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In this paper, we present the vehicle routing problem (VRP) with occasional drivers (OD) and order bun- 

dles (OB). The problem VRP-OD-OB is an extension of the VRP-OD, where instead of assigning one cus- 

tomer per driver, drivers are assigned bundles of customers. To deal with the bundle-to-driver assign- 

ment, a bidding system is exploited, in which a company offers a set of bundles and the drivers raise 

their bids. These bids depend on features such as the drivers’ destination, flexibility in deviating from the 

shortest path, and willingness to offer service. To generate valuable bundles of customers, we propose two 

strategies: (i) an innovative approach based on the creation of corridors, and (ii) a traditional approach 

based on clustering. Through an experimental study, carried out on randomly generated instances and 

on a real road network, we show that the innovative corridor-based approach strongly outperforms the 

clustering-based approach. Given a set of bundles and a corresponding set of bids, we provide a math- 

ematical formulation and valid inequalities to solve the VRP-OD-OB. To address larger instances, we de- 

sign an efficient large neighborhood search-based matheuristic. The results of an extensive computational 

study show that this method provides near-optimal solutions within very short run times. An analysis of 

the impact of drivers’ flexibility and willingness levels on the percentage of customers assigned to ODs is 

presented. Moreover, the case in which ODs dynamically appear at regular time intervals is investigated. 

Also in this dynamic setting, considerable total cost reductions are shown. Moreover, we derive several 

important managerial insights, which include the observation that it is not necessary to provide a high 

number of bundles to achieve good quality solutions. Companies should rather focus on generating fewer 

but more attractive bundles. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

E-commerce has become increasingly popular in the last 

ecade. Global e-commerce sales surged to $29 trillion in 2019 

1] and has been experiencing exponential growth since then. The 

dvent of the SARS-CoV-2 pandemic further increased the num- 

er of online purchasers, with a large number of users who were 

reviously unfamiliar with online purchasing adopting this system. 

everal years ago, only a few retailers, such as Amazon and Za- 

ando, offered online purchasing, and the online marketplace was 

hared among them. Then, other big brands, such as North Sails, 

ecathlon, and Cisalfa, also launched private purchasing websites. 
� This manuscript was processed by Associate Editor Kis. 
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owadays, every medium or large retailer is almost obligated to 

ffer online purchasing to stay in the market. In fact, as pointed 

ut in [2] , single-brand retailers offer a more hedonic experience 

o the customer, and, through dedicated promotions, it is easier to 

ncrease customers’ fidelity. Furthermore, customers’ reviews and 

tars ratings help to attract new potential customers who did not 

ave direct experience with the brand yet, as stated in [3] . The 

doption of an owned online-purchasing system, can be advanta- 

eous, under specific market conditions, also for companies oper- 

ting in the building materials sector, as pointed out in [4] , where 

he case of a brick-and-mortar retail stores is analyzed. 

E-commerce is attractive because users can compare thousands 

f alternatives, purchase at any time of the day from their lap- 

op, tablet, smartphone, or even smartwatch, and have the goods 

elivered directly to their home. However, e-commerce results in 

 huge increment in the costs for last-mile delivery. In fact, al- 

hough online retail can strongly contribute to increase the num- 

er of potential customers, this may require an enhancement of 

he delivery fleet, in order to fulfill such a large number of or- 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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ers, which requires a large investment [5] . While large compa- 

ies such as Amazon already have their own efficient distribution 

etwork, medium-sized retailers face very high fulfillment costs. 

his engendered the concept of crowdshipping, which is an in- 

ovative delivery system in which in-store purchasers deliver or- 

ers to customers. Crowdshippers, more commonly known as oc- 

asional drivers (ODs), are generally much cheaper than traditional 

rivers. This is because they are paid only if they are assigned a 

elivery. Their compensation typically depends on the length of 

he detour required for the delivery. The detour is generally com- 

uted as the difference between the shortest path from the depot 

o the OD’s final destination, visiting all the assigned customers, 

nd the direct path from the depot to the OD’s final destination. If 

n OD is assigned orders with negligible detours, the compensation 

an be low. Conversely, while traditional drivers are always avail- 

ble, in accordance with their working contracts, the availability of 

Ds is less predictable. Furthermore, they are not obliged to accept 

 task if it is not convenient for them. Crowdshippers are not only 

seful in e-commerce, but they can be efficiently exploited also in 

he meal-delivery context, as discussed in [6] . 

As pointed out by Ulmer and Savelsbergh [7] , to prevent or 

itigate the negative effects associated with the uncertainty of 

Ds’ availability, it is convenient for companies to integrate ODs 

ith a fixed owned fleet. However, efficiently planning and per- 

orming this integration may prove to be an extremely challeng- 

ng issue. In [8] , the authors propose the integration of in-house 

rivers and crowdshippers. The latter are full- or part-time con- 

ractual, but non-professional, drivers. According to this assump- 

ion, the nature of the problem becomes static and deterministic 

ince the availability of ODs for a specific day is supposed to be 

nown in advance. Clearly, if crowdshippers’ availabilities are hard 

o predict and orders arrive on short notice, dynamic and stochas- 

ic routing problems will have to be tackled. However, there are 

eal-world applications where the delivery plan must be formu- 

ated in advance. In particular, if in-house fleets must leave in the 

orning for performing deliveries far away from the depot, wait- 

ng for potential ODs is not advisable. Therefore, it is necessary to 

now in advance whether to load customers’ goods on in-house 

ehicles or assign them to ODs. Examples of this include retail- 

rs who do not offer same-day delivery services. In these cases, 

 static and deterministic model is appropriate. A dynamic rep- 

esentation would work, for instance, in the context of electri- 

al/electronic material distribution (such as cables), for which a 

arge stock is available in the warehouse. In this case, all the re- 

uired materials can be loaded in-house vehicles. Once a suitable 

D appears, a new cable can be given to them, and the traditional 

river can skip the delivery. Nevertheless, in cases where customer 

equests are completely personalized and not interchangeable, such 

 strategy cannot be applied. Therefore, decisions on assigning cus- 

omers to owned fleets or ODs must be taken in advance and can- 

ot be changed afterwards. These cases can be modeled as static 

nd deterministic problems, in which an OD’s availability must be 

nown a priori. 

In this context, we introduce the vehicle routing problem (VRP) 

ith occasional drivers (ODs) and bundles of orders (VRP-OD-OB). 

t considers the possibility of assigning bundles of customers to 

rivers based on a bidding system. We assume that submitted bids 

epend on the detour required to serve the customers included in 

he bundle and on the OD’s level of willingness to perform the 

eliveries. A mathematical formulation and valid inequalities are 

roposed. The system tackles the problem of (i) generating, and 

ii) assigning bundles, and (iii) suggests which customers should 

e served by the fleet of company-owned vehicles. Since the num- 

er of feasible bundles grows exponentially with the size of the 

roblem, only a subset of bundles can be offered for bidding. An 

mportant contribution of our study is that we propose an in- 
2 
ovative bundle-generation technique based on geographical cor- 

idors. We compare this approach to a more traditional cluster- 

ng method. Extensive computational experiments show that the 

ewly proposed corridor-based approach strongly outperforms the 

ore traditional clustering-based one. Even in the case of dynam- 

cally appearing ODs, considerable total cost reductions can be ob- 

ained. From methodological point of view, we propose a large 

eighborhood search (LNS)-based matheuristic (MH). We can show 

hat this method performs well, obtaining near-optimal solutions 

less than 1% from the best known solution) in a short compu- 

ational time. Finally, we provide managerial insights on the im- 

act of drivers’ characteristics on the ratios of customers served 

y ODs. 

All instances have been made publicly available [9] to encour- 

ge other researchers to contribute to this highly relevant and dy- 

amically evolving field. 

The rest of this paper is organized as follows: A literature re- 

iew is reported in Section 2 . Section 3 provides a detailed de- 

cription of the newly introduced problem. A mixed-integer pro- 

ramming model is presented in Section 4 . Section 5 deals with 

he generation of attractive bundles. The bidding problem is ad- 

ressed in Section 6 , while Section 7 is devoted to the description 

f the large neighborhood search (LNS)-based matheuristic (MH), 

hich we have proposed for efficiently handling large-sized in- 

tances. Computational experiments are presented in Section 8 . Fi- 

ally, the conclusions and future developments are discussed in 

ection 9 . 

. Literature review 

A recent survey by Archetti and Bertazzi [10] identifies crowd- 

hipping to be among the main routes that must be considered 

y future research in the field of e-commerce and last-mile de- 

ivery. Although crowdshipping became popular only recently, sev- 

ral relevant studies on it can be found in the literature. Most of 

hem address the topic from an economic perspective. In these pa- 

ers, the term “crowdshipping” is extended to private drivers will- 

ng to perform deliveries but does not necessarily refer to in-store 

ustomers who undertake orders when leaving the store. Le and 

kkusuri [11] investigated the factors that can influence retailers’ 

hoice to use crowdshipping. An empirical analysis of real crowd- 

hipping systems adopted in the US was presented by Ermagun 

t al. [12] . The potential impact of crowdshipping on traffic and 

ehicle emissions was studied by Simoni et al. [13] . The authors 

sed a simulation-based approach to address the case of Rome. For 

 survey on crowdsourced delivery we refer interested readers to 

14] . 

