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ISOGEOMETRIC ANALYSIS: A POWERFUL NUMERICAL TOOL FOR THE

ELASTIC ANALYSIS OF HISTORICAL MASONRY ARCHES

ANTONIO CAZZANI, MARCELLO MALAGÙ, AND EMILIO TURCO

Abstract. We illustrate a numerical tool for analyzing plane arches such as those fre-
quently used in historical masonry heritage. It is based on a refined elastic mechanical
model derived from the isogeometric approach. In particular, geometry and displacements
are modeled by means of Non-Uniform Rational B-Splines (NURBS). After a brief intro-
duction, outlining the basic assumptions of this approach and the corresponding modeling
choices, several numerical applications to arches, which are typical of masonry structures,
show the performance of this novel technique. These are discussed in detail to emphasize
the advantage and potential developments of isogeometric analysis in the field of structural
analysis of historical masonry buildings with complex geometries.

1. Introduction

In the last ten years the so-called isogeometric approach was largely applied to various
field of the mechanics. Starting from the seminal works [1], many extensions are con-
tained in [2] and [3] and concern a wide range of problems such as vibrations and wave
propagations, nearly incompressible solids, fluids, fluid-structure interaction. Isogeometric
approach generalizes some ideas already used both in finite elements, see [4, 5, 6, 7], and
boundary elements [8, 9] which use 2nd-order spline interpolation for displacements for
finite elements and displacements and tractions for boundary elements.

The advantages of the isogeometric approach with reference to classical finite elements
lie basically in the use of the same tools adopted by Computer Aided Design (CAD), Com-
puter Aided Engineering (CAE) and Computer Aided Manufacturing (CAM) and in the
ability to represent in an exact way conic sections such as circles and ellipses. To better
understand this issue, most software packages currently used for architectural design are
precisely based on such CAD techniques: hence the ability to perform structural analyses
on the same model used for design is extremely appealing. Up to now, however, researchers
have concentrated most of their efforts on 2-D and 3-D continuum models or on shell-like
structures [10, 11, 12]. Only recently some papers on 1-D problem appeared, even though
they were particularly concerned on locking control, see [13, 14, 15, 16, 17, 18].

This suggests us to develop a curved Timoshenko beam element based on NURBS
interpolation both for geometry and displacements. In [19] some details about the accuracy,
the convergence and the computational cost of this approach are reported. Here the focus is
on technical examples which are meaningful from the architectural point of view. Some of
them are inspired by famous historical building, and are used to show the main features of
the proposed approach. In particular, we investigate deformations and stresses in masonry
arches. The presented results descend from the numerical simulation produced by the
proposed theoretical model. Of course, the correspondence of such results to the behavior
of existing structures (detected by means of field tests) can only be ascertained a posteriori.
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2 Isogeometric analysis: a powerful num. tool for elastic analysis of hist. mas. arch.

Therefore, based on a thrust line approach the presented method is used for a preliminary
study on the stability of masonry structures. We highlight that buckling problem are not
considered in this paper. Interested readers can found some insights in [20, 21, 22, 23] and
the papers cited therein.

The paper is organized as follows. First, we discuss, Section 2, the principal guidelines
of the NURBS interpolation and the basic key points to build a mechanical model based
on the isogeometric approach. Successively, some numerical results are presented and
discussed in Section 3 to assess the performances of this numerical model. Finally, in
Section 4 there are some concluding remarks and future developments.

2. Isogeometric model of plane curved beams with shear stiffness

Non-Uniform Rational B-Spline (NURBS) curves have been largely used in CAD, CAM
and CAE for some decades. They constitute a smart way to construct lines, surfaces and
solids which are somehow smooth. Essentially, the heart of the technology is based on
the so called Bézier curves (which take their name from this French engineer, working in
the automotive industry Renault, who used them for the first time to design the shape of a
car body) and have been precisely defined in 1959 by de Casteljau’s recursive algorithm.
By referring the interested reader to the specialized book [24] for an extended discussion
of NURBS, both from theoretical and algorithmic point of view, here only the main key-
points will be outlined.

