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Abstract

This project was part of a wider investigation performed on a set of 200 High Pres-
sure Turbine (HPT) blades, dismounted after several hours of flight and character-
ized by in-service and manufacturing variations.

The main objective of this project was to determine the impact of these variations
on the aerodynamic performance of the rotor and to devise a strategy to design more
robust geometries, i.e, less sensitive to the given uncertainties.

The initial set of data consisted of the digitized versions of the blades (GOM
scans). The geometrical deviations characterizing the blades from their hub until
the 70% of the span were parametrized via a set of aerodynamic Engineering Param-
eters belonging to PADRAM design space (EP) and quantified via an inverse map-
ping procedure (P2S-PADRAM-SOFT); the visual inspection of the digital twins
highlighted a considerable volume loss along the blade rim (tip region) due to local-
ized erosion: the quantification of this metal degradation was performed via in-house
Python scripts and expressed as indices of volume removal rate (PADRAM Squealer
Tip option).

The adjoint solver and the Polynomial Chaos Expansion (PCE) were used for
the Uncertainty Propagation (UP) of the first set of uncertain variables, while for
the erosion parameters only PCE was selected. The sensitivity of the nominal blade
with respect to the typical erosion level was found to be higher than that of the
geometrical deviations occurring beneath the tip.

UP was followed by a series of gradient-based robust optimizations (RO) ap-
proaches. The rotor efficiency was selected as the figure of merit to be maximized
by optimizing the EP values; in the first approach, the performance of a simplified
geometry (without winglet and gutter) was slightly improved driving SLSQP Python
optimizer via adjoint gradients. Following this, the nominal configuration, complete
with winglet and gutter, was optimized providing SLSQP with the first order deriva-
tives calculated via PCE. The same strategy for the calculation of the derivatives
was used in the third approach, only this time the erosion level, characterizing the
worst damaged rim, was included. A local, gradient-based, optimization was then
performed in a larger design space: the final optimized configuration is then recov-
ered a good percentage of rotor efficiency otherwise lost when the erosion occurs,
thanks to an offloading of the tip region, while also improving the nominal rotor
performance.
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Chapter 1

Introduction

1.1 Research and Development in Aeronautics

High technology sectors have a decisive role in the global market: the intensive na-
ture of their research and development (R&D) outputs competitive products which
promote quality improvements to other sectors, as well as a healthy competition
environment for all the involved stakeholders.

The work of Hatzichronoglou [44] collects several considerations regarding the
identification and classification of industrial sectors and their related products. In
this study, the aerospace industry’s R&D is systematically ranked as the number one
sector among other advanced industrial and manufacturing types of companies, ac-
cording to different classification methodologies. The SITC (Standard International
Trade Classification), revision 3, elects turbo-jets and aero-engines (along with their
components) among the systems with the highest degree of technology.

The role of aeronautical’s R&D is wide. Beyond the development of advanced
aircraft like the Concorde, U2 or the WB-57F, it has also contributed to the devel-
opment of other industrial sectors thanks to its deep understanding, comprehension,
and interpretation of fluid dynamics interactions around simple and complex geome-
tries [69].

Multiple reasons can be listed to explain why research on jet engines still boosts
the spillover role in both economical and financial fields: the forecast (towards 2050)
of the transportation market estimates a sharp increase in international mobility.
This increase is pushed by the development of long-range transport solutions in-
volving global commerce and the increasing trend in people’s mobility [10]. The
design of a jet engine is subject not only to the high competitiveness of the global
market or high levels of operational safety but also to the requirement of low fuel
consumptions given by environmental regulations [10]. The robustness of the engine
design becomes crucial to meet these numerous requirements and ensure reliability
in performance.
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1.2 Jet Engine Design

It was only 1940 when the Royal Air Force officer Arthur Tedder, searching for
new engines to be used in British warplanes during World War II, entered Frank
Whittle’s laboratory and saw a jet engine for the first time [77]. At the time, the gas
turbine was known by a restricted niche of constructors, and research was strongly
needed to push the first prototypes to become an effective propulsion system.

The operating principles of jet propulsion were historically understood way before
Whittle’s patent (1930) [5] but the materials’ technology was not ready to support
the extreme working conditions that characterize these engines. The structure of
the turbo-jet designed by Whittle contained all the basic elements still present in
today’s gas turbines. Figure 1.1 illustrates the basic elements of a turbo-jet engine.

Figure 1.1: Turbo-jet engine basic elements (from [90])

The main body consists of two rotating elements (compressor and turbine) cou-
pled with a frontal air intake, a combustion chamber, and a nozzle. Among the
available aeronautical propulsion systems, the jet engine is suitable for civil and
military applications in atmospheric air; the fluid is driven through the intake and
compressed. The combustion chamber provides heat energy to the main flow at con-
stant pressure; the gases then expand in the turbine’s sections: the force exerted over
the surface of the rotating blades makes the shaft rotate around the machine axis,
converting into mechanical power the high enthalpic content of the flow (Figure 1.2).
The exhaust gases are accelerated in the nozzle and released into the atmosphere,
providing the required thrust.

The jet engine operates according to Joule’s thermodynamic cycle (Figure 1.3):
the work w produced in the expansion sections is proportional to the maximum
temperature of the cycle T3. In equation 1.1, the mechanical losses of compressor
and turbine are represented by the mechanical efficiency ηmc and ηmt respectively;
the thermodynamic efficiency of these turbomachines are the terms ηc and ηt. By
increasing the maximum temperature T3, the heat introduced in the cycle increases
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Figure 1.2: Turbo-jet engine sections and variation of fluid properties (from [90])

Real
Expansion

Figure 1.3: Joule working cycle for a jet engine

thus leading to a higher value of work produced, being the other parameters, such
as pressure ratios and efficiencies, equal.

w = ηmtηtwt −
wc
ηmcηc

where ηt =
T3 − T4
T3 − T4is

and lt = cp · (T3 − T4) (1.1)

The theory faces technology limitations in real life: the blading system inside the
jet engine is made out of superalloys (typically Nickel-based and Titanium-based for
turbines and compressors respectively) whose melting point is close or lower than the
typical temperature values at the outlet section of the combustion chamber. This
is one of the most important limitations and challenges for the turbo-jet design:
the expansion stages are subject not only to mechanical but also to extreme ther-
mal stresses. Two strategies commonly used to protect the high-pressure turbine
(HPT) blades against the high-temperature distributions are Thermal Barrier Coat-
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ing (TBC) and film cooling systems (internal and external to the blade’s surface).
Extensive experimental studies were carried out [72, 91, 115, 15] to improve the ini-
tial design of the cooling system, but the complexity of the real system [126] along
with manufacturing tolerances and uncertain operating conditions do not allow to
fully prevent the damage of these components. More details about the common
reasons behind the blade’s failure are reported in the following Section.

1.3 Components Failure and Performance Predic-

tion

Component failure analysis is a subject that aims at understanding the causes behind
damage and unforeseen in-service performance deteriorations. This topic is partic-
ularly important for aero-engine components. Once removed from the machine, for
example during a full-engine overhaul, the component is thoroughly inspected. If
the component is prematurely showing signs of plastic deformation, shape devia-
tions, erosion, and oxidation, this is the first tangible hint for the blade designer
to understand the shortcomings of the original design intent (DI). The design of
aeronautical components always includes a prediction of the time intervals in which
the different kinds of damage and deteriorations are expected to occur.

In addition, a periodic sanity check is performed during the component’s life
to assess their status inside the engine. This detailed scheduled maintenance mini-
mizes the occurrence of unexpected failures during service, but the chance of damage
occurring due to unexpected operating conditions or other unforeseen causes still
exists [21]. Automated non-destructive inspection tools such as the one provided by
borescope analysis [123, 120] can be used in industry to quickly assess the external
damage once it is already visible. Each component is characterized by typical failure
modes [70, 13, 32]: in the case of HPT rotors, the modes are visible in the form of
creep, volume loss along the upper surface of the blades, or distortion of the rotor
shroud. An example of a damaged squealer tip is illustrated in Figure 1.4. Visual
analysis can also be used to inspect for a chemical attack, which is usually due to
corrosion and sulfidation. In addition to the cyclic centrifugal stress, strong vibra-
tions are always present during the engine’s operation. In regards to the thermal
aspect, an inadequacy in film cooling effectiveness can be critical and lead to blade
failure [70]. This is true for all jet engines, both for the civil and military markets.
In fact, military applications are often characterized by even harsher in-service con-
ditions, and do not follow well-established scheduled flying hours, so the expected
time window of sanity-check and component removal for military engines happens
earlier compared to civil engines [61].

Extensive studies have been conducted to identify the principal aerothermal loss
mechanisms of modern aero-engine components, and in particular one of the most
critical ones, which is the HPT rotor blade. In this regard, the flow behavior around
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Figure 1.4: Damaged high pressure turbine blade

the tip region of the blade is widely known to be of great impact on the overall blade
aerothermal performance [41]. Geometric deviations from the nominal design, in
this region of the HPT rotor blade’s geometry, can have a remarkably detrimental
effect on the whole engine’s performance. For this reason, it is of great interest
in the industry to produce increasingly accurate damage classifications for real,
after-service components and related causes [53]. It is also vital to understand ad
quantify the amount of performance loss that happens as an effect of these shape
deviations. Experimental analyses are often carried out in rigs that replicate a
simplified version of the real system, and nonetheless can be very expensive. In
recent years, predicting the component’s performance in the presence of geometric
deviations from nominal, high-fidelity numerical simulations has gained more and
more attention and nowadays represents a well-established part of the jet engine
design process. These numerical investigations are performed via Computational
Fluid Dynamics (CFD) to assess performance variations of components [87, 12, 57,
58] and provide insight on the reasons behind their failure. CFD analyses have been
used to model the effects of erosion on the performance of HPT blades [128, 129]
and compressors [8], as well as the effects of hot corrosion on the blade’s tip [94,
30]. Erosion modeling in the blade tip region represents a challenge [27] because
of the complexity that usually characterizes the geometries, and a large number of
uncertain variables involved [86].

Shortcomings in the film cooling effectiveness can cause unexpectedly high tem-
perature on the blade surface, particularly near the tip, with a consequent dra-
matic acceleration of the erosion dynamics. Experimental [73] and numerical stud-
ies [49, 14, 64, 112, 29] have been carried out with the intent of modeling the often
intricate internal cooling ducts and finding an optimal setup, able to ensure the
achievement of the desired level of effectiveness for the external cooling. It is the
duty of the blade designer not only to avoid failure of the components, but also to
learn from them in case they take place, and use the (gained) knowledge to improve
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the design.
Many methodologies can be followed to optimize a design intent shape, but

in general, they belong to one of the following two categories: deterministic or
stochastic. The difference between these two is that the first one is only aimed
at maximizing the component’s nominal performance, that is the performance of a
component whose design variables and parameters (such as geometrical dimensions,
operating conditions, etc.) are assumed to be fixed at their nominal values. The
stochastic approach, on the other hand, tackles the optimization problem in a much
more realistic hypothesis that the component will operate with variable (uncertain)
conditions and geometrical dimensions, caused either by manufacturing variations
or by changes occurring during the life of the component. This means that the
uncertainty characterizing the shape of the component and its operating conditions
needs to be considered during the design process. To achieve meaningful results, the
uncertainty affecting the component’s performance needs to be accurately quantified
(uncertainty quantification). Then, the performance variability that is associ-
ated with the observed geometrical or operational (input) variability needs to be
evaluated (uncertainty propagation). Finally, a design solution that minimizes
the variability in performance in the presence of the given input uncertainties needs
to be selected (robust optimization). In essence, a deterministic design aims at
improving the nominal performance of a component or system, while a stochastic
optimization has the objective of improving not only their nominal performance,
but also their variability, which is often expressed as a combination of the different
moments of a probability density function. This often means that a robust design
solution will not have the “peak” performance of its deterministic equivalent in
nominal conditions; however its performance will be more resilient to the inevitable
variations experienced during the life of the component.

1.3.1 Motivation and Outline of the Thesis

This project is part of a wider investigation performed on a set of 200 HPT rotor
blades, dismounted from four engines after a certain number of working hours, all
characterized by in-service and manufacturing variations. The initial set of data
consists of the laser scans (renamed GOM scans by the company providing the tech-
nology [2]) of the blades. A first visual inspection highlighted a relevant volume
loss along the rim, in addition to the likely plastic deformations experienced during
operation. The aim of this work is to quantify the shape variability due to manu-
facturing and in-service deterioration, estimate its effect on the performance of the
rotor, and suggest an alternative design solution, less sensitive to the given uncer-
tainties, by means of robust optimization. A schematic of the different steps of this
work is presented in Figure 1.5.

The Thesis is organized as follows. Chapter 2 is dedicated to a presentation of
the relevant literature, as well as the methods used for uncertainty quantification,
propagation and robust optimization. The results of the uncertainty quantification
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Figure 1.5: Overview of the project heuristics

on the set of real blades are detailed in the third chapter, while the fourth chap-
ter contains the results of the uncertainty propagation, which is the analysis of the
variability in performance due to the geometric uncertainties presented in the pre-
vious chapter, as well as an identification of the most influential ones. Chapter 5
focuses on a series of optimization runs performed with the aim of improving both
the nominal performance of the rotor, and their variability. Chapter 6 provides the
final conclusions and recommendations for future work.
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Chapter 2

Background

2.1 Robust Design

The design of jet-engine components is characterized by a strong demand for high
performance, reliability, long-term life requirements, low fuel consumption, and high
safety levels. The final products are the result of a complex and long design process
where the number of the variables involved is large. A classical approach to the
design of the components takes into account only nominal values of quantities of
interest; this point of view does not include the statistical deviations of the design
variables with respect to the expected, nominal values. During the real life of the jet
engine, the uncertain variables are numerous: unit-by-unit uncertainty is measured
[84], due to manufacturing deviations, [17] in the final shape of each component;
external factors are also present, such as variations in operating conditions during
experimental measurement in laboratories [114, 7] or during the in-service period,
leading to unexpected performance.

In general, all the causes of discrepancies directly related to the component, such
as its shape and the operating conditions are classified as aleatory uncertainties [79].
This type of uncertainty is not the only one affecting the performance. Thanks to
the availability of computational resources, it is common nowadays to use numerical
and analytical tools to predict the components’ behavior; this is pursued via machine
learning techniques [85], numerical and analytical models: normally they need to
be fed with information or constants and their values should be chosen properly
to accurately describe the component behavior. When this knowledge is limited,
because of the lack of experimental data, for example, it is difficult to predict the
components’ performance with accuracy [95]. The uncertainties related to the lack
of knowledge are classified as epistemic [79].

