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Abstract

Frequency-domain electromagnetic (FDEM) data are commonly inverted to

characterize subsurface geoelectrical properties using smoothness constraints

in 1D inversion schemes assuming a layered medium. Smoothness constraints

are suitable for imaging gradual transitions of subsurface geoelectrical proper-

ties caused, for example, by varying sand, clay, or fluid content. However, such

inversion approaches are limited in characterizing sharp interfaces. Alternative

regularizations based on the minimum gradient support (MGS) stabilizers can,

instead, be used to promote results with different levels of smoothness/sharpness

selected by simply acting on the so-called focusing parameter. The MGS regu-

larization has been implemented for different kinds of geophysical data inversion

strategies. However, concerning FDEM data, the MGS regularization has only

been implemented for vertically constrained inversion (VCI) approaches but not

for laterally constrained inversion (LCI) approaches.

We present a novel LCI approach for FDEM data using the MGS regular-

ization for the vertical and lateral direction. Using synthetic and field data

examples, we demonstrate that our approach can efficiently and automatically

provide a set of model solutions characterized by different levels of sharpness

and variable lateral consistencies. In terms of data misfit, the obtained set of
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solutions contains equivalent models allowing us also to investigate the non-

uniqueness of FDEM data inversion.

Keywords: Frequency-domain electromagnetics, Laterally constrained

inversion, Minimum gradient support regularization, Peat characterization

1. Introduction

Portable electromagnetic induction (EMI) sensors using harmonic source

waveforms (also known as frequency-domain electromagnetics - FDEM) are com-

monly used to characterize near-surface geoelectrical properties. Such methods

are used in various applications including archaeological prospection (De Smedt5

et al., 2014; Dabas et al., 2016; von Hebel et al., 2021), precision agriculture

(Jadoon et al., 2015; Rudolph et al., 2016; Brogi et al., 2019), hydrological

studies (Vereecken et al., 2015; von Hebel et al., 2014; Rezaei et al., 2016;

Robinet et al., 2018), and environmental studies including the exploration of

peat deposits (Altdorff et al., 2016; Beucher et al., 2020; Clément et al., 2020;10

McLachlan et al., 2020). Modern single-frequency, multi-configuration sensors

can simultaneously sense the subsurface electrical conductivity for different vol-

umes of investigation. Thus, the resulting data sets allow the reconstruction of

heterogeneous models through data inversion.

For their computational costs, 2D/3D inversion of EMI data have been used15

for the reconstruction of relatively small problems (Sasaki et al., 2010; Pérez-

Flores et al., 2012; Yi & Sasaki, 2015; Benech et al., 2016). However, recently,

new Fourier-based approaches (Guillemoteau & Tronicke, 2016; Guillemoteau

et al., 2017a) made them practical for large data sets. For characterizing sub-

surface formations of relatively large lateral extent, EMI data are commonly20

interpreted using 1D layered medium inversion approaches as they offer a good

balance between robustness and computational expense for this kind of target

(Saey et al., 2012; Grellier et al., 2013; von Hebel et al., 2014; Davies et al., 2015;

Guillemoteau et al., 2016; McLachlan et al., 2021). Like many other geophysical

inverse problems, EMI data inversion is typically ill-posed (Tikhonov & Arsenin,25
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1977). To cope with this, a stabilizing term formalizing the available prior infor-

mation is introduced in the objective functional to be minimized. One popular

stabilizer consists of a smoothness constraint term (Constable et al., 1987). As

commonly used in vertically constrained inversion (VCI) approaches, the smooth

constraints limit the variability between the parameter values characterizing the30

adjacent layers within the 1D model. To enforce lateral consistency of the in-

version result (i.e., in the neighborhood of 1D models), laterally constrained

inversion (LCI) approaches are used (Auken & Christiansen, 2004). Here, the

neighboring 1D models are linked by lateral (smoothness) constraints (Auken

et al., 2008; Viezzoli et al., 2010). Such LCI approaches have also been suc-35

cessfully applied to FDEM data (Christiansen et al., 2016; Frederiksen et al.,

2017). Nevertheless, such approaches are limited if sharp interfaces (e.g., geolog-