The starting point is the definition of a polynomial curve of order n by means of n + 1
control points which define the so-called control polygon, see Figure 1. The most impor-
tant characteristic of these curves is the invariance for affine transformation: each isometric
transformation, such as translation, rotation and reflection, can be applied to the curve sim-
ply applying it to the control points. The peculiar drawback of Bézier idea is the global
nature of the interpolation: modifying one single control point changes the entire curve.
This disadvantage is overcome by the B-spline concept: the curve is obtained joining sev-
eral Bézier curves and preserving the desired continuity: as a consequence each control
point modify only a part of the whole curve. However, B-splines cannot exactly represent
circles or ellipses and, furthermore, they are non invariant under a projective transforma-
tion. Conversely, NURBS, besides being invariant under projective transformations, are
able to represent exactly conic sections, even those different from a parabola. This, in
practice, is realized by assigning to each control point a weight which is able to attract the
curve or to push it away with respect to the control point, as it is outlined in Figure 1.

The keystone to build the numerical model is the NURBS representation of a curve. By
referring to [24] for a systematic exposition on this argument, here we recall only the bases
useful to construct the numerical model. We say that a curve x has a p-degree NURBS
representation when there exist n ∈ N, control points Pi ∈ R

3, weights gi ∈ R, i = 1...n, and
a knot vector, i.e. a set Ξ =

{

0 = ξ1 ≤ ξ2 ≤ ... ≤ ξn+p+1 = 1
}

such that, for any ξ ∈ [0; 1]:

x(ξ) =
n
∑

i=1

Ri,p(ξ)Pi, (1)

where the NURBS basis {Ri,p(ξ)} can be expressed as:

Ri,p(ξ) =
Bi,p(ξ)gi

∑n
i=1 Bi,p(ξ)gi

, (2)
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control point
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Figure 1. NURBS basics: control points (•), control polygon, curve and control point weights
influence.

in terms of B-splines bases {Bi,p(ξ)} defined by the Cox-De Boor recursive formula (see
also Figure 2 for their graphical representation up to 2nd order):

Bi,0(ξ) =

{

1
0

if ξi ≤ ξ < ξi+1

otherwise
, (3)

Bi,p(ξ) =
ξ − ξi

ξi+p − ξi

Bi,p−1(ξ) +
ξi+p+1 − ξ

ξi+p+1 − ξi+1
Bi+1,p−1(ξ). (4)
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Figure 2. B-spline bases up to 2nd order (on the abscissae there are knot indexes).

The so-called knot vector Ξ defines a partition of the parameter space [0; 1] similar
to the classic finite element subdivision, see Figure 3. Non-uniform knot vectors and re-
peated knots are the key ingredients of NURBS flexibility and produce refined geometric
descriptions. Weights gi related to ith control point enlarge the capabilities of the B-splines
interpolation allowing also an exact representation of conic sections, see again Figure 1.
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ξ0 1

Figure 3. NURBS basics: element subdivision and knots (�).

Among all the properties of NURBS interpolation the most interesting is the high-
degree of continuity. More precisely, each pth order function is of class Cp−1, i.e. it is
continuous with its derivatives up to the (p − 1)th order, and in particular it is smooth on
the inter-element boundaries (knots) but not on the NURBS boundaries (patch). However,
if necessary, continuity degree can also be lowered by using repeated knots, see Figure 4
and Figure 5.
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Figure 4. NURBS control using repeated knots: lowering the continuity at the 4th knot for 2nd
order NURBS (on the abscissa there are knot indexes).