The identification and the inclusion of the uncertainties in the early stages of
component design can make a difference: the global performance can be desensi-
tized with respect to the uncertain factors; when the uncertainties are taken into
account before and during the optimization process, this becomes a robust design
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Figure 2.1: Probability density function comparison: robust and classical design [34]

optimization (RO) heuristics. The final aim of the process is to desensitize the per-
formance of the components with respect to the typical noise factors. The statistical
variation of the uncertain variables can be quantified and their trend described by
a probability density function (PDF); the same logic can be repeated for the com-
ponent response: given a metric of interest, for example, the efficiency of a blade, a
statistical variation and its corresponding probability density function can be esti-
mated. The difference between a desensitized component and another designed via
classical approach (i.e. more sensitive to the noise factors) is represented graphi-
cally in the probability density functions of the metric of interest shown in Figure
2.1 [34]. Desensitizing the performance leads to a smaller value in variance and the
choice of an optimum located in a “flatter” region of the design space, with respect
to a traditional optimum; when the variation in the uncertain variables occurs, a
mitigation in the drop of the objective function is experienced.

A unique list of mathematical steps that define the RDO methodology does not
exist, but in general, it can be divided into three main processes [84]:

• Uncertainty Quantification (UQ): the key uncertain parameters are identified
and their statistical variation is quantified;

• Uncertainty Propagation (UP): this step aims to determine the effect of all
the noise factors on the performance, by propagating the uncertainty of the
key parameters with the help of a model;

• Robust Optimization (RO): the solution that minimizes the variability in the
performance due to the presence of the above uncertain parameters is found.

2.1.1 Uncertainty Quantification and Propagation

Small shape variations are normally present in modern jet-engine components, caused
by manufacturing variations [55] or in-service deformation due to mechanical stress
[22] and thermal loads [89, 74]. Rotating parts such as the blading system in fan,
compressor and expansion stages are all characterized by a small gap between the
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tip of the blade and the upper casing. This geometrical parameter is a perfect ex-
ample of uncertain variable which can significantly influence the performance. An
important contribution that shows how small variations can lead to a substantial
degradation in performance can be found in the work of Freeman [31]: the author
carried out experimental and numerical investigations on the influence of the tip
gap on the global efficiency of a compressor; this small passage, around 1% of the
total blade span value, can lead to an increase of suction side loading (visible in the
pressure coefficient diagram) and a degradation on the nominal efficiency of about
1.4%. The tip configuration [131, 19] and the variability of the gap is a crucial
feature feature for HPT blades as well: the expensive numerical study carried out
by Zou et al. [132] focused on the comparison between flat and squealer tip; for
both configurations, it was shown a drop in stage efficiency of about 0.5% when the
rim height, expressed as a percentage of the blade span, goes from 0.6% to 2.2%.
The variability of the winglet geometry of a HPT blade has been demonstrated to
influence not only the aerodynamics but also the heat transfers [47]: Yan et al.
[127] decreased by the 15% the heat transfer coefficient by varying only the suction
side of winglet; analogue considerations are found in the work of Saha [93] where a
minimization of heat transfer coefficient was pursued via pressure side winglet geo-
metrical variations. An additional source of uncertainty is given by the positioning
of a component inside the engine; Tao et al. [113] focused their attention on the
misalignment effects of a HTP blade endwall: along the lower platform of the blade
it is normal to have slots for secondary inlet flows and a variation of 2 degrees in
this flow direction leads to a drop of film cooling effectiveness of around 12%.

The Uncertainty Propagation can be studied by following two main classes of
approaches: deterministic and probabilistic.

The former group collects heuristics whose common aspect is the evaluation of
the system response in given points of the design space. The interval analysis [88]
aims to determine the limits of the design space identifying the conditions that lead
to the worst drop in performance; the expansion of Taylor series around a nominal
point is among the deterministic approaches: Abernathy et al. [7] identified in the
experimental measurements the main cause of error in the performance predictions
and propagated the uncertainties via Taylor series. Sensitivity derivatives [20, 107,
42] have as main purpose the calculation of the derivatives of the objective function
with respect to the uncertain variables, in the same fashion as in a first order Taylor
series.

A statistical approach to the uncertainty propagation can be done via proba-
bilistic methods where the the calculation of the PDF of the metric of interest is
the main focus. A random sampling strategy inside the design space, such as Monte
Carlo, can estimate with an excellent approximation the statistical moments char-
acterizing the data set. An interesting application of Monte Carlo is present in
the work of Wang et al. [119], where this statistical approach is used for a case
of a stator vane subject to film cooling effectiveness variations due to uncertainty
in the inlet boundary conditions. The authors propagated the uncertainties via a



26 CHAPTER 2. BACKGROUND

neural network surrogate model whilst Monte Carlo was used to calculate the re-
sponse statistics. Monte Carlo strategy is used also in the recent work of Iglesias
et al. Iglesias : the authors aimed to find the relationship between the mean time
to failure (MTTF) characterizing the engine with the time to failure (TTF) associ-
ated to each single component; the propagation was performed via a score function
method whilst the calculation of local probabilistic derivatives was performed via
Monte Carlo. In general, the drowback of Monte Carlo is that a high number of
samples is needed leading to a high computational cost in practical applications.
The moment methods [82], are based on the expansion performed via Taylor series
around a point and provide the mean and variance of the objective functions for
first or second order truncated Taylor expansion.

When the complexity of the system does not allow to have a unique simple
expression to describe its performance, a surrogate model can be constructed: the
Polynomial Chaos Expansion (PCE) [100] can be used as a propagation technique
and can provide a good approximation of the target function; it is generally used
when statistical (PDFs) or experimental data is available. Polynomials are not only
handy and quite intuitive, they are also easily differentiable; in the aeronautical
sector, this strategy is widely used for the design and the performance improvement
of simple geometries [38, 125] or more complex test cases such as a real fan blade
[39]; the distribution of quantities of interest such as temperatures in a jet engine
can be modeled starting from sparse experimental data [102, 99], as well as the heat
transfer in a turbine disc [121]; the design of engine complementary instrumentation,
such as stagnation temperature probes, can be desensitized with respect to typical
manufacturing variations [97].

PCE enables to calculate the statistical moments from the coefficients of the
expansion and to perform a sensitivity analysis via Sobol Indices; the recent work of
Shi et al. [108] focused on three main features of the squealer tip of an HPT blade,
namely tip gap, gutter depth and rim corner radius. These uncertain variables were
propagated associating Gaussian distributions to the first two and a uniform distri-
bution to the third; the calculated Sobol indices indicated the tip gap as the most
influential parameter for the aerodynamic performance. The computational cost of
the PCE depends on the number of input variables involved (curse of dimension-
ality); when dealing with problems with a high number of uncertain variables this
represents a problem.

In recent years the use of adjoint solvers gained particular attention because they
provide the gradients (first order derivatives) of the target function with respect to
the uncertain input variables at a computational cost comparable with that of a
normal CFD run. In general, two main approaches have been developed: continuous
[81] and discrete adjoint [40, 16, 124, 28], this latter widely available thanks to the
availability of automatic algorithmic differentiation tools [9]. This mathematical
operator is widely used to perform sensitivity analyses: the work of John et al. [48]
uses the mesh sensitivity in a optimization loop in order to adapt the mesh clustering
the cells and changing their size thus improving the local flow resolution. A similar
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analysis was carried out by Vivarelli et al. [118], where the nodes of the mesh were
adapted based on the adjoint sensitivity. A hybrid heuristic was used by Schmidt
[96] for the sensitivity of a high pressure compressor: the adjoint run provided with
the first order derivatives and after that the non-linear effects of the target functions
were calculated via Monte Carlo approach.

The designer, thanks to the availability of the gradients, is able not only to
perform a sensitivity campaign but also to drive the optimizer towards the direction
of the optimum [66, 33]. Caloni et al. [105, 18] carried out an extensive research for
optimization of HPT blades by means of adjoint gradients and mitigating, thanks
to the optimized shape, the effect of the swirl flows in the stage. An improvement
in HPT stage efficiency, even if small, was achieved in the work of Lei et al. [23]
driving the optimizer using a a continuous adjoint solver. Sabater et al. [92] coupled
a non-intrusive surrogate with the adjoint in order to improve the aerodynamic
performance of a 2D airfoil, using as the target function the drag.

2.1.2 Robust Optimization

The deterministic approaches calculate a unique value of an objective function f(x)
from the nominal values of the design variables; the final outcome of this kind of
analysis lacks in statistical meaning, and when uncertainties are present a substan-
tial difference with respect to the expected system response can occur. In order
to pursue a robust design, an appropriate non-deterministic strategy [45] should
be used to determine the expected value E(f(x)) and the variance var(f(x)) of
the objective function f(x); after that, different mathematical approaches can be
pursued to minimize E(f(x)) and var(f(x)) but two main groups can be identi-
fied: multi-objective optimization in which the statistical moments are minimized
simultaneously and the alternative, represented by the use of weighting coefficients
(adopted to re-formulate the problem into a series of single-objective problems); the
computational costs is lower in the second case, but in the same time attention
needs to be payed to the choice of the weights. The challenging aspect in using this
strategy is that, most of times, it is difficult to decide which objectives are more
important than others a priori.

Das et al. [26] and Indraneel [25] analyzed and proposed the Normal-Boundary
intersection method to solve a generic multi-objective optimization problem. This
strategy aims to generate a well-distributed Pareto optimal set of points from a a
set of uniformly distributed parameters: this first aspect represents an advantage
compared to weighting methods which are not able to achieve this purpose; a sig-
nificant advantage is also the independence with respect to the magnitude of the
particular function value. However, considering that this peculiarity is generated
by a derivative-based approximation method, there is a consequent limit for the
application of this procedure only to cases in which the designer has knowledge of
the function’s derivatives.

In recent years, a new class of numerical strategies has been developed to over-
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come the limitation represented by a-priori choice of weights in multi-objective op-
timizations. The generate-first-choose-later approaches allow the designer to carry
out a-posteriori selection of optimal designs; among this group of strategies the
Normal Constraint (NC) and its updated version Smart Normal Constraint (SNC)
has the interesting advantage to translate a multi-objective optimization problem to
single-objective problem with a set of additional constraints; this is translated to a
reduction in the size of the search region and more evenly spaced points in the Pareto
set. The work of Cresenti et al. [24] focused on this numerical strategy and carried
out a multi-objective Solid Isotropic Material with Penalization (SIMP) optimiza-
tion of a full-scale wing. The authors coupled this strategy with a Method of Moving
Asymptotes (MMA) optimizer, due to its superior convergence quality. The objec-
tive functions for the case under study were compliance and eigenfrequency of the
wing. Minimization of compliance and maximization of fundamental frequency were
achieved by controlling the pseudo-density parameters of the wing ribs, while the
performance assessment of the full-scale wing was performed via Altair OptiStruct
code. The results along the Pareto front showed an interesting smooth passage from
the optimal shape associated to minimum compliance and the one associated to
maximum eigenfrequency.

Among the widespread industrial solutions, the 6σ method [83], being σ the
standard deviation, circumscribes the system performance around the mean value
and considers a variation six times the standard deviation; this method is intuitive
because the chosen range is linked to a high probability to find the random event
below the PDF’s curve. The downside of this application is that the cited range is
associated to a failure probability of 0.0000001% and for the majority of the cases,
it means a measure of uncertainty outside the industrial tolerances [103].

A multi-objective optimization, which minimizes the mean and the variance of
the pressure losses in a real Rolls-Royce compressor blade was done in the work of
Kumar et al. [106]. A Design of Experiments (DoE), defined as the set of normally
distributed noise factors, was used to model several blades deformed with Hicks-
Henne functions. The computational cost was reduced by using a surrogate model
with a Gaussian stochastic process: the system was approximated as the sum of
two main contributions, a global model and a Gaussian random function charac-
terized by zero mean and non-zero covariance. The final Pareto front was chosen
using the NSGA method. The comparison of one of the desensitized blade (with
respect to geometrical parameters) with a blade which had been optimized using a
deterministic method showed a performance improvement away from the nominal
conditionswhere the deterministic blade presented better performance.

In turbomachinery industrial applications, a large number of works sets the adia-
batic efficiency as the objective function both for expansion and compression stages.
Kato et al. [52] proposed the maximization of the mean efficiency for the supersonic
M1 impulse turbine, mixing a probabilistic method such as polynomial chaos with a
deterministic approach. The mean efficiency value was bounded inside a 3σ range.
The optimization problem led to a small increase of the nominal efficiency as well
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as its robustness.
It is a good practice to use non-dimensional curves which describe the behavior of

compression and expansion stages as function of pressure ratios and non-dimensional
mass flow. In the work carried out by Ghisu et al.[37] the ratio between inlet and
outlet total temperatures of the compression system in a three-spool aero-engine
has been selected as the control variable with a known PDF, whilst the efficiency
and the surge margin were the objective functions to be maximized; the procedure
mantains a low computational cost by using weights in the optimization model.
Two objective functions were selected: a simultaneous control of the performance
associated to nominal and off-design conditions was performed; the bounds of the
expected efficiency is fixed using weights which promote the performance and surge
limit increase; the authors underline that this kind of study gives better informa-
tion about robustness, because a traditional mono-objective procedure, without the
inclusion of a figure of merit for the off-design condition, does not allow to compare
the performance gap between optimized and baseline off-design conditions, so the
designer has a partial information regarding an effective improvement of the system
behavior.

The choice of the parametrization, thus the set of optimized variables, can have
a significant impact on the result of the design process. It is possible to reach
optimal solutions, meeting the requirements, however the output can show different
optimized shapes and performances. This case is widely argued by Seshadri et
al. [101] using two different design spaces: one defined by a set of aerodynamic
parameters such as lean, recambering and solid rotation of the blade; the second
set is represented by local perturbation of the blade, performed via Hicks-Henne
bump functions. The multi-objective optimization results showed an improvement
in mean the efficiency and its variance for both design spaces, but the one associated
with Hicks-Henne bump space provided a smaller improvement.

Langmaak et al. [62] proposed an interesting RO where the aim is to determine
the best engine topology (turbofan, turboprop or prop-fan) and the optimal cruise
speed to minimize the direct operational costs of the aircraft. In this study, the
related fuel cost and CO2 uncertainties were quantified. A probabilistic approach
was chosen instead of a deterministic one. The objective function is the direct
operating cost and the DoE is stated by a heterogeneous list of parameters: cruise
Mach or maximum pressure ratio, flight conditions such as the maximum altitude or
mission fuel and geometrical variables such as fan diameter or tip blade maximum
velocity.

Zhiying et al. [130]’s work aimed to reduce the sensitivity to tip clearance of a
turbine blade. The complexity of the system (casing shroud, blade and turbine disk)
was reduced by approximating the behavior of each sub-system and calculating a
set of response surfaces from the run of finite-element based simulations. Surrogates
were used to generate a global model from which the moments were extrapolated.
The optimization cost was reduced by using weights functions and minimizing a lin-
ear combination of mean and variance. The predictions of this model were validated
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against a global Kriging surrogate model and a maximum relative error below 0.97%
was found.

