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Abstract: The Brazilian berry scientifically known as jabuticaba is a fruit covered by a dark purple
peel that is still rich in bioactives, especially polyphenols. Considering that, this work was aimed at
obtaining an extract from the peel of jabuticaba fruits, identifying its main components, loading it in
phospholipid vesicles specifically tailored for skin delivery and evaluating their biological efficacy.
The extract was obtained by pressurized hot water extraction (PHWE), which is considered an easy
and low dissipative method, and it was rich in polyphenolic compounds, especially flavonoids
(ortho-diphenols and condensed tannins), anthocyanins (cyanidin 3-O-glucoside and delphinidin
3-O-glucoside) and gallic acid, which were responsible for the high antioxidant activity detected
using different colorimetric methods (DPPH, FRAP, CUPRAC and metal chelation). To improve the
stability and extract effectiveness, it was incorporated into ultradeformable phospholipid vesicles
(transfersomes) that were modified by adding two different polymers (hydroxyethyl cellulose and
sodium hyaluronate), thus obtaining HEcellulose-transfersomes and hyaluronan-transfersomes.
Transfersomes without polymers were the smallest, as the addition of the polymer led to the formation
of larger vesicles that were more stable in storage. The incorporation of the extract in the vesicles
promoted their beneficial activities as they were capable, to a greater extent than the solution used as
reference, of counteracting the toxic effect of hydrogen peroxide and even of speeding up the healing
of a wound performed in a cell monolayer, especially when vesicles were enriched with polymers.
Given that, polymer enriched vesicles may represent a good strategy to produce cosmetical and
cosmeceutical products with beneficial properties for skin.

Keywords: reactive oxygen species; circular economy; bioactives; phenolic compounds; phospholipid
vesicles; wound healing

1. Introduction

Jabuticaba, a fruit known as the Brazilian berry, belongs to the Plinia genus, also
identified as the Myrciaria genus. It is a black spherical berry with a thin and fragile peel
and a whitish pulp that is highly sought after and consumed fresh or in transformed
products by local populations. Juices, jams, jellies, vinegars, liqueurs and wines are the
main products locally obtained from these fruits [1]. Wines and liquors are produced by
distillation or fermentation due to the similarity of the fruit content to that of grape. The
manufacturing of these products generates a large amount of waste by-products, mainly
composed of the peel and seeds, which still contain valuable compounds [2]. Indeed, the
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dark purple peel is rich in phenolic acids, flavonols, ellagitannins, and anthocyanins, such
as cyanidin and delphinidin glucosides [3–5]. For this reason, jabuticaba peel has been
and still is used to enrich burgers, candies, jellies and other desserts [2]. Some studies
have shown that the peel is still rich in phenolic compounds that are responsible for the
high antioxidant activity found in vitro using different assays [6,7], antioxidant effects in
humans [8] and anti-inflammatory and gut microbiota modulation in rats [9]. Additionally,
the peel could be used as a natural coloring and antimicrobial agent thanks to its high
polyphenolic content. Although jabuticaba peel is a rich and valuable source of phenolic
compounds with alleged beneficial effects in vivo, to date there are no technological high-
value added products from jabuticaba peel on the market—neither as food nor as cosmetic
products. The products created using these by-products should be in perfect accordance
with the circular economy concepts and the directive of the United Nations Sustainable
Development Goals, which recommends ensuring sustainable consumption and production
patterns (Goal 12) [10]. One way to tackle this matter is to process fruit side-streams and by-
products, such as jabuticaba peel, into effective and innovative nanotechnological products.
Its valorization would be beneficial for the environment, as fruit processing units would
not need to burn jabuticaba peel; for consumers, as they would consume more natural
products; and for food, chemical, cosmeceutical, and pharmaceutical companies, which
could reduce or even eliminate the use of synthetic chemicals in their products.

