variograms,
spanning all angle directions at 3◦ intervals. Thanks to the very high number of observa-
tions, we were able to reliably calculate variograms with a small angular tolerance (±9◦)
and high detail. Figure 14 shows the plots for the LIN ECa, which is the variable on which
we focus our attention in the following sections.

The variogram map shows no evidence of anisotropy to lag distances of about 35–37 m,
since the variogram values from all directions are nearly the same at this range (see the
dashed circle in Figure 14a). The sill variances change beyond the range of about 35–37 m.
The sill remains flat along the north-west-to-south-east direction, whereas in the south-west-
to-north-east direction it continues to increase for all lag distances. Figure 14b shows the
experimental and fitted variograms along the angular directions of the greatest (N136◦) and
the smallest (N46◦) spatial continuities. Along the first angular direction, the variogram
is stationary and is well-fitted with a spherical model. In the other direction, the non-
stationary variogram is fitted by a nested spherical and power model. A very small nugget
effect was calculated in both cases. The notable feature of the non-stationary variogram is
that it is concave over lag distances beyond the range, indicating a trend in the apparent
conductivity data along the N46◦ direction. This can be explained by the topography, which
has a maximum slope along the same direction.
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Figure 14. (a) Variogram map of the LIN ECa; (b) directional variograms of the LIN ECa calculated
along directions of greatest (N136◦) and smallest (N46◦) spatial continuity. The radius of the dashed
circle in (a) is 37 m, which is the variogram range estimated for all directions.

3.2.3. Correlation between Conductivity and Topography

Figure 15 shows a plot of the LIN ECa versus elevation that we initially considered to
estimate the correlation between them, as suggested by [51]. As mentioned above, points
of the scatter plot do not have a well-defined lower limit allowing a curve representing the
background apparent conductivity to be drawn.
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Figure 15. Plot of apparent conductivity corrected for nonlinearity as a function of elevation. The
red line represents the background (LIN) apparent conductivity estimated by a nonlinear forward
modelling.

However, statistical and geostatistical analyses clearly indicate that data suffer the
influences of topographical variations. The variogram analysis clearly proves that apparent
conductivity shows a trend along the direction of the greatest slope of the elevation. More-
over, the bimodality distribution of the LIN ECa allows us to consider it as the result of two
data populations (Figure 12b). We related the population with a mean of 81.42 mS/m to
the background apparent conductivity, while the other, with a mean value of 177.07 mS/m,
was related to the heterogeneities due to landfill materials. Therefore, we estimated the
background apparent conductivity in the following way: for each point where the experi-
mental dataset was collected, we set up a simple nonmagnetic subsurface model consisting
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of one layer, and having an electrical conductivity of 40 mS/m and a thickness equal to
the ground elevation, over a half-space with an electrical conductivity of 300 mS/m. Then,
using FDEMtools [44] we simulated nonlinear apparent conductivities adopting an EM31
device operating at the height of 0.9 m, the same that was used for the experimental data
acquisition. Finally, after removing the bias introduced by the nonlinearity of the instru-
ment, we were able to get apparent conductivity values across the area with a mean value
(82.07 mS/m) very close to the peak value of the first component of the mixed distribution
(Figure 12b). The red curve in Figure 15 is the plot of the estimated background of the LIN
apparent conductivity versus elevation, while Figure 16 shows the map of the LIN apparent
conductivity that we used as the background conductivity to normalise the LIN-corrected
experimental one.
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Figure 16. —Background apparent conductivity from nonlinear forward modelling.

3.3. Apparent Conductivity Map Interpretation

Figure 17 shows apparent conductivity and in-phase maps generated interpolating
filtered data into a regular grid with a 3 × 3 m cell size, applying the universal kriging
interpolation method with the appropriate variogram models. The pattern of the LIN ECa,
which ranges from 10 mS/m to about 430 mS/m, clearly reveals areas of both low and very
high conductivity (Figure 17a). Apart from some conductive zones at the southern and
western borders of the site, which are still visible although the outliers have been filtered
out, more than half of the site is characterised by conductivities higher than 100 mS/m. In
particular, two strong conductive anomalies can be distinguished in the map. The wider
one, in the central-eastern portion of the site (area A), is irregular in shape but it appears
elongated as a whole in the south-to-southeast, north-to-north-west direction; the smaller
one is located in the north-western portion of the site (area B), with an elongated shape
in the south-to-south-west, north-to-north-east direction. The in-phase map (Figure 17b)
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shows filtered values (without outliers) ranging from 0 ppt to about 10 ppt, with a spatial
pattern similar to that of the apparent conductivity; the areas with higher conductivity
values (A and B) in general coincide with the higher in-phase values, which are consistent
with those arising from the conductive property of the material (see the simulated P
response of the EM31 over a range of half-space conductivity extending to 500 mS/m in
Figure S3 of the Supplementary Materials). The lowest ECa values lie in the south-western
part of the site but low values are also found in two smaller areas near the north-western
and north-eastern corners.