In engineering, it is common to distinguish between RDO and Reliability-based
Design Optimization (RBDO) [43]: while the former is meant to minimize the vari-
ability of a target function, the latter selects the optimum with lower probability of
failure. A trade-off between the robust optimization and the RBDO is possible as
demonstrated by Korelev et al. [56]. This work focuses on the usage of Mid-range
Approximation Method. The majority of the works which performed a RDO lim-
ited the values of the design control variables. The risk associated to this strategy
is to locate the optimum solutions near the extreme regions of the DOE. In order
to reduce this risk, in the recent work of Kamenik et al.[50] an enforcement of mean
constraint values is present. The authors optimized a HPT rotor by selecting the
mean of turbine efficiency and its standard deviation as objective functions. The
mean and the variance were determined with a quasi-Monte Carlo method. The
optimized blade matched the required constraints, in spite of the smaller accuracy
of standard deviations prediction.

The recent work of Martin et al.[67] focused on the multi-disciplinary optimiza-
tion of an axial compressor. The complexity of the problem did not allow to sep-
arately treat the mean and the variance of the objective functions (pressure losses
measured during off-design operational conditions and nominal ones). Therefore a
combination of the statistical moments was used. The optimization was performed
using a Genetic Algorithm. Two response surfaces were built by separately running
CFD simulations and FEM simulations followed by the construction of a global
model. The results show a small increase in aerodynamic efficiency and higher
structural robustness.

A large number of studies carried out on engine components aimed to desensitize
with respect to typical manufacturing variations: Antinori et al. [11] focused the
attention of low pressure turbine disc and the secondary flow system passing through
it; Martins et al. [68] included not only the typical values of manufacturing devia-
tions, but enforced the choice of an optimum shape inside a “safer” range of values,
away from the failure condition range. A robust optimization of a compressor blade
was carried out by Kumar et al. [59], in light of the typical manufacturing variations
occurring in the component. A trade-off between the mean and a variance of the
aerodynamic performance was possible by combining a Gaussian stochastic process
model and Bayesian Monte Carlo simulations to calculate the statistics.

In the work of Karimi et al. [51] two optimized shapes for the NASA C3X tur-
bine vane were compared: the former was obtained via deterministic approach, the
second via robust optimization where the probability distributions associated to the
uncertain operational conditions were propagated via PCE; the maximum temper-
ature as well as its gradient were minimized, leading to a less sensitive geometry.

The work conducted by Vishwanathan et al. [117] is one of the few where the
structural boundary conditions uncertainties are propagated within a robust topol-
ogy optimization; the uncertainty is represented by the degree of freedom of some
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points along the fixed edge of a cantilever wing. The the authors run two opti-
mizations of this component: in order to choose a design away from the aeroelastic
instability, the closest natural frequencies of the system (namely the first two) were
identified and the gap between them selected as the first objective function to be
maximized; the analytical expression of the aforementioned target function was a
weighted sum of its mean and standard deviation. Same approach was followed for
the second objective function to be minimized, the wing compliance; for both objec-
tives a non-intrusive PCE surrogate was built. The eigenvalues of the wing dynamic
response are optimized in the first phase, adopting a modified interpolation scheme
for the Bi-Directional Evolutionary Structural Optimization (BESO); for the sec-
ond optimization was run via Solid Isotropic Material with Penalization strategy,
controlling the pseudo-density of each rib inside the cantilever. The results of both
optimizations showed an improved performance for the worst case, furthermore a
more robust design was obtained.

2.2 Theoretical Background

2.2.1 Polynomial Expansion

In engineering, it is quite common to express the behavior of a system via analytical
expressions. Oftentimes, the complexity of the problem does not allow to have a
handy or unique expression. In this thesis, the expression linking the aerodynamics
of the blades with its shape is not trivial and it has a high added computational
cost. However, the relationship between the selected parameters and the metric of
interest is still possible via a polynomial expansion.

The general structure of a PCE recalls some aspects of a Fourier series: in the
latter, a generic function is reconstructed via sines and cosines; the aim of PCE is
to approximate a function of interest using polynomials.

Let’s consider X as the set n uncertain variables characterizing a component such
as an HPT blade; the uncertainties are represented by all the deviations occurring
in geometrical parameters, operating conditions, etc. Each variable in X is subject
to a deviation with respect to the nominal value because of the occurrence of a
generic random event θ; X = X(θ) is associated to a statistical variation thus
can be described by a probability distribution or in another word a Probability
Density Function (PDF) f(X). As mentioned above, it is a common practice in
engineering to deal with analytical models which describe the relationship between
some input variables (here the uncertain variables in X) and a metric of interest:
it can be the rotor efficiency, the inlet capacity, or any other objective function for
the designer. Let’s call the metric of interest as Y and let’s assume we know the
functional relationship between a number of uncertain variables X and Y = Y (X).
A statistical deviation with respect to an expected value is present also for Y (X) and
this can be described by another PDF, f(Y ). To expand the uncertain Y = Y (X(θ)),
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this is assumed to have a finite variance thus Y is a quadratically integrable function
(L2 function). Let’s define the vector ξ(θ) as a random variables support with a well-
established probability distribution W (ξ); the easier choice is to select ξ = X but it
is not necessary. The polynomial expansion of Y (θ) = Y (ξ(θ)) can be expressed by
the series in Equation 2.1, being ai the coefficients and the terms Φi(ξ(θ)) orthogonal
polynomials.

Y (θ) = Y (ξ(θ)) =
∞∑
i=0

aiΦi(ξ(θ)) (2.1)

Being Φi orthogonal polynomials, the space where they belong is equipped with
an inner product defined as in the following equation :

〈Φi(ξ)Φj(ξ)〉 = 〈Φi(ξ)
2〉δij =

∫
Φi(ξ)Φj(ξ)W (ξ)dξ (2.2)

The term δij is the Kronecker delta, equal to zero when i 6= j ; the expression in
Equation 2.2, in order to be true, puts a constraint on the choice of the orthogonal
polynomials Φi, depending on the particular PDF W (ξ) [54]. In one-dimensional
problems, the choice of the basis of orthogonal polynomials is straightforward. A
Gaussian distribution, for example, needs to be associated with the Hermite family
of orthogonal polynomials [122]; the Askey scheme for the choice of the best family
of orthogonal polynomials is used for other well-established PDF. When dealing
with non-standard distributions, it is possible to use their statistical moments and
construct an expression for the orthogonal polynomial [80]. Numerical strategies can
be used to determine ad-hoc orthogonal polynomials, when dealing with challenging
distribution of probability, using a three-recurrence coefficient method [36, 75]. It
is more likely, in engineering problems, to have multi-dimensional problems where
the uncertain variables ξi, influencing the response Y of the system, are multiple
and each of them characterized by their own probability distribution wi(ξi). When
independence occurs among input variables, the term W (ξ) can be replaced by the
product of the aforementioned marginals wi(ξi):

W (ξ) =
n∏
i=1

wi(ξi) (2.3)

The basis construction in the case of a multi-dimensional problem is performed
via a tensor product among the bases Φξj :

Φ = Φξ1 ⊗ Φξ2 ⊗ ...⊗ Φξn (2.4)

Index Set

As the number of the variables involved increases, the number of the terms in the
tensor product in Equation 2.4 grows exponentially: the computational cost becomes
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too high to justify the application of the PCE. This issue is named as curse of
dimensionality. A first solution is represented by the observation of the contribution
given by each term inside the expansion: in most of the practical applications the
most relevant contribution, in order to surrogate the system response, is contained
in the low-order terms of the expansion [78], i.e. all the terms in the series of tensor
products whose polynomial order is low. The remaining terms do not add relevant
information and the approximation provided by the lower order terms can already be
considered satisfactory. The index set of a PCE contains the selected combination
of polynomials according to a curtain rule. The rule defining the basis constructed
by a tensor product includes all the possible combinations: this means that, given
j uncertain variables, for j = 1, ..., n, and their related orthogonal polynomial with
order o, all the polynomials whose order respects the condition |oj| < oe will be
included in the expansion; the number of combinations contained in the expansion
is the cardinality and in the case of a tensor product it will be equal to (oe + 1)n.
A smaller number of elements can be considered, thus reducing the computational
cost, by choosing a different rule such as a total order and hyperbolic cross: the
former selects the combinations such that

∑
j oj ≤ oe; the latter is slightly different

but can be equivalent to a total order set (with the same order) when the term p in
Equation 2.5 is equal to 1.

||oj||p =

(∑
j

oj
p

) 1
p

≤ oe (2.5)

The cardinality associated to the total order is fixed to
(
n+ o
n

)
, whilst for the

hyperbolic cross it is dependent on the value assumed by p; a graphical comparison
among the cardinalities of total order and hyperbolic cross for different values of p
is reported in Figure 2.2 [38]. The example reported is for a 2-dimensional problem;
the horizontal and the vertical axes show the values of the orders of the orthogonal
polynomials associated to each input variable.

The number of elements included in the expansion when choosing an hyperbolic
set is smaller for decreasing values of p; when decreasing also the order of the
hyperbolic set (equal to 4 in the example of Figure 2.2) with respect to the higher
order of the orthogonal polynomials (6 in the example of Figure 2.2), the cardinality
and the computational cost decrease even more. In practical cases, the identification
of the polynomial expansion order is dictated by the required level of approximation
in the uncertainty propagation modeling; the knowledge of the system and the
designer’s experience help the choice in the truncation of the PCE.

Calculation of Coefficient

One the most challenging parts of a PCE is the calculation of the coefficients ai in
Equation 2.1. As reported in the paragraph above, in order to model the uncertainty
propagation via a truncated series, a finite subspace of polynomials is constructed.
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Figure 2.2: Cardinality of a hyperbolic cross set for different values of p, compared
with a tensor grid approach in the case of 2-dimensional case and order 6 orthogonal
polynomials [38]

From here, two main groups of strategies can be mentioned: Galerkin projections
onto the polynomial subspace and non-intrusive approaches where deterministic
computations are used to approximate the coefficients. The first group of methods
is particularly demanding because it requires a modification of the solvers used to
simulate the system. The second group is meant to treat the system as a black
box, without any modification to the governing equations. This second class of
methods is called Non-Intrusive Polynomial Chaos Expansion (NIPCE) and recently
gained attention because of the simpler application with respect to the first class of
approaches [38, 75, 35]. The calculation of the coefficient can be performed via a
pseudo spectral approach: the system response Y (ξ) is projected on each element
belonging to the basis and, given the condition of orthogonality in Equation 2.2, the
terms ai in Equation 2.6 can be calculated via the expression in 2.7, being E the
expectation defined by the properties of the inner product space L2.

Y (θ) =
∞∑
i=0

aiΦi(ξ) ≈
oe∑
i=0

aiΦi(ξ) (2.6)

ai =
〈Y (ξ),Φi(ξ)〉
〈Φi

2(ξ)〉
=

E [Y (ξ)Φi(ξ)]

E [Φ2
i (ξ)]

=
1

〈Φ2
i (ξ)〉

∫
ξ

Y (ξ)Φi(ξ)W (ξ)dξ (2.7)
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The term defining the variance (denominator in the fraction of 2.7) can be cal-
culated analytically, the same is not true for the numerator. Sampling methods are
generally employed to evaluate the unknown term by sampling, for each element
inside the expansion, some points inside the distribution W (ξ) and then calculating
the expectation E [Y (ξ)Φi(ξ)]. The sampling strategy can be based on Monte Carlo
(classical approach as well as Quasi-Monte Carlo): the advantage is the indepen-
dence with respect to the problem dimensionality but the downside is represented
by the large number of required samples in order to reach a good estimation; even
if considered more efficient, also the sampling strategy Latin Hypercube is affected
by high computational cost in most of the practical applications. An interesting
alternative is represented by the possibility to approximate the integral by means
of quadrature rules: Gaussian quadratures solve an integral by approximating it as
a finite summation, as reported in Equation 2.8 in the case of a one-dimensional
problem.

U =

∫
Y (ξ)W (ξ)dξ =

m∑
i=1

wiY (ξ) (2.8)

The term wi acts as a weight in the summation. Each well known PDF has
a defined set of quadrature points and their associated weights; this logic, used in
quadrature rule, is framed as a collocation method. For a more general application,
provided that all the involved variables are independent, a n-dimensional quadrature
rule can be written via tensor product such as:

m1∑
i1=1

...
mn∑
in=1

Y (ξi1 , ..., ξin)
n∏
k=1

wnk = ⊗nj=1U
ij (2.9)

The curse of dimensionality affects the quadrature rule as well: as the number of
the input uncertainties ξi increases, an exponential increase in the number of points
in the tensor product of Equation 2.9 is experienced. Several numerical solutions
were implemented to deal with this issue. In order to reduce the collocation points
[109] it is possible to use a sparse tensor product grid: the full tensor is replaced
by a linear combination of lower order quadrature rules, where the growth of points
in each one-dimensional rule is controlled by the level of sparsity l. The general
formulation of an isotropic sparse quadrature can be written as follows.

S(n, l) =
∑

l+1≤i≤l+n

(−1)l+n−|i|
(

n− 1
l + n− |i|

)
⊗nk=1U

ik (2.10)

A different point of view in the calculation of the coefficients and in the con-
struction of the PCE is represented by the Least Squares approximation (LSA): the
PCE itself is thought to be a system of equations:
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Φ0(ξ

(0)) Φ1(ξ
(0)) ... ΦP (ξ(0))

Φ0(ξ
(1)) Φ1(ξ

(1)) ... ΦP (ξ(1))
...

...
. . .

...
Φ0(ξ

(Ns)) Φ1(ξ
(Ns)) ... ΦP (ξ(Ns))



a0
a1
...
ap

 =


Y (ξ(0))
Y (ξ(1))

...
Y (ξ(Ns))

 (2.11)

Ns is the number of training points sampled from the probability distribution
W (ξ). The coefficients of the PCE, given the system in 2.11, are calculated as a
minimization problem as follows, being ||.||2 the l2 − norm.

ã = argmin
k
||Φ(ξ)a− Y (ξ)||2 (2.12)

The solution of the linear system requires a number of equations Ns equal or
greater than the number of elements contained in the expansion; the oversampling
ratio, defined as the ratio between the number of equations Ns and the minimum
required to ensure a full rank, cannot be too high because otherwise the increased
computational cost does not justify anymore the application of this method.

Among the regression strategies [65, 35, 75], the gradient-enhanced PCE incor-
porates in the system in Equation 2.11 the information about the derivatives of
the objective function Y (ξ): an additional equation can included by considering
the variations of the system response with respect to the variation of the uncertain
variable (equation 2.13).