Despite the high potential of the bioactive molecules contained in the jabuticaba peel,
their beneficial properties are often limited because of their low stability and reduced
in vivo bioavailability. To overcome these drawbacks, nanotechnological carriers such as
lipid, metallic or polymeric nanoparticles, phospholipid vesicles or micelles have recently
been proposed. Overall, phospholipid vesicles, thanks to their high similarity to biological
membranes, are the most biocompatible and versatile of these [11,12]. Indeed, in recent
decades, liposomes and other modified phospholipid vesicles have been developed and
tested as carriers of synthetic drugs and natural bioactive molecules [13]. In particular,
deformable vesicles, so called transfersomes, have been specifically designed for skin
delivery and have sometimes been stabilized by adding hydrophilic polymers to the
formulation. The latter interact with the bilayer in the internal and/or external surface,
favoring sterically stabilized vesicles in dispersion [14–16]. Hydrophobically modified
hydroxyethyl cellulose was previously used to coat liposomes, improving their stability [17].
Hydroxyethyl cellulose is a water-soluble polysaccharide derivative widely used in topical
formulations. It forms a film on the skin surface, avoiding its transpiration, improving the
water content and fluidity of stratum corneum, thus facilitating the passage of external
molecules [18]. Sodium hyaluronate has also previously been combined with phospholipid
vesicles or used alone in topical formulations due to its beneficial properties. Indeed, it is
the major glycosaminoglycan contained in the extracellular matrix of most mammalian
tissues, especially the dermis. It is implicated in several biological functions of the skin,
thus favoring its restoration and stimulating wound healing.

In this study, the two polymers were alternatively combined with transfersomes to
improve the vesicle delivery performances and stability. The resulting vesicles were used
to load the extract of jabuticaba peel, which was previously obtained by pressurized hot
water extraction (PHWE). The chemical composition and antioxidant activity of the extract
was analyzed, along with its ability, when loaded in vesicles, to reduce oxidative damage
in skin and to promote wound healing.

2. Results and Discussions
2.1. Jabuticaba Peels: Chemical Characterization and Antioxidant Activity

Mass spectrometric detection of anthocyanins in jabuticaba peel extract was primarily
performed in positive mode. Two compounds with molecular ions at (m/z)+ 449.107
and 465.100 produced fragment ions of 287.054 and 303.045, respectively, and they were
identified as cyanidin and delphinidin hexosides. Ionization of anthocyanins was much
weaker in negative mode, but nevertheless characteristic ions at (m/z)− 447.091 (M − 2)−
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and 465.101 (M + H2O − 2)− for cyanidin-hexoside and 463.085 (M − 2)− and 481.095
(M + H2O − 2)− for delphinidin-hexoside could be seen, confirming the negative ion
formation mechanism proposed by Sun et al. [19] for anthocyanins. On HPLC-DAD, the
two major anthocyanins in jabuticaba peel had similar retention times and UV-spectra
to authentic standards of cyanidin 3-O-glucoside and delphinidin 3-O-glucoside. They
represented 1.5% of the phenolic content of the gallic acid extract and total ellagitannins
accounted for 4.1% and 12.7% of the total phenolic content. These results are similar to
those reported in jabuticaba seeds from different varieties [9,20].

The phenolic components of the extract were identified and the antioxidant activity
was measured using different assays (Table 1). The lyophilized jabuticaba peel extract con-
tained 7.1% of the total phenolic compounds, in which flavonoids, ortho-diphenols and con-
densed tannins were 26.4%, 11.1% and 7.0% of the total phenolic composition, respectively.

Table 1. Phenolic compounds measured in the lyophilized jabuticaba peel extract and antioxi-
dant activities measured by different assays referred to as gallic acid equivalent (GAE), chloro-
genic acid equivalent (CAE), catechin equivalent (CE), ascorbic acid equivalent (AAE) and EDTA
equivalent (EDTAE).

Phenolic Composition and Antioxidant Activity Content

Total phenolic content 7090 ± 43 mg GAE/100 g
ortho-Diphenols 784 ± 3 mg CAE/100 g
Total flavonoids 1870 ± 31 mg CE/100 g

Condensed tannins 498 ± 13 mg CE/100 g
Total anthocyanins 107 ± 3 mg/100 g

Total ellagitannins content 901 ± 3 mg/100 g
Delphinidin 3-O-glucoside 8 ± 0.21 mg/100 g