Remote Sens. 2022, 14, x FOR PEER REVIEW 22 of 31 
 

 

 

Figure 17. (LIN) apparent conductivity map (a) and in-phase component map (b). The dashed lines, 

which approximate the smoothed 100-mS/m contour line, indicate the boundary of the apparent 

conductivity anomalies described in the text. 

In order to interpret from a qualitative point of view the conductive anomalies and 

to identify their causes, the LIN ECa map was overlain onto the 1989 and 1995 aerial pho-

tographs (Figure 18). The wider anomaly (in area A) almost perfectly matches the fan-

shaped area which had been rearranged between 1988 and 1989 (Figure 5), while the 

anomaly in area B matches the northern part of the wider dump, well visible in the 1995 

aerial photograph (Figure 6). The observed good match between historical photographs 

and the high-conductive areas looks even better in Figure 19, where the normalised ap-

parent conductivity, contoured with a constant logarithmic interval (see equation 3), is 

shown. Excluding the areas at the southern and western borders of the site where the 

effects of some surface man-made features (fences and metallic containers) may be still 

present, we assumed the 0 dB contour as a good representation of the waste boundary at 

the site (Figure 19). 

The spatial match between the normalised conductive anomalies and the details in 

aerial photographs is apparent. The way the electromagnetic data has drawn an accurate 

picture of different moments of the landfill history, and the excellent way the FDEM map-

ping synthesised this history, simultaneously portraying these pictures, is impressive and 

somewhat surprising. The conductance signatures of the landfill materials dumped at the 

site over the years appear well-defined and distinct, despite the successive various earth-

works over time. The anomalies of high apparent conductivity may indeed be due to the 

presence of highly conductive materials in the landfill (e.g., organic waste in an advanced 

degree of biodegradation), which probably contain leachate or which are at least in contact 

with groundwater with a high content of totally dissolved solids. 

 

Figure 17. (LIN) apparent conductivity map (a) and in-phase component map (b). The dashed lines,
which approximate the smoothed 100-mS/m contour line, indicate the boundary of the apparent
conductivity anomalies described in the text.

In order to interpret from a qualitative point of view the conductive anomalies and
to identify their causes, the LIN ECa map was overlain onto the 1989 and 1995 aerial
photographs (Figure 18). The wider anomaly (in area A) almost perfectly matches the
fan-shaped area which had been rearranged between 1988 and 1989 (Figure 5), while the
anomaly in area B matches the northern part of the wider dump, well visible in the 1995
aerial photograph (Figure 6). The observed good match between historical photographs and
the high-conductive areas looks even better in Figure 19, where the normalised apparent
conductivity, contoured with a constant logarithmic interval (see equation 3), is shown.
Excluding the areas at the southern and western borders of the site where the effects of
some surface man-made features (fences and metallic containers) may be still present,
we assumed the 0 dB contour as a good representation of the waste boundary at the site
(Figure 19).

The spatial match between the normalised conductive anomalies and the details in
aerial photographs is apparent. The way the electromagnetic data has drawn an accurate
picture of different moments of the landfill history, and the excellent way the FDEM
mapping synthesised this history, simultaneously portraying these pictures, is impressive
and somewhat surprising. The conductance signatures of the landfill materials dumped
at the site over the years appear well-defined and distinct, despite the successive various
earthworks over time. The anomalies of high apparent conductivity may indeed be due
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to the presence of highly conductive materials in the landfill (e.g., organic waste in an
advanced degree of biodegradation), which probably contain leachate or which are at least
in contact with groundwater with a high content of totally dissolved solids.
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Figure 19. Superposition of the normalised apparent conductivity map (in dB) and the aerial pho-
tographs taken in 1989 (a) and in 1995 (b). The points indicated as Pz1, Pz2, and Pz3 are the locations
of three boreholes drilled after the geophysical survey.
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4. Ground Truthing

In a follow-up geophysical survey, based on the results described in this work, a
total of 14 electrical resistivity tomography (ERT) and induced polarisation tomography
(IP) profiles were conducted, thirteen of which were inside, and one was outside the area
(Figure 20a). Data were collected with a Syscal Pro resistivity metre by performing roll-
along surveys with 48 electrodes with a 2 m spacing, deployed in a dipole-dipole array.
Both apparent resistivity and IP data were inverted using the Res2Dinv software package.

