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Triharmonic Curves in 3-Dimensional
Homogeneous Spaces

S. Montaldo and A. Pámpano

Abstract. We first prove that, unlike the biharmonic case, there exist tri-
harmonic curves with nonconstant curvature in a suitable Riemannian
manifold of arbitrary dimension. We then give the complete classifica-
tion of triharmonic curves in surfaces with constant Gaussian curvature.
Next, restricting to curves in a 3-dimensional Riemannian manifold, we
study the family of triharmonic curves with constant curvature, showing
that they are Frenet helices. In the last part, we give the full classifica-
tion of triharmonic Frenet helices in space forms and in Bianchi–Cartan–
Vranceanu spaces.
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1. Introduction

An arc-length parametrized curve γ : I → Mn from an open interval I ⊂ R

to a Riemannian manifold of dimension n is called triharmonic if

∇5
T T + RM (∇3

T T, T )T − RM (∇2
T T,∇T T )T = 0

where T is the unit tangent vector field of γ, ∇ denotes the Levi-Civita
connection of Mn and RM is the Riemannian curvature tensor of Mn.

Triharmonic curves represent the case r = 3 in a general theory of
r-harmonic (polyharmonic) curves. The theory of these curves can be con-
sidered as the 1-dimensional case of r-harmonic maps, first introduced in
[8], where Eells and Sampson, soon after their celebrated paper on harmonic
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mapping [7], suggested the idea of studying critical points of higher order en-
ergies as a possible generalization of harmonic maps. For an updated account
on higher order energies we recommend the interested reader to see [4].

The case r = 2, that is of biharmonic curves, is well studied and it is
well known (see, for example, [5]) that if we denote by κ(s) = ‖∇T T‖ the
curvature of an arc-length parametrized curve γ : I → Mn in a Riemannian
manifold Mn, then if γ is proper biharmonic the curvature κ is constant.

In the first part of the paper, we investigate the possibility of construct-
ing triharmonic curves in a Riemannian manifold with nonconstant curvature
and we obtain the following result.

Theorem 1.1. For any n > 1 there exist a triharmonic curve with non-
constant curvature in S × R

n−2 where S is locally a ruled surface in R
3,

parametrized by x(s, t) = α(s) + tN(s), and α(s) is, up to rigid motions, the
only curve in R

3 with curvature and torsion given by

κ(s) =
√

5
s

, τ(s) =
3
√

7
2s

.

Theorem 1.1 is achieved by an analysis of triharmonic curves parametri-
zed by arc-length in a surface S. This analysis also permits us to give the
classification of triharmonic curves in surfaces with constant Gaussian cur-
vature (Theorem 3.4).

In the next part, we shall investigate triharmonic curves in a Riemann-
ian manifold of dimension 3. In this case, the general study of triharmonic
curves is more complicated and we shall restrict ourselves to the study of
triharmonic curves with constant curvature. We first prove that triharmonic
curves with constant curvature in a Riemannian manifold of dimension 3
are Frenet helices (Corollary 4.2). The latter result enables us to tackle the
classification problem of triharmonic curves with constant curvature in ho-
mogeneous 3-dimensional manifolds.

We recall that, among homogeneous 3-dimensional manifolds, there are
the 3-space forms M3(ρ) when the isometry group is of maximal dimension,
that is 6. Triharmonic curves with constant curvature in space forms were
studied by Maeta in [12]. Here, we recover Maeta’s result and we slightly im-
prove on it by showing, in Proposition 4.3, that for a triharmonic curve the
torsion is constant if and only if the curvature is constant and, consequently,
Maeta’s examples are the only triharmonic curves with either constant cur-
vature or constant torsion.

On the other hand, homogeneous 3-dimensional manifolds with the
isometry group of dimension 4 can be locally described as Bianchi-Cartan-
Vranceanu spaces M(a, b) with 4a �= b2. Similar to what happens in 3-
dimensional space forms M3(ρ), if the torsion of a triharmonic curve is iden-
tically zero, then we prove that its curvature is constant. We then classify
triharmonic curves with zero torsion in Theorem 4.6.