NURBS tool can be used to efficiently describe the geometry of a wide range of curves
both in 2-D and 3-D. In order to build our numerical model, now we consider a curved
plane beam (see Figure 6) whose centroid line is a plane curve parametrized by the arc-
length s ∈ [0; ℓ]. We suppose also that one of the principal inertia axis and the shear center
of the cross-section lie in the same plane. Let the global reference system be denoted by
(O; x1, x2) and the local one by (o; t, r), t and r being respectively the tangent and the
normal unit vectors to the curve. Moreover, we denote by R the curvature radius and by
(·)′ the derivatives with respect to the arc-length s. With this notation, the differential form
of equilibrium and kinematic compatibility equations describing the curved Timoshenko
plane beam problem in the local reference system are:

N′ −
T

R
+ qt = 0, T ′ +

N

R
+ qr = 0, M′ − T + m = 0, (5)

ε = u′ −
w

R
, γ = w′ +

u

R
+ ϕ, χ = ϕ′. (6)
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Figure 5. NURBS control using repeated knots: lowering the continuity for 4th order NURBS.
The resulting continuity order at all control points is also shown (on the abscissa there are knot
indexes).
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Figure 6. Plane curved beam: centroid line and reference systems.

Here, N, T and M denote the generalized stresses (axial and shear force and bending mo-
ment, see Figure 6 for the definition of positive quantities) and qt, qr and m the generalized
external forces per unit length (tangent and radial forces and distributed couple moments).
In the local reference system u and w are the displacements of the axis line and ϕ the sec-
tion rotation while ε, γ and χ denote the generalized strains (axial, shear and curvature
bending).

Winkler’s model appears a good compromise between simplicity and mechanical coher-
ence. Furthermore, when the ratio h/R is small enough (h being the depth of the cross-
section) the strain energy is practically indistinguishably from that derived from de Saint-
Venant approach for a straight beam:

φ = EAε2 + EJχ2 +GA∗γ2 (7)

Here, the above-mentioned definition of the strain energy has been used, while a more
complete discussion on this topic will be presented in a forthcoming paper.

The curved beam problem can now be set in an equivalent variational formulation, such
as the classical principle of total potential energy, which is certainly more suitable for a
solution strategy based on finite elements:

arg min
u,w,ϕ

{

1
2

∫ ℓ

0
φds −

∫ ℓ

0
(qtu + qrw + mϕ)ds

}

. (8)

The main idea of the isogeometric approach is to exactly describe the geometry of the
problem by NURBS interpolation and to use the same interpolating basis to represent the
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generalized displacements:

u(ξ) ≈
n
∑

i=1

Ri,p(ξ)ui, w(ξ) ≈
n
∑

i=1

Ri,p(ξ)wi, ϕ(ξ) ≈
n
∑

i=1

Ri,p(ξ)ϕi, (9)

by means of control points ui, wi, and ϕi.
Using the dot to denote the derivatives with respect to ξ and denoting by J the Jacobian

of the transformation, we have:

J = ṡ =

√

ẋ2
1 + ẋ2

2, R =
J3

|ẋ1 ẍ2 − ẍ1 ẋ2|
, (10)

thus, the generalized strains take the form:

ε =
u̇

J
−

w

R
, γ =

ẇ

J
+

u

R
+ ϕ , χ =

ϕ̇

J
. (11)

Finally, problem (8) can now be discretized as:

arg min
u,w,ϕ















1
2

ne
∑

e=1

∫ ξe+1

ξe

φeJdξ −

∫ ξe+1

ξe

(qtu + qrw + mϕ)Jdξ















. (12)

where ne is the number of subdivision of the parameter space. Enforcing (12) produces a
linear system of algebraic equations whose unknowns are the values of the control point
parameters ui, wi and ϕi, which completely define the deformed shape of the beam.

To set up the stiffness matrix and the load vector it is necessary to evaluate some inte-
grals: this task can be performed numerically by using the Gauss quadrature rule, even if
the integrand functions are somewhat different from polynomials. Some guidelines about
the number of Gauss points to be used for an efficient quadrature, can be deduced from [3]
and from [19].

3. Numerical results

Here, the numerical results which are relevant to some arches, having a sound archi-
tectural and technical interest, are presented. For each arch, the deformed shape of the
centroidal axis along with the diagrams of axial, shear and bending stresses and strains
and the thrust line (referred to the arch outline) are shown: all these follow from an elastic
analysis, where masonry is considered equally reacting to compressive and tensile stresses.
All computations have been performed assuming constant values for material parameters.
However, the code can deal with material parameters whose values are variable, provided
their position-dependence is known.