In [15] , the authors address the case of a platform which dy- 

amically receives transportation requests and tries to find a fea- 

ible match with companies willing to perform extra tasks to be 

ntegrated in their own delivery plan. However, even if this paper 

efers to crowdshipping, it involves companies already performing 

asks rather than ODs. A very similar setting is addressed in [16] , in

hich, differently from Allahviranloo and Baghestani [15] , a static 

ersion of the problem is considered, where all transportation re- 

uests are known in advance. In this paper, we focus on the lit- 

rature that describes crowdshipping problems involving in-store 

ustomers’ willingness to perform deliveries after leaving the store. 

he seminal paper by Archetti et al. [17] was the first to introduce 

he VRP-OD. The authors assume that at most one customer can be 

ssigned to a given OD and that the compensation is constant and 

oes not depend on the required detour. The authors presented 

n integer programming formulation for the VRP-OD and designed 

 multi-start heuristic approach that combined a tabu search and 

 variable neighborhood search. Macrina et al. [18] extended the 

ork of [17] by considering delivery time windows and allowing 
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ultiple customer assignments to ODs. In contrast to our work, 

hey did not consider a bidding system but calculated the drivers’ 

ompensation based on the required detour. Therefore, they did 

ot consider features such as the OD’s flexibility or their willing- 

ess to perform deliveries. 

Operational time windows and transshipment nodes, an exten- 

ion of the VRP-OD, have been proposed in [19] and [20] . A crowd-

ourced dynamic pickup-and-delivery system was studied by Ar- 

lan et al. [21] , while [22] addressed a stochastic and dynamic 

roblem involving in-store customers as ODs. In [23] , the authors 

roposed a sustainable crowdsourced delivery system in which the 

Ds perform their deliveries using public transportation; the au- 

hors also assessed the economic and environmental impacts of 

uch a system. A similar system was addressed by Gatta et al. 

24] , where crowdshippers perform deliveries to automated par- 

el lockers using public transportation. Another sustainable crowd- 

hipping system was proposed by Lin et al. [25] , in which bicycles 

re used to perform OD deliveries. In [26] a mixed delivery system 

s considered, where cyclists and pedestrians are integrated with 

he own fleet in order to perform deliveries at the minimum cost. 

rowdshippers submit bids that can be accepted or rejected by the 

ompany. Those, who are selected for delivery, meet the truck at 

xed stations where they collect the delivery parcels. 

The first work to consider heterogeneous ODs, characterized by 

ifferent levels of flexibility, was by Behrend and Meisel [27] . How- 

ver, they did not consider an actual bidding system, using only 

exibility to determine the set of all feasible customer tuples to 

e assigned to ODs. An exact method for the same problem was 

roposed by Behrend et al. [28] . Dahle et al. [29] were the first to

onsider the possibility of refusing an assignment if the compensa- 

ion offered is too low. This issue was not addressed within a bid- 

ing system in which drivers submit bids that are convenient for 

hem; however, it did consider a minimum compensation thresh- 

ld for each OD. Furthermore, compensations are defined a priori 

y the company. In [30] the authors propose to exploit employ- 

es of their distribution centers for crowdshipping online orders 

n their way back from work. Employees communicate a minimum 

xpected earning per time unit and a maximum acceptable driv- 

ng time. The company decides which tasks to assign to each em- 

loyee in order to maximize the number of tasks performed by the 

mployees. This objective comes from the idea that subcontracting 

eliveries to employees is cheaper than performing them. There- 

ore, the lower the number of deliveries carried out by the com- 

any, the greater the gain. However, this is not always the case. 

hile exploiting ODs for reaching customers far from the distribu- 

ion center would yield a clear advantage for the company, it could 

e cheaper to serve nearer customers with the fleet owned by the 

ompany. Therefore, we decided to consider a system in which the 

oal is to minimize the total delivery cost exploiting a mixed distri- 

ution system (owned fleet plus ODs). Our experiments show that 

he optimal solution almost always involves both types of delivery 

nd therefore more tasks assigned to ODs do not necessarily lead 

o lower total costs. 

In [31] the authors propose a system in which a central- 

zed platform generates personalized bundles of requests (named 

enus) for each driver. Drivers do not bid for bundles but just 

ommunicate, for each menu, if they are willing or not to fulfill 

t. After receiving feedback from all the drivers, the platform per- 

orms the menus-to-drivers assignments. Flexibility and willing- 

ess to work impact drivers’ choices to accept or to reject a menu. 

he authors model the problem as a bi-level Stackelberg game. A 

ery similar setting is addressed in [32] , where the authors solve a 

ore general problem, in which a platform is used to match cus- 

omers’ requests with suppliers. This system is not only specifically 

uited for transportation requests, but can be applied to any type 

f service requests. 
3 
As pointed out in [33] , transportation orders should be offered 

n bundles, not individually. This is based on the subadditivity of 

osts, i.e., the fact that serving a bundle of requests might result in 

 lower total cost than the sum of the costs of serving all orders in-

ividually. Hence, the process of order-to-driver assignment should 

e modeled as a combinatorial optimization problem, where the 

alues of bundles, rather than individual orders, are considered. 

n contrast to the collaborative routing problem addressed in [33] , 

here carriers identify a priori the set of customers to be offered 

n the auction, we assume that the set of customers to be assigned 

o ODs is not predefined. Hence, each customer may be served 

y ODs or by company-owned vehicles. Thus, the auction problem 

ust be addressed along with the owned-fleet routing problem. 

o solve this problem, we propose a mathematical model that (i) 

ackles customers in OD assignments, (ii) provides a routing plan 

or the company fleet, and (iii) assigns bundles to the ODs. 

In order to highlight our contribution to the existing literature, 

e report, in Table 1 , the list of features addressed by each rele-

ant paper in the field. As it can be evinced from the table, our 

tudy clearly fills a gap in the existing literature. To the best of 

ur knowledge, we are the first to consider a VRP-OD involving a 

undling and a bidding system, drivers’ flexibility and willingness 

o work, and dynamic aspects, simultaneously. 

. Problem description 

In this section, we define the VRP-OD-OB. A company has to 

ulfill a set of orders ( I), where customer i requests a given quantity 

 i . All deliveries start from a common depot (0). Let us identify the 

et of nodes involved in the network, i.e., the customers (related 

o an order) and the depot 0, as I 0 = I ∪ 0 . For each pair of nodes

 i and j) in I 0 , we assume a travel distance d i j and a travel cost

 i j , which are known in advance. For each customer, the company 

an choose between two options: (i) serving the customer with its 

wn fleet or (ii) assigning them to an OD who will perform the 

elivery. The owned fleet is composed of m identical vehicles with 

 capacity equal to Q max . Each vehicle in the owned fleet starts 

rom the depot and must return to it. A given set of ODs ( �) is

vailable. We assume that the ODs start from the depot and fulfill 

 set of deliveries, i.e., serve a set of customers, on the way back to

heir homes (generally, their destinations). The capacity of an OD’s 

ehicle is indicated by Q 

OD 
max . 

The company receives a set K of bids; each of these bids is as- 

ociated with a bundle of customers ( τk ). For each bid, the indi- 

idual value b k for serving the bundle τk and the offering driver 

 k are known. We assume that each OD can submit bids for an 

nlimited number of bundles but that, at most, one bid per OD 

an be accepted by the company. The same assumption is made in 

everal other studies, such as [33] and [34] , that deal with auction- 

ased collaborative transportation. This way, the exposure problem 

which is well known in auction theory, [35] – can be avoided. 

his prevents situations where an OD wins several bundles but 

oes not have enough capacity to fulfill them. 

If a bid is accepted, all customers belonging to it are assigned 

o the corresponding OD. A customer cannot be assigned to more 

han one driver; hence, all the bundles assigned to ODs must be 

isjointed. The goal is to minimize the total cost, which is the sum 

f the routing costs of the owned vehicles and the costs associated 

ith the accepted bids. 

Summarizing, our optimization approach can be described as a 

hree-steps system: 

1. The company generates potentially attractive bundles without 

having information about the ODs, but exploiting only spatial 

relationship among customers’ locations. 
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Table 1 

Overview of features addressed in the literature. 