∂Y

∂ξj
(ξ(k)) =

Ns∑
i=0

ai
∂Φi

∂ξj
(ξ(k)) (2.13)

Recalling the system of equations seen in 2.11, the new system for a gradient-
enhanced strategy has the general form reported in Equation 2.14.
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Φ0(ξ
(0)) Φ1(ξ

(0)) ... ΦP (ξ(0))
Φ0(ξ

(1)) Φ1(ξ
(1)) ... ΦP (ξ(1))

...
...

. . .
...

Φ0(ξ
(Ns)) Φ1(ξ

(Ns)) ... ΦP (ξ(Ns))
∂0Φ0(ξ

(0)) ∂0Φ1(ξ
(0)) ... ∂0ΦP (ξ(0))

∂1Φ0(ξ
(0)) ∂1Φ1(ξ

(0)) ... ∂1ΦP (ξ(0))
...

...
. . .

...
∂nΦ0(ξ

(0)) ∂nΦ1(ξ
(0)) ... ∂nΦP (ξ(0))

∂0Φ0(ξ
(1)) ∂0Φ1(ξ

(1)) ... ∂0ΦP (ξ(1))
∂1Φ0(ξ

(1)) ∂1Φ1(ξ
(1)) ... ∂1ΦP (ξ(1))

...
...

. . .
...

∂nΦ0(ξ
(1)) ∂nΦ1(ξ

(1)) ... ∂nΦP (ξ(1))
...

...
. . .

...
∂0Φ0(ξ

(Ns)) ∂0Φ1(ξ
(Ns)) ... ∂0ΦP (ξ(Ns))

∂1Φ0(ξ
(Ns)) ∂1Φ1(ξ

(Ns)) ... ∂1ΦP (ξ(Ns))
...

...
. . .

...
∂nΦ0(ξ

(Ns)) ∂nΦ1(ξ
(Ns)) ... ∂nΦP (ξ(Ns))




a0
a1
...
ap

 =



Y (ξ(0))
Y (ξ(1))

...
Y (ξ(Ns))
∂0Y (ξ(0))
∂1Y (ξ(0))

...
∂NsY (ξ(0))
∂0Y (ξ(1))
∂1Y (ξ(1))

...
∂NsY (ξ(1))

...
∂0Y (ξ(Ns))
∂1Y (ξ(Ns))

...
∂nY (ξ(Ns))


(2.14)

For each point, an additional number of equations, equal to n, is included. In
order to find a solution an over-determined system is built (given a on oversampling
ratio ζ). In the recent work of Ghisu et al. [35], a novel approach for the calcula-
tion of the coefficient in gradient-enhanced heuristics was developed: the system of
equations in 2.14 can be written by separating four main contributions:

• The matrix A, collecting all the terms Φi(ξ
(j)) of the polynomial expansion

• The matrix C, collecting the derivatives of the terms in A

• The array b, collecting the model evaluations

• The array d, collecting the derivatives of the elements in b

The resulting problem can be summarized with the following expression:

ã = argmin
k
||
(
A
C

)
a−

(
b
d

)
||2 (2.15)

The number of sub-sampled points, in order to get a full rank for
(
A
C

)
is found

iteratively: in each iteration the rows of A and C are selected only if the rank
increases; the loop continues until a full rank is obtained.
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Statistics and Sensitivity Analysis

Once the PCE surrogate is built, the calculation of the statistical moments is trivial:

E [Y (ξ)] = a0 (2.16)

σ2 [Y (ξ)] =
P∑
i=1

a2i (2.17)

The moments of higher order can calculated in the same fashion; a sensitivity
analysis can be also performed via Sobol indices [110]: this variance-based approach
calculates the variability of the system response Y (ξ) with respect to one uncertain
variable ξi (taken from the n-dimensional array ξ = ξ1, ξ2, ..., ξn) as in 2.18, where
the numerator is the variance of the objective function with respect to ξi, different
from the denominator which is instead the variance with respect to the entire set of
uncertain variables. Second order Sobol indices can be calculated as well (Equation
2.19) and they take into account the interaction between a couple of uncertain
variables ξi and ξj.

Si =
σ2(Y (ξi))

σ2(ξ)
(2.18)

Si,j =
σ2(Y (ξi, ξj))

σ2(Y (ξ))
(2.19)

Correlation between Input Variables

The expression in Equation 2.3 is not true when the uncertain variables are corre-
lated: the joint PDF W (ξ) cannot be calculated a priori and this topic still represents
a research challenge nowadays. A correlation may be present in the initial set of
data [116]. Some examples are experimental data taken with calibrated instruments
with the same batch wires; correlation between uncertainties can also be introduced
when converting an electrical potential measurement to a pressure or a tempera-
ture value: this is because these two values are obtained by setting initial reference
values of pressure and temperature respectively. Correlation is a measure of the
relationship between two or more variables, different from dependence. The latter
implies the manifestation of an event, given the occurrence of another independent
one; correlation, instead, is indicative of a tendency of two sets of data that follow
a preferential trend.

Neglecting the correlation among uncertain data may cause misleading statistics,
such as variance overestimation. When dealing with correlated data, it is still possi-
ble to construct a polynomial expansion [46]: this can be achieved by mapping the
initial set of data from the space where they are correlated (blue points in Figure 2.3)
to a new space where they are independent (Nataf and Rosenblatt transforms are
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Figure 2.3: Example of independent normal distribution (red) and correlated guas-
sian distributions (blue)

used to this aim) or via orthogonalization methods such as Graham-Schmidt. The
Nataf transform can operates with different type of well known statistical distribu-
tion, under the assumption that the cumulative density function for the initial set of
input variables is available. Given a set of random variables X = x1, x2, ..., xn char-
acterized by a marginal probability density functions wi(xi) and the corresponding
cumulative density functions CDFi(xi) for an index i = 1, ..., n. The tail trans-
formation [6] enables to obtain a set of normally distributed Gaussian samples
Y = y1, y2, ..., yn according to Equation 2.20; the Gaussian distribution described by
Y is characterized by a cumulative distribution function CDFNG and the inverse of
this latter CDF−1NG. {

CDFNG(yi) = CDFi(xi)

yi = CDF−1NG(CDFi(xi))
(2.20)

Let’s assume a correlation among the initial set of data X, quantified for each
couple of arrays Xi, Xj as in formula 2.21; in the same fashion the correlation among
the normal Gaussian distribution is described by the correlation coefficients ρ′ij. The
relationship between the correlated set of data [6] can be expressed as reported in
Equation 2.22.

ρij =
cov[Xi, Xj]

σXi,Xj
(2.21)

1

σxi,xj

∫ ∞
−∞

∫ ∞
−∞

(
CDF−1(CDF−1NG(yi))− µxi

) (
CDF−1(CDF−1NG(yj))− µxj

)
Pdyidyj

(2.22)
The correlation matrices which collect the correlation coefficients for X is re-

named ρ whilst the one associated to the correlation in Y is renamed ρ′. In Equation
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Figure 2.4: Nataf transform for correlated data in PCE [98]

2.22 the joint PDF for the Gaussians Yi, Yj is given by P = PDFjoint(yi, yj; ρ
′
ij). In

the expression above the unknown terms are represented by the correlation coeffi-
cients ρ′ij; when the marginals associated to X are Gaussian, then the calculation of
the unknown terms is trivial, being the correlation matrices ρ = ρ′. When dealing
with other well known probability density functions, it is necessary to go through
an iterative process in order to calculate each correlation coefficient ρ′ij. For the
calculation of the polynomial expansion in the case of correlated samples, the itera-
tive process has been implemented as an optimization loop in the open-source code
Effective Quadratures. When the set of correlation coefficients for Y are calculated,
it is possible to decompose ρ′ via Cholesky decomposition:

ρ′ = L0L
T
0 (2.23)

The matrix L0 performs the mapping of the correlated samples Y to a new space
where the transformed samples U are independent and vice-versa according to the
following equations:

U = L−10 Y (2.24)

Y = L0U (2.25)

Once the set of independent samples are available it is possible to build in their
space the polynomial chaos expansion and sample the points inside the correlated,
original set of data (Figure 2.4).



41 CHAPTER 2. BACKGROUND

2.2.2 Adjoint

The design of complex system such as HPT blades is challenging and involves nu-
merous variables, from geometrical parameters to working conditions. The compu-
tational cost (along with its time) can represent a limit for an extensive performance
analysis: a Monte Carlo approach is, most of the times, not feasible when the num-
ber of the variables involved is too large; in industry an additional limitation is
represented by the project deadlines. Surrogate models such as PCE can represent
a first important tool for the designer, but it is still affected by the course of di-
mensionality. Among the solution adopted to overcome this problem, the adjoint
method has recently gained particular attention [3].

The adjoint solver can be continuous or discrete. In the former, the variations
of the target function are combined with the variations of field equations, both with
respect to the uncertain input variables (they are geometrical parameters and flow
field variables); this can be achieved by using Lagrangian multipliers. The adjoint
equations are derived from the model equation and then discretized in order to ob-
tain the solution; in the discrete approach the adjoint equations are obtained after
the discretization of the model equation. The computational cost of this mathemat-
ical operator is independent by the number of input parameters. The adjoint can
therefore provide the gradients of one objective function with only one run. There
exists, although, a computational cost related to the choice of a continuous or a dis-
crete solver: the two methods can provide the same results in terms of gradients [76]
but the computational cost of deriving the discrete adjoint is larger. Despite this
aspect, the discrete adjoint is widely implemented [16, 40] thanks to the availability
of automatic differentiation algorithms [124, 107, 28].

In the present work, the discrete approach implemented in HYDRA [63] solver
was used. The aerodynamic performance I of a generic body immersed in a fluid
is dependent on the design variables αj describing the body shape and the flow
properties U inside the fluid domain (Equation 2.26).

I = f(α, U) (2.26)

The variation of the objective function with respect to the shape variations,
expressed trough the design variables αi can be written via first order derivatives as
in the following Equation:

dI

dαj
=

∂I

∂Uk

∂Uk
∂αj

+
∂I

∂αj
(2.27)

The adjoint solver is related to the solution of a normal CFD (primal) in the
way that it uses the converged solution of this latter. This aspect leads to the
assumption that the numerical errors contained inside the primal flow solution are
minimized thus the convergence of the CFD simulation is good enough to minimize
the presence of noise in the adjoint solution. Mathematically this can be written as
in equation 2.28:
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R(U, α) ≈ 0→ dR

dαj
=

∂R

∂Uk

dUk
dα

+
∂R

∂αj
≈ 0 (2.28)

Assuming a negligible value of residual for the primal convergence, the term R
can be assimilated to a null value, leading to the definition of the adjoint variables
vi, as in Equations 2.29.

−
(
∂R

∂U

)−1
∂R

∂α
=
dU

dα
= vTi (2.29)

By including the adjoint variables in Equation 2.27, the total derivative, so the
sensitivity, of the objective I with respect to the design parameter αi can be written
as:

dI

dαi
= vT

∂R

∂αi
+

∂I

∂αi
(2.30)

Thus, the adjoint equation can be written as reported in 2.31: as already antici-
pated, the adjoint solver computational cost does not depend on the number of the
variables α but on the objective functions of the study.(

∂R

∂U

)T
v =

(
∂I

∂U

)T
(2.31)



Chapter 3

Uncertainty Quantification

3.1 Real Test Case

3.1.1 GOM Scans

In industrial practice, it is important to record information about the manufactured
components. In the case of turbine blades, after each phase of the production
chain, an optical measurement is performed using the GOM optical 3D metrology
methodology [2]. Each piece is illuminated with white light; the surface surrounding
the blade is divided into small sub-spaces and each of these is compared in terms of
distance with a reference point; it follows a translation to 3D Cartesian coordinates
and a further triangularization of the cloud of points. The final digital file is in
STL (stereolithography) format and it represents the digital version of the real
mechanical component. The computational power available permits the designers
to analyze the digital twins and perform wide investigations: in a manufacturing
context, it is important to ensure the manufacturing deviations do not interfere with
the normal phases of the production process.

The blades are subject to continuous monitoring phases during their lifespan: it
is common practice to perform periodic sanity and integrity checks [60].

Used components, once dismounted from the engine, can still be useful to unveil
defects in the original design as well as critical conditions which can lead to a dete-
rioration of this component’s lifespan - being this, the main context which triggered
this project’s investigation.

Thanks to Rolls-Royce Bristol team, a set of 200 scanned rotor blades were
analyzed. The set of real blades belongs to a high-pressure stage of the same engine
design; the name of the real engine will be omitted in the present work. For the
sake of clarity, it will be renamed RReng from this point on.

All the GOM scans report (Figure 3.1):

• The external surface of each blade

• The lower end wall of the blade
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• The firtree: the mechanical connection between the blade and the disk.

Each blade belonging to the set is characterized by (Figure 3.1):

• Shroudless tip

• Winglet with a cooling system

• Gutter with cooling holes and weldings

• Squared Trailing Edge (TE) in the tip region.

• Cooling holes on both pressure side (PS) and suction side (PS)

The working conditions of the engine design intent can be compared with old
military engines [61]: it is assumed an average probability of removal rate equal
to 1/1000 Engine Flying Hours (EFH): for every 1000 hours, one engine will be
dismounted to replace a damaged component. The first scheduled maintenance of
an engine can be thought to be in the middle of this time window: the amount of
EFH before the first Scheduled Maintenance Hours will be renamed in this work
with the acronym SMH and represents the first reference to classify the damage
level of each blade.

Three out of four engines are inside the expected time window for part removal,
i.e, between 2 and 3 SMH. One of them - engine 1 - worked with components whose
lifespan has been shortened by half of the expected value. The remaining 3 engines
were dismounted and are inside the normal time window for component removal. A
classification of the geometrical deviation and damage is necessary to understand
how the performance has been affected by this lifespan issue.

The GOM scans (STL files) are a digital representation of the external surface:
the information about the chemical composition, oxidation, chemical corrosion, and
other internal features of the blade cannot be captured in these STL files.

3.1.2 Damage Classification

A total number of 200 real (HPT) rotors were analyzed in this work; they belong to
the same engine design and can be gathered in four main groups: Engine 1 worked
for 1.5 SMH while Engines 2, 3 and 4 between 2.5 SMH and 3 SMH. All blades
have been dismounted and scanned. Each component is digitalized: we refer to each
digital twin with the term GOM scan. Each blade, so its digital reproduction is
characterized by geometrical deviations in two main zones of interest, namely the
blade pressure side (PS) and suction side (SS) between the 0% and 70% of the span
(zone 1 in Figure 3.1) and the tip region (zone 2). In Figure 3.1 a typical example
of damage in an old HP unshrouded turbine blade is shown.