It should be emphasized that according to Heyman’s safe theorem [25], [26], [27] an
elastic analysis provides acceptable results in term of the thrust line only if such line strictly
lies within the strip enclosed between the intrados and the extrados; otherwise a limit
analysis explicitly accounting for the no-tension material nature of masonry is required.

In general, therefore, the safety of an arch cannot be established by an elastic analysis
only; however, if an elastic analysis provides an acceptable thrust line, then this is sufficient
to ensure that for the given load condition the arch is safe. A deeper discussion of these and
other issues for the assessment of the mechanical response of historic masonry buildings
can be found in [28] and in [29]. Different arch examples can be found, instead, in [19]:
there results are compared with analytical solutions and the output of other finite elements
already presented in technical literature.

For all numerical tests an ad hoc developed MATLAB code has been used, whose graph-
ical user interface is shown in Figure 7. It is essentially based on NURBS algorithms
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reported in [24] (and later coded in a NURBS library) and on the GeoPDEs library, see
[30]. The code is able to treat both arches having one of the most usual shapes, such as the
circular, lancet, elliptic, parabolic one and arches whose geometry can be user-defined by
means of control points in a standard DXF format. Particularly attention has been paid to
the interface in order to make simple each data modification and so usable also in a design
process.

Figure 7. Graphical user interface of the Arch-NURBS code.

3.1. A circular arch. For the first test one of the circular arches of the nave of Saint
Saturnino church in Cagliari, Sardinia is considered. Figure 8 shows a view of the church
facade (a) and of the considered arch (b) which can be exactly located from the plan (c)
and the longitudinal cross-section (d) which are reported in the same figure.

The underlying St. Saturnino arch was accurately studied both from a geometric and
mechanical point of view. It is characterized by an inner radius Ri = 1.67 m, an outer radius
Re = 2.03 m and a depth d = 0.70 m, see Figure 9. It is formed by yellow limestone blocks
whose properties are: Young’s modulus E = 65 GPa and Poisson’s ratio ν = 0.1. A vertical
uniformly distributed load qv = 243 kN/m, deriving for an accurate load analysis, has been
considered besides the dead load of the arch and of the spandrel: both of them are based
on a mass-density ρ= 2300 kg/m3.

In order to select the number of elements and the degree of the NURBS we can look at
some results presented in [19]. It turns out, in particular that for a semicircular arch sub-
jected to a vertical distributed load, 16 elements of 4th order are sufficient to reduce to less
than 0.1 % the error on the generalized stresses; the error on displacements is, of course,
much less, since the adopted model relies on a displacement-based formulation. Therefore,
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we use this mesh for the Saint Saturnino arch. Figure 10 reports a plot of the deformed
shape of the centroid line superimposed to the undeformed one (a) and generalized strains
ε, γ and χ (b), while Figure 11 reports generalized stresses N, T and M (a) and the thrust
line (b). From the analysis we point out that the vertical displacement of the keystone is
0.22 mm; the normal force N lies in the range -484.40 kN ≤ N ≤ -246.07 kN (i.e. it is
always a compressive one); the shear force T varies between -246.69 kN and 246.69 kN
and the bending moment is such that -79.045 kNm ≤ M ≤ 44.309 kNm. Finally, we note
that the thrust line lies always inside the region bounded by the intrados and the extrados
of the arch.

(a) Front view (b) Circular arches

(c) Plan (d) Cross-section

Figure 8. Church of Saint Saturnino, Cagliari (Sardinia): front view (a), circular arches (b),
plan (c) and cross-section (d).