Multiple Compensation Flexibility Willingness Bidding Mixed system Dynamic 

cust. for detour 

Archetti et al. [17] No No No No No Yes No 

Macrina et al. [18] Yes Yes No No No Yes No 

Macrina and Guerriero [19] Yes Yes No No No Yes No 

Macrina et al. [20] Yes Yes No No No Yes No 

Arslan et al. [21] Yes Yes Yes No No No Yes 

Dayarian and Savelsbergh [22] Yes Yes Yes No No No Yes 

Kafle et al. [26] Yes Yes Yes Yes Yes Yes No 

Behrend and Meisel [27] Yes Yes Yes Yes No No No 

Dahle et al. [29] Yes Yes Yes Yes No Yes No 

Lin et al. [25] Yes Yes Yes Yes No No No 

Boysen et al. [30] Yes Yes Yes Yes No No No 

Horner et al. [31] Yes Yes Yes Yes No No No 

Mofidi and Pazour [32] Yes Yes Yes Yes No No No 

Our paper Yes Yes Yes Yes Yes Yes Yes 
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2. ODs assess the offered bundles and make a bid for attractive 

ones. We consider that the bid depends on the OD’s actual de- 

tour, her flexibility and her willingness to work. 

3. After the company has received all bids, (i) it decides which 

bids to accept, and (ii) the routing plan for the owned fleet to 

serve customers, which are not included in the accepted bids. 

. Mathematical formulation 

The VRP-OD-OB can be formulated as follows: 

I set of customers 

I 0 set of nodes involved in the network 

(customers and depot) 

� set of occasional drivers 

K set of bids 

m number of available vehicles 

c i j travel cost between node 

i and node j

q i demand of customer 

i 

Q max capacity of the owned 

vehicles 

Q OD 
max capacity of the 

ODs’ vehicles 

b k price of bid 

k offered by an OD 

τk bundle related to 

bid k 

o k OD who submitted bid k 

C k set of customers belonging to bundle τk 

Z i binary variable that takes value 1 if customer i is visited by a 

company-owned vehicle and takes 0 otherwise 

X i j binary variable that takes value 1 if node j is visited by a 

company-owned vehicle just after node i and takes 0 otherwise 

Y k binary variables that take value 1 if bid k is accepted and take 0 

otherwise 

Q i non-negative variables representing the cumulative load at node 

i , expressed as the total quantity of demand delivered by a 

vehicle along its route, when leaving node i 

in 

∑ 

i ∈ I 0 

∑ 

j∈ I 0 
c i j X i j + 

∑ 

k ∈ K 
b k Y k (1) 

 

j∈ I 
X 0 j ≤ m (2) 
4 
 j + 

∑ 

k ∈ K| j∈ C k 
Y k = 1 ∀ j ∈ I (3) 

∑ 

 ∈ K| o k = ω 
Y k ≤ 1 ∀ ω ∈ � (4) 

 

i ∈ I 0 
X i j = Z j ∀ j ∈ I (5) 

 

i ∈ I 0 
X i j = 

∑ 

i ∈ I 0 
X ji ∀ j ∈ I (6) 

 j ≥ Q i + q j − 2 Q max (1 − X i j ) ∀ i ∈ I ∀ j ∈ I (7)

 ≤ Q j ≤ Q max ∀ j ∈ I (8) 

 i j ∈ { 0 , 1 } ∀ i ∈ I 0 ∀ j ∈ I 0 (9) 

 k ∈ { 0 , 1 } ∀ k ∈ K (10) 

 i ∈ { 0 , 1 } ∀ i ∈ I (11) 

The objective (1) is to minimize the total cost for the com- 

any. The number of vehicles exploited by the company cannot 

xceed the number of available vehicles in the owned fleet, as 

tated in Constraint (2) . Constraints (3) and (4) ensure that each 

ustomer is directly served by the company or assigned to one 

f the ODs and that one bid at most is accepted for each OD. 

f a customer is served by the owned fleet, they must be visited 

nly once, as stated in Constraint (5) . Constraint (6) ensures the 

ontinuity of the routes. Constraint (7) tracks the cumulative load 

t the nodes and implies sub-tour elimination, while Constraint 

8) ensures that vehicle capacity is respected. Finally, Constraints 

9), (10) , and (11) specify variable domains. 

To strengthen the formulation, we add the following valid in- 

qualities, for which we involve a new set of variables L i j that rep- 

esent the load carried on arc (i, j) . 
 

j∈ I 0 
L ji −

∑ 

j∈ I 0 
L i j = q i Z i ∀ i ∈ I (12) 

 

j∈ I 0 
L j0 −

∑ 

j∈ I 0 
L 0 j = −

∑ 

j∈ I 
q j Z j (13) 

 i j ≤ Q max X i j ∀ i ∈ I 0 ∀ j ∈ I 0 (14) 
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i

 i 0 = 0 ∀ i ∈ I 0 (15) 

Constraint (12) states that the quantity delivered to each cus- 

omer is equal to its demand. Constraint (13) ensures that the to- 

al delivered quantity is equal to the sum of the demands of the 

ustomers served by the company’s fleet. Constraint (14) limits the 

oad carried by a vehicle according to the vehicle capacity Q max . 

inally, Constraint (15) forces the vehicles to return to the depot 

mpty. 

. Attractive bundle generation 

The literature states that bundles of transportation requests can 

e built either by sellers or by buyers (see [36] and [37] ). However,

he number of bundles grows exponentially with the number of 

ustomers. Therefore, even small-sized instances may become in- 

ractable. To make practical problems tractable, a set of potentially 

ttractive bundles should be generated [33] . Identifying profitable 

undles is an important issue that can determine the success or 

ailure of the entire distribution system. In this paper, we propose 

wo bundle-generation strategies: (i) an innovative corridor-based 

pproach and (ii) a traditional clustering-based approach. 

.1. Cluster-based bundling 

The basic idea is to create spatial-based clusters of customers. 

hese bundles are assumed to be profitable since a single driver 

an serve all of them with a relatively small marginal cost. In 

act, customers belonging to the same cluster are located very near 

o each other. Therefore, whichever is the final destination of the 

river, the additional cost for visiting all the customers in the bun- 

le, compared to visiting only one of them, is very small. Thus, it is 

onvenient to offer clustered customers in the same bundle. Since 

Ds’ vehicles have limited capacity, the number of customers that 

an belong to the same cluster is limited by the constraint that 

he demands of all customers must be accommodated in a single 

ehicle. We developed an IP model to generate exactly N n clus- 

ers, where the maximum intra-cluster distance, i.e., the maximum 

istance between two customers belonging to the cluster, is min- 

mized. The IP model for cluster-based bundling involves the fol- 

owing additional sets and decision variables: 

N = { 1 .N n } set of clusters 

w in binary variable having value 1 if customer i is assigned to 

cluster n and 0 otherwise 

R n non-negative variable representing the maximum 

intra-cluster distance for cluster n 

The problem can be formulated as follows: 

in 

∑ 

n ∈ N 
R n (16) 

 

 ∈ N 
w in = 1 ∀ i ∈ I (17) 

 n ≥ d i j (w in + w jn − 1) ∀ i ∈ I ∀ j ∈ I ∀ n ∈ N (18)

 

i ∈ I 
q i w in ≤ Q 

OD 
max ∀ n ∈ N (19) 

 in ∈ { 0 , 1 } ∀ n ∈ N ∀ i ∈ I (20) 

The objective function is given in (16) . Constraint (17) ensures 

hat each customer is assigned to only one cluster. Constraint 

18) helps identify the maximum intra-cluster distance. The con- 

traints are binding only if customers i and j both belong to clus- 

er n . If there is only one customer between i and j or if none of
5 
hem belong to n , the constraints impose that R n is greater than 

r equal to 0 and −1 , respectively. These conditions are always re- 

pected, given the nature of the variables. Constraint (19) ensures 

hat the total demand of the customers in a cluster does not ex- 

eed the vehicle capacity. The domain of the variables is specified 

y constraints (20) . 

The minimum number of clusters N min needed to obtain a feasi- 

le partition of customers without exceeding vehicle-capacity con- 

traints can be computed as N min = � ∑ 

i ∈ I q i /Q 

OD 
max 	 . 

To generate potentially attractive bundles, we iteratively ran 

he model described above for values of N n varying in the range 

 N min , | I| ] . The solution of the problem for N n = | I| corresponds to

 I| bundles, with each one containing a single customer. The of- 

ered bundle set comprises all the clusters generated by this pro- 

edure, excluding duplicates. 

.2. Corridor-based approach 

It has been mentioned that the ODs’ paths start from the de- 

ot and that they perform their deliveries on the way back to 

heir destinations. Thus, attractive bundles may contain not only 

ustomers that are close to each other but also close to the di- 

ect path between the depot and ODs’ destinations. In fact, such 

undles, even if they contain customers far from each other, im- 

ly a very short detour for the driver; therefore, they may be po- 

entially attractive. This kind of bundle cannot be generated with 

he clustering-based approach. Thus, we developed an additional 

undling method that we denote as the corridor-based approach. 

The corridor-based approach involves identifying the circular 

ector centered at the depot. It is defined by the smallest angle α, 

or which all the customers are included in this sector. This sec- 

or is then split into n s identical small sectors characterized by 

n angle of size α/n s . We then explore each small sector sepa- 

ately and consider all the customers included in the sector to be 

 bundle. If the total demand of these customers exceeds the ve- 

icle capacity ( Q 

OD 
max ), the clustering-based approach is repeated on 

his subset of customers (denoted as I s ). As previously stated, the 

inimum number of clusters needed to create feasible bundles is 

 

s 
min 

= � ∑ 

i ∈ I s q i /Q 

OD 
max 	 . 