ical boundaries between two distinct formations) are present in the subsurface

(Linde et al., 2015; Zhdanov & Tolstaya, 2004). One regularization strategy to

enforce a sharp or blocky solution is based on the minimum gradient support40

(MGS) method (Portniaguine & Zhdanov, 1999; Zhdanov, 2002). Within the

MGS regularization, a focusing parameter controls the characteristics of the

used stabilizer; i.e., a small parameter value promotes sharp solutions while a

large value promotes smoother models (Vignoli et al., 2015; Deidda et al., 2020;

Vignoli et al., 2021). The MGS regularization has been implemented in sev-45

eral inversion approaches for other geophysical methods. For example, it has

been successfully used for the inversion of gravity data (Last & Kubik, 1983),

electrical resistivity data (Blaschek et al., 2008; Fiandaca et al., 2015; Thibaut

et al., 2021), seismic dispersion curves (Vignoli et al., 2021), traveltime data sets

(Zhdanov et al., 2006; Vignoli et al., 2012), and time-domain electromagnetic50

data (Ley-Cooper et al., 2015; Vignoli et al., 2015, 2017). For FDEM data,

VCI strategies using the MGS regularization have been presented by Deidda

et al. (2020). In contrast, to our knowledge, this is the first implementation of

MGS-LCI for FDEM data.

Depending on the application, targeted structures may show different lateral55

consistency (e.g., tens to hundreds of meters of soil layers versus meter-sized ar-

3
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chaeological artifacts) and variable interface sharpness (e.g., gradual variations

in fluid or sand content within a single geological unit versus a sharp, distinct

interface between two geological units). The inverse problem is often non-unique

regarding these characteristics. It is therefore necessary to develop rapid and60

rather exhaustive data inversion procedures, which automatically provide a so-

lution for different geological settings.

In this study, we present a novel LCI approach for FDEM data based on

the MGS regularization in both the vertical and the lateral direction. Our

inversion strategy relies on a gradient-based inversion procedure which converges65

for arbitrary model sharpness and lateral consistency and, thus, efficiently and

automatically provides a set of equivalent solutions (in terms of data misfit). In

the following, we provide the details of this inversion strategy. Then we evaluate

our proposed method using 1D and 2D synthetic data sets computed with full

non-linear forward modeling approaches. Finally, we apply such a multi-solution70

strategy to a field data set acquired in Paulinenaue, Germany, to explore and

characterize peat deposits.

2. Theory

EMI multi-configuration sensors typically provide LIN (low induction num-

ber) apparent conductivity σa data calculated after McNeill (1980). In the75

presented inversion procedure, we convert the given LIN conductivities back to

out of phase (OP) data and to robust σa values using the full homogeneous

half-space theory (Wait, 1962) as described in Guillemoteau et al. (2016). Simi-

lar transformations are commonly used in electrical resistivity tomography and

have also been used for time-domain electromagnetic approaches (Christensen,80

1995; Guillemoteau et al., 2011, 2012). They allow to remove the effect of the

acquisition parameters (e.g., frequency, configuration or sensor clearance) from

the data. The resulting modified data space used for the inversion thereby only

contains information related to the subsurface properties. Following Johansen

(1977), we invert the logarithm of σa. The vector of the observed data dobs is85
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given by

dobs = [logσa,1, logσa,2, . . . , logσa,Nd
]T , (1)

where Nd is the number of data points. When performing a 1D inversion for one

sounding, Nd is equal to the number of configurations Nc. When simultaneously

inverting several soundings, Nd is equal to the number of configurations Nc times90

the number of soundings Ns. Similarly, we define the model parameter vector

m using the logarithmic conductivities of the individual layers by

m = [logσ1, logσ2, . . . , logσNm
]T , (2)

where Nm is the number of model parameters. If the inversion is performed

for one sounding, Nm is equal to the number of layers Nl. If the inversion is95

performed for Ns soundings, m is a vector containing the Ns times Nl elements.