3.2. A lancet arch. We also consider a lancet arch typical of the gothic architecture such
as, for example, one of those appearing in the cloister of the Department of Architecture
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Ri

Re

qv

Figure 9. Circular arch from the church of Saint Saturnino: the adopted structural scheme.

of the University of Cagliari, see Figure 12(a). The structural scheme is reported in Fig-
ure 12(b). Geometry of the lancet is defined by the measured span s = 1.71 m and raise
r = 1.35 m. The rectangular cross-section has depth h = 0.4 m and thickness d = 0.4 m.
For the yellow limestone blocks the assumed properties are: Young’s modulus E = 65 GPa
and Poisson’s ratio ν = 0.1. A vertical uniformly distributed load was evaluated by means
an accurate load analysis giving qv = 24 kN/m, besides the dead load of the arch and of the
spandrel which were both based on a mass-density ρ 2550 kg/m3 and 2450 kg/m3 respec-
tively.

With these data, the lancet arch was analyzed using a mesh of 32 NURBS elements of
the 3rd order. This choice derives, as it is usual, by a convergence analysis performed both
on displacements and generalized stresses taking into account only the dead load, for which
an analytical solution exists, see [19]. Indeed, for these mesh the error on the displacements
is less than 0.0001 % while the errors on generalized stresses less than 0.4 %.

Figure 13 reports, in a graphical way, displacements (a) and generalized strains ε, γ and
χ (b) while Figure 14 reports the generalized stresses N, T and M (a) and the thrust line (b).
We underline a negligible vertical displacement of the keystone, which is less 0.01 mm,
a maximum compressive normal force equal to 21.103 kN while the shear force -6.159-
6.159 kN. The bending moment lies in the range between -1.1085 kNm and 1.400 kNm.
Finally, we note that the the thrust line is really close to the centroid line, and this shows
how effective are, from the viewpoint of structural design, lancet arches in Gothic architec-
ture.

3.3. A parabolic arch. The test is inspired by one of the arches sustaining the roof in the
loft of Milà house (also known as “la Pedrera”), one of the most famous creation by Gaudí,
see Figure 15(a).

Following the descriptions of [31] and of [32] and referring to Figure 15(b) for the struc-
tural scheme, the geometric data used to study this arch are: R = 2.8 m and R′ = 2.9 m. For
the constitutive parameters, we have assumed those available in technical literature to brick
masonry, i.e. Young’s modulus E = 30 GPa and Poisson’s ratio ν = 0.15. The rectangular
cross-section of the arch is assumed to be 0.50 m (depth) by 0.10 m (thickness). The arch
was analyzed for dead load and spandrel load based on a mass-density ρ = 1800 kg/m3 and
a vertical load qv = 50 kN/m. We remarks that these data are not derived from an accurate
load analysis but were only estimated.

A convergence analysis, not reported here for the sake of brevity, suggests the use of
4th order NURBS and 16 finite elements.
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Figure 10. Circular arch from the church of Saint Saturnino: displacements (a) and strains (b).

Figure 16 reports, as before, a plot of displacements (a) and generalized strains ε, γ
and χ (b) while Figure 17 reports generalized stresses N, T and M (a) and the thrust line
(b). In this case, we note that the maximum value of the axial force is Nmax = -163 kN
while shear force is practically negligible. The bending moments is somewhat small, too.
The thrust line runs close to the centroid line of the parabolic arch, as it is expected, since
the parabola is the funicular line for a uniformly distributed load along the projection of
the span. Furthermore, as indicated in Figure 16 the displacement are small. Indeed, the
maximum vertical component is about 0.05 mm

It is somehow interesting to compare, for the same values of loads and mechanical
properties, the behavior of this parabolic arch with that of a circular arch having the same
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(b) Thrust line

Figure 11. Circular arch from the church of Saint Saturnino: stresses (a) and thrust line (b).

span. Figure 18 shows the generalized stresses, (a), and the thrust line, (b), for the equal
span circular arch. It is clear that although the axial force is comparable in both cases,
the shear force is now about fortyfold larger, while the bending moment, which is about
tenfold larger, produces a thrust line somewhat far from the centroid line: in particular, at
the keystone it lies out of the cross section boundary.