For a quantitative interpretation of the geophysical surveys after they were completed
and before completing the site characterisation plan, three boreholes were core drilled.
The location of boreholes (Figures 19 and 20a) was selected to investigate the subsurface
materials in three areas, where marked differences in both EMI apparent conductivity and
ERT resistivity were observed. Borehole Pzl was located in an area that should have been
undisturbed on the basis of aerial photography and geophysical results; it should not have
intersected, if not marginally, landfill materials. The other two boreholes were located in
two areas with high values of electrical conductivity, where waste materials were supposed
to be found. In detail, borehole Pz2 was located in an area where topsoil and very shallow
materials showed relatively low resistivity (about 30 Ωm), while borehole Pz3 was drilled
in an area with highly resistive shallow materials (>500 Ωm). The stratigraphic columns
for each borehole are sketched in Figure 20c.

Near borehole Pz1, ERT L1 (Figure 20b) shows resistivity values between 20 and
80 Ωm, which are quite similar to the background values detected with the ERT profile
conducted outside the area (not shown in Figure 20a). Although the stratigraphy shows
the presence of waste materials (even if in minimum quantity) in the shallowest portion of
the soil (down to 1.6 m below ground surface), the core materials were typical of the local
geology (from fine-grained sands to silty sands, with increasing moisture content). Besides,
groundwater sampled at a depth of 5.20 m (−0.4 m above sea level [asl]) did not show
signs of contamination, although it was found lightly brackish, with a specific conductance
of 1463 µS/cm (146.3 mS/m), probably due to the presence of silty sand and sandy clay.
Neither the information from borehole Pz1 nor the interpreted ERT showed the presence of
waste materials or signs of contamination. This totally agrees with what the aerial photos
documented and with what the electromagnetic map shows.

At the location of borehole Pz2, beneath the shallowest layer made of fine-grained
sand with gravel mixed with waste, 4 m (between 2.7 m and −1.3 m asl) of uncompacted
waste materials with high moisture content at the bottom are present. As shown by ERT
line L2 (Figure 20b), the electrical resistivity lowers to 5 Ωm at the bottom of the layer
and it retains similar values even beneath the waste layer (−6 m asl). Water chemistry
analyses from samples collected at a depth of 7 m (−3.6 m asl) gave a highly specific
conductance of 6120 µS/cm (612 mS/m) that justifies the low ERT values near the borehole.
These low resistivity values, which are in a good agreement with the apparent electrical
conductivities mapped through the electromagnetic survey, were attributed to a conductive
layer made of materials saturated by highly conductive fluids and with a concentration of
pollutants above regulation limits (from the chemical analysis of the waters carried out for
the characterisation plan).

Comparing the stratigraphy of borehole Pz3 with the ERT line L3, a perfect match is
evident between the top layer of dry waste and the shallow resistive portion; the bottom
of the waste materials, at a depth of 1.70 m, coincides with the iso-resistive 100 Ωm at the
same depth (1.5 m asl). Going deeper and up to a depth of 3.70 m, the silty sands and wet
silty sands, locally with waste, are responsible for the resistivity lowering from 100 Ωm to
about 10 Ωm. Underneath, between elevations of −0.5 m and −1.70 m asl, a second layer of
waste is present, this time completely saturated with water, as it is located under the water
table. In the corresponding portion of the tomographic section, the electric resistivity shows
values of less than 10 Ωm, reaching its minimum values under the waste layer. These
resistivity values agree with the specific conductance (6720 µS/cm) of the water collected at
a depth of 6 m (−2.80 m asl). The characterisation plan showed the presence of pollutants
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with concentrations exceeding the legal limit, and it ascertained that the most conductive
portion imaged by the ERT below the waste encountered by borehole Pz3 was due to the
presence of a leachate plume in the fine-grained sands down to an elevation of about −7 m
asl. All this represents a further ground truth of the electromagnetic mapping survey.
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described here); (b) ERT results along profiles L1, L2, and L3, plotted with the mapping software
package Surfer (Golden Software, LLC); (c) lithologic logs based on core soil analysis from each
borehole.
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5. Conclusions

At the time of the geophysical survey, nearly 25 years had elapsed since the time
landfill operations probably started at the Bacàsara site. In spite of this, it was possible
to successfully verify the presence of waste, corresponding to the presence of electrical
conductivity anomalies produced by the decomposition processes active for decades on the
waste materials. The effectiveness of ground electrical conductivity mapping to delineate
the lateral extent of abandoned waste disposal sites, dumps, or illegal landfills has long
been demonstrated. However, care must be paid when a quantitative analysis of the
EMI data is made. As landfill waste generally has high electrical conductivity, the limits
posed by the low induction number assumption are usually exceeded, and the instruments
manifest a nonlinear response that must be accounted for in order to produce maps that,
even though still in the form of apparent electrical conductivity, mimic at best the lateral
variability of electrical conductivity heterogeneities associated with the presence of landfill
waste. Topography and instrument operating heights are other factors to take into account
to derive quantitative conclusions about the electrical conductivity of the in-situ material.