The first visual Figure assessment of the 200 blades leads to the damage classi-
fication summarized in scheme 3.2. Both PS and SS of the GOMs are characterized
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Figure 3.1: Classification of GOMs zones of interest in a typical HP unshrouded
turbine rotor

Geometrical INFO in GOM SCANS

Deviations                     Erosion

Casting,                      Volumetric
Machining                    loss
In-service
deformation

Figure 3.2: Classification of the geometrical information contained in each GOM
scan

by small geometrical deviations (GD) derived from manufacturing tolerances and in-
service deformations. The available data does not include these GD associated with
each blade right after the manufacturing process. This means that in the present
work we are not able to distinguish and isolate the effect of the manufacturing
process and in-service plastic deformations. These two contributions are classified
together under the term geometrical deviations (GD).

Another important information contained in the GOM scans is the erosion: a
large volumetric loss in the tip region is visible along the trailing edge on both
pressure and suction sides.

More details about the parametrization of the GD and erosion are reported in a
dedicated section of this work.

3.1.3 Real Blades After In-service Period vs Design Intent

Every manufactured engine has an original Design Intent. This section explains
the concept of Intent and its link with the available data discussed in the previous
section.
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The long design process ends with a final shape for each component inside the en-
gine. The aerothermal study carried out by the engineers starts from the assumption
of a target performance (namely, the efficiency at each stage, multi-stage efficiency,
capacity, reaction, thermal load, etc...). The design intent of a high-pressure stage
blade must account for the blade’s cold to hot transition. Cold configuration refers
to a dismounted (removed from the engine) or mounted blade whose engine is not in
operation (shutdown). The hot configuration refers to a blade inside an in-service
operating engine. Normally, the aerothermal designers have experimental data from
test rigs and are aware of the displacement characteristics of a cold to hot transition.

The cold design intent, is herein considered as the unique reference geometry
for all 200 GOM scans. It has a shroudless tip to minimize losses, and a squared
trailing edge due to limitations in the manufacturing procedure [126].

Each GOM scan is conceptually a cold geometry since it has been dismounted
from its RReng high pressure stage. The difference between this cold configuration
and the Intent is that the first has been manufactured, mounted inside an HPT
Stage, and operated inside a real engine for a certain amount of hours. It experi-
enced the cold-to-hot transition and deteriorated due to erosion and corrosion and
deformed because of in-service extreme operational conditions. Each scanned blade
provides engineers with valuable information regarding major and minor issues of the
original DI once it is operated and subjected to real operational severe conditions.

The machines used to scan the components usually scan four blades at the time.
One of the pairs is upside down with respect to the other two; the STL file resulting
from the scan process will report for each point, belonging to the outer surface of the
blade, a set of coordinates in the Cartesian system expressed with respect to a target
point. The length unit of the GOM is in millimeters. On the other hand, the design
intent, even if expressed in the Cartesian Coordinate system, is not supposed to have
the same spatial position and scale of the GOM scans. A scaling process together
with an alignment is necessary to compare the shapes and start a performance
analysis: to this aim, an automated routine in Polyworks [2] was used. Section 3.1.4
details this process.

3.1.4 Alignment

To align each GOM scan with respect to the unique cold DI, it is assumed that the
firtree was not exposed directly to the high temperatures during in-service operating
conditions. Therefore the shape deviation in these zones is expected to be negligible.

The Polyworks algorithm compares the cloud of points belonging to each GOM
scan with the DI blade’s surface. Four reference points are set over the firtree for
each cloud of points describing a single blade (Figure 3.3a). The software then
rotates and translates each GOM so that the distance between each reference point
and the analog set on the DI is minimized.

The final output of the process is a new rotated and translated GOM scan in
the Cartesian space. The overlap of each GOM towards a unique reference location
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blade

endwall

firtree

firtree
reference points

(a) Firetree reference points

cold design intent

(b) GOM scans position

Figure 3.3: Firtree alignment via Polyworks routine: reference points

enables to run a statistical analysis. In the present work, the following step is
represented by the quantification of GD and erosion on the tip.

A representative GOM is shown in Figure 3.4: a small deviation between the
CAD and the aligned GOM is visible. The colourmap depicts the distance between
the GOM and the cold DI, measured along the orthogonal direction with respect to
the GOM surface; the distance field is plotted over the GOM. The tip of the blade is
not visible; the SS, due to the presence of numerous cooling holes, is reported using
a low-resolution image. The proportions in the geometries illustrates, as in the rest
of the work, were scaled in order to do not export confidential data.

Some representative GOMs among the 200 aligned have been sliced along two
planes: the first cuts the surface at 10% of the span while the second cuts it at
50%. The comparison with the cold DI, sliced at the same positions, is reported
in Figure 3.5. The aligned blades have a small deviation with respect to the DI’s
shape: a general lean is visible but the positions of the leading edge along with
the trailing edge were not significantly affected by the mixed manufacturing and
in-service deviations. Further investigation and quantification are still needed to
better understand the impact of these deviations on the overall performance of the
blade.
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(a) Suction Side (b) Pressure Side

Figure 3.4: GOM after the alignment performed via PolyWorks routine: the normal
distance between the reference DI and the GOM surface is plotted over the surface
of the latter. The winglet of the blade is not visible

(a) 0.1 LE (b) 0.1 TE

(c) 0.5 LE
(d) 0.5 TE

Figure 3.5: Sections of aligned GOMs vs section of reference cold CAD

3.2 Engineering Parameters

So far, the geometrical deviations observed in the GOM scans were presented in a
qualitative way. To carry out a performance assessment, it is necessary to identify
the relative movement of each GOM scan with respect to the DI (identification) and
parametrize these key movements.
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3.2.1 Identification and Parametrization

The present work uses the PADRAM [71] design space to parametrize the shape of
each blade and create a mesh to assess performance via Computational Fluid Dy-
namics (CFD) simulations. PADRAM is an in-house software specifically designed
for rapid and parametrized deformation, design and multi-block structured mesh-
ing of jet engine components. The latest available version is 20.1 at the time of
writing. Among all the available parameters, a subset of ten is selected. The list
below presents a short description and it refers to Figures 3.6a, 3.6b and 3.6c. Each
parameter is applied along five radial sections from 0% to 70% of the blade’s span
(0, 10, 30, 50, 70).

(a) EP section perturbation
(b) EP perturbation

(c) Hicks-Henne Bumps

Figure 3.6: Graphical representation of the selected PADRAM design parameters
and their action in a blade profile

• XCEN: axial translation of the blade section. The reference direction is parallel
to the machine rotational axis. A positive value of XCEN represents a trans-
lation of the blade section towards the inlet section of the stage; a negative
value shifts the section towards the exit section of the stage. This translation
is measured in mm.

• DELT: tangential shift of the blade section (in degrees). The tangential direc-
tion is orthogonal with respect to the engine’s radius and its rotational axis.
A positive value of DELT shifts the blade section towards the pressure side
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while a negative one in the opposite direction. Each radial section is rotated
around the engine’s axis.

• SKEW: solid rotation (in degrees) of all blade’s sections around a vertical axis
passing through the blade at a specified point. The vertical axis is parallel to
the engine’s radial direction.

• LEMO: Abbreviation of Leading Edge MOvement (degrees). It is a local-
ized quadratic perturbation. The thickness of the blade changes consequently.
LEMO units are expressed in degrees; it is possible to specify the position of
blending points along the blade section, from where the perturbation will be
null.

• TEMO: Abbreviation of Trailing Edge MOvement. Analogous to LEMO.

• INBA: Abbreviation of INlet Blade Angle (in degrees). The thickness of the
blade is preserved.

• EXBA: Abbreviation of EXit Blade Angle (in degrees).

• LECA: Abbreviation of Leading Edge Camber Angle (in degrees). The blade
chord varies according to the applied perturbation.

• TECA: Abbreviation of Trailing Edge Camber Angle (in degrees). It is anal-
ogous to LECA.

To better reproduce the particular blade shape of the GOM scans, localized
Hicks-Henne bumps along the surface have been added to the parametrization. The
Engineering Parameters (EP) listed above exhaustively describe the blade shape
by perturbing it along five radial sections; the localized perturbation performed by
Hicks-Henne bumps needs more sections to better capture the small irregularities of
each GOM’s surface.

Therefore, nine equally distributed radial sections, ranging from 0% to the 70%
of the blade span were selected. Each of these sections contains four Hicks-Henne
bumps (two for PS and two for SS). For each bump, the variables listed below are
controlled.

• Width

• Amplitude

• Position of the centre with respect to the blade’s chord length.

The selected parametrization is robust enough to partially deform the blade
however, it is not enough to describe the severe volume loss characterizing the tip
region. This matter is further discussed in Section 3.3.
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Figure 3.7: Inverse Mapping Optimization loop: softwares and outputs involved

3.2.2 Inverse Mapping

Each GOM scan was aligned in the Cartesian space so that the firtee was fixed; the
next step is the construction of PADRAM geometry twins and their meshes (used
in Section 4.3.2 for the performance assessment).

To pass from an aligned GOM to a parametrized twin, an inverse mapping pro-
cedure [104] was used (Figure 3.7). This is an optimization cycle where the values
of the selected PADRAM design parameters are optimized. The objective is to min-
imize the average distance field between each GOM and the DI’s surface, deformed
using the given values of the PADRAM parameter.

Three softwares are involved in this optimization cycle:

• PADRAM: receives a vector of parameters (EPs) and returns the surface of
the blade obtained by deforming the DI with them;

• P2S: is an in-house Rolls-Royce code; among other capabilities, it calculates
the distance field between two similar clouds of points. The algorithm is
based on the comparison between a reference cloud of points (GOM scan in
the present study) and a target surface (PADRAM blade surface);

• SOFT: in-house optimization software.

The optimization strategy is performed using MAM (Multipoint Approximation
Method) and SQP (Sequential Quadratic Programming) for the optimization of the
EPs while SQP is used for Hicks-Henne bumps.

The inverse mapping is run for all 200 GOMs. In Figure 3.8, results of one
representative blade are reported: the initial distance field between the GOM scan
and the PADRAM surface shows the difference between the expected shape and the
real blade. The pressure side has a positive lean. A noticeable lean is present along
the blade hub as well. After the optimization cycle, the distance field is near zero
along the blade surface.
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Distance Field at Step 0
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Figure 3.8: Inverse mapping results on one representative blade

Figure 3.9: XCEN statistical trend for all 200 analyzed blades

Figure 3.10: DELT statistical trend for the 200 analysed blades

The next step consists in comparing the perturbation vectors for each PADRAM
twin with the values associated with the nominal cold geometry. The 200 blades
provide a global statistical behavior of the geometrical deviations. Figures 3.9 to
3.17 report a red line passing through the null value - representing the nominal value
associated with each parameter, together with the histograms for all parameters

Only five parameters were found to have a noticeable variation concerning nom-
inal values: XCEN, DELT, LEMO, TEMO, and SKEW. These are the parameters
to be used for the rest of this work.
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Figure 3.11: LEMO’s statistical trend

Figure 3.12: TEMO’s statistical trend

Figure 3.13: SKEW’s statistical trend

Figure 3.14: EXBA’s statistical trend
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Figure 3.15: TECA’s statistical trend

Figure 3.16: INBA’s statistical trend
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Figure 3.17: LECA statistical trend
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Figure 3.18: Hicks-Henne bumps statistics: width, amplitude and position with
respect to the curvilinear coordinate

The values for the Hicks-Henne bumps variables are shown in Figure 3.18. Both
magnitude and width variation of the bumps are small. The position is more un-
certain along the sections close to the hub and the 70% mark. From the previous
visual inspection of the blade’s surface, no volume removal was noticed between 0%
and 70% mark; the GOM’s cooling holes positions are instead compatible with the
Hicks-Henne positions. For the rest of this work, the Hicks-Henne bumps will be
not included in the PADRAM uncertain design space, because they are not repre-
sentative of a blade’s shape variation. These bumps are a better fit to represent the
presence of a cooling row which is not the focus of this work.

3.2.3 Variables’ Independence Analysis

A further assessment is needed to understand the relationship between the EP un-
certainties. The selected strategy for the Uncertainty Propagation is the PCE, and,
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as already mentioned in Section 2.2.1, it requires the assumption of independence
between input variables to be true, otherwise a preliminary preprocessing is nec-
essary (mapping via Nataf transform or orthogonalization via Gram Schmidt are
available in Effective Quadratures suite). The quantification of the correlation be-
tween the EP uncertainties is carried out by calculating the Pearson coefficient,
which formulation is expressed in Equation 3.1.

rEP1EP2 =
cov(EP1, EP2)

σEP1 · σEP2

(3.1)

The coefficient rEP1EP2 represents a linear relationship between two sets of design
parameters EP1 and EP2: for the case under study the correlation matrix REP has
dimensions 25×25; its graphical representation reported in Figure 3.19 shows a mild
correlation between the uncertainties of the EPs. A classical PCE construction can
therefore be carried out for the uncertainty propagation.
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Figure 3.19: Correlation matrix of PADRAM’s EP

3.3 Erosion

3.3.1 Visual Inspection of the GOMs Tip Region

The DI of the unshrouded blades under exam is characterized by a tip design that
is meant to minimize the over tip leakage [124]. Figure 3.20 reports a section of the
tip design in different axial planes, together with typical geometry for a scanned
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blade. The presence of a gutter on the trailing edge and rim on both PS and SS
is meant to trap the flow passing between the tip region and the casing, avoiding
the passage of the gas from pressure to suction side and re-directing it with the
same exit angle of the main flow. The eroded blades are all characterized by the
loss of this important aerodynamic feature; GOM scans and the cold reference blade
have been sliced along three radial planes (Figure 3.21) cutting the rim along planes
passing through 10% (TE1), 50% (TE2) and 90% (TE3) of the rim height.

Figure 3.20: Overtip mechanism

nominal
rim 
height

  TE3

 TE2

TE1
10%

50%

90%

Figure 3.21: Rim cut positions: TE1, TE2, TE3

A graphical comparison of the rim’s volume loss is reported in Figures 3.23,3.22
for the blade subset 1.5 SMH and 3 SMH. A large volumetric loss along the trailing
edge pressure side (Figure 3.22) is already present in the blades which worked for
1.5 SMH: it means that the beneficial over tip mechanism is already lost and a
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drop in performance is expected. The trailing edge rim in blades which worked for
more hours is totally removed. A graphical comparison made along the same radial
sections of the rim is proposed for the leading edge (Figure 3.23). In the leading edge
area, the rim is totally eroded along the 90% of the height both for 1.5 SMH and 3
SMH. The set of blades associated to 1.5 SMH have a more uncertain erosion level
at the 50% mark of the rim’s height: a subset of blades shows a localized leading
edge loss while another subset was able to preserve the metal from local melting.