In our inversion approach, to obtain an estimated solution of the model

parameters explaining the observed data, we minimize the following objective

function φ:

φ =

Nd∑
i=1

[(Wdobs)i − (Wdmod)i])
2 + α

Nm∑
j=1

[
(Dzm)2j

(Dzm)2j + ε2
+ w

(Dxm)2j
(Dxm)2j + ε2

]
.

(3)100

The first sum describes the data misfit; i.e., it characterizes the difference be-

tween the observed data dobs and the modeled data dmod. W is a diagonal

matrix containing data weights, which are set depending on the characteristics

of the assumed data uncertainties. The second sum of equation 3 is the regular-

ization term. The importance of this sum with respect to the data misfit sum is105

controlled by the scalar value α. Within this second sum, the two terms describe

the model constraints in the vertical (z) and lateral (x) direction, respectively.

The relative level of the lateral constraints is controlled by the scalar value w.

Having a different weight between the spatial components is not unusual (in this

respect, for example, Auken et al., 2015) as the correlation lengths are generally110

different. The matrices Dz and Dx are first-order spatial differential operators

for corresponding neighboring model elements of m in the vertical and lateral

direction, respectively. The scalar value ε avoids singularity occurrences when

5
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(Dzm)2j = 0 or (Dxm)2j = 0, and defines the threshold to consider the varia-

tion of the model parameters significant (e.g., Vignoli et al., 2021). Due to the115

latter fact, ε is commonly referred as the focusing parameter.

We minimize equation 3 using the following iterative formula (Constable

et al., 1987):

ms+1 = [JT (ms)CdJ(ms)+αsS(ms)]
−1JT (ms)Cd[dobs−f(ms)+J(ms)ms],

(4)

where s denotes the iteration number, J is the Jacobian of the problem, Cd =120

W TW is the data weighting matrix, S the regularization matrix described

below, and f represents the 1D forward modeling of the data. Here, f is the

logarithm of the full 1D non-linear forward modeling of σa, which consists of

two steps:

ms
1−−−−→ OP (ms)

2−−−−→ log(σa(OP )).125

Transformation 1 corresponds to the full 1D forward modeling of the OP data,

and transformation 2 is the conversion of the OP data into σa data using the

full homogeneous half-space theory. The latter transformation is univocal and

reversible in the low to moderate induction number range, which is the operating

domain for portable rigid-boom mono-frequency sensors as considered in this130

study. The Jacobian J of the logarithm of σa,i with respect to the conductivity

of the layer j can be calculated, by simply applying the differentiation chain

rule, as (Guillemoteau et al., 2016)

Jij
∣∣
σ

=
σj
σa,i

∂σa,i
∂OPi

OPi(σ + ∆σj)−OPi(σ)

∆σj
, (5)

where the derivative
∂σa,i

∂OPi
is numerically evaluated when converting OP data135

into robust σa data. The diagonal entries of the Nd×Nd data weighting matrix

Cd are set depending on the data uncertainties after Tarantola (2005) which,

for the logarithmic space, is calculated by (Guillemoteau et al., 2017b)

(Cd)ii = log(1 + δi)
−2, (6)

where δi is the relative uncertainty of the σa data. In practice, when assuming140

relative uncertainties, we directly set δi to the required value. On the other

6
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hand, to model absolute uncertainties ∆σa,i in S/m, we set δi to

δi =
∆σa,i

σa,i
. (7)

In equation 4, the regularization matrix S is defined as:

S =
1∑

diag(LTzLz)
· [LTzLz + wLTxLx], (8)145

where the matrices Lz and Lx are the MGS operators for the vertical and lateral

direction:

