
Fair Voice Biometrics:
Impact of Demographic Imbalance on Group Fairness in Speaker Recognition

Gianni Fenu1, Mirko Marras2, Giacomo Medda1, Giacomo Meloni1

1University of Cagliari, Italy
2EPFL, Switzerland

{fenu, giacomo.medda}@unica.it, mirko.marras@acm.org, g.meloni31@studenti.unica.it

Abstract
Speaker recognition systems are playing a key role in modern
online applications. Though the susceptibility of these systems
to discrimination according to group fairness metrics has been
recently studied, their assessment has been mainly focused on
the difference in equal error rate across groups, not account-
ing for other fairness criteria important in anti-discrimination
policies, defined for demographic groups characterized by sen-
sitive attributes. In this paper, we therefore study how exist-
ing group fairness metrics relate with the balancing settings of
the training data set in speaker recognition. We conduct this
analysis by operationalizing several definitions of fairness and
monitoring them under varied data balancing settings. Experi-
ments performed on three deep neural architectures, evaluated
on a data set including gender/age-based groups, show that bal-
ancing group representation positively impacts on fairness and
that the friction across security, usability, and fairness depends
on the fairness metric and the recognition threshold.
Index Terms: Speaker Recognition, Speaker Verification, Dis-
crimination, Fairness, Biometrics, Bias, Data Imbalance.

1. Introduction
Increasingly adopted in online and onlife applications, speaker
recognition systems aim to confirm or refute the user’s identity
based on the characteristics of the user’s voice [1, 2]. The user
is asked to provide samples of his speech, and the resulting ut-
terances are processed to create the enrolled speech model for
that user. The vocal sample presented at authentication time is
then compared with the enrolled speech model to make the deci-
sion. With the wider availability of speech data and increasingly
efficient computing resources, these systems have achieved im-
pressively high accuracy by leveraging acoustic representations
extracted from deep neural networks, such as X-Vector [3] and
ResNets [2]. As in other domains, achieving the highest possi-
ble accuracy has been a primary goal along years [4, 5, 6, 7].

However, recent literature in the machine-learning commu-
nity uncovered algorithmic discrimination, showing that achiev-
ing impressive accuracy cannot be the sole goal for machine-
learning models shaped for our society [8, 9, 10]. Therefore,
fairness-aware models have been proposed, often referring to
fairness as a concept of non-discrimination on the basis of the
membership to protected groups [11, 12, 13, 14, 15, 16]. Groups
are distinguished by a protected feature, e.g., gender and age in
anti-discrimination legislation1. Hence, group fairness is the ab-
sence of group discrimination, and group discrimination is evi-
denced by disparate outcomes between demographic groups.

1Explicit mentions are given in Art. 21 of the EU Charter of Funda-
mental Rights, Art. 14 of European Convention on Human Rights, and
Art. 18-25 of the Treaty on the Functioning of the European Union.

Extensive definitions of algorithmic fairness, proposed for
the purpose of using them in data-driven algorithms, have led to
a long list of criteria and metrics [17]. These criteria are often
linked to trade-offs between fairness and other objectives, such
as accuracy. Imposing this kind of constraints makes finding an
optimum challenging, and fairness criteria are often incompat-
ible under the traditional assumptions [17, 18]. Since different
fairness notions lead to different fairness criteria, and not all no-
tions can be fulfilled with one criterion, stakeholders are hence
left with the decision among value-concepts when considering a
fairness metric. As for now, research in speaker recognition has
investigated the susceptibility of these systems to unfairness by
mostly focusing on differences in equal error rate across groups
[11, 12], not accounting for other important fairness criteria that
are still left under-explored in speaker recognition.

In this paper, we investigate the relationship among group
fairness metrics in speaker recognition, such as by determining
the metric yielding more disparity between groups and explain-
ing the type of discrimination. Specifically, our study aims at
answering two key research questions:

• RQ1: How fair speaker recognition models are under differ-
ent training data balancing and fairness metrics?

• RQ2: What impact does the recognition threshold have on the
trade-off among fairness, security, usability?

To answer these questions, we define a mathematical for-
malization that serves as a ground for the assessment of dis-
parate outcomes based on a varied set of group fairness metrics.
Second, we study the extent to which speaker recognition mod-
els emphasize group discrimination according to the considered
fairness metrics, under different group balancing settings of the
training set. Third, we assess the trade-off between fairness and
the traditional security and usability (accuracy) objectives, ac-
cording to the recognition threshold. Experiments on a large-
scale public data set, three deep architectures, and gender/age-
based groups2, show that balancing users’ representation across
groups positively impacts on all fairness metrics, but it is still
not enough to provide fairness guarantees. The trade-off be-
tween (security, usability) and fairness depends on the fairness
metric and the recognition threshold. Compared to [11, 12], we
focus on assessing fairness under additional metrics and extend
the considered set of models. With this study, we aim to em-
phasize the attention required by fair demographic treatments
in speaker recognition systems. Code and models are publicly
available at https://mirkomarras.github.io/fair-voice/.