Figure 3.22: Trailing Edge erosion along three radial planes cutting the rim at
different heights

The next step is the quantification of the erosion level along the GOM’s rim.
To this aim, a set of Python in-house scripts have been written. The blade rim
was divided into several regions with a length of 0.01c, and the mean distance from
the nominal rim position of the GOM points falling within the given region was
calculated. The results obtained showed that most of the blades had lost 100% of
rim height near the TE, and presented a common length for the LE rim removal,
but not for its depth. After repeating the calculation for all the GOM scans, the
statistical behaviour in the three zones was calculated, and it is reported in Figure
3.24 in the form of histograms. The average rim removal in the TE region is 21%
on the PS and 17% on the SS, both measured as a percentage of the axial chord.
The LE region is characterized by an average loss of 80% of rim height.

3.3.2 Identification and Parametrization

The information regarding the aforementioned localized volume loss was summarized
using 3 variables, as shown in Figure 3.25. The PADRAM Variable Squealer Cut
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Figure 3.23: Leading Edge erosion along three radial planes cutting the rim at
different heights

-7% -17%

Figure 3.24: Statistical trend of erosion along three regions of interest

option was used to model the rim cuts according to the erosion parametrization in
Figure 3.25). This option allows to specify the starting and the ending points of the
rim’s cut, expressed as a percentage of the blade’s chord; furthermore it is possible
to define the rim’s height reduction.
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Figure 3.25: PADRAM Squealer Tip Cut option: for the case under study the TE
start and end points are selected along with LE’s depth



Chapter 4

Uncertainty Propagation

4.1 Cold and Hot Configurations

During the in-service conditions, the HPT blades are exposed to high centrifugal
and thermal loads. These loads are responsible for the deformation of the blade’s
shape, both elastic and plastic. The former is present only during operation, and
is reversed once these loads are removed; the latter remains even after the loads
cease to be applied and can be captured together with the initial deviations due to
manufacturing, metal erosion and pitting, in the cold shape of the component. A
direct measurement of these deformations during operation represents a challenge
because it is hard to replicate the complexity of the working conditions or perform
measurements in such a harsh environment. Experimental setups in laboratories
and numerical models are used to quantify the aforementioned expansion; with the
term “cold” we refer to the blade’s shape when it is not mounted on the rotor’s
disk or inside the engine when it is switched off. The term “hot” refers to the
blade’s shape inside an operating engine. Given these definitions, the classification
and quantification of all uncertain variables seen in the previous chapter can be
considered as an investigation on a set of cold blades. The performance assessment of
an HPT rotor is usually conducted by simulating in-service conditions thus including
the expansion of the blade. In the present work, the translation from cold-to-hot
condition is represented by a localized translation applied to the blade’s shape.
The array containing the cold-to-hot translation for the case under study has been
provided by the RR engineers and can be applied to the cold baseline configuration.
The investigation carried out in Section 3.2 produced a statistical description of
the geometrical deviations characterizing the 200 cold HPT blades. The following
step is to understand how the performance metrics are affected by the uncertainties
during the in-service period; high fidelity CFD runs were used for this purpose. The
assumption made in each simulation is that the perturbation field characterizing
the shape deviation of the GOM scans (EP and erosion) can be linearly added to
the transformation field describing the cold-to-hot translation (conceptual sketch in
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Figure 4.1).
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Dismounted blade
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Expected HOT

Figure 4.1: Cold-to-hot translation

4.2 CFD and Mesh Setup

4.2.1 PADRAM Mesh

A spatial discretization was performed using PADRAM [71] (PARametric Design
and Rapid Meshing). As already seen in Section 3.2.2, this software contains an
embedded library of a blade’s geometrical parameters: by varying these values and
applying them onto a baseline geometry, it is possible to easily deform an existing
geometry. PADRAM also allows the rapid and parametrized generation of block-
structured meshes over the aforementioned geometry.

The modelling of a single passage is based on H-O-H mesh; referring to the
sketch in Figure 4.2, the blocks upstream of LE (A1, A2, A3), downstream of the
TE (B1, B2, B3) and next to the periodic boundaries (C,D) were external H meshes;
the topology of the layer surrounding the blade is O-mesh. The tip gap, as well as
the internal part of the gutter, were discretized via H topology. The number of
nodes along the edges orthogonal to the blade’s surface, along the circumferential
and the spanwise directions were varied in order to control the total number of cells.
The mesh construction for the winglet was performed using the dedicated PADRAM
option Squealer Tip [19]; the trailing edge of the blade’s design is characterized by a
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Figure 4.2: PADRAM mesh blocking on a blade-to-blade surface around the blade’s
tip

squared shape and a rim cut: the parametrization of this part is discussed in Section
3.3.2. Details of the mesh are illustrated in Figure 4.3.

(a) LE hub (b) LE tip

(c) TE hub (d) TE tip

Figure 4.3: PADRAM mesh details: LE and TE visualization at hub and blade tip

4.2.2 CFD Setup

The solution of the 3D steady-state Reynolds-averaged Navier-Stokes (RANS) equa-
tions was performed using Hydra [63]: this CFD solver has been thought of as a
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BLADE

WINGLET

GUTTER

Figure 4.4: Details of blade, winglet and gutter meshing

sequence of multiple softwares (peculiarity which inspired the name, recalling the
monster from the ancient Greek mythology). A first module (jm52 ) prepares the
files containing the boundary conditions, a second module (jm70 ) initializes the flux
and the last (jm51 ) runs the CFD simulation. We will refer to HYDRA as the set of
these three modules together in the rest of the work. The fluid domain surrounding
the blade has an elongated shape, following the direction of the wake (Figure 4.5);
periodic boundary conditions were set along the periodic surfaces of the domain.
The external blade surface along with the lower platform and the upper case were
set as adiabatic walls.

Periodicity

Outlet

Inlet

OutletInlet

Upper Casing

Hub
Lower Platform

Figure 4.5: Fluid domain shape adopted in the present study

The boundary conditions for the fluid domain include: profiles of total temper-
ature and pressure along the inlet section and profile of static pressure along the
outlet section. Inlet profiles of total temperature and pressure are reported in Figure
4.6. The static pressure distribution along the outlet section of the rotor is reported
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in Figure 4.7. For the simulation of the HPT rotor, the turbulence model Spalart-
Allmaras was selected [111], the scheme is implicit with a CFL (Courant-Friedrichs-
Lewy) value equal to 40. The values of Y + were kept below 1. The operating fluid
was set as compressible air with viscosity and thermal capacity defined as functions
of the local temperature. The domain was simulated as a moving reference frame
with fixed rotational speed, and the blade and hub were set as stationary in the
rotating frame, while the casing was considered stationary in the absolute frame.
The film cooling is not included in this study, nor secondary mass flows from the
cavities usually present upstream the leading edge in real engines. The convergence
criterion is set to a Root Mean Square (RMS) of the residuals (mass, energy and
momentum) equal to 1e−16; furthermore, a maximum number of iterations is spec-
ified: as reported in the following sections, for the case under study is unlikely to
reach a convergence below 1e− 16 and when this limit was reached (Section 4.3.1)
it was made possible only by a simplification of the geometry in the tip region.
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Figure 4.6: Simplified boundary conditions used in the present study: rotor inlet
section

A very fine mesh was first constructed; from this setup, in order to create the
coarser meshes, the number of nodes along circumferential, radial, and orthogonal
with respect to the blade’s surface, were scaled by a factor fc. A total number of four
meshes were tested and compared in terms of the final value of rotor efficiency: in
table 4.1 all values obtained are reported. The values are expressed as the difference
between the coarser meshes and the reference (the finer mesh). The mesh with
9.9M cells was selected for the analysis carried out in the next sections. Figure 4.8
illustrates in detail the convergence of the tested meshes in terms of Root Mean
Square (RMS) of the residuals (mass, energy and momentum) while Figure 4.9
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Figure 4.7: Simplified boundary conditions used in the present study: static pressure
at rotor outlet

shows the rotor efficiency ηrotor. This latter is non-dimensionalized with respect to
the reference value of ηrotor associated with the finer mesh.

Mesh number Scaling factor Number of cells (Millions) ηfiner − ηrotor
0 (finer) 1.0 14.40 -
1 1.1 11.56 −0.0009
2 1.15 9.93 −0.0014%
3 (coarser) 1.2 7.52 0.13%

Table 4.1: Mesh independence study: number of cells in each mesh and comparison
of efficiency estimations
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Figure 4.8: Convergence in terms of RMS of residuals for the mesh independence
study

Figure 4.9: Convergence in terms of rotor efficiency for the mesh independence study

4.3 Engineering Parameters

4.3.1 Adjoint Simulations

The HYDRA software suite includes a discrete adjoint solver that allows the cal-
culation of the first-order derivative for a number of figures of merit relative to a
wide range of geometrical parameters. The intrinsic cost of an adjoint simulation
is roughly equal to that of 3 primal CFD runs for each figure of merit. For the
case under study, a linear relationship between EPs and the selected figure of merit
(rotor efficiency) can be justified given the small statistical deviations measured in
the UQ campaign in Section 4.3.2. The HYDRA adjoint solver requirements and
limitations are observed below:

• Primal solution

The term primal refers to a run of a standard CFD simulation. The discrete
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adjoint solver reads the primal flow file and uses the latter to solve the adjoint
equations (described in Section 2.2.2) and calculates the gradients of the ob-
jective function. In order to minimize the numerical errors during the HYDRA
adjoint run [63], it is strongly recommended to reach an RMS of residuals value
of 1e− 14 for the primal convergence.

• Turbulence model limitations The only fully supported turbulence model at
the time of writing is the Spalart-Allmaras. The k-ω Shear Stress Transport
(SST) is available but a frozen turbulence option must be selected. In the
present work, the Spalart-Allmaras model is used.

• Geometry limitations

Several tests for the application of the adjoint solver have been performed
in the present study: an important consideration regarding the reliability of
the adjoint gradients must be done to understand the heuristics behind the
numerical strategies of this work. A first test was run with the entire (base-
line) geometry, i.e. the datum configuration complete with both gutter and
winglet. Even though the primal’s convergence can be acceptable in terms of
residuals (RMS), the validation of the adjoint gradients against a finite dif-
ference analysis did not show satisfactory results The finite difference analysis
was performed: for each of the 5 EPs (DELT, LEMO, TEMO, XCEN, and
SKEW) was applied one per time and one radial section per time (0%, 10%,
30%, 50$ and 70% of the span) with a step equal to ±0.1 degrees for all the
parameters but XCEN whose step is set to 0.1mm. The derivative of the ob-
jective function was calculated via central finite difference with a step equal
to 0.1.

A second test was run, this time without gutter and winglet (simplified geom-
etry) and keeping the same tip gap as in the reference geometry. This time,
along with a good primal convergence, the calculated adjoint gradients were
matching, within a satisfactory tolerance for all the parameters but TEMO,
the derivatives calculated via finite difference analysis on the same, simpli-
fied geometry (Figure 4.11). To drive an optimization process, it is important
to have reliable values of adjoint gradients and the simplified geometry can
provide satisfactory results. So for the rest of this work, more specifically in
Chapter 5, the adjoint will be used with the simplified geometry. In Figure
4.10, a distorted image of the simplified geometry along with its reference
geometry is reported.

The comparison of the adjoint gradients with finite differences for all selected
variables indicates the ones with a larger influence towards the variation of the metric
of interest (rotor efficiency in this study). Figure 4.11 illustrates the adjoint gradients
validation; the sensitivity with respect to a variation of TEMO is overestimated by
the adjoint gradients. The trailing edge movement influences the throat area which
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Simplified hot geometry Reference hot geometry

Figure 4.10: Simplified rotor, gutter and winglet are removed from the reference hot
configuration

Figure 4.11: Adjoint gradients validation. Comparison between derivatives values
and finite difference analysis carried out on a simplified geometry

in turn does not have a linear relationship with the performance variations: the
linearization performed by the adjoint is not enough to capture this effect. Among
the EP gradients showing a good agreement with the finite difference analysis, DELT
and LEMO seem to have a higher influence towards a variation of rotor efficiency.
For this reason, these two parameters are selected in the following sections to perform
the UP via PCE and the optimization process.

4.3.2 Propagation via PCE

In the previous section, the results obtained with the adjoint operator have been
discussed along with their validation. The analysis of the impact of each parameter
towards the variation in performance led to the selection of DELT and LEMO as
the most influencing geometrical parameters for blade sections ranging from 0% to
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70% of the span.
The results obtained refer to a simplified geometry. For the sensitivity of the real

hot configuration the PCE was selected; the open-source code Effective Quadratures
[1, 100] was used to construct the surrogate model. The EPs variations measured
during the UQ campaign (see inverse mapping procedure and statistical analysis in
Section 3.2) were small with respect to the nominal, expected values. Thus, linearity
between the variation of EPs and the change in rotor efficiency was assumed, leading
to a first order polynomial expansion. The volumetric loss characterizing the tip
region is not taken into account in this phase. For this reason, DELT and LEMO,
previously identified as the most influential for the simplified geometry, are the only
parameters selected during this sensitivity analysis. The perturbation performed
by these two geometrical parameters (DELT and LEMO) were applied on the same
radial sections along the span (0%, 10%, 30%, 50% and 70%) seen for the inverse
mapping and the adjoint run. Thus the total number of uncertain variables involved
in the present UP is equal to 10.

The PCE basis was set as a total order and the fitting was performed via a
least squared approximation, with an oversampling equal to 1.5. As already re-
ported in Section 3.2.2, the inverse mapping process applied to each GOM led to
the identification of a perturbation vector for each geometry. A statistical analysis
of the perturbation vectors allowed the construction of histograms for all the EPs,
defining the variability of each EP with respect to their nominal values. These his-
tograms (Figures 3.11 to 3.17) were used to define the PDFs as truncated Gaussian
as reported in Figure 4.12.

The Uncertainty Quantification was carried out around the hot baseline geome-
try. A total number of 17 CFD simulations were run: the first configuration has EPs
set to zero (baseline) whilst the remaining configurations are calculated by the PCE
model, by selecting from the first order quadrature points the ones that maximize
the rank of the coefficient matrix. Figure 4.13 illustrates a graphical comparison of
the configurations tested and the details about the perturbation vectors applied to
obtain each of them are reported in Figure 4.14. The results in terms of statistical
moments predicted by the surrogate model are summarized in Table 4.2. The devi-
ation of the mean rotor efficiency ηm from the nominal ηn is reported together with
the standard deviation σ. The predicted ηm is slightly smaller than the nominal
value and the standard deviation is not significant. These values can be indicative
of a design already close to a robust one. This can also be indicative of the fact that
a substantial change in performance can be difficult to achieve by using only DELT
and LEMO. It is interesting to compare the sensitivity of the full-featured config-
uration with the one seen in the case of simplified geometry: the gradients were
already available due to the adjoint run and the statistical moments were calculated
and reported in Table 4.2. The standard deviation associated with the full-featured
blade is lower than the one obtained for the simplified geometry.