Cyanidin 3-O-glucoside 61 ± 0.51 mg/100 g
Gallic acid 290 ± 6 mg/100 g

FRAP 10768 ± 232 mg AAE/100 g
DPPH 6807 ± 108 mg AAE/100 g

Reducing power 1921 ± 10 mg GAE/100 g
CUPRAC 27983 ± 393 mg AAE/100 g

Cu2+ chelating ability 20696 ± 172 mg EDTAE/100 g

Figure 1 shows the base peak intensity chromatogram and MSE chromatogram at m/z
301.0 for jabuticaba peel extract in negative mode. Deprotonated ellagic acid (m/z 301.0) is
a typical fragment ion of ellagitannins. Several peaks in the MSE chromatogram (Figure 1)
indicate the presence of various ellagitannins eluting generally during the first ten minutes
of the UHPLC run. MS data of identified ellagitannins is shown in Table 2. Galloly-
ated and non-gallolyated hexahydroxydiphenic acid (HHDP) glycosides, namely galloyl-
HHDP-hexoside bis-HHDP-hexoside (three isomers), castalagin/vescalagin (two isomers),
trigalloyl-HHDP-hexoside, digalloyl-HHDP-hexoside, galloyl-bis-HHDP-hexoside (three
isomers), and ellagic acid pentoside were identified in accordance with previous studies of
jabuticaba [21–24]. A precursor ion at m/z 1067.1189 (Rt 5.86 min) suggested a deprotonated
ion of the compound with a molecular formula of C46H36O30 and it was tentatively identi-
fied as pterocarinin A due to its similar fragmentation pattern (Table 2) to that reported
previously for pterocarinin A [25]. A double-charged ion at m/z 858.0645 was detected
(Rt 7.36 min) with fragment ions common for ellagitannins (Table 2). Assuming typical
(M − 2H)2− ion formation, the double-charged ion could originate from a compound with a
molecular formula of C75H50O48. The formula would match that of degallolyated sanguiin
H-6, an ellagitannin that has been frequently detected in fruits of the Rubus family [26,27].
However, further research is needed to fully characterize the compound.
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The lyophilized jabuticaba peel extract scavenged free radicals, reducing power and
metal chelating properties, thanks to its phenolic content that is known to counteract
oxidative stress not only in vitro but also in vivo [9,21,28]. Thus, considering the abundance
and profile of phenolic compounds in the lyophilized aqueous extracts of jabuticaba peel,
their antioxidant potential was measured by different assays and standard molecules that
were used as reference (Table 1).

2.2. Preparation and Characterization of the Phospholipid Vesicles

Considering the rich phenolic content of the jabuticaba peel extract and the low
bioavailability of these molecules [29,30], especially on the skin, it was loaded into
transfersomes—phospholipid vesicles tailored for topical application [31,32]. To this end,
an edge activator (Tween 80) was added to the phospholipids to increase the bilayer fluid-
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ity and the vesicle ability to squeeze through the inter-corneocyte matrix, increasing the
payload deposition in the deeper skin layers [31]. Indeed, previous studies confirmed that
this surfactant added to the phospholipid vesicles promoted their skin delivery perfor-
mance [32,33]. In addition, transfersomes were enriched with hydroxyethyl cellulose and
hyaluronic acid to promote vesicle stability. Then, a natural polymer (hyaluronic acid) and
a semi-synthetic one (hydroxyethyl cellulose) were used and their effect on vesicle stability
was compared. In previous studies, it was demonstrated that hyaluronic acid associated
with phospholipids and formed optimal vesicles, called hyalurosomes, where hyaluronan
is distributed on the internal and external vesicle surface, favoring their stability along
with their skin delivery aptitude [13]. Hydroxyethyl cellulose is a semi-synthetic polymer
widely used for topical formulation due to its thickening and gelling properties [34]. It
is considered a safe and biocompatible ingredient capable of increasing the spreadability
of the system and its application on the skin. Despite its promising properties for topical
applications, its actual interaction with phospholipid vesicles has not previously been
studied [35]. In this study, both polymers were added at two different concentrations: 1
and 2 mg/mL (Table 3).

Table 3. The composition of the transfersomes loaded with the jabuticaba peel extract.