Lz =
Dz√

[Dzms]2 + ε2
and Lx =

Dx√
[Dxms]2 + ε2

. (9)

The MGS operator is model-dependent. As a consequence, the optimal reg-

ularization weight α might vary during the iterations primarily depending on150

ms. In equation 8, the scaling by the trace of LTzLz is applied to make the

α-search general and avoid the need for adjustments every time the range of the

conductivity and/or its spatial derivatives change. The optimal α value is au-

tomatically found at each iteration by computing the root mean square relative

error (RMSRE) between the observed and modeled σa as a function of α (the155

α-search is performed over several orders in a logarithm scale beginning with

a large value and decreasing it until the RMSRE value is increasing). In our

inversion strategy, the starting model m0 contains Ns homogeneous media Mk

defined as the mean of the observed robust σa data for each sounding k:

m0 = [M1, . . . ,Mk, . . . ,MNs ]T , (10)160

where, for all components of the k-th 1D conductivity model, each layer has a

conductivity equal to

Mk,l = log(σ̄obs
a,k ) for l = 1, . . . , Nl. (11)

It is important to highlight here that for the case of portable single-frequency

instruments, which operate at low to moderate induction numbers, the starting165

model is by definition not a critical choice, and thereby nor a relevant parameter

to be explored as the vertical sensitivities are very poorly dependent on the

7
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model of conductivity (Guillemoteau & Tronicke, 2016). The estimated solution

m of the inverse problem is found, when 1) the RMSRE is below a threshold,

which is set according to the assumed noise/uncertainties, or 2) the relative170

change in RMSRE is below a certain threshold, which we set to 25 % of the

RMSRE.

3. 1D synthetic data example

With this first example, we want to demonstrate the basic principles of the

presented inversion procedure using a 1D synthetic data set consisting of a sin-175

gle sounding (Ns = 1). We consider the case of a four-configuration instrument

operating at a single frequency of 9 kHz placed at 0.25 m above ground. The

four configurations consist of two horizontal coplanar (HCP) and two perpen-

dicular (PERPx) configurations with coil spacings of 1 m, 2 m, 1.1 m, and

2.1 m, respectively. Here, we perform a noise-free synthetic test to focus on180

the characteristics of the implemented model constraints. The used subsurface

model consists of two layers (Figure 1): A conductive layer at the top with

σ1 = 0.1 S/m, and a more resistive layer below with σ2 = 0.01 S/m. The

interface between these two layers is located at a depth of 0.5 m.

For the inversion of this synthetic sounding, we set the number of layers Nl185

in the model space to 50 with increasing thickness towards deeper layers up

to a depth of 4 m. Because we analyze a single sounding, we consider vertical

constraints only in equation 3 and, thus, we follow a VCI strategy. Because all

other parameters are fixed or automatically found within the inversion proce-

dure, only two user-specified parameters control the inversion result. These are190

the scalar value ε and the assumed data uncertainty δi (see also equations 6, 7

and 9).

3.1. Influence of ε on the inversion result

To show the influence of ε on the inversion result, we set the assumed noise

∆σa,i to a constant absolute value of 0.1 mS/m. This value is indeed quite195
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small and definitely far from being realistic, but, here, the point of this exercise

is to verify the impact of the focusing parameter values on the inversion. The

inversion results for different ε values are shown in Figure 1. The RMSRE of all

results are in the same range (between 0.22% and 0.36%); i.e., all of the shown

results can be considered as equivalent models. In general, a small value of ε,200

for this example 0.01, produces a sharp/blocky inversion result. In fact, the

name minimum gradient support indicates that the chosen stabilizer tends to

minimize the support of the spatial model gradient (i.e. the area in which the

gradient is not vanishing). The focusing parameter defines, in a broad sense,

when a conductivity variation is small enough to be neglected (so it defines205

the support). On the other hand, large values of the spatial variation of the

model are not particularly penalized (as, on the contrary, it happens in the

standard Occam’s inversion). Using a high ε value, the regularization term

aims at minimizing the gradient of the model parameter vector equally over the

whole model space. Thus, in this first synthetic example, high ε values favor a210

smooth inversion result.
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Figure 1: 1D VCI results for several values of ε. The input model (black line) used for forward

modeling the synthetic data consists of a conductive top layer with σ1 = 0.1 S/m and a

second, more resistive layer with σ2 = 0.01 S/m. The interface is located at a depth of 0.5 m.