For each configuration among the 17 simulated, the radial distribution of isen-
tropic efficiency ηis was calculated to verify where the difference, even if small,
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(a) Section 0, DELT (b) Section 0, LEMO

(c) Section 1, DELT (d) Section 1, LEMO

(e) Section 2 DELT (f) Section 2, LEMO

(g) Section 3, DELT (h) Section 3, LEMO

(i) Section 4, DELT (j) Section 4, LEMO

Figure 4.12: Truncated Gaussian probability distributions associated to statistical
variation of EPs in reverse engineered GOM scans



72 CHAPTER 4. UNCERTAINTY PROPAGATION

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

Figure 4.13: Configurations tested during the UP campaign
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Figure 4.14: Configurations tested during the UP campaign: EP values for each
configuration
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PCE Prediction Simplified geometry Real Geometry
ηm − ηn −0.0003% −0.0008%
ση 0.0243% 0.0177%

Table 4.2: UP campaign around the hot baseline geometry, PCE predictions com-
pared with the statistical moments calculated for the simplified geometry

between geometries is present. Figure 4.16 illustrates the comparison along with
the negligible difference already predicted by the PCE. The calculation was per-
formed by selecting the quantities of interest along the inlet and the outlet sections
of the fluid domain; the location of these planes with respect to the blade is shown
in Figure 4.15, while in Equation 4.1 the formulation used to calculate the radial
distribution of isentropic efficiency is reported. The heat capacity ratio γ is equal to
1.2737. Total temperatures and pressures are the tangentially mass-averaged values
at the given radial positions. Small variations in efficiency are experienced among
the configurations (Figures 4.17a and 4.17b) near the hub and the tip regions.

ηis =
TIN − TOUT
TIN − TOUTis

where TOUTis = TIN ·
(
POUT
PIN

) γ−1
γ

(4.1)

HUB

TIP
Upper CASING

Rotor
Inlet Section

Rotor
Exit Section

LE TE

Near LE
control section

Near TE
control section

Figure 4.15: Control sections positions for the data reduction performed along the
radial direction

4.4 Erosion Parameters

4.4.1 Propagation via PCE

In the previous section, the UP campaign for uncertain EPs showed a small sensi-
tivity of the metric of interest. In this section, a new investigation is carried out to
assess the performance variation due to the uncertain erosion parameters.

As already seen in Section 3.3, all the GOM scans analyzed in the present work
are affected by volume loss in the tip region where the rim is eroded in a well-defined
zone of both leading and trailing edges. The trailing edge is completely removed on
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Figure 4.16: Radial distribution of isentropic efficiency for the 17 configurations
tested in the UQ campaign, sensitivity with respect to EPs

(a) Near Hub (b) Near tip

Figure 4.17: Radial distribution of isentropic efficiency for the 17 configurations
simulated in the UP campaign, hub and tip regions

the pressure side. The original design of the blade winglet was thought to trap the
gas flow inside the gutter, such that the overtip leakages would be minimized, and
to redirect these gas streams with the same exit angle as the main passage flow.

The sensitivity analysis carried out in this section quantifies the isolated con-
tribution of the erosion along the blade rim; this means that no perturbation was
applied to the blade below the tip and the values of all EPs were equal to zero, as
in the baseline configuration.

The UP was run by constructing a PCE surrogate model: the numerical setup
was the same as the one used for the EPs (first total order polynomial expansion, fit
via least square approximation and oversampling equal to 1.5); the PDFs associated
to each of the three erosion parameters are truncated Gaussian whose statistical
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Figure 4.18: Configuration tested in the Uncertainty Quantification of erosion pa-
rameters

moments were calculated from the histograms in Figure 3.24 (Section 3.3).
In Figure 4.18, a comparison of all tested configurations is shown; the correspond-

ing values of the uncertainty vectors were selected among the first order quadrature
points, to maximize the rank of the associated coefficients’ matrix. For each of the
six cases, two views are presented: in the first row, the blade is cut along a plane
passing through 30% of the rim’s height (where 0% is represented by the gutter nom-
inal surface) and orthogonal to the radial direction. The second row illustrates the
detail of the rim in the leading edge zone. The removed volume for the three zones
of interest is reported in the same way as specified to PADRAM. For the leading
edge, the height of the rim volume to be removed needs to be specified (start and
end points are fixed), while in the trailing edge region, start and end points need to
be specified (the height is fixed to 100% of the nominal rim height).

These six simulated configurations are representative of the statistical behavior
within the group of the 200 eroded blades. The predictions of the surrogate model
constructed and the details in terms of performance variation, expressed as deviation
from the reference rotor efficiency ηn, are reported in Table 4.3. The first difference
with the results obtained during the uncertainty quantification for the EPs is the
value of the standard deviation ση: the set of eroded blades and their PCE suggest
a higher sensitivity with respect to the erosion parameters. The average drop in
performance, this time, is larger than the one experienced propagating the EP’s
uncertainties; a maximum difference of −1.48% is associated with the fifth eroded
configuration, where the volume loss is more pronounced.

PCE prediction Value
ηm − etan −0.78%
σm 0.68%

Table 4.3: PCE results obtained by performing a UP campaign around the baseline
geometry
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Isentropic Efficiency Isentropic Efficiency

Figure 4.19: Radial distribution of isentropic efficiency for the configuration tested
in the erosion parameters UP

Configuration number Rotor Efficiency
0 (baseline) η
1 −0.01%
2 −0.33%
3 −0.3%
4 −1.47%
5 −1.48%

Table 4.4: Results in terms of rotor efficiency obtained by performing a UP campaign
around the eroded baseline geometry

The radial distribution of isentropic efficiency is reported for all the configura-
tions in Figure 4.19. The fourth and the fifth configurations, associated with a more
important volume loss along the trailing edge, have lower values of isentropic effi-
ciency around 80% of the blade span. Next to the winglet sections, around 95% of
the blade span, a performance recovery is experienced, leading to radially averaged
values larger than for the baseline.

The erosion on the tip region leads to a localized tip gap variation with respect
to the nominal value. A wider gap between the blade rim and the upper casing
allows the gas to pass more easily from the pressure to the suction side; to better
understand the OTL (Over Tip Leakage) fluid dynamics, the distributions of non-
dimensional relative tangential velocity and non-dimensional entropy are reported
respectively in Figures 4.20 and 4.21.

The comparison is shown for the baseline with undamaged rim, the third con-
figuration CONF3 associated with a drop in performance in-between the nominal
and for the worst-case scenario (CONF5 ). The planes where the quantities of in-
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Figure 4.20: Isovalue map of non-dimensional relative tangential velocity on two
planes cutting before and after the trailing edge

terest are plotted are located 0.1c upstream of the TE, being c the axial chord of
the blade; the second plane is 0.5c downstream of the TE; the third plane is lo-
cated 1.5c downstream of the TE; the latter control section is visible only in the
non-dimensional entropy comparison (4.21), seen with a zoom-out perspective with
respect to the plots of non-dimensional relative tangential velocity. Both quantities
of interest (qoi) are non dimensionalized according to the formula in Equation 4.2,
where baseline is the nominal not eroded configuration.

qoi =
qoiconfi −min(qoibaseline)

max(qoibaseline)− (min(qoibaseline)
(4.2)

The rim along the upper surface of the blade is designed to limit the passage
of the gases over the tip but, as soon as the volume loss becomes more important
(especially along the trailing edge), the size of the high-velocity jet leaking over
the blade increases (Figure 4.20). The entropy generation in Figure 4.21 shows the
enlarged tip-leakage vortex and its migration towards lower radial sections. This
condition can explain the drop in performance predicted by the CFD simulations.

Figure 4.22 illustrates a 3D view of the over tip flows; three main structures can
be identified: the TE vortex, formed by the gases trapped inside the gutter and
flowing through the rim at the trailing edge (a); the leading edge horseshoe vortex
(b) and the OTL vortex by the gases leaking from the blade’s PS to SS (letter c).
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Figure 4.21: Isovalue map of non-dimensional entropy generation

The leading edge horseshoe vortex increases in size in sections closer to the leading
edge as soon as the erosion effect becomes more severe. Just after the blade’s mid-
chord, the leading edge horseshoe vortex mixes with the OTL generating a larger
vortex in the worst damaged blade.
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Figure 4.22: Flow visualization in the tip region, colored by non-dimensional relative
tangential velocity



Chapter 5

Optimization

The analyses carried out in the previous sections highlighted a small drop in per-
formance due to shape deviations occurring beneath the tip region and a prominent
sensitivity of the rotor efficiency concerning the uncertain erosion in the tip region.
To improve the figure of merit associated with the nominal blade and desensitize it
concerning the typical volume loss as observed in Section 3.3, a series of gradient-
based optimizations were run.

The selected optimizer was the version of Sequential Least Squares Quadratic
Programming (SLSQP) implemented in the Python library Scipy [4]. The module
has been coupled with the suite Effective Quadratures [100, 1] for the PCE construc-
tion; an additional class for the calculation of the objective function derivatives was
implemented. This class, given the PCE expansion, calculates the derivatives of
nominal performance, mean and standard deviation with respect to the design vari-
ables, and passes them to SLSQP for the optimization (Section 5.1).

Figure 5.1: Modules involved in the gradient-based optimization process

The small variability of the EPs allows to consider a linear relationship between
DELT, LEMO and the objective ηn. The hypothesis of linearity leads to the choice
of a first order PCE for the case under study. The number of variables herein
considered is the same as described in Section 4.3.2. All the CFD evaluations are
carried out by applying the perturbation vectors to the hot, baseline configuration.
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More details about the optimization setups and the optimized configurations are
reported in the dedicated sections below.

5.1 Adjoint-driven Optimization for the Simpli-

fied Geometry

The first optimization aims to improve the nominal performance of a simplified
version of the hot configuration. The simplified blade has been obtained by removing
both gutter and winglet; the gap between the tip and the upper case is kept the one
as for the full-featured, hot geometry.

In each optimization cycle (Figure 5.1):

• PADRAM creates the blade and corresponding domain and mesh by reading
the file containing the values of the EPs (DELT and LEMO from 0% to 70%
of the blade’s span) and applying the required transformations to the baseline
geometry.

• HYDRA is run in two separated phases: in the first one the run of the normal
CFD (primal) is performed; after convergence is reached, the HYDRA adjoint
solver reads the primal flow solution and solves the corresponding equations.

• The gradient of the rotor efficiency is calculated for every design parameter
(DELT and LEMO along the aforementioned radial sections) by calling ad-
ditional HYDRA adjoint tools. The step size of the variables parameters is
specified in the input files and is equal to 0.1 for both DELT and LEMO.

• The gradients and the value of the objective function are passed to the PCE.
The outcomes of the built surrogate model are the nominal value of the rotor
efficiency (objective) and its mean and standard deviation.

• The SLSQP optimization library reads the gradients of the objective func-
tion; the optimization aims to minimize the quantity 100 − ηn by perturbing
the geometry thus varying the values of PADRAM EPs, which are passed to
PADRAM and a new optimization loop begins.

Given the small sensitivity observed by the baseline configuration concerning the
EP variations measured during the inverse mapping procedure, in Section 4.3.2, a
larger range is set for the design variables to be optimized: DELT and LEMO, along
all the radial sections, can vary ±0.75 (movement towards both the blade’s PS and
SS). As stated in Section 3.2.3, each design variable has an associated uncertainty
and independence is assumed.

In Figure 5.4, the history of the objective function 100− ηn is reported: a small
performance improvement is achieved during the first step of the optimization cycle;
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Figure 5.2: First steps and objective function history during the adjoint driven
optimization process

Figure 5.3: Convergence history of primal and adjoint solver during the adjoint
driven optimization for the simplified geometry

after that, no further improvements are observed. The values of the perturbation
vector are small when compared with the range of variation allowed to the optimizer
(Table 5.1). A CFD assessment on the full-featured blade was performed: the
full-featured baseline perturbed with the adjoint-driven optimum vector improved
the nominal performance by 0.05%. The radial distribution of isentropic efficiency
associated with the baseline and this latter perturbed with the adjoint optimum is
reported in Figure 5.6; a small difference in the distributions is visible around 70%
of the blade’s span. The radial distribution of rotor efficiency for the full featured
blade perturbed with the adjoint-driven optimum vector is illustrated in Figure 5.6,
with a zoom around the zone where a more visible difference between baseline and
perturbed geometry is noticeable.
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Figure 5.4: Gradients variation during the adjoint driven optimization process

Parameter Optimum value
DELT 0 0.021
DELT 1 0.024
DELT 2 0.095
DELT 3 0.121
DELT 4 -0.070
LEMO 0 0.124
LEMO 1 0.070
LEMO 2 0.099
LEMO 3 0.089
LEMO 4 -0.049

Table 5.1: Perturbation vector for the adjoint-driven optimum

5.1.1 PCE-driven Optimization for the Simplified Geome-
try

A further optimization was run, calculating the gradients using a first order PCE.
The geometry is the same as in the adjoint-driven approach. The PCE receives the
PDFs for the design variables, truncated Gaussians, associated with the statistical
variation of DELT and LEMO (Section 4.3.2); the PCE basis is a total order, the
fitting is performed via least square approximation with oversampling of 1.5. The
total number of uncertain variables is equal to 10 (DELT and LEMO along 5 radial
sections of the blade) and the number of configurations simulated in each optimiza-
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Isentropic Efficiency

adj-simp.

Figure 5.5: Radial distribution of isentropic efficiency, comparison between the sim-
plified baseline and the adjoint optimum

Figure 5.6: Radial distribution of Isentropic Efficiency for the full-featured baseline
perturbed with the adjoint-driven optimum vector, full-featured baseline, simplified
baseline and the adjoint optimum for simplified geometry

tion step is equal to 17. At each optimization cycle, the PCE calculates the mean
value of rotor efficiency ηm representative of the statistical behaviour of the 17 con-
figurations; the standard deviation ση of the objective function is also calculated and
it is representative of the robustness for the given variability in DELT and LEMO.
The history of the minimized objective function (100 − ηn) is illustrated in Figure
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5.7.

Figure 5.7: Objective function history in the PCE-driven optimization for the sim-
plified geometry

The performance improvement is larger than the one obtained with the adjoint-
driven optimization: this time the simplified geometry optimization improved the
rotor efficiency by 0.47%.

PCE gradients

Figure 5.8: PCE derivatives, optimization of the simplified geometry

A comparison in terms of optimal perturbation vectors found for the simplified



87 CHAPTER 5. OPTIMIZATION

geometry, with adjoint-driven and PCE-driven approaches, is reported in Figure
5.9: the PCE-driven optimization pushed the values of the optimal configuration
towards the edges of the allowed design space. A qualitative comparison of the
optimal shapes is illustrated in Figure 5.10.