Extract S75 Tween80 Sodium
Hyaluronate

Hydroxyethyl
Cellulose

mg/mL mg/mL mg/mL mg/mL mg/mL

Transfersomes 40 180 40
1HEcellulose-transfersomes 40 180 40 1
2HEcellulose -transfersomes 40 180 40 2
1hyaluronan-transfersomes 40 180 40 1
2hyaluronan-transfersomes 40 180 40 2

The average diameter, polydispersity index and zeta potential of the transfersomes
were measured (Table 4). The transfersomes were the smallest vesicles with a mean
diameter of around 62 nm (p < 0.05 versus the mean diameter of other vesicles) and a low
polydispersity index (0.23). The addition, polymers caused a slight increase of the mean
diameter (around 91 nm, p > 0.05 among the mean diameter of vesicles) irrespective of
the polymers and concentrations used. All vesicles were negatively charged (~−19 mV)
without significant differences between samples, probably because the amount of both
polymers was very low (1 or 2 mg/mL) in comparison with the amount of phospholipid
used (180 mg/mL). Thus, it could not significantly affect the Z-potential of the vesicles.

Table 4. Mean diameter, polydispersity index, zeta potential and entrapment efficiency (EE) of transfersomes loaded with
the extract obtained from the peel of jabuticaba fruits. Mean values ± standard deviations are reported (n = 6). Each symbol
(*, ◦) indicates the same value that is different from that indicated by other symbols (p < 0.05).

Mean Diameter (nm) Polydispersity Index (PI) Zeta Potential (mV) EE
(%)

Transfersomes * 62 ± 4 0.23 −19 ± 2 90 ± 4
1IE-transfersomes ◦ 89 ± 2 0.25 −16 ± 4 90 ± 2
2IE-transfersomes ◦ 94 ± 5 0.21 −19 ± 2 94 ± 5

1IALO-transfersomes ◦ 89 ± 5 0.22 −18 ± 3 91 ± 2
2IALO-transfersomes ◦ 95 ± 4 0.25 −19 ± 2 95 ± 3

All the formulations incorporated high amounts of jabuticaba peel extract (Table 4).
Indeed, the incorporation efficiency was always higher than 90% without significant
differences between the different samples, confirming that the addition of the polymers
did not modify the ability of the vesicles to incorporate and retain the phytochemicals
contained in the extract. The high encapsulation efficiency may be due to the antioxidant
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molecules mainly being located in the vesicle bilayer, which is not released during the
purification process. In addition, the high amount of phospholipid used (180 mg/mL) led
to the formation of a large number of vesicles, which in turn increased the viscosity of the
dispersion—thus reducing the mobility of both the vesicles and the molecules. The stability
of the vesicles was assessed by storing them at room temperature (~25 ◦C) for 90 days
and measuring their main physicochemical properties (size, polydispersity index and
zeta potential) at scheduled times (Figure 2). The mean diameter of transfersomes, which
were initially the smallest, increased up to around 180 nm at 30 days and up to 450 nm
at 90 days. The polidispersity index increased as well, and the samples appeared to be
biphasic. On the contrary, the transfersomes enriched with the polymers maintained the
same characteristics, mean diameter (~91 nm), polydispersity (~0.24) and zeta potential
(~−20 mV). The improvement of the stability was not affected by the concentration or type
of polymer [36]. Our results showed that the polymer addition improved vesicle stability
in the dispersion, probably immobilizing them in the polymeric network.
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2.3. In Vitro Studies with Keratinocytes
2.3.1. Biocompatibility of Vesicles

The study performed to evaluate the physicochemical properties of transfersomes,
especially those enriched with the polymers, confirmed their greater stability and ideal
size to be applied on the skin. Any important difference was detected as a function of
the polymer concentrations (1 or 2 mg/mL). In order to assess this, the vesicles modified
with the highest polymer concentration (2 mg/mL) were used to perform the subsequent
studies. Their biocompatibility was evaluated using keratinocytes and that of the extract in
aqueous dispersion was evaluated as well and used as a comparison. Keratinocytes have
been chosen as they are the most representative cells of the epidermis and a layer-by-layer
setup was used since in their special differentiation they form the main barrier of the
skin, which regulates skin hydration and prevents exogenous substances from penetrating
into and through it. Keratinocytes were treated for 48 h with the extract in dispersion or
incorporated within the vesicles at four different dilutions, after which the cell viability
was measured (Figure 3). The viability of cells incubated with the extract in dispersion was
~88% (p < 0.05 versus the viability measured using extract loaded vesicles), indicating that
the extract is not toxic. The viability of cells treated with extract-loaded transfersomes and
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hyaluronan-transfersomes at higher dilutions was ~100% (p > 0.05 among this group). The
treatment with HEcellulose-transfersomes and hyaluronan-transfersomes further improved
cell viability. All formulations were highly biocompatible regardless of the polymer and
dilution used. Indeed, the cell viability was equal to or higher than 100%, even showcasing
a proliferative effect associated with vesicle loading.
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2.3.2. Protective Effect of the Extract, in Dispersion or Loaded in Vesicles, against Damage
Induced in Keratinocytes by Hydrogen Peroxide