3.2. Influence of the assumed noise level on the inversion result

The MGS operator describes an iterative sharpening procedure which is re-

lated to the number of iterations. Therefore, a change in the assumed noise

level, which influences the number of iterations needed to solve a specific inver-215

sion problem, results in different levels of model sharpness. To illustrate this

link, the inversion results for each iteration using ε = 0.01 are shown in Figure

2a (see also orange line in Figure 1). In Figure 2b, we show the corresponding

RMSRE values for each iteration. In this example, the assumed absolute noise

∆σa,i is set to 0.1 mS/m. We obtain the logical final inversion result after six220

iterations. Starting with a homogeneous initial model, the level of sharpness in-

creases at each iteration; i.e., the size of the gradient variations along the model

10
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parameter vector is increasing. The RMSRE value decreases with each iteration

and, using a noise level of 0.1 mS/m, the corresponding RMSRE threshold of

0.25% (red dotted line in Figure 2b) is reached after six iterations. If we assume225

a noise level of 1 mS/m, we reach the corresponding RMSRE threshold of 2.5%

(blue dotted line in Figure 2b) after four iterations. Comparing the models

obtained after four and six iterations (blue and red line in Figure 2a) illustrates

that a higher value of the assumed noise level decreases the number of iterations

needed to obtain a final inversion result but, decreases the level of sharpness in230

the result.
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Figure 2: a) 1D VCI results for several iterations using ε = 0.01. The input model (black

line) used for forward modeling the synthetic data consists of a conductive top layer with

σ1 = 0.1 S/m and a second, more resistive layer with σ2 = 0.01 S/m. The interface is located

at a depth of 0.5 m. b) The RMSRE evolution with each iteration corresponding to the
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4. 2D synthetic data example

Typical field data sets consist of thousands of soundings across large areas

(e.g., several hectars) along numerous profile lines. In this second synthetic

example, we use the same four-configuration instrument as used in the first ex-235

ample and compute a 2D synthetic data set across a subsurface model showing

lateral variations in electrical conductivity. For simulating this data set, we use

a 3D non-linear forward modeling method based on the finite volume approach

(Haber, 2014). The synthetic data set consists of 215 four-configuration sound-

ings with a in-line spacing of 0.6 m, resulting in Nd = 860. The input subsurface240

model consists of two layers separated by an oscillating interface. Comparable

to the fist synthetic example, the electrical conductivity of the upper layer is

0.1 S/m and 0.01 S/m for the lower layer. The interface depth starts with a

constant value of 0.3 m and varies between 0.3 m and 1.5 m with increasing

wavelengths towards the end of the profile (see Figure 3a). This input model245

can be separated into two parts. The first part, up to approximately X = 70 m,

can be regarded as a 2D context, because the wavelength of the interface undu-

lations is below or equal to the lateral footprint of the used coil configurations,

which can be approximated by 1.5 times the maximum coil spacing as learned

for example by studying the 3D sensitivity patterns of the configurations (e.g.,250

Guillemoteau & Tronicke, 2015). The second part of the profile (at around X =

70 m and more) can be regarded as a quasi-1D context. We add uncorrelated

noise of ±1 mS/m to the synthetic LIN σa data, and define the value of the

assumed noise ∆σa,i for the inversion at the same level. In accordance to the

first synthetic example, we set the number of layers Nl to 50 with increasing255

thickness towards deeper layers up to a depth of 4 m.