The corridor-based approach is iteratively repeated with differ- 

nt values of n s . The bundles obtained – excluding duplicates –

onstitute the set of offered bundles. 

Fig. 1 shows attractive bundles generated with the corridor- 

ased approach. The depot is represented by a red square and 

ustomers by blue circles, while the ODs’ homes are indicated by 

reen triangles. Attractive bundles are circled in red. 

In Fig. 2 , we provide a comparison of the most attractive bun- 

les generated by the corridor-based approach (a) and clustering- 

ased approach (b). It can be seen that the bundles generated by 

a) are much more attractive, since they imply very small detours 

or the ODs; the bundles generated by (b) imply much longer de- 

ours and, therefore, are less attractive. Note that we do not report 

he exhaustive list of feasible bundles but only a subset of them 

hat can be found by each approach. This is to compare their shape. 

Finally, we would like to remark that the optimization model, 

escribed in Section 4 , takes the list of bundles as input. We pro-

ose two rational procedures to generate attractive bundles. How- 

ver, the system works independently from the rule used to gener- 

te bundles; even with completely randomly generated ones. The 

ttractiveness of bundles, however, strongly impacts the total cost. 

herefore, it is important to generate attractive bundles. 

. The bidding problem 

In OD distribution systems, pricing or bidding is a challenging 

ssue. Archetti et al. [17] do not address an actual bidding phase 
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Fig. 1. Attractive bundles generated by the corridor-based approach. 
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ut consider a fixed compensation for each delivery performed, 

hich is independent of the detour implied for the OD. This may 

e considered unfair as two different ODs may incur completely 

ifferent extra mileages to serve the same customer but would re- 

eive the same compensation. However, the authors argue that to 

ay a compensation proportional to the actual detour required, it 

ould be necessary to know the home locations of all the ODs. 

his would expose the system to strategic behavior, as ODs could 

eclare that they live far away from the customers’ area to receive 

 higher compensation. In [29] , the authors addressed the pickup- 

nd-delivery VRP with ODs. In contrast to [17] , they considered 

Ds refusing the offer proposed by the company if the compen- 

ation is too low. This aspect is modeled considering a minimum 

ompensation threshold for each OD. 

While the company decided on the compensation scheme in 

he previous papers on ODs, in this paper, we let the ODs decide 

i) the bundles for which they want to bid and (ii) the value of 

he bid. In reality, bidding decisions are entirely up to drivers. The 

ompany just receives the bids from them without knowing how 

rices are computed. In our problem, we consider bids as input 

rom ODs, but, in order to have realistic bids, we generate an au- 
Fig. 2. Comparison of attractive bundles generated by the clusteri

6 
omatic bidding systems which tries to simulate rational ODs be- 

avior. To fully characterize each OD ω we need to introduce some 

arameters: (i) flexibility , which represents the maximum accept- 

ble detour, computed as the difference between the shortest path 

rom the depot to the OD’s final destination, visiting all the cus- 

omers in the bundle, and the direct path from the depot to the 

D’s final destination; (ii) willingness to work ( φω ), where φω = 1 

escribes a neutral behavior, i.e., where the ODs’ bids reflect ex- 

ctly the actual detour implied. In case of a lower willingness (i.e., 

ω > 1 ), the bid prices are increased since the ODs agree to per- 

orm a delivery only if they find it very convenient. Values smaller 

han 1 ( φω < 1 ) indicate that the driver is willing and, therefore,

educes the bid price to have a greater chance of winning the or- 

er. The value of a bid k is calculated as the detour length, δk , (i.e.

he detour needed by OD, o k , to serve customers belonging to bun- 

le τk ), multiplied by a unitary cost c u , plus a fixed cost c f , for each

ustomer belonging to the bundle. These are all multiplied by the 

illingness-to-work parameter ( φo k 
) associated with the OD who 

ubmitted the bid o k . This is formulated as follows. 

 k = (c u δk + c f | τk | ) φo k (21) 

Moreover, the flexibility level indirectly impacts the bidding 

rocess. In fact, an OD places a bid for a bundle only if the re-

ated detour δk , is lower than the maximum value allowed ( δMAX 
o k 

). 

he latter corresponds to the OD’s flexibility level. 

Thus, we consider compensation schemes depending on the de- 

our required, without forcing the ODs to reveal their home lo- 

ations to the company. It should be noted that the optimization 

odel presented in Section 4 receives bids as input data. However, 

his section proposes a mechanism to simulate rational OD’s be- 

avior as well as realistic bids. In addition to the presented ap- 

roaches, other rational ways might exist. 

It is worth noting that we are considering bundles that poten- 

ially comprise several customers. Therefore, the detour implied by 

erving a bundle must be computed through solving a special ver- 

ion of a traveling salesman problem (TSP), where the origin and 

he destination of the tour are the depot and the OD’s destina- 

ion, respectively. Since this problem has to be potentially solved 

or each pair of OD and bundle, the computational times of the 

idding phase are a challenging issue. To reduce these times, we 

ntroduce a pre-processing check, where we examine all the cus- 

omers within a bundle. If the detour imposed by even one of 

hese customers (if served individually) is higher than the OD’s 

exibility level, no bid can be placed. In this manner, the number 

f TSPs that needs to be solved for the bidding phase is consider- 

bly reduced. Finally, the bid offered by the OD is computed as the 

ompensation associated with the detour, multiplied by the will- 

ngness ( φ). 
ng-based approach (a) and the corridor-based approach (b). 
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. Solution approach: Large neighborhood search 

LNS is a metaheuristic framework based on the idea that 

earching large neighborhoods results in finding high-quality so- 

utions by overcoming local minima. The neighborhoods to be ex- 

lored are implicitly defined by specific destroy operators . The par- 

ially destroyed solutions are transformed into feasible solutions by 

eans of repair operators . LNS has been successfully applied to sev- 

ral routing problems, as reported in [38] . 

Destroy operators may be defined in different ways. For in- 

tance, in routing problems, an operator can destroy k routes and 

eave the remaining unchanged or remove some arcs belonging to 

ifferent routes from the current solution. This removal of arcs (or 

ntire routes) can be based on a deterministic or randomized ap- 

roach. The results from the literature indicate that operators hold- 

ng a random component show better performances and prevent 

arly convergence toward the local minima [39] . 

Generally, greedy construction heuristics are used to rebuild the 

olution. These methods are very fast but not always accurate as 

nly a single solution is analyzed, from among all the feasible solu- 

ions that can be generated from the partially destroyed one. Nat- 

rally, this may slow down the process of reaching high-quality 

olutions. 

Recently, a hybridized version of LNS, named LNS-based MH, 

as been successfully proposed in the literature. In this framework, 

n MIP model, which is run with an execution time limit, is ex- 

loited to rebuild the partially destroyed solution. This way, a large 

ortion (often the totality) of the subset of the solutions belonging 

o the neighborhood can be analyzed. MHs have been successfully 

pplied to several highly constrained routing problems [39,40,41] . 

In [40] , the destroy operators work on arc variable removal 

rom the solution of small subsets of routes, forcing the others to 

emain unvaried. However, in [39] and [41] , the destroy operators 

o not directly work on arc variables but on customer-to-vehicle 

ssignments. 

Working on assignment variables allows the analysis of larger 

eighborhoods. On the one hand, their exhaustive exploration may 

equire larger computational times since the routing plan must be 

uilt from scratch. On the other hand, working on arc variables al- 

ows one to start from partially destroyed solutions already con- 

aining several arcs; therefore, the rebuild operation is faster, while 

he size of the addressed neighborhood is smaller. This may nega- 

ively affect effectiveness. Finding a balanced compromise between 

fficiency and effectiveness is a challenging task. In this paper, we 

ropose destroy operators that simultaneously work on arcs and 

ssignments to combine the advantages of both approaches. 

.1. Initial solution computation 

The proposed LNS starts from an initial feasible solution com- 

uted as follows: A relaxation of the original problem, which is 

btained by dropping integrity constraints for variables X i j , Y k and 

 i , is solved to optimality. The relaxation is based on the substitu- 

ion of constraints (9), (10) and (11) with constraints (22), (23) and 

24) , respectively. 

 ≤ X i j ≤ 1 ∀ i ∈ I ∀ j ∈ I (22) 

 ≤ Y k ≤ 1 ∀ k ∈ K (23) 

 ≤ Z i ≤ 1 ∀ i ∈ I (24) 

To generate the initial solution, all variables Y k with value 1 in 

he optimal solution of the relaxed problem are forced to be equal 

o 1 in the original problem as well. All the customers i assigned to 

Ds in the relaxed problem, i.e., Z = 0 , are forced to be assigned
i 

7 
o ODs in the original problem as well. Finally, all customers for 

hom 0 < Z i < 1 are neither forced to be assigned to ODs nor to

e served by the owned fleet. We then solve the problem with 

hese fixed variables for short execution time limit ( T init 
lim 

) and keep 

he current best solution as the initial solution. 