2Though gender and age are two important sensitive attributes, there
are many other sensitive attributes, such as the geographic provenience,
the language, the regional accent, whose analysis is left as future work.
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2. Speaker Recognition Formalization
For clarity, we first present and formalize the addressed task and
the evaluation protocol. Let A ⊂ R∗ denote the domain of au-
dio signals with unknown length. We can consider a traditional
processing pipeline with an intermediate acoustic representa-
tion S ⊂ Rk×∗ (e.g., a spectrogram), where k is the feature
vector dimensionality, and/or an explicit feature extraction step
which produces fixed-length representations in D ⊂ Re, where
e is the embedding dimensionality. We denote the respective
stages as F : A → S and Dθ : S → D. Given a decision
threshold τ , a verification trial can be defined as:

vτ : Dθ,p ×Dθ,u → {0, 1} (1)

which, under the feature extraction hyper-parameters θ, an input
feature vector dp from an unknown user p is compared with a
feature vector du from user u to confirm or refute the speaker’s
identity (1 and 0, respectively). In our study, we consider a one-
shot verification protocol3 to align the fairness-aware evaluation
proposed in this paper with those of relevant prior works in tra-
ditional speaker recognition, that assess the performance of the
model by evaluating it along a list of trial verification pairs, such
as the trial test pairs in the VoxCeleb-1 set [2]. Our verification
protocol relies on a similarity function S : D ×D → R:

vτ (dp, du) = S(dp, du) > τ (2)

Therefore, training a speaker recognition model becomes
an optimization problem. Given users U, this means finding
the model hyper-parameter θ and verification threshold τ that
maximize the expectation on the following objective function:

(θ̃, τ̃) = argmax
(θ,τ)

E
u,p∈U

{
vτ (Dθ,p, Dθ,u) p = u

1− vτ (Dθ,p, Dθ,u) p 6= u
(3)

In other words, we aim at maximizing the cases where vτ =
1 when p = u and those where vτ = 0 when p 6= u.

3. Group Fairness Framework
In this section, we describe the data set, the strategies adopted
to control the representation of demographic groups in the train-
ing set, the set of group fairness metrics part of the framework,
the deep architectures considered for the extraction of acoustic
feature representations and the underlying security levels.

3.1. Data Set: FairVoice

Despite the existence of several data sets for speaker verifica-
tion evaluation [19, 20, 2], our fairness study was conducted
on FairVoice [11, 12], a data set that offers a large number of
utterances and labeled users across several sensitive attributes
and languages4. This design choice was motivated by the fact
that FairVoice already includes baselines and evaluation proto-
cols tailored for fairness analysis in speaker recognition, and our
study in this paper aims to extend them with more group fair-
ness metrics and models coming from the fair machine learn-
ing community. Each user in FairVoice is identified by the lan-
guage, gender, and age. Due to the relatively small size of the

3We leave the experiments on other verification protocols, such as
the averaging of the enrollment speaker embeddings or the creation of
a single embedding by pooling utterances, as future work.

4The data set was sampled from Mozilla Common Voice, one of the
largest corpora including unconstrained speech from diverse acoustic
environments. Further details can be found in [12].

populations of languages other than English, which may pre-
vent to provide statistically significance findings, we consider
only users who provided utterances in English (6,321 speakers).
To ensure consistency with the experimental setting provided in
[11, 12], our analyses consider four demographic groups based
on the users’ gender (female, male) and age (users younger than
40 years or not). Further details on the representation of each
demographic group are provided later on in the paper.

3.2. Data Splitting and Balancing Strategy

Given that we aim at extending the baselines and benchmarks
defined in [11], the strategy adopted to split data in training and
test sets follows the same protocol of the original paper, sum-
marized for convenience as follows. We use the same test set
proposed in the original paper, considering 100 users (i.e., 25
young females, 25 old females, 25 young males, 25 old males).
We also considered the same trial verification pairs. For each
test user ui, 64 trials pairs against utterances of the same user ui
and 64 trial pairs against utterances from a different user uj with
i 6= j are considered, as reported in the original paper. The trial
verification pairs are divided into two separate lists, according
to an intra-gender and intra-age group scenario. Specifically,
the set of intra-age trial pairs have been constructed such that
ui and uj belong to the same age group, while the intra-gender
trial pairs have been constructed to have ui and uj with the same
gender group. Intra-group trial pairs have been often proved to
be the most challenging ones to recognize, so our study in this
paper uses the intra-age trial pairs when assessing unfairness
on age and intra-gender trial pairs when assessing unfairness on
gender. This ensures an adequate representation of each demo-
graphic group, making these test sets a suitable tool for fairness
evaluation in speaker recognition. Users who are not part of
the test set are used to train the speaker verification models. To
study the effect of demographically balancing the training set
on the fairness achieved by the speaker recognition model, we
consider the same training sets defined in [11], as follows:

• NB refers to the original unbalanced training set includ-
ing 718 young females (11.4%), 400 old females (6.3%),
3,935 young males (62.3%), 1,093 old males (17.3%).
Each user contributes with at least 20 utterances.