First, we perform a VCI of the synthetic data set for two different ε val-

ues, where the individual soundings are inverted independently and, thus, the

resulting solutions are stitched together for generating a pseudo-2D model. In

Figure 3, we show the inversion results of a VCI for ε = 0.01 (Figure 3b) repre-260

senting a sharp result, and for ε = 1 (Figure 3c) representing a smooth result.
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The OP data and the corresponding robust σa data misfits are shown in Figure

3d-e. Both results provide a good image of the input model (see Figure 3a)

as also indicated by the black lines in Figure 3b-c representing the location of

the true interface. Major discrepancies are found in the first part of the pro-265

file, which corresponds to the 2D context. These results are expected and are

used here to illustrate the limitations of the 1D assumption regarding the lat-

eral resolution capabilities. The major difference between the inversion results

obtained using different ε values can be seen in the transition zone between the

two layers. A lower value of ε shows a higher gradient in this zone. The two270

solutions are indeed comparable as they are characterized by a similar level of

data fitting (Figure 3f). In the VCI results, the lateral variations in the electri-

cal conductivity values, especially visible within the bottom layer, show a lack

of lateral consistency, which can be tackled when including lateral constraints

in the inversion procedure.275
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Figure 3: a) Input subsurface model used to compute the synthetic data. b) Stitched VCI

result using ε = 0.01. c) Stitched VCI result using ε = 1. In b) - c), the black line indicates the

true interface depth and the gray line indicates an estimated maximum depth of investigation

for this scenario. d) OP data of the second synthetic example (black line) compared to the

data from two VCI results. e) Converted robust σa of the second synthetic example (black

line) compared to the data from two VCI results. f) RMSRE misfit for the two VCI results.

When using our LCI approach, all soundings are inverted together and we

have to consider two regularization parameters (ε and w, see also equation 3).

The value for w defines the weight of the lateral constraints; i.e., a higher value

enforces a larger lateral coherence. Similar to Figure 3, we show in Figure 4

the LCI results for two selected ε values. We tested different w values between280

0 and 1. In practice, an acceptable value can be easily and rapidly found with

few tests by checking if the model of the first iteration shows lateral variations
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which are consistent with the lateral distribution of the data. For this example,

such strategy yielded a value of w = 0.3. Compared to the VCI case (Figure 3),

the lateral consistency in the LCI results increases (Figure 4) and the difference285

between the sharp (Figure 4b) and the smooth (Figure 4c) inversion result is

more obvious. The data misfit for both LCI results are similar. Compared to

the misfit curves shown in Figure 3, the misfits for the LCI results are higher

for the first part of the profile and lower for the second part of the profile.

Thus, in the 2D context part of the profile (where lateral variations are more290

pronounced), enforcing lateral coherence increases the mismatch between cal-

culated and observed data. On the other hand, in the 1D context part of the

profile (where the lateral variations have characteristic lengths larger than the

instrument footprint), imposing lateral constraints improves the performance in

terms of local data fitting. In this part of the profile, the LCI models also show295

a better reconstruction of the input subsurface model compared to the VCI re-

sults. To demonstrate this in more detail, we show zoom-ins of the inversion

results for all four cases (two VCI and two LCI results) in Figure 5. We no-

tice here that the lateral consistency increases when adding lateral constraints

(from left to right column of Figure 5) and the level of sharpness increases when300

decreasing the value of ε (from bottom to top line of Figure 5).
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Figure 4: a) Input subsurface model used to compute the synthetic data. b) LCI result using

ε = 0.01 and w = 0.3. c) LCI result using ε = 1 and w = 0.3. In b) - c), the black line

indicates the true interface depth and the gray line indicates an estimated maximum depth

of investigation for this scenario. d) OP data of the second synthetic example (black line)

compared to the data from two LCI results. e) Converted robust σa of the second synthetic

example (black line) compared to the data from two LCI results. f) RMSRE misfit for the

two LCI results.
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Figure 5: VCI results using (a) ε = 0.01 and (b) ε = 1, and LCI results using (c) ε = 0.01 and

w = 0.3 and using (d) ε = 1 and w = 0.3. The black line indicates the true interface depth.