.2. LNS Framework 

Since the mathematical model proposed in Section 4 is able to 

olve only small-sized instances within reasonable run times, we 

ave developed an LNS that solves the combined problem of se- 

ecting bid route customers if they are served by the company’s 

eet. 

In this LNS, the algorithm starts from an initial feasible solu- 

ion (see Section 7.1 ). A set of destroy operators is generated (see 

ection 7.3 ). Each of them follows a different rule to find a subset 

f customers to be removed from the routes of the owned vehi- 

les. Furthermore, each operator identifies a promising subset of 

ustomers currently served by ODs as candidates for being served 

y owned vehicles. 

The following rules are applied to restrict the set of possible 

oves allowed in the rebuilding phase: 

• A customer cannot be inserted between two nodes if the arc 

between these nodes has not been removed by the destroy op- 

erator. 
• Customers removed from the owned vehicles’ routes can be as- 

signed to any route or OD. 
• Customers assigned to ODs in the current solution and candi- 

dates to be assigned to owned vehicles can be inserted into one 

of the owned vehicles’ routes or assigned to any OD. 
• Customers assigned to ODs in the current solution but not se- 

lected as candidates to be assigned to owned vehicles must be 

assigned to an OD. 

These rules limit the number of solutions included in the neigh- 

orhood to explore but reduce the computational effort. Hence, we 

im for a good balance between efficiency and effectiveness. 

In each iteration, one of the destroy operators is randomly se- 

ected. Starting from the partially destroyed solution, a feasible so- 

ution is generated based on the previously described rebuilding 

ules. The model is run with a short time limit ( T lim 

), and the

urrent best solution is selected. If the newly obtained solution 

s better than the best known solution, it is retained as the new 

est known solution. The algorithm terminates once the maximum 

umber of iterations ( Iter max ) is reached. 

The additional constraints to be added to the model belong to 

wo categories: (i) arc-fixing constraints, where for each arc (i,j) 

elonging to the current solution that has not been destroyed by 

he perturbation, we impose X i j = 1 , (ii) assignment-fixing con- 

traints, where we force customers who were previously assigned 

o ODs and are not candidates to be inserted into the owned fleet’s 

outes to be assigned to ODs. This can be obtained by imposing 

 i = 0 for all of them. All the remaining variables are eligible to be

hanged during the rebuilding phase. 

.3. Destroy operators 

A set of destroy operators comprises the following five opera- 

ors: 

• Random removal (RR) : A set ( P ) of customers is randomly 

picked from among the customers currently assigned to the 

owned fleet. These customers are temporarily removed from 

the routing plan (by deleting their entering and exiting arcs). 

All customers currently assigned to ODs and within a radius of 

ρ from one of the customers in P are marked as candidates to 

be inserted into the owned fleet’s routes. 
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Table 2 

Impact of valid inequalities. The values of the objective function (OF), 

lower bounds (LB), and run times (TIME) are reported for both scenarios 

(valid inequalities included – VIs; valid inequalities excluded – NO VIs). 

VIs NO VIs 

Instance OF LB TIME OF LB TIME 

r-20-10-1 48.65 48.65 2.67 48.65 25.95 3600 

r-20-10-2 48.17 48.17 20.53 48.17 19.71 3600 

r-20-10-3 52.53 52.53 10.41 54.27 22.10 3600 

r-20-10-4 53.04 53.04 24.62 56.51 25.51 3600 

r-20-10-5 49.10 49.10 35.75 50.65 25.10 3600 

r-20-10-6 50.13 50.13 40.81 51.17 25.73 3600 

r-20-10-7 49.15 49.15 22.43 49.73 22.88 3600 

r-20-10-8 50.06 50.06 1.986 53.50 25.56 3600 

r-20-10-9 51.39 51.39 11.67 52.90 25.11 3600 

r-20-10-10 53.96 53.96 12.10 54.04 24.21 3600 

Avg 50.62 50.62 18.30 51.96 24.28 3600 

Gap 0.00% 53.28% 

d  

a

g  

d  

s  

w  

y  

g

o

t

c

t

a

fl

s

a

1

1

i

s

c

t

F

e

t

w

a

i

t

O

T

S

t

8

p

w

o

s

t

o

b

• Randomized worst removal (RWR) : A set ( P ) of customers is 

drawn based on a probability that depends on the savings made 

from removing them from the route. Let pre i and succ i be the 

predecessor and the successor, respectively, of i in the routing 

sequence. The savings associated with i can be computed as 

sa v i = c pre i i + c isucc i − c pre i succ i . (25) 

All customers currently assigned to ODs and within a radius of 

ρ from one of the customers in P are marked as candidates to 

be inserted into the owned fleet’s routes. 
• Clustered removal from routes (CR-R) : One customer i is ran- 

domly chosen from among those served by the owned fleet in 

the current solution. Set P comprises i and all the other cus- 

tomers served by the owned fleet within a radius of ρ from i . 

All customers belonging to P are removed from the routes, and 

all customers currently assigned to ODs within a radius of ρ
from one of the customers in P are marked as candidates to be 

inserted into the owned fleet’s routes. 
• Clustered removal from ODs (CR-O) : One customer i is ran- 

domly chosen from among those served by ODs in the current 

solution. Set P comprises i and all the other customers who are 

served by ODs and lie within a radius of ρ from i . All customers 

who are served by the owned fleet and are within a radius of 

ρ from one of the customers in P are removed from the routes. 

The operator’s behaviour is similar to that of operator CR-R, but 

its scope is different. CR-R aims at removing a clustered set 

of customers from the owned fleet’s routes, letting the exact 

model the decision to assign them to ODs. In order to favour 

such changes in the assignment, also customers, located nearby 

to the cluster, but currently assigned to ODs, are involved in 

the perturbation. The scope of CR-O, instead, is to attempt to 

insert in the routes a clustered set of customers currently as- 

signed to ODs (not necessarily assigned to the same OD). To 

allow that, in the perturbation, we relax the assignment of a 

cluster of customers to ODs, by removing from the solutions all 

accepted bids involving at least one customer belonging to the 

cluster. In order to favour their insertion into the routes, all cus- 

tomers assigned to the owned fleet and located nearby to the 

customers in the cluster, are involved in the perturbation and 

temporarily removed from their route. 
• Bundle removal (BR) : A bid k is randomly chosen from among 

those accepted in the current solution. Then all customers as- 

sociated with bid k ( τk ) are considered candidates to be in- 

serted into the owned fleet’s routes. All customers served by 

the owned fleet and within a radius of ρ from one of the cus- 

tomers in τk are removed from the routes. Furthermore, in this 

paper, an additional condition is imposed for other operators: 

all customers in τk are assigned to (i) ODs or (ii) owned ve- 

hicles. This condition is imposed through a new set of con- 

straints: 

Z i = Z j ∀ i ∈ τk , j ∈ τk : i 
 = j (26)

. Computational experiments 

In this section, we report the results obtained through an exten- 

ive computational study, which comprises three parts: (i) compar- 

son of the performances of the two bundle-generation strategies, 

ii) comparison of the performance of the LNS with respect to the 

IP model solved by a commercial solver, and (iii) analysis of how 

Ds’ characteristics (i.e., flexibility and willingness) impact the so- 

ution procedure. 

To carry out these analyses, two sets of instances have been 

enerated. The first comprises 20 small-sized instances, with 20 

ustomers, 10 ODs, and 5 owned vehicles. In the first 10 instances, 

he customers’ locations are distributed according to a random 
8 
istribution in the square [ −5 , 5] , while in the last 10 instances,

 clustered distribution has been adopted. For this, we randomly 

enerate three seed customers β (where β ∈ { 1 , 2 , 3 } ) with coor-

inates [ x β, y β ] in the square [ −5 , 5] . For each of the first two

eed customers, we generate six customers b (where b ∈ { 1 , ., 6 } )
ith coordinates x b randomly distributed in [ −1 + x β, 1 + x β ] and

 b randomly distributed in [ −1 + y β , 1 + y β ] . For the third seed, we

enerate only five customers with the same procedure as for the 

ther seeds; this is for the purpose of having 20 customers in to- 

al. We refer to these instances as small random (SR) and small 

lustered (SC), respectively. As mentioned before, ODs are charac- 

erized by flexibility and willingness, where flexibility indicates the 

ccepted deviation from the shortest path, and willingness is re- 

ected in an OD’s bidding behavior. For both categories, we con- 

ider three levels: high, medium, and low. The maximum detour 

llowed for high, medium, and low flexibility is equal to 3,2, and 

, respectively. The willingness-associated multiplier is equal to 0.8, 

, and 2 for high, medium, and low levels, respectively. 

In our computations, we consider all nine combinations of flex- 

bility and willingness, resulting in a total of 180 small-sized in- 

tances. 

The second set comprises 10 large-sized instances, with 40 

ustomers, 20 ODs, and 5 owned vehicles. The customers’ loca- 

ions are randomly distributed. We refer to these instances as L . 

rom each instance, nine instances are derived considering differ- 

nt combinations of flexibility and willingness levels. This adds up 

o a total of 90 instances. 