In this study we demonstrate the need and value for an appropriate processing and
mapping of EMI data in such situations, in order to reduce errors from bias due to the
nonlinear device response and the operating height. We also demonstrate how statistical
and geostatistical data analyses, combined with the modelling of the electromagnetic
device response, represent a suitable procedure to estimate the background apparent
conductivity, which is required to remove the bias due to the topographical variations. This
procedure may be a valuable alternative for estimating the background conductivity, when
lateral heterogeneities in the subsoil prevent a clear correlation between conductivity and
topography. The results show how a quantitative assessment of the electrical conductivity
values allows a more accurate delineation of the landfill extent. Ground truthing data
provided by historical aerial photographs and by three boreholes core-drilled on the basis of
the apparent conductivity map provided independent evidence concerning the soundness
of the results we obtained.

The present study represents yet one good example of how a combination of extensive,
non-invasive geophysical measurements, integrated with remote sensing analysis (histori-
cal aerial photographs), and supported by local ground truthing, can provide answers to the
need for landfill characterisation, even with only scattered and limited a priori information.
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Abbreviations
The following abbreviations are used in this manuscript:
AIC Akaike’s information criterion
B Induction number
BC Binomial coefficient
CV Coefficient of variation
dB Decibel
ECa Apparent electrical conductivity
EMI Electromagnetic induction
ERT Electrical resistivity tomography
FDEM Frequency-domain electromagnetic
GPS Global positioning system
HCP Horizontal coplanar
IGM Italian Military Geographic Institute
IP Induced polarization
IQR Interquartile range
K Kurtosis
LIN Low induction number
LIN ECa Apparent electrical conductivity at LIN condition
P In-phase component
Q Quadrature component
Q1 First quartile
Q3 Third quartile
RMSE Root-mean-square error
S Skewness
SD Standard deviation
UTM Universal Transverse Mercator
VCP Vertical coplanar
WGS84 World Geodetic System 84

Appendix A

To test the multimodality of both ECa and in-phase data we used the following
MATLAB function:

[H, P, h] = bootmode(x, m, B, kernal), (A1)

available online at the link www.mathworks.com/matlabcentral/fileexchange/66671-
bootmode (accessed on 2 December 2021). The input parameters are the data vector,
x, the modality or the number of modes, m, the number of bootstrap replicates, B, and the
distribution density, kernel. The outputs are the critical bandwidth h, the significance level
P, also indicated as p-value, and a parameter H whose possible values 0 or 1 indicate that
the null hypothesis cannot or can be rejected at the 5% significance level.

Table A1 lists critical bandwidths and significant levels for test of null hypothesis that
the distribution density has at most m modes against the alternative hypothesis that it has
more than m modes. In particular, the p-values are computed by simulating from a critical
density, using a Gaussian density kernel and B = 1000 replications of 28,970 data in each
case. The grey rows in the Table A1 show the test results indicating the estimated modality
for the two datasets, that is, the smallest m where the null hypothesis can be accepted.

www.mathworks.com/matlabcentral/fileexchange/66671-bootmode
www.mathworks.com/matlabcentral/fileexchange/66671-bootmode
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Table A1. Results from multimodality testing using the Gaussian kernel.

Apparent Conductivity In-Phase Component

Modality Critical
Bandwidth

Significance
Level H Critical

Bandwidth
Significance

Level H

1 11.088 0.000s 1 0.2437 0.340 0
2 7.5971 0.180 0 0.2388 0.020 1
3 6.8776 0.056 0 0.1881 0.072 0
4 6.1645 0.028 1 0.1637 0.150 0
5 5.0021 0.170 0 0.1190 0.918 0

Appendix B

Spherical Model
The spherical model is defined by the equation

γ(h) =


0, h = 0

C0 + C
[

3
2

h
a −

1
2

(
h
a

)3
]

, 0 < h < a

C0 + C, h ≥ a

(A2)

where C0 is the nugget, C is the partial sill, a is the range.
Power Model
The equation of the power model is

γ(h) = C0 + αhn, (A3)

where C0 is the nugget, α is the slope, and n is the exponent (0 < n < 2). The power model
has not sill nor range. However, since the slope can be expressed in the terms of equivalent
partial sill and equivalent range [64],

α = Ceq

(
1

aeq

)n
, (A4)

The power model can be also defined as

γ(h) = C0 + Ceq

(
h

aeq

)n
. (A5)

Linear Model
The linear model results from the power model (A3) when the exponent is n = 1 :

γ(h) = C0 + ah (A6)

or, in terms of equivalent parameters,

γ(h) = C0 + Ceqh (A7)

putting the equivalent range aeq1.
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