5. Field data example

Our field data set has been acquired in Paulinenaue, Germany, on a test

site of the Leibniz Centre for Agricultural Landscape Research (ZALF). This

area is characterized by peat deposits in an overall sandy environment. The305

peat is expected to show rather large electrical conductivities (around 0.1 S/m)

and, thus, a clear contrast to the surrounding, more resistive sand. The goal

of our geophysical survey is to assess the potential of the EMI method and the

proposed tunable LCI approach to delineate and characterize the peat layer.

Our data have been acquired using the commercially available EMI system310

DUALEM-21S (Dualem Inc.). This device operates at a fixed frequency of 9 kHz

and consists of four configurations, with a horizontal transmitter coil. Two hor-

izontal receiver coils (HCP configurations) are placed in 1 m and 2 m distance

and two receiver coils are placed perpendicular (PERPx configurations) respec-

tively at 1.1 m and 2.1 m from the transmitter. During the survey, the device315

was mounted on a cart at a fixed height of 0.25 m above ground. The positions
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of the system are obtained by using a self-tracking total station (Boniger &

Tronicke, 2010). In this work, we focus on one selected profile of about 50 m

length with a spacing of around 0.5 m between the individual soundings. We

focus on this specific profile as several push soundings (performed for measuring320

the peat thickness) are available.

For the inversion, we set the number of layers Nl to 50 with increasing

thickness towards deeper layers up to a depth of 4 m. The assumed noise of the

data ∆σa,i is set to 1 mS/m which is a reasonable assumption for describing

sensor noise and drift for this specific instrument (see Hanssens et al., 2021,325

Figure 9) as well as noise due to the instrument attitude. In Figure 6, we

show a total of nine inversion results using three different values of ε and w.

For w = 0, all soundings are inverted together, however, no lateral constraints

are used. This can be considered similar to a VCI. However, compared to a

classical single sounding VCI, here, all the soundings are jointly inverted; i.e.,330

the inversion relies on a single global data misfit norm. In this way, all soundings

can be inverted with the same number of iterations, so that the whole set of

solutions shows a comparable level of sharpness.

In the shallower part of the inversion results (Figure 6), we see a low con-

ductivity body (around 0.005 S/m) at the beginning of the profile, followed by335

a high conductivity body (around 0.07 S/m to 0.12 S/m) towards the right side.

At depth, the conductivity is quite homogeneous and higher (around 0.02 S/m

to 0.04 S/m) than inside the resistive body. A small 2D/3D data anomaly can

be seen at around X = 28 m. Such short wavelength data anomaly locally yields

1D LCI models, which likely are unrealistic (2D/3D artefacts). By definition, it340

may be more robustly interpreted with a multi-dimensional inversion procedure

(e.g., Benech et al., 2016; Guillemoteau & Tronicke, 2016; Guillemoteau et al.,

2017a). In Figure 6, we interpret the shallow low conductivity body as unsatu-

rated sand and the high conductivity body as the peat layer. The bottom part is

interpreted as water-saturated sand characterized by a higher conductivity than345

the unsaturated sand. When comparing each inversion result in Figure 6, we

notice two major features that are in agreement with our expectations: 1) The
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lateral consistency increases when using a higher value for w; i.e., the abrupt

changes in electrical conductivity along the profile decrease with increasing w.

Additionally, the 2D/3D artifact at around X = 28 m is less noticeable when350

using a higher value of w. 2) The level of sharpness increases with decreasing

values of ε.
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Figure 6: Results of the field data example using the LCI approach with three different values

for ε as well as for w. All shown results have similar data misfits and can therefore be seen

as equivalent solutions. The gray lines indicate an estimated maximum depth of investigation

for each scenario.