-driven
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Figure 5.9: Comparison in terms of optimal perturbation vectors found for the
simplified geometry: adjoint driven and PCE-driven

Figure 5.10: Comparison between adjoint-driven optimum, PCE-driven optimum,
and the Adjoint-driven simplified geometry
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5.2 PCE-driven Optimization for the Full-featured

Geometry

The full-featured geometry with nominal rim was optimized via a PCE-driven ap-
proach: SLSQP optimizer was provided with the first order derivatives calculated
via PCE in each cycle. The setup for the construction of the surrogate model is
the same as the one discussed in the previous section, for the simplified geometry.
The optimum was reached after three steps, with an improvement of about 0.3%
of the nominal rotor efficiency. The magnitude of the PCE derivatives decreased
slightly during the optimization. In the rest of the work, this optimum shape will
be identified with the name OPTIMUM A.

Figure 5.11: Objective function history during the PCE-driven optimization for the
full-featured geometry

As already seen for the simplified geometry, the optimizer pushes the values of
the optimized variables towards the boundaries of the design space. This time a
smaller value of lean is experienced in the sections around 10% and 30% of the
blade span (right-hand side of Figure 5.11).

The radial distribution of isentropic efficiency for the full-featured baseline and
its PCE-driven optimum is shown in Figure 5.14. The region close to the winglet
(around 90% of the blade’s span) along with the regions above the hub (between
20% and 30% of the blade’s span) have a larger tangentially mass-averaged value of
efficiency; smaller differences are noticeable at other radial positions.
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Figure 5.12: PCE derivatives during the PCE-driven for the full-featured geometry

PCE-driven simp.

PCE-driven full.feat.

adjoint simp.

baseline

Figure 5.13: Optimum perturbation vectors: comparison between the PCE-driven
for full-featured, simplified geometry and adjoint-driven for the simplified geometry
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Isentropic Efficiency

A

Figure 5.14: Radial distribution of isentropic efficiency for the full-featured baseline
and OPTIMUM A

5.3 PCE-driven Optimization for the Worst-case

Eroded Geometry

A fifth optimization process was run starting from the perturbation vector of the
optimum A found in Section 5.2, with the aiming to output a design less sensitive
to the typical tip erosion found in the UP analysis in Section 4.4. To limit the
computational cost, a worst-case optimization approach is considered: the aim is
to maximize the efficiency of the rotor, in the presence of the rim erosion leading
to the largest drop in performance (−1.48% for (CONF5), as observed in Section
4.4. The history of the minimized objective function 100− ηe is reported in Figure
5.15 and the corresponding standard deviation ση, calculated by the PCE surrogate
model, in Figure 5.16. The improvement in worst-case performance, associated
with the optimum in step 6, is +0.13% of the nominal value. Incidentally, the
optimized geometry is found to be slightly more robust to the imposed variability in
the EPs than the configuration in step 0 and a small decrease in standard deviation
is experienced, starting from an already low value. The qualitative comparison
between the initial configuration (OPTIMUM A with eroded rim) and the optimum
(configuration found in step 6) is reported on the right-hand side of Figure 5.15.

The perturbation vector found by optimizing the eroded worst-case scenario
was tested by replacing the clean, not eroded rim. In Table 5.2, a comparison in
terms of isentropic efficiency is reported for OPTIMUM A and OPTIMUM B, for
both nominal geometries and in the presence of the worst-case of rim erosion. The
optimum geometry OPTIMUM B achieves an improvement in both nominal (ηn)
and worst-case rim erosion (ηe) performances, both concerning OPTIMUM A and,
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Figure 5.15: Objective function history during the PCE-driven optimization for
eroded geometry and comparison of starting and final shapes

Figure 5.16: Standard deviation of the objective function during the PCE-driven
optimization for eroded geometry

even more so, with respect to the baseline geometry.

Geometry ηn − ηn,d ηe − ηn,d
BASELINE - -1.48
OPTIMUM A 0.28 -1.06
OPTIMUM B 0.3 -0.92

Table 5.2: Comparison in terms of rotor efficiency for baseline and optimal config-
urations with eroded and nominal rim

In Table 5.2, ηn,d represents the nominal performance of the baseline geometry.
In the rest of the work, the optimum perturbation vector found in this section is
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Figure 5.17: PCE derivatives, optimization of eroded geometry

Isentropic Efficiency

B

Figure 5.18: Radial distribution of isentropic efficiency for eroded geometries in step
0 and step 6

renamed OPTIMUM B.
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history

Figure 5.19: DELT and LEMO history during the PCE-driven optimization for the
eroded geometry
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5.4 Local Optimization (Larger Design Space)

A further gradient-based optimization was carried out starting from the optimum
found in Section 5.3 (OPTIMUM B); in the presence of a larger design space (more
EPs). The EPs herein considered are DELT, LEMO, TEMO, INBA, EXBA, SKEW.
The radial positions were set at 0% (hub), 30%, 50%, 70%, and 90% (just below
the winglet) of the blade’s span. The gradient concerning the design variables was
calculated via centered finite differences, using a step size of 0.1 degrees for all EPs
and 0.1 mm for SKEW. The values of the derivatives with respect to the 35 design
variables are plotted in Figure 5.20
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Figure 5.20: Gradient of OPTIMUM B ’s worst-case efficiency with respect to the
design parameters in the larger design space

Given the values of the gradient, 6 new configurations were obtained as follows:

• Perturbing the EPs values along all the directions improved the rotor efficiency,
with a perturbation magnitude equal to 0.1, 0.2 and 0.3;

• Perturbing all the EPs values along the gradients directions, with a perturba-
tion magnitude scaled such that the maximum value applied was 0.1, 0.2, and
0.3, respectively.

The new configurations are plotted in Figure 5.21. For each of these, both
nominal efficiency (with clean rim) and worst-case efficiency were calculated; by
running CFD. The values of nominal and worst-case efficiency are reported in Table
5.3 relative to the nominal efficiency of the baseline rotor geometry.
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Figure 5.21: Six configurations tested in the local optimization with larged design
space

Configuration ηn − ηn,b ηe − ηn,b
1 0.44% −0.71%
2 0.51% −0.49%
3 (OPTIMUM C) 0.58% −0.29%
4 0.42% −0.79%
5 0.46% −0.66%
6 0.47% −0.55%

Table 5.3: Performance improvements achieved in the local optimization with en-
larged design space

A gradual performance improvement is experienced for all the configurations
with the entire rim, particularly for Configuration 3; the latter is renamed in the
rest of the work as OPTIMUM C. Recalling Section 4.4, where the worst drop in
efficiency for eroded rim was equal to −1.48%, analyzing the third column in Table
5.3, it is possible to observe a global recovery of efficiency when the volumetric loss
along the tip takes place. The best configuration in terms of performance recovery
is the OPTIMUM C, where only 0.29% of isentropic efficiency is lost, i.e. 1.1% is
not lost with the worst-case scenario of the eroded rim.
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5.5 Discussion of the Results

In this section, the optimal geometries found in the previous sections are analyzed
in detail. The analyzed geometries are:

• Baseline;

• Optimum ADJ, found by driving the optimizer with the adjoint gradients;

• OPTIMUM A, found by optimizing the baseline, with nominal rim, driving
the optimizer with PCE derivatives;

• OPTIMUM B, found by optimizing the performance in the presence of the
worst-case tip configuration, i.e., the one causing the largest drop in perfor-
mance to the baseline;

• OPTIMUM C, found by optimization in a larger design space, aiming to im-
prove the performance in the presence of the worst-case tip configuration.

The radial distribution of isentropic efficiency for the optimized configurations,
calculated including the nominal rim in the geometries, is reported in Figure 5.22.
For all the optimal shapes, a performance improvement is experienced close to the
tip region. This effect is more evident for the OPTIMUM C.

Isentropic Efficiency Isentropic Efficiency

Figure 5.22: Radial distribution of isentropic efficiency for optimized configurations

In Figure 5.23, the distribution of non-dimensionalized relative tangential veloc-
ity is illustrated. The planes are located 0.1c upstream of the TE and 0.5c down-
stream of the TE. The optimized configuration OPTIMUM C shows a reduction
in the size of the tip leakage vortex. The 3D visualization of the vortex structures
characterizing the flux in the tip region is reported in Figure 5.24. The horseshoe
vortex generated by the flow separating at the LE towards the SS of the blade’s tip
(vortex structure denoted with letter c) experiences a reduction in size as well as
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Figure 5.23: Distribution of non-dimensional relative tangential velocity along planes
upstream and downstream the trailing edge

the OTL (letter b). These two vortex structures are shifted towards radial sections
closer to the blade winglet and, for the configuration OPTIMUM C, they do not
mix by the time they reach the trailing edge sections.

The comparison in terms of entropy generation is reported in Figure 5.25: the
latter is plotted along a first plane located 0.1c upstream of the TE, a second 0.5c
downstream of the TE, and a third one 1.5c downstream of the TE, near the outlet
section of the fluid domain. The reduction in size of the secondary flows is visible,
especially for OPTIMUM C, along with a general decrease of entropy values in the
section close to the exit.

To better understand the load distribution characterizing each optimum config-
uration, the plot of static pressure is reported in Figure 5.26 along a plane cutting
the blades at midspan. A second comparison is reported for a plane cutting the
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Horseshoe
vortex

Figure 5.24: OTL colored by non-dimensional relative tangential velocity
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Figure 5.25: Distribution of non-dimensional entropy along planes upstram and
downstream the trailing edge

blade along the winglet at 95% of the blade span. The values are reported as a
percentage of the reference value of static pressure P0−ref at the outlet of the fluid
domain (see boundary conditions setup in Section 4.2.2). The general trend shows
a gradual offloading of the tip region, causing a local improvement in performance.

A further assessment was carried out to understand the causes of the performance
recovery when the rim erosion occurs: the optimum perturbation vectors, this time,
were applied in the presence of the worst eroded rim. The plot with the comparison
in terms of non-dimensionalized relative tangential velocity is presented in Figure
5.28, while the non-dimensionalized entropy generation is shown in Figure 5.29. The
region associated with higher values of relative velocity decreases in size; lower values
of entropy are visible together with a reduction of the vortex’s size.
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Figure 5.26: Static pressure distribution along the midspan of the optimal configu-
rations compared with the baseline

Figure 5.27: Static pressure distribution along a plane passing through 95% of the
blade’s span, comparison for optimal configurations and baseline
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Figure 5.28: Distribution of non-dimensional relative tangential velocity for optimal
configurations with eroded rim
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Figure 5.29: Distribution of non-dimensional entropy for optimal configurations with
eroded rim



Chapter 6

Conclusions and future work

Conclusions
The design of a modern jet engine for aeronautical propulsion and its components

is subject to numerous uncertainties, starting from the manufacturing tolerances
which can cause a deviation of the real blades from the expected performance.
The working conditions of high-pressure turbine stages are particularly harsh, with
maximum values of temperatures close to the melting point of the blade’s alloyed
metal. In-service deformations and volume loss in the blading system add up to
manufacturing uncertainties, causing an even larger deviation from the expected
performance.

In addition to all this, operating conditions (velocity, temperature and pressure
distribution, but also turbulence levels) are also uncertain, and can vary with time.
The present work aims to desensitize a real HPT rotor with respect to the geo-
metrical deviations and the erosion level characterizing the component after several
engine flying hours. The numerical strategies adopted to achieve the final goal, a
more robust design, use a series of statistical approaches: uncertainty quantification,
propagation, and robust optimization.

The test case is represented by a set of 200 real HPT blades; these components
were dismounted from four engines, belonging to the same family, and digitized via
GOM scan technology. A first classification of the damage enabled to separate two
main groups of shape deviations with respect to the expected blade design: the first
one is represented by geometry variations occurring from 0% to 70% of the blade
span; the second set is constituted by a large volume loss occurring along the tip
region of the blade. The rim of the components was systematically eroded in three
main zones (trailing edge on both pressure and suction side and the leading edge)
thus removing an important aerodynamic feature of the blade, namely the over tip
leakage mechanism.

The visual inspection of the digitized blades was followed by identification and
parametrization of the uncertain variables leading to the deformed shapes. Geomet-
rical deviations from hub to 70% of the blade span were described by a subset of
geometric parameters inside PADRAM design space (EPs). Each GOM scan can
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be seen as the result of the perturbation of a baseline geometry - the design intent
-using all the aforementioned PADRAM variables. The quantification of the EPs
deviations from the nominal shape was performed via inverse mapping procedure,
for all the 200 blades. The volume loss along the blade tip was parametrized using
PADRAM squealer tip option and the quantification of the metal removal rate was
carried out by a set of in-house Python scripts.

The uncertainty propagation focused on the aerodynamic performance of the ro-
tor, described by its isentropic efficiency. Two distinct UP campaigns were carried
out to identify the most influential parameters causing a drop in performance. The
UP was performed using polynomial chaos expansions. The results showed a negli-
gible sensitivity of the efficiency with respect to the EPs variations, and a significant
degradation in performance due to the variability of the tip erosion.

For the robust optimization the most influential EPs (DELT and LEMO) were
selected as the design variables to improve the nominal rotor efficiency. A series of
gradient-based approaches were used: in the first approach a simplified geometry,
without winglet and gutter, was optimized driving the optimizer with adjoint gra-
dients. This strategy was followed by a PCE-driven optimization, for both nominal
blade and the worst-case scenario of eroded rim: the results showed a small im-
provement in performance as well as a recovery in efficiency when erosion occurs.
The final optimization with a larger design space allowed to achieve a larger im-
provement in performance and desensitize the rotor with respect to the worst case
of eroded rim: the final optimum is, in fact, able to recover a satisfactory percentage
of efficiency when the rim is damaged, losing only 0.3% of rotor efficiency.

An offload of the tip region is present in the final, optimized configuration and
this causes a local improvement of efficiency; the entropy generation is mitigated
along section downstream of the trailing edge of the blade; the overtip leakage and
the horseshoe vortex visible in the main flow of the eroded baseline decreased in size
and strength in the optimized configuration.

Future works
The present work focused on the aerodynamic performance of the HPT blades.

The next step will be a numerical assessment of thermal performance and mechanical
stresses. The former is necessary not only to ensure the proper cooling effective-
ness but also for the design of the intricate internal film cooling system. The final
optimum shape presents a visible curvature; the casting methodology for the produc-
tion of mono-crystal blades already allows to model complex, external aerodynamic
shapes (mould where the wax is poured) but excessive curvatures along the trailing
edge might add complexity to the production: the available narrow space inside the
trailing edge corner must contain the internal passages for the cooling system and
further analysis is needed to determine the best shape of the ceramic core (negative
of the film cooling internal passages) to be used in the first stage of the blade pro-
duction. Conjugate heat transfer and finite element analysis are necessary to assess
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thermal load distributions and stresses induced by centrifugal forces and vibrations,
thus the estimation of the rotor life span. A multi-disciplinary optimization would
therefore be necessary to simultaneously consider all these competing objectives.
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