Computational tests have been executed on a system equipped 

ith an Intel-i7-5500U processor running at 2.4 GHz clock speed 

nd with 16 GB of RAM. All the procedures have been developed 

n the Xpress Mosel language. The MIP models – the one used in 

he bundle-generation phase and the one used to solve the VRP- 

D-OB – are solved by the commercial solver Xpress 7.9. We set 

 lim 

to 10 s, T init 
lim 

to 5 s, and Iter max to 20 iterations, respectively. 

et P comprises five customers. The maximum run time for solving 

he MIP is 3600 s. 

The complete set of instances is publicly available [9] . 

.1. Impact of valid inequalities 

To show the benefit that can be obtained by adding the pro- 

osed valid inequalities (see Section 4 ), a comparison with and 

ithout valid inequalities has been conducted, with a time limit 

f 3600 s. These experiments have been performed on the small- 

ized instances with random customer distribution. The computa- 

ional results are reported in Table 2 . For each instance, the value 

f the objective function of the best solution (OF), the best lower 

ound (LB), and the computational time required (TIME) are re- 
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Table 3 

Comparison of cluster-based (Clus) and corridor-based (Corr) bundling approaches on small-sized instances for different combinations of flexibility (Flex) and willingness 

(Will). We report the average values of total cost (Cost), run time (Time) in seconds, number of bundles (#Bundles), number of bids (#Bids), number of ODs (#OD), number 

of customers served by ODs (#Cust), and ratio of customers per OD (Cust/OD). 

Cost Time #Bundles #Bids #OD #Cust Cust/OD 

Instance Flex Will Clus Corr Clus Corr Clus Corr Clus Corr Clus Corr Clus Corr Clus Corr 

SR LOW LOW 54.64 54.52 1681.85 641.64 47 18 98 33 2.1 1.5 2.7 4.6 2.23 1.45 

SR LOW MED 52.81 50.88 550.90 20.06 47 18 98 33 2.9 2.8 6.4 9.5 2.33 3.45 

SR LOW HIGH 47.56 45.29 103.41 3.518 47 18 98 33 5.2 4.1 11.7 13.5 2.37 3.38 

SR MED LOW 54.64 54.51 1686.10 405.77 47 18 153 51 2.2 1.6 3.3 5.1 2.4 2.73 

SR MED MED 52.27 50.62 577.02 18.30 47 18 153 51 3.3 2.9 7.9 10 2.84 3.49 

SR MED HIGH 46.57 44.51 109.5 4.96 47 18 153 51 5.1 4 12.8 13.7 2.9 3.5 

SR HIGH LOW 54.64 54.41 1621.07 526.89 47 18 194 66 2.3 1.7 3.2 5.5 1.4 2.23 

SR HIGH MED 52.35 50.53 594.23 23.41 47 18 194 66 3.2 2.9 7.2 9.9 2.96 3.46 

SR HIGH HIGH 46.38 44.43 114.27 6.95 47 18 194 66 5.1 4.1 13.1 14 2.98 3.48 

Avg 51.32 49.97 782.04 183.50 47.00 18.00 148.33 50.00 3.49 2.84 7.59 9.53 2.49 3.02 

% Impr −2.63% −76.54% −61.70% −66.29% −18.47% 25.62% −21.24% 

SC LOW LOW 54.15 53.70 2506.80 1097.00 41 20 78 42 1.5 1.8 4.5 5.3 2.03 2.95 

SC LOW MED 51.25 50.84 1316.10 704.70 41 20 78 42 2.0 2.4 6.3 7.5 3.24 3.20 

SC LOW HIGH 47.38 46.53 580.60 373.7 41 20 78 42 2.8 3.1 9.8 9.5 3.53 3.2 

SC MED LOW 54.64 53.11 1240.50 819.1 41 20 117 61 1.6 2 4.8 6.1 2.4 3.05 

SC MED MED 50.34 49.75 660.8 483.90 41 20 117 61 2.2 2.6 7.1 8.1 3.3 3.14 

SC MED HIGH 45.23 44.52 470.8 370.8 41 20 117 61 3.2 3.8 12.3 11.8 3.9 3.14 

SC HIGH LOW 54.64 53.03 1284.5 695.6 41 20 153 76 1.8 2 5.5 6.3 2.92 3.3 

SC HIGH MED 49.77 49.44 469.4 190.9 41 20 153 76 2.4 2.7 8 8.5 3.5 3.24 

SC HIGH HIGH 44.27 43.69 126.1 8.7 41 20 153 76 3.5 3.9 13.2 12.8 3.8 3.34 

Avg 50.19 49.40 961.73 527.16 41.00 20.00 116.00 59.67 2.33 2.70 7.94 8.43 3.18 3.17 

% Impr −1.56% −45.19% −51.22% −48.56% 15.71% 6.15% 0.21% 

Table 4 

Comparison of cluster-based (Clus) and corridor-based (Corr) bundling approaches on large-sized instances for different combinations of flexibility (Flex) and willingness 

(Will). We report average values of total cost (Cost), run time (Time) in seconds, number of bundles (#Bundles), number of bids (#Bids), number of ODs (#OD), number of 

customers served by ODs (#Cust), and ratio of customers per OD (Cust/OD). 

Cost Time #Bundles #Bids #OD #Cust Cust/OD 

Instance Flex Will Clus Corr Clus Corr Clus Corr Clus Corr Clus Corr Clus Corr Clus Corr 

L LOW LOW 109.23 103.67 4611.69 3611.99 222 41 540 128 7.6 4.2 14.9 15.1 2.45 3.62 

L LOW MED 100.76 96.52 4634.28 3610.53 222 41 540 128 7.1 4.8 15.3 17.7 2.54 3.70 

L LOW HIGH 86.44 83.72 3978.38 3611.75 222 41 540 128 8.2 6.9 18.3 25.5 2.37 3.71 

L MED LOW 111.22 103.04 5286.13 3626.2 222 41 959 209 8 4.3 15 14.8 2.54 3.47 

L MED MED 100.63 95.41 5309.25 3624.50 222 41 959 209 7.4 5.3 14.4 19.3 2.34 3.65 

L MED HIGH 90.63 82.58 4887.86 1586.4 222 41 959 209 10.1 8 20.2 29.7 2.28 3.74 

L HIGH LOW 109.69 102.75 6200.7 3641.1 222 41 1391 283 8.1 4.1 14.9 14.8 2.35 3.63 

L HIGH MED 101.3 95.13 6240.07 3641.4 222 41 1391 283 7.4 5.1 14.9 18.9 2.41 3.72 

L HIGH HIGH 90.15 81.4 5745.33 1005.3 222 41 1391 283 10.3 9 19.6 33.6 2.31 3.76 

Avg 100.01 93.80 5210.41 3106.57 222.00 41.00 963.33 206.67 8.24 5.74 16.39 21.04 2.40 3.67 

% Impr −6.20% −40.38% −81.53% −78.55% −30.32% 28.41% −52.85% 

p

a

(

b

r

r

p

d

f

8

p

T

s

f

c

g

(

o

o

n  

u

a

a

o

d

l

r

b

s

o

f

i

t

(

a

b

b

l

c

orted. We differ between the case where valid inequalities are 

dded to the model (VIs) and the case without valid inequalities 

NO VIs). If run times of 3600 are reported, the instances could not 

e solved to optimality within the given time limit. The last two 

ows report average values and the optimality gap ( (OF − LB ) /LB ), 

espectively. As can be evinced from the reported results, the pro- 

osed valid inequalities are very effective and provide a strong re- 

uction of run times. Therefore, all valid inequalities are included 

or the further experiments. 

.2. Comparison of bundle-generation strategies 

To compare the two bundle-generation strategies, we can ap- 

ly them to both small (SR and SC) and large-sized instances (L). 

ables 3 and 4 show the results for the small and large-sized in- 

tances, respectively. 

All three tables are organized as follows: 

For each bundle-generation strategy, we report the following in- 

ormation: (i) best known objective function value (if the instance 

an be solved to optimality within the time limit), (ii) number of 

enerated bundles, (iii) number of bids, (iv) number of ODs used, 

v) number of customers served by ODs, and (vi) average number 

f customers per OD. In each strategy, we show the average values 
9 
ver 10 instances for each combination of flexibility and willing- 

ess. For each group of instances ( SR , SC, and L ), the average val-

es and percentage improvements obtained by the corridor-based 

pproach are reported. The computational times include the gener- 

tion of bundles, generation of bids, and time for solving the MIP. 

The results show that the proposed corridor-based approach 

utperforms the classical clustering-based approach. For the ran- 

omly distributed instances (SR), the total cost is, on average, 2.7% 

ower if the corridor-based approach is applied, and the average 

un time can be reduced by 86.7%. This is because the corridor- 

ased approach generates fewer but more attractive bundles. De- 

pite the fewer bundles generated and the lower average number 

f ODs engaged, the number of customers served by ODs is larger 

or the corridor-based approach (9.5 as compared to 7.6). This also 

ndicates that the corridor-based approach can generate more at- 

ractive and profitable bundles for the ODs. 