The keratinocytes were stressed with hydrogen peroxide and then treated with the
extract either in dispersion or loaded into transfersomes. The cell viability was measured
at 4 h and this was used to evaluate the protective effect of the formulations against
oxidative stress (Figure 4). The samples were diluted with the cell medium to reach two
different concentrations (4 and 0.4 µg/mL). The hydrogen peroxide stress caused high
cell mortality and reduced viability by up to ~50% (p < 0.05 versus the viability of cells
treated with the extract in dispersion or loaded in vesicles) [35]. Hydrogen peroxide is
considered one of the most dangerous oxidative molecules among the different reactive
oxygen species, capable of promoting apoptosis and cell death. The treatment of stressed
cells with the aqueous dispersion of the extract was capable of reducing the damaging
effect of hydrogen peroxide as the viability increased up to ~78% (p < 0.05 versus the
viability of cells treated with the extract loaded in HEcelluose-transfersomes at a higher
dilution and hyaluronan-transfersomes), although the complete restoration of normal
conditions was not achieved (Figure 4). Treatment with the extract loaded transfersomes
protected the cell to the same extent as the extract in dispersion (~82%, p > 0.05 versus the
viability of cells treated with dispersion). The treatment with the best result was the extract
loaded with HEcellulose-transfersomes (at a higher dilution) and hyluronan-transfersomes,
which achieved a viability of ~104% (p < 0.05 versus the values of other treatments). They
restored normal conditions and even slightly promoted cell proliferation, probably due
to the synergic effect of the extract and the polymer-immobilized vesicles. The vesicle
behavior was not affected by the dilution levels of the samples.
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2.3.3. In Vitro Wound Healing Effects

The in vitro scratch assay was performed with a monolayer of keratinocytes in order
to verify the ability of the extract in aqueous dispersion or incorporated into vesicles to
stimulate the proliferation and migration of cells. Empty vesicles were not tested as in a
previous study no improvement in wound healing was detected when empty hyalurosomes
were used [37]. The closure of the performed wound was monitored for 48 h (Figure 5)
and the % of closure was calculated by measuring the lesion areas (Figure 6). The wound
closure of untreated cells occurred very slowly—13% at 24 h, 28% at 36 h and only 40%
at 48 h. Treatment with the extract in water dispersion slightly improved the process
and bringing the closure at 48 h to 50%. Treatment with the extract loaded vesicles at 48
h achieved 90% closure when using transfersomes and HEcellulose-transfersomes and
around 100% closure when using hyaluronan-transfersomes. As we can see, the wound
closure was almost complete, confirming the restoring properties of the extract-loaded
hyaluronan-transfersomes.
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treated with the extract in a water dispersion or loaded into transfersomes.
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Our overall results confirmed the high biocompatibility of hyaluronan-transfersomes,
which were also the most effective at stimulating the proliferation and migration of skin
cells and counteracting the damage induced in skin by oxidative stress.