• UB refers to a user-balanced training set including 155
young females (25%), 155 old females (25%), 155
young males (25%), and 155 old males (25%). Each user
has between 20 and 50 utterances, for consistency5.

3.3. Group Fairness Metrics

Recent literature in fair machine learning has proposed a varied
set of group fairness metrics to assess the discrimination of au-
tomated systems against demographic groups characterized by
a protected sensitive attribute [17, 18]. In this paper, we aim
to analyze fairness in speaker recognition in terms of fairness
metrics widely studied in other machine learning domains. ex-
tending those covered in [11]. For verification trials based on vτ
(Sect. 2) and two groups ai, aj defined based on the sensitive
attributeA (gender or age, Sect. 3.2), we consider the following
group fairness metrics.

5The UB training set is very small compared to the NB training set.
However, we will show that the difference in overall performance of
models trained with these two sets is negligible, while the fairness out-
comes of the resulting models is significantly different. The further
analysis on the impact of the overall data set size is left as future work.
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(a) EER - Gender (b) EER Age

(c) FAR 1% - Gender (d) FAR 1% - Age

Figure 1: [RQ1] Fairness estimates of three deep neural architectures (X-Vector, ResNet34, ResNet50), under different training data
balancing (NB: unbalanced; UB: user-based balance across demographic groups). The lower the metric is, the fairer the model is.

• Disparity in Demographic Parity [DP] implies that the likeli-
hood of a speaker being positively recognized (PR = (TP+
FP )/(TP +FP +TN +FN)) should be the same regard-
less of the group. This notion is instantiated as follows:

P (vτ |A = 0) = P (vτ |A = 1). (4)

DP (τ) = |PRai − PRaj |, i 6= j. (5)

• Disparity in Equal Opportunity [EOpp] implies that the
probability of a speaker being correctly verified should be
equal across demographic groups. In other words, the equal
opportunity definition states that all the demographic groups
should have equal true positive rates (TPR). This notion is
defined and operationalized as follows:

P (vτ=1|A=0, Y=1)=P (vτ=1|A=1, Y=1). (6)

EOpp(τ) = |TPRai − TPRaj |, i 6= j. (7)

• Disparity in Equalized Odds [EOdd] implies that the proba-
bility of a speaker being correctly verified and of being incor-
rectly verified should both be the same for the demographic
groups. In other words, the equalized odds definition states
that the demographic groups should have equal rates for true
positives (TPR) and false positives (FPR). This notion is de-
fined and operationalized as follows:
P (vτ=1|A=0, Y=y)=P (vτ=1|A=1, Y=y), y∈0, 1. (8)

EOddTPR(τ) = |TPRai − TPRaj |, i 6= j. (9)

EOddFPR(τ) = |FPRai − FPRaj |, i 6= j. (10)

It should be noted that we also considered other fairness
metrics, e.g., the fairness discrepancy rate [16]. However, the
resulting patterns were similar to those obtained by DP, and so
we do not present them in this paper due to space constraints.

3.4. Speaker Recognition Models

For our experiments, we relied on two speaker recognition mod-
els, X-Vector and ResNet-34, whose fairness in terms of equal
error rates has been already studied in [11, 12], and an addi-
tional model ResNet-50 [2] whose fairness has not been yet

Table 1: Performance of the considered speaker recognition
models at the EER and FAR1% security levels on FairVoice.

ResNet-34 ResNet-50 X-Vector

Test set EER FRRFAR1% EER FRRFAR1% EER FRRFAR1%

NB Intra-age 0.08 0.27 0.09 0.2 0.08 0.2

NB Intra-gender 0.11 0.43 0.13 0.36 0.11 0.3

UB Intra-age 0.07 0.18 0.07 0.23 0.08 0.2

UB Intra-gender 0.11 0.41 0.1 0.33 0.11 0.31

studied, to the best of our knowledge. The X-Vector [3] model
takes as an input 24 dimensional filterbanks as features with a
frame-length of 25ms, mean-normalized over a sliding window
of up to 3s. The ResNet-34 model is similar to a standard multi-
layer CNN, but with added skip connections [2]. Composed by
34 residual layers, this model takes as an input spectrograms
of size 512 x 300 for 3s of speech using a hamming window
of width 25ms and step 10ms. The ResNet-50 model follows
the same specifications of ResNet-34 [2] but is composed by 50
residual layers. The experimental setup and hyper-parameters
are provided in the repository shared with this paper.