The same observations hold true for the clustered instances 

SC) even though this customer distribution is more suitable for 

 clustering-based approach. Again, the corridor method obtains 

etter results in both the total cost and run time. The number of 

undles is higher than in the random case but still more than 50% 

ower as compared to the cluster approach. Finally, we can con- 

lude that customers’ geographical distribution does not affect the 
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Table 5 

Comparison of MIP and LNS for large-sized instances. For the MIP, we report 

the best result obtained within a maximum run time of 3600 s. Column Time 

gives the required run time. For the LNS, we report the average gap to the MIP 

solution of (i) the best solution over 10 runs: 
(best), (ii) the average solution 

over 10 runs: 
(avg.), (iii) the average time when the best solution was found: 

Found , and (iv) the average total run time: Time . 

MIP LNS 

Flex Will Cost Time 
(best) 
(avg.) Found Time 

Low Low 103.7 3612 0.5% 1.4% 32.9 85.5 

Low Med 96.5 3611 0.2% 1.0% 36.1 96.5 

Low High 83.7 3612 0.5% 1.2% 23.2 93.8 

Med Low 103.0 3626 0.4% 1.4% 36.8 100.2 

Med Med 95.4 3625 0.3% 1.1% 26.2 98.6 

Med High 82.6 1586 2.0% 2.1% 14.6 87.1 

High Low 102.8 3641 0.5% 1.2% 34.7 105.3 

High Med 95.1 3641 0.3% 1.3% 37.0 91.9 

High High 81.4 1005 1.9% 2.1% 16.0 76.2 

Avg. 93.8 3107 0.7% 1.4% 28.6 92.8 
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Table 6 

Comparison of best solutions obtained by MIP and by LNS 

within 300 s. Cost and time to reach the best solution (T.F.) 

are reported. 

MIP LNS 

Flex Will Cost T.F. 
(avg.) T.F. 

Low Low 105.66 207.46 −0.55% 32.94 

Low Med 97.77 287.50 −0.28% 36.06 

Low High 86.80 197.40 0.72% 23.21 

Med Low 105.04 218.89 −0.50% 36.82 

Med Med 96.73 238.32 −0.32% 26.27 

Med High 83.75 200.42 0.68% 14.63 

High Low 104.55 223.54 −0.50% 34.71 

High Med 96.52 232.19 −0.13% 37.05 

High High 82.47 235.15 0.72% 15.96 

Avg. 95.48 226.76 −0.02% 28.63 

Fig. 3. Percentage of customers served by ODs for different levels of flexibility and 

willingness to work for large-sized instances. 
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erformance of the algorithms. Furthermore, the corridor-based 

pproach performs better regardless of the distribution. Therefore, 

or large-sized instances, we have considered only randomly dis- 

ributed customers. 

The experiments conducted on large-sized instances confirm 

he dominance of the proposed corridor approach. Again, we can 

how that this approach reduces the total cost ( −6.2%) and clearly 

utperforms the clustering-based approach in terms of computa- 

ional time ( −40.38%). The average optimality gap is 3.38% for the 

orridors-based approach and 9.19% for the clustering-based one. 

We can also observe that the corridor-based approach gener- 

tes fewer bundles but that the number of customers assigned 

o one bundle (i.e., OD) is higher. This shows that the corridor- 

ased approach generates more attractive bundles. A comparison 

f Tables 3 and 4 indicates that these effects grow with the size 

f the instances. For what concerns the bundle generation phase, 

he corridor-based approach is relatively fast (less than 60 s), while 

he clustering method can take up to 1 h to generate bundles. 

ence, the difference in computational times is not only due to 

he solving phase but mostly to the generation phase. Indeed, the 

orridors-based approach not only generates better bundles but 

lso takes a much smaller time to generate them. This allows us 

o derive an important insight: a company should focus on provid- 

ng fewer but more promising bundles. Concluding this analysis, 

e can state that the innovative corridor-based bundle generation 

pproach is more suitable and profitable for the presented prob- 

em. 

.3. LNS Performance evaluation 

As reported in Table 4 , the computational times required to 

olve large-sized instances are relatively long, and only a few in- 

tances can be solved to optimality. Therefore, a more efficient 

pproach is needed. We propose applying an LNS method, as de- 

cribed in Section 7 , to obtain near-optimal solutions in a reason- 

ble amount of time. 

In Table 5 , we compare the performances of the proposed LNS 

nd the MIP solved by a commercial solver. 

The comparison reveals that the LNS achieves good solutions 

0.7% from the best solution found by the MIP) within considerably 

horter computational times. On average, the run time of the LNS 

s more than 90% shorter than the time required by the MIP model. 

oreover, the average results over 10 runs are close to the best 

esults, which indicates that the LNS performs robustly. 

In Table 6 we report a comparison between the best solutions 

btained by MIP and by LNS within a time limit of 300 s. We re-

ort average results for each combination of flexibility and willing- 
10 
ess. The average cost and time within the best solution has been 

ound is reported. We observe that LNS achieves an improvement, 

n the solution quality, of 0.02% with respect to the MIP, and a 

aving of 87% in computational time. We further observe that MIP 

btains slightly better solutions when the willingness to work is 

igh, while LNS obtains better solutions on instances with low and 

edium willingness. This behavior can be explained by the fact 

hat instances with high willingness are those in which, due to the 

ower bids offered by the drivers, the number of customers served 

y ODs is higher (see Table 4 ). Consequently, the routing plan is 

ess complex, since it involves a small of number of customers. In- 

eed, the large computational times required by MIP are essen- 

ially due to the routing-related part of the model. Moreover, most 

f the solutions provided by MIP within 300 s on instances with 

igh willingness, are optimal. Therefore, they cannot be improved 

y LNS. Thus, we can conclude that LNS, when compared against 

IP, shows a good performance on all types of instances, requiring 

uch smaller computational times. 

.4. Impact of ODs’ flexibility and willingness to work 

Further experiments have been conducted to assess the impact 

f the flexibility and willingness of ODs on the solution structure. 

or this purpose, we have compared the average ratios of cus- 

omers served by ODs for each combination of flexibility and will- 

ngness. The results are displayed in Fig. 3 . We can see that the 

atio is more sensitive to the OD’s willingness than their flexibility. 

n fact, for a high flexibility level, 56.08% of customers are assigned 

o ODs, while the percentage decreases to 48.5% if the flexibility in 

eviating from the shortest path is low. 

The impact of willingness is stronger. If the ODs are character- 

zed by a high willingness to work, i.e.,if they put forth competitive 

ffort s, 74% of customers are served by ODs, while this percentage 
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Fig. 4. Optimal solution for instance 20 − 10 − 1 with high flexibility and high will- 

ingness. Customers are depicted as light blue circles and ODs as orange circles. Bold 

lines represent the routes covered by the owned fleet, while dotted lines represent 

the ODs’ paths. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Table 7 

Comparison of cluster-based (Clus) and 

corridor-based (Corr) bundling approaches on 

instances with clustered OD distribution. 

Instance Clus Corr 

clustOD1 45.51 41.82 

clustOD2 45.44 40.22 

clustOD3 52.13 49.53 

clustOD4 45.37 47.57 

clustOD5 47.33 44.60 

clustOD6 48.80 47.39 

clustOD7 48.37 47.65 

clustOD8 60.10 59.76 

clustOD9 51.74 52.27 

clustOD10 49.36 51.97 

Avg 49.41 48.28 

% Impr 2.30% 
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Fig. 5. Layout of instance clustOD1. 
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ecreases to 37.25% if their willingness is low. In general, we can 

bserve that if ODs show medium flexibility and medium willing- 

ess, the percentage of customers assigned to them is about 48%. 

owever, for the most favorable combination, i.e., high flexibility 

nd high willingness, an average of 84% of customers are served by 

Ds. This indicates that the optimal solution for the system lies in 

 mixed-distribution strategy that integrates the owned fleet and 

Ds. An example for such a solution for one of the small-sized in- 

tances is displayed in Fig. 4 . 

.5. Impact of clustered OD distribution 

In this subsection, we describe the experiments carried out on 

mall-sized instances with clustered OD distribution in order to 

ompare the performance of the proposed bundle-generation ap- 

roaches. The layout of one of these instances, namely clustOD1 , 

s reported in Fig. 5 . The results are in Table 7 , which shows the
11 
ptimal values for both bundling approaches. The last two rows 

how the average values and percentage improvements obtained 

y the corridor-based approach as compared to the cluster-based 

pproach. We can see that the corridor-based approach performs 

etter in 70% of the cases. It provides an average improvement of 

.30%, which supports the results obtained for the randomly dis- 

ributed ODs. Thus, we can conclude that the comparative perfor- 

ances of the two approaches are not influenced by the ODs’ dis- 

ribution. 