3.4. An ogee arch. Finally, we consider the structural scheme of an ogee arch, like that
depicted in Figure 19, along with its construction rules, based on four equal equilateral
triangles whose completely defined by the main geometric parameter R. The used data are
R = 1 m and a rectangular cross-section having depth h = 0.3 m and thickness b = 1 m.
The material data are those corresponding to a typical sandstone, i.e. Young’s modulus
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(a) Lancet arches
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Figure 12. Lancet arch: view of the convent cloister (a) and structural sketch (b).

E = 65 GPa and Poisson’s ratio ν = 0.15. A concentrated load F = 20 kN applied at the
keystone, a uniformly distributed vertical load qv= 10 kN/m and a dead load corresponding
to a mass-density ρ= 2300 kg/m3 are simultaneously acting on the arch.

For this problem, a reference solution is not available and so was it studied by means
of a convergence analysis, which ensured that results in terms of both displacements and
generalized stresses are stable by using 8 elements based on 5th order NURBS on one-half
of the arc, when symmetry is accounted for.

In Figure 20, displacements (a) and generalized strains (b), and in Figure 21, generalized
stresses (a) and the thrust line (b), for one-half of the ogee arch are respectively reported.
From these plots we observe that the maximum value of the compressive axial force N is
equal to 37.976 kN while that of the shear force T (occurring at the impost) is 18.640 kN;
the bending moment range goes from -1.7925 kNm to 4.5413 kNm leaving the thrust line
close to the centroid line. Displacements are negligible, since the vertical component at
the keystone is less than 0.01 mm.

4. Concluding remarks

A quick tool for the elastic analysis of plane arches has been presented. The model
is based on the isogeometric approach and provides the full advantages that such kind of
interpolation, both for geometry and displacements, exhibits, viz. a high accuracy due
to the refined representation of the geometry. Displacements, generalized stresses and
thrust line can be calculated and represented in graphical way in a snap: this feature is
particularly useful for interactive design and is particularly suitable when dealing with
structural rehabilitation problem in historical buildings.

The thrust line representation is particularly suggestive since, thanks to the safe theorem

proposed by Heyman [25, 26, 27] it is a powerful tool for analyzing and understanding the
structural behavior of arches (see [33, 34, 35]). Indeed it ensures that from the statics
point of view, an arch is safe as long as, for the given load condition, a thrust line can be
constructed which entirely lies within the depth of the arch, i.e. within the strip delimited
by intrados and extrados.
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Figure 13. Lancet arch: displacements (a) and strains (b).

In the present paper only thrust-lines provided by elastic analyses have been presented;
this is however a standard first step in the study of any arch. A more general frame-
work which encompasses also limit analysis and reinforcement techniques based on Fiber-
Reinforced Polymers (FRP), and which can be thought of as a further step in the study of
arch response to loading, is being developed in [36].

Possible future developments concern:

• the generalization to 2-D problem such as vaults or domes;
• the development of an interface which can produce a valid input file for the Arch-

NURBS code starting from the geometric data obtained by modern laser-scanner
techniques;
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Figure 14. Lancet arch: stresses (a) and thrust line (b).

• the model improvement, for example using a suitable damage parameter [37, 38,
39, 40, 41] taking into account that in some cases it leads to non-unique and
non-stable solutions, see [42, 43, 44]. Alternatively, there is the way proposed
in [45, 46], where a two-dimensional model for an interfacial zone is introduced
and this could be used to describe more carefully concentrated damages. Further-
more, the variational techniques presented in [47], being adapted to dissipative
phenomena, may be of use in this context. Finally, it seems attractive the use of
higher continuum models as those described in [48, 49, 50, 51];
• the damage detection using for example the procedure proposed by [52, 53] which

uses traveling loads as signal;
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(a) The parabolic arch

qv

R

R′

(b) Structural scheme

Figure 15. Parabolic arch from Milà house: the arch (a) and the corresponding structural
scheme (b).

• the extension to plasticity for evaluating collapse load, see for example [54, 55, 56,
57, 58, 59].
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