3. Materials and Methods
3.1. Materials

Lipoid S75 (consisting of ~70% of soy phosphatidylcholine, 9% phosphatidylethanolamine
and 3% lyso-phosphatidylcholine) was purchased from Lipoid GmbH (Ludwigshafen, Ger-
many). Sodium hyaluronate with low molecular weight (200–400 kDa) and a polydispersity
of 1.4 Mw/Mn, was purchased from DSM Nutritional Products AG Branch Pentapharm
(Switzerland). Tween 80, glycerol, DPPH radical (2,2-diphenyl-1-picrylhydrazyl), ferric
chloride hexahydrate, gallic, chlorogenic, and ascorbic acids, catechin, tetrazolium salt, 3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), quercetin, neocuproin,
Folin–Ciocalteu’s phenol reagent, 2,4,6-tris(2-pyridyl)-S-triazine (TPTZ) and pyrocatechol
violet were purchased from Sigma-Aldrich (Milan, Italy). Potassium hexacyanoferrate
(III) was obtained from Merck (Darmstadt, Germany). Anhydrous sodium acetate, copper
sulfate pentahydrate and copper chloride dihydrate were obtained from VWR Chemi-
cals BDH® (Frankfurt, Germany). Cyanidin 3-O-glucoside (≥95%) and delphinidin 3-O-
glucoside (≥95%) were purchased from Extrasynthese (Lyon, France). Glacial acetic acid
and phosphoric acid (85%) were acquired from J.T. Baker (Mallinckrodt Baker Inc., Utrecht,
The Netherlands). All reagents and plastics for cell culture were purchased from Life
Technologies Europe (Monza, Italy).

3.2. Jabuticaba Peels: Extraction, Chemical Characterization, and Antioxidant Activity

Jabuticaba fruits (Myrciaria jabuticaba (Vell.) O.Berg) cv. Sabará were harvested
at a ripe maturation stage in Araucária city, Paraná, Brazil (geographical coordinates:
25◦2924.7” S 49◦2637.8” W) in December 2018. Fruits were washed and sanitized (NaOCl
at 100 mg/L/15 min), rinsed and pulped manually. Peels were dried at 35 ◦C for 50 h,
ground to reach 42 Tyler mesh, and extracted in an accelerated solvent extractor (ASE-350,
Dionex, Sunnyvale, CA, USA), employing a pressure of 100 bar (98.7 atm) in two extraction
cycles at 50 ◦C. Water acidified with citric acid (pH 2.10) was used as the solvent and
extractions were repeated four times. Then, extracts were filtered using qualitative paper
and freeze-dried under vacuum for 120 h. Following this, the extraction yield, expressed as
a percentage, was calculated concerning the raw material used in the procedure.
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The total phenolic content (TPC, mg of gallic acid equivalent per 100 g, mg GAE/100 g),
total condensed tannin (TCT, mg of catechin equivalent per 100 g, mg CE/100 g), total
flavonoids (TF, mg CE/100 g) and total ortho-diphenols content (TOD, mg of chlorogenic
acid equivalent per 100 g, mg CAE/100 g) were measured in triplicate by using UV-Vis
spectrophotometry according to the procedures fully described by do Carmo et al. [20].

Anthocyanins (cyanidin 3-O-glucoside and delphinidin 3-O-glucoside) were quanti-
fied by high-performance liquid chromatography (HPLC) using an Agilent 1100 (Agilent
Technologies Inc., Espoo, Finland) device equipped with diode array detection (DAD).
Separation was performed using a Gemini C18 column (150 mm × 4.6 mm, 5 µm) with a
gradient elution of acetonitrile acidified with formic acid at 5%. Total ellagitannin content
was determined after acid hydrolysis, according to Mattila and Kumpulainen [38], and
gallic acid was determined using an Inertsil ODS-3 column (150 mm × 4.0 mm, 3 µm)
with a gradient elution of acetonitrile into 50 mmol/L H3PO4 (pH 2.5). Analyses were
performed in triplicate and results expressed as mg/100 g.

Ultra-high performance liquid chromatography (UHPLC) combined with high resolu-
tion mass spectrometry (MS) was applied for the characterization of major ellagitannins
and anthocyanins. An Acquity UPLC-Xevo G2 QTOF mass spectrometer (Waters, Milford,
MA, USA) was equipped with a Waters Acquity BEH C18 (1.7 µm, 2.1 mm × 150 mm)
column and the separation was performed using a gradient of acetonitrile into water acidi-
fied with 0.1% formic acid, according to Santos et al. [39]. The flow rate was 0.55 mL/min,
the temperature of the column oven was 45 ◦C and the injection volume was 1.0 µL. An
electrospray interface (ESI) in negative and positive mode was used with capillary voltages
of −1 kV and +0.5 kV, respectively. Argon was used as the collision gas. MS analyses
were conducted by data independent acquisition (MSE) centroid data mode in a full scan
m/z 50–1500 with 0.2 s scan time. In the MSE function, the precursor ions of MS were
fragmented using high collision energy ramped up from 25 to 45 V.