Fairness and accuracy estimates are examined at two well-
known security levels: Equal Error Rate (EER) and False Ac-
ceptance Rate (FAR) 1%. Table 1 reports the performance of the
speaker recognition models on the data and settings described
in Sect. 3.2 and 3.4 (FRR indicates the False Rejection Rate).

4. Experimental Results
In this section, we empirically evaluate the extent to which each
speaker recognition model is susceptible to unfairness, in order
to answer the two research questions defined in Sect. 1.

4.1. RQ1: Fairness across Data Set Balancing Settings

Our first experiments aim to assess the extent to which speaker
recognition models are fair under different training data balanc-
ing and group fairness notions. To this end, we consider the
three speaker recognition architectures listed in Sect. 3.4, each
trained with one of the two training sets NB or UB defined in
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(a) ResNet-34 - Age (b) ResNet-34 - Gender

(c) ResNet-50 - Age (d) ResNet-50 - Gender

(c) X-Vector - Age (d) X-Vector - Gender

Figure 2: [RQ2] The impact of the recognition threshold on the trade-off between fairness, security, and usability for three deep
architectures, three fairness metrics, for the user-based balanced training set (UB). represents the FAR, represents the FRR,
represents the respective fairness metric value. For Equalized Odds represents EOddTPR(τ), while represents EOddFPR(τ).

Sect. 3.2. For each resulting model, we analyze its fairness
under the definitions formalized in Sect. 3.3.

Fig. 1 reports the fairness metric scores on each sensitive
attribute (gender: male/female, age: under/over-40), under dif-
ferent training balancing setups and security levels. It can be
observed that balancing users across demographic groups of-
ten helps mitigating unfairness. Specifically, the disparities be-
tween males and females are mitigated for all models under all
fairness metrics (except DP for ResNet-50 at EER, and FPR in
EOdd for ResNets at FAR 1%). The fairness scores on the age-
based groups highlight a good level of mitigation of the dispar-
ity between under- and over-40 users as well, but not for all
models (e.g., see DP for ResNet-34 at EER). Indeed, ResNet-
34 is the one being influenced the most by the balancing of the
data set, followed by X-Vector. Surprisingly, regardless of the
balancing, the ResNet-50 architecture tends to be fairer on the
gender-based groups, while the other two architectures are often
fairer than ResNet-50 for age-based groups.

4.2. RQ2: Impact of Recognition Thresholds on Fairness

Our second experiments aim to assess the impact of the recogni-
tion threshold on the trade-off between (security, usability) and
fairness. Given that models trained on UB often led to the fairest
results, we focused only on these models. For each model, for
each threshold between 0 and 1, we computed the false accep-
tance rate (FAR), the false rejection rate (FRR), and the fairness
estimate, to understand the relation between security (FAR), us-
ability (FRR), and fairness under different fairness notions.

Fig. 2 reports the fairness score, false acceptance rate, and
false rejection rate as a function of the recognition threshold,
for each speaker recognition model. It can be observed that,
for almost all settings, the disparity scores show their peaks

nearby the EER and FAR 1% security levels. Our analyses on
the age-based groups shed light on unfairness near the FAR 1%
threshold, while experiments with the gender-based groups of-
ten show unfairness at thresholds close to the EER one. On
gender-based groups, the thresholds at which a model achieves
lower disparities vary across models. On age-based groups, the
thresholds close to EER lead to a degree of unfairness, but not as
much as thresholds slightly higher than EER, where the dispari-
ties achieve the highest peak. These results highlight the friction
between fairness and accuracy (FAR and FRR), confirming the
trade-off usually experienced in this task.

5. Conclusions and Future Works
In this paper, we extended an existing fairness framework for
speaker recognition with additional group fairness metrics and
models, such that the framework can assess disparate outcomes
across demographic groups under different fairness notions. We
then studied the extent to which speaker recognition models em-
phasize group discrimination according to the considered fair-
ness notions, under different balancing settings of the training
set and recognition thresholds, focusing on two main sensitive
attributes for demographic group fairness: gender and age. Our
results show that demographically balanced training sets posi-
tively influence the fairness of speaker recognition systems. On
average, balancing the training set leads to a lower disparity be-
tween males and females, compared to the disparity between
under- and over-40 users. Models tend to increase the disparity
between under/over-40 users at thresholds higher than the EER;
the disparity between males and females increases at thresholds
below the EER in certain cases. However, balancing the data
set does not necessarily guarantee fairness. Future works will
focus on approaches able to better mitigate unfairness and on
multi-class sensitive attributes beyond gender and age.
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