.6. Dynamic appearance of ODs 

In many real-life applications, ODs are customers who have per- 

ormed an online purchase and plan to collect their order from the 

tore. This is a well-known method, “click&collect,” which is of- 

ered by several retail chains. In such a context, information about 

 potential OD’s availability is known at least one day in advance. 

ence, the problem can be described by a static model. Never- 

heless, there are other contexts in which such information is not 

vailable a priori. Instead, an OD’s availability is learned dynam- 

cally during the day. For this setting, we have assumed that the 

ustomers’ demands are known in advance, while the available 

Ds are revealed at fixed time intervals. Thus, first, the static prob- 

em is solved considering virtual ODs with medium flexibility and 

illingness. Furthermore, we have assumed that the ODs’ locations 

re equally distributed over the customers’ areas (see Fig. 6 ). 

Orders that were assigned to the owned fleet in the optimal (or 

est) solution are loaded into the owned fleet vehicles, and these 

ehicles start their daily routing plan. Such decisions are kept fixed 

nd cannot be modified during the day. However, all the orders 

hat were assigned to the virtual ODs are kept in the store, wait- 

ng for potentially interested ODs. At each time interval, the situa- 

ion is re-evaluated since new ODs may appear dynamically. If this 

appens, the model is solved again, considering only unserved or- 

ers. If one or more bids are accepted, the corresponding orders 

re assigned to ODs, while the remaining orders are kept in the 

tore waiting for more ODs. At the last time interval, the orders 

hat have not been assigned to ODs are served with the owned 

eet, for which a standard VRP is solved. The total cost is com- 

uted as the sum of the owned-fleet routing costs for the delivery 

lan that started at the beginning of the day, the costs associated 

ith the accepted bids, see (1) , and the cost of the supplemen- 

ary routing plan for the owned fleet to perform the delivery of 

he remaining orders. The goal of these experiments is to evalu- 
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Fig. 6. Instance r20-10-1 with equispaced virtual ODs. 

Table 8 

Results of the small-sized instances with randomly distributed customers and 

dynamic arrivals of ODs. 

Clus Corr 

Instance Expected Cost Real Cost Expected Cost Real Cost 

r-20-10-1 54.54 54.54 53.22 51.97 

r-20-10-2 54.04 53.12 50.34 50.15 

r-20-10-3 54.77 57.07 48.46 44.71 

r-20-10-4 51.58 52.89 54.02 54.47 

r-20-10-5 51.38 53.21 49.65 46.81 

r-20-10-6 54.25 55.08 50.92 52.20 

r-20-10-7 51.12 55.65 49.96 47.88 

r-20-10-8 57.98 57.70 57.64 57.16 

r-20-10-9 54.12 55.28 55.45 53.75 

r-20-10-10 56.19 55.79 57.64 56.88 

Avg 53.00 55.03 52.73 51.60 

% Impr 2.34% 6.24% 
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te the proposed corridor-based approach in a dynamic context. 

he experiments have been performed on a set of small-sized in- 

tances with randomly generated customer locations. We have as- 

umed 16 virtual ODs, which are considered to compute an initial 

lan. These are equispaced across the customers’ area, as shown 

n Fig. 6 . We have considered four re-evaluation time intervals. In 

ach of them, an equally distributed random number between 0 

nd 10 gives the amount of new ODs. Each of them is associated 

ith a random location, flexibility, and willingness. Each instance 

s solved five times with different OD-appearance scenarios. The 

esults are shown in Table 8 . For each instance, we report the av-
12 
rage (over five runs) expected and real costs for both the cluster- 

ased and corridor-based bundling approaches. The penultimate 

ow reports average results over all instances, while the last one 

eports the percentage of improvement obtained with the corridor- 

ased approach on the expected and total costs. It is noteworthy 

hat the expected costs are the value of the optimal solution of 

he static problem in which the virtual ODs are used. As shown in 

able 8 , the corridor-based approach outperforms the cluster-based 

ne. The expected cost is, on average, 2.34% lower, which supports 

he results observed for the pure static problem (see 8.2 ). The re- 

ults show that the corridor-based approach not only allows bet- 

er a priori plans but also yields better matching with dynamically 

ppearing ODs. This is reflected in the reduction of the real costs 

y 6.24% on average. Thus, we can conclude that the advantage of 

he proposed corridor-based approach becomes even clearer in the 

onsidered setting of dynamically arriving ODs. 

.7. Real road network 

The bundles generated by the corridor-based approach may in- 

olve customers who are far from each other but close to the cor- 

idor of an OD (see Fig. 2 ). On the contrary, the bundles generated

y the cluster-based approach are typically more compact. The 

revious experiments performed in different settings, both static 

nd dynamic, have all shown a dominance of the corridor-based 

pproach. However, all these experiments have been carried out 

ased on Euclidean distances among the nodes, which does not 

eflect the real-world setting; for instance, ODs may use arterial 

oads, and thus, small distances may have a strong impact since 
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Table 9 

Results obtained on instances generated on a 

real road network. We report optimal cost ob- 

tained with cluster-based (Clus) and corridor- 

based (Corr) bunding. 

Instance Clus Corr 

RRN1 43.67 43.12 

RRN2 33.46 32.44 

RRN3 32.40 31.35 

RRN4 31.27 30.37 

RRN5 26.10 23.76 

RRN6 29.92 31.23 

RRN7 26.83 25.93 

RRN8 25.50 24.60 

RRN9 25.34 24.44 

RRN10 23.63 22.71 

Avg 29.81 28.99 

Impr % 2.82% 
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eaving the road may be disproportionately more time consuming 

han reflected by Euclidean distances. To capture these effects on 

he proposed corridor-based approach, we have performed experi- 

ents on a real road network. A set of 10 instances with 10 cus- 

omers and 3 ODs have been generated on the real road network of 

ilan. The results are shown in Table 9 . For each instance, the op-

imal cost obtained with each bundling approach is reported. The 

ast two rows report the average values and percentage improve- 

ents obtained by the corridor-based approach. As seen in Table 9 , 

he corridor-based approach works well on the real road network. 

t obtains better results in 9 out of 10 instances, with an average 

ercentage improvement of 2.82%, which further supports the re- 

ults of the artificially generated instances. 

. Conclusions and future directions 

In this paper, we introduced the vehicle routing problem with 

ccasional drivers (ODs) and bundles of orders (VRP-OD-OB). A 

athematical formulation and valid inequalities were proposed. 

his work contributes to the existing literature by considering the 

ossibility of assigning bundles of customers, rather than single 

rders, to drivers. Furthermore, we proposed a bidding system, 

here drivers submit their bids for bundles they are willing to 

erve. These bids depend on the detour required to serve the cus- 

omers included in the bundle and on the OD’s level of willing- 

ess to perform the deliveries. The system’s objective is to de- 

ide (i) which bundles should be assigned to which OD and (ii) 

hich customers should be served by the fleet of company-owned 

ehicles. Since the number of feasible bundles grows exponen- 

ially with the size of the problem, only a subset of bundles can 

e offered for bidding. To solve this, we proposed an innovative 

undle-generation technique based on geographical corridors. We 

ompared this approach to a more traditional clustering method. 

xtensive computational experiments showed that the newly pro- 

osed corridor-based approach strongly outperforms the more tra- 

itional clustering-based one. The computational results revealed 

hat the new approach creates attractive and profitable bundles 

ithin considerably shorter computational times. Additionally, the 

umber of bundles generated by the corridor-based approach is 

ower; therefore, the overall problem can be solved in a shorter 

mount of time. We have compared the performances of the two 

undling approaches in different problem settings: (i) when ODs’ 

nal destinations are clustered, (ii) when the availability of ODs 

s not known in advance but is revealed at fixed time intervals 

long the working day, and (iii) when distances are computed on 

 real road network. In all these three cases, the corridor-based 

pproach has been shown to be more effective in generating at- 

ractive and profitable bundles, also yielding reduced total costs. 
13 
n the case of dynamically appearing ODs, considerable total cost 

eductions were shown. This holds true for all of the considered 

ettings. Thus, there is strong evidence that the proposed approach 

s of high relevance for practical applications. Moreover, from this 

nalysis, we derived an important managerial insight. It is not nec- 

ssary to provide a high number of bundles to achieve good quality 

olutions. Instead, companies should focus on generating fewer but 

ore attractive bundles. 

While small-sized instances can be solved to optimality, we 

roposed a large neighborhood search (LNS)-based matheuristic 

MH) to solve larger instances. This method obtained near-optimal 

olutions (less than 1% from the best known solution) in a short 

omputational time. Finally, we provided managerial insights on 

he impact of drivers’ characteristics on the ratios of customers 

erved by ODs. 

All instances have been made publicly available [9] to encour- 

ge other researchers to contribute to this highly relevant and dy- 

amically evolving field. 

Further developments in this field could address potential sav- 

ngs that can be achieved by applying the corridor-based approach 

o generate appealing bundles for ODs operating in other contexts, 

uch as multi-echelon distribution systems (in which they could be 

n charge of the last leg of the distribution), multi-echelon reverse 

ogistics systems (in which they perform the first leg), or highly 

ynamic pickup-and-delivery systems (such as food delivery). 
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