The antioxidant activity of the extract was analyzed in triplicate by using different
assays: free-radical scavenging activity in relation to the DPPH radical, ferric reducing
antioxidant power (FRAP), cupric-ion reducing antioxidant capacity (CUPRAC), reducing
power and Cu2+ chelating ability. Results were expressed as mg GAE/100 g (reducing
power), mg of ascorbic acid equivalent per 100 g, mg AAE/100 g (DPPH, FRAP, and
CUPRAC) and mg EDTA equivalents/100 g (metal chelation), respectively. All methods
used have been deeply described previously by do Carmo et al. and Fidelis et al. [9,20].

3.3. Vesicle Preparation

Transfersomes, hydroxyethyl cellulose enriched transfersomes (HEcellulose-thansferomes)
and sodium hyaluronate enriched transfersomes (hyaluronan-transfersomes) were pre-
pared by dispersing phospholipid (S75, 180 mg/mL), Tween 80 (20 mg/mL), extract
(40 mg/mL) and polymer (hydroxyethyl cellulose or sodium hyaluronate 1 and 2 mg/mL),
when appropriate, in water and leaving the blends to hydrate for a few hours. Following
this, the dispersions were sonicated (4 cycles 2 on 5 off 15.0 µ amplitude), waiting 5 min
between each cycle to promote cooling and avoid overheating of the sample. A high
performance Soniprep 150 sonicator (MSE Crowley, London, UK) was used to sonicate all
dispersions in order to obtain a homogeneous system with a small size [15]. This procedure
avoids the loss of the components used for the preparation, leading to the formation of
performant vesicles capable of incorporating high amounts of the extract.

3.4. Characterization of the Vesicles

The average diameter and the polydispersity index (a dimensionless measure of the
broadness of the size distribution) of the vesicles were measured by photon correlation
spectroscopy using a Zetasizer Ultra (Malvern Instrument, UK). The same equipment was
used to measure the zeta potential of vesicles by measuring the electrophoretic mobility
of particles [40]. The samples were suitably diluted before measurement to be optically
clear and avoid the reduction of scattered light that can be detected. To evaluate the
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amount of extract actually incorporated into the vesicles, the dispersions were purified
from the non-incorporated extract by dialysis. Vesicle dispersions (1 mL) were inserted
into polycarbonate dialysis tubes (Spectra/Por® membranes: 12–14 kDa MW cut-off, with
pores 3 nm; Spectrum Laboratories Inc., Rancho Dominguez, CA, USA) and immersed in
distilled water (2 L) at 25 ◦C for 2 h under stirring. The water was refreshed after one hour,
thus using 4 L of water to solubilize the bioactive molecules not incorporated in 1 mL of
vesicle dispersion (40 mg). The amount of extract in the vesicle suspensions before and
after the dialysis was quantified measuring their antioxidant activity using the DPPH assay.
The entrapment efficiency of the extract inside the vesicles was calculated as a percentage
ratio between the antioxidant activity of the samples before and after the purification
process [41–43].

3.5. Stability of Vesicles on Storage

The stability of the vesicles in the dispersion was evaluated by monitoring their
average size, the polydispersity index and the surface charge for 90 days while keeping the
dispersions at room temperature (25 ± 1 ◦C).

3.6. Measurement of the Antioxidant Activity of Samples Using the DPPH Colorimetric Test

The antioxidant activity of jabuticaba peel extract loaded into vesicles was measured
as a function of its ability to scavenge DPPH. The dispersions (10 µL) were diluted (1:100)
with a methanolic solution of DPPH (0.4 µg/mL). The diluted samples were stored at room
temperature and in the dark for 30 min, then the absorbance of the solutions was measured
at 517 nm using a UV spectrophotometer. The antioxidant activity of the formulations was
calculated according to Equation (1):

Antioxidant activity% = [(ABSDPPH − ABSsample)/ABSDPPH] × 100 (1)