All shown inversion results fit the data at the assumed level of measurement

uncertainty despite having different lateral consistencies and levels of sharpness.

Finding the best solution is therefore only possible with additional knowledge or355

(geophysical) data. For this field data set, former studies, for example borehole

drillings, provide such additional knowledge. Firstly, the peat-sand-interface is

expected to be sharp, and secondly, the peat layer is expected to be laterally

continuous. Thus, we select the LCI case using ε = 0.01 and w = 1 as the

preferred solution. We analyze this result in more detail in Figure 7. In the360
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inversion result (for clarity replicated in Figure 7a), we also show the results

from the available push soundings (indicated by the black lines). The estimated

peat thicknesses from these soundings are in good agreement with the selected

inversion result. The RMSRE along the profile (Figure 7b) shows larger values

for the first part (from X = 1 m to X = 18 m), which can be easily justified by365

the low σa values in this part. Additionally, the RMSRE curves for all other

LCI results in Figure 6 are plotted in Figure 7b confirming the equivalence of

all retrieved solutions in terms of data misfit. As indicated by the OP and

the robust σa misfit plots (Figure 7c-d), the absolute differences between the

observed and modeled data are equally good along the entire profile. Given370

the satisfactory data misfit and the excellent correlation with the results from

the push soundings, the selected inversion result provides a plausible subsurface

conductivity model with an easily interpretable result.
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Figure 7: a) LCI result of the selected model using ε = 0.01 and w = 1. The black lines

indicate the estimated peat thickness obtained from push soundings. The gray line indicates

an estimated maximum depth of investigation for this scenario. b) RMSRE along the whole

profile of the selected model (red line) and all the other LCI results shown in Figure 6 (gray

lines). c) OP data of the observed data (black line) and the modeled data (red line) from the

selected model. d) Converted σa data of the observed data (black line) and the modeled data

(red line) from the selected model.

6. Conclusions

In this work, we present a novel tunable LCI approach for FDEM data375

using a regularization based on the MGS method. We apply this approach to

a 1D and a 2D synthetic data set and, finally, to a field data example recorded

to characterize peat deposits. Our results clearly confirm that one can rather

easily control the level of sharpness of the inferred model by simply acting on

the focusing parameter ε. Using our 1D synthetic example, we also illustrate380

that the required number of iterations of the inversion strongly depends on the

assumed noise level of the data. That means, a lower level of the assumed

noise increases the number of iterations, whereby a higher number of iterations

results in a higher level of sharpness in the inversion result. Our 2D synthetic
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example demonstrates the advantage of using lateral constraints in a quasi-385

layered environment. However, despite using a 2D regularization, it is important

to keep in mind that the present inversion approach is based on a 1D theory.

Consistently, the effectiveness of the proposed approach shows its limitations

when the 1D ansatz is not met (for example on the left side of the 2D synthetic

example or near X = 28 m in the field data example).390

For our field data example, we generate a set of nine solutions showing

distinct levels of sharpness and lateral consistency (all with similar misfit lev-

els). For this specific survey, we aim at characterizing a rather clear boundary

between a laterally extended peat deposit and the underlaying sand. In this

context, we expect that the sharpest solution with a strong lateral weight is the395

most adapted approach. This is indeed confirmed by the push measurements

available.

With our field data example, we show that our LCI approach can automati-

cally provide (in terms of data misfit) a set of equivalent inversion results char-

acterized by different levels of sharpness and variable lateral consistencies. It is400

therefore applicable for a wide range of subsurface settings. This multi-solution

strategy highlights the non-uniqueness of the presented 1D LCI problem and

underlines the importance of having additional complimentary data helping to

find a reliable solution.
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Highlights 

- First LCI of FDEM data using both vertical and horizontal MGS constraints 

- The presented algorithm can generate pseudo-2D models of adjustable sharpness 

- The generated sets of equivalent solutions highlight non-uniqueness 
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