3.7. Biocompatibility and Protective Effect of Samples against Oxidative Stress in Keratinocytes

Immortalized human keratinocytes (HaCaT) were grown as monolayers at 37 ◦C,
100% humidity and 5% CO2 using Dulbecco’s Modified Eagle Medium (DMEM) high
glucose supplemented with foetal bovine serum, penicillin and streptomycin as growth
medium. To evaluate the biocompatibility of formulations, cells were seeded into 96-well
plates at a density of 7.5 × 103 cells/well. After 24 h, cells were treated for 48 h with
jabuticaba extract in aqueous dispersion or loaded in vesicles properly diluted with DMEM
to reach different concentrations of the extract (40, 4, 0.4 and 0.04 µg/mL). At the end
of the incubation, MTT [3(4,5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide]
(100 µL, 0.5 mg/mL final concentration) was added to each well, and, after three hours,
the formed formazan crystals were dissolved with dimethyl sulfoxide. The absorbance of
each well was measured at 570 nm using a microplate reader (Synergy 4 Reader, BioTek
Instruments, AHSI S.p.A, Bernareggio, Italy). All experiments were repeated at least three
times, each time in triplicate. Results are shown as percent of cell viability in comparison
with untreated control cells (100% viability).

The in vitro protective effect of formulations against damage caused by oxidative
stress was evaluated as well. Cells were seeded into 96-well plates at a density of
7.5 × 103 cells/well. After 24 h of incubation, cells were stressed with hydrogen peroxide
(30% diluted 1:40,000 v/v with PBS) and treated with the extract in aqueous dispersion or
loaded in vesicles and diluted to reach two different concentrations (4 and 0.4 µg/mL).
Cells stressed with hydrogen peroxide only were used as negative control, while untreated
cells were used as positive control. After 4 h of incubation, cells were washed with fresh
medium and their viability was determined by the MTT assay. Results are reported as the
percentage of untreated cells (100% viability).
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3.8. In Vitro Wound Healing Properties

The ability of the jabuticaba peel extract loaded into vesicles to remodel the skin
lesions and promote their healing was evaluated by measuring the cell expansion on a
lesion in a cell monolayer. The cells were cultured in 6 well plates until a complete and
homogeneous monolayer was reached. A linear wound was generated using a sterile
plastic pipette tip. The scattered fragments of cells were removed by gentle washing with
fresh medium. Extract aqueous dispersion or extract loaded vesicles were diluted with
cell medium up to 4 µg/mL of extract and used to treat the lesioned cell monolayers. The
cell lesions were observed, and the images were captured at 24, 36 and 48 h of incubation
using an optical microscope with a 10× objective. Untreated cells were used as negative
control. The area lesions in the captured images were measured by Java’s image J software
(http://rsb.info.nih.gov, accessed in April–June 2021). The closure of the wounds was
calculated using Equation (2):

wound closure (%) = [(a0 − at/a0] × 100% (2)

where a0 is the wounded area immediately after scratching, and at is the wounded area
measured at 24, 36 and 48 h [44].

3.9. Statistical Analysis

Results are expressed as the mean ± standard deviation and significance was tested
at the 0.05 level of probability (p). For size, zeta potential, viscosity, drug accumulation and
cytotoxicity, one-way analysis of variance (ANOVA) was used to substantiate statistical
differences between groups followed by Tukey’s test, while Student’s t-test was used for
comparison between two samples using XLStatistic for Excel.

4. Conclusions

The lyophilized jabuticaba peel extract was incorporated into transfersomes and poly-
mer (hydroxyethylcellulose and sodium hyaluronate) enriched transfersomes with the aim
of stabilizing the extract and improving its therapeutic efficacy. The obtained vesicles were
small in size and homogeneously dispersed. The addition of both polymers only led to the
formation of slightly larger vesicles without differences between the polymeric concentra-
tions used. Polymer-enriched vesicles seemed to be ideal for topical administration and
were capable of incorporating the bioactive-rich extract in high amounts. In particular, the
combination of phospholipid, Tween 80 and sodium hyaluronate to obtain Hyaluronan-
transfersomes, has been selected as the best formulation in terms of stability and ability to
interact with keratinocytes, as only these vesicles were able to effectively counteract the
damage induced in cells when using hydrogen peroxide and to promote wound-healing in
human keratinocytes. Overall, our results suggested that hyaluronan-transfersomes may
represent a promising system for the treatment of skin diseases or skin wounds connected
with oxidative stress. In addition, we show for the first time the use of jabuticaba peel
extract in a dermatological delivery system.
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