Finally, in Theorems 4.9 and 4.11, we give the full classification and
their explicit parametrizations of triharmonic helices in Bianchi–Cartan–
Vranceanu spaces M(a, b) with 4a �= b2. It turns out that these triharmonic
curves can be seen as geodesics of suitable Hopf cylinders (see Corollary 4.8).
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2. Triharmonic Curves in Riemannian Manifolds

Harmonic maps ϕ : (˜M,h) → (M, g) between Riemannian manifolds are the
critical points of the energy functional

E(ϕ) =
1
2

∫

˜M

‖dϕ‖2vh.

The corresponding Euler-Lagrange equation is given by the vanishing of the
tension field

τ(ϕ) = −d∗dϕ = trace ∇dϕ,

where d is the exterior differentiation and d∗ is the codifferentiation. In [8],
Eells and Sampson suggested to study r-harmonic maps (or simply, polyhar-
monic maps) as the critical points of the r-energy functional defined by

EES
r (ϕ) =

1
2

∫

˜M

‖(d + d∗)rϕ‖2vh, r ≥ 1, (1)

for ϕ ∈ C∞(˜M,M). When the dimension of ˜M is one, the r-energy functional
(1) coincides with another higher order energy functional, first studied by
Wang in [14] and by Maeta in [11], that, when r = 2s + 1, s ≥ 1, takes the
form

E2s+1(ϕ) =
1
2

∫

˜M

〈 d (d∗d) · · · (d∗d)
︸ ︷︷ ︸

s times

ϕ, d (d∗d) · · · (d∗d)
︸ ︷︷ ︸

s times

ϕ 〉 vh, (2)

while if r = 2s, s ≥ 1, is

E2s(ϕ) =
1
2

∫

˜M

〈 (d∗d) · · · (d∗d)
︸ ︷︷ ︸

s times

ϕ, (d∗d) · · · (d∗d)
︸ ︷︷ ︸

s times

ϕ 〉 vh. (3)

For a complete description of the relations between the functional (1)
and the functionals (2) and (3), we refer the reader to [4].

It follows that, when γ : I → M is a curve parametrized by arc-length,
from an open interval I ⊂ R to a Riemannian manifold, putting γ′ = T , the
Euler–Lagrange equations of (2) and (3), computed by Wang, reduces to the
equation

τr(γ) = ∇2r−1
T T +

r−2
∑

�=0

(−1)�RM
(∇2r−3−�

T T,∇�
T T

)

T = 0 , r ≥ 1. (4)

Solutions of (4) are called r-harmonic curves. In particular, any harmonic
curve is a polyharmonic curve, for any r ≥ 1. We say that a r-harmonic
curve is proper if it is not harmonic. Therefore, the main interest is to find
and classify proper r-harmonic curves.

Throughout this paper, we shall focus on triharmonic curves (polyhar-
monic curves for r = 3), which are the arc-length parametrized curves solu-
tions of (4) for r = 3, that is solutions of the following equation

τ3(γ) = ∇5
T T + RM (∇3

T T, T )T − RM (∇2
T T,∇T T )T = 0. (5)
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Notice that, as mentioned above, every harmonic curve is a triharmonic
curve. However, as proved by Maeta in [12], biharmonic curves (polyhar-
monic curves for r = 2) are not necessary triharmonic curves and, vice versa,
triharmonic curves do not need to be biharmonic. Thus, the study of trihar-
monic curves could be, in general, a completely different problem to that of
biharmonic curves.

3. Triharmonic Curves in a Surface

We begin by proving the existence of a surface S in R
3 admitting proper

triharmonic curves with nonconstant curvature. We shall denote the metric
on S by 〈, 〉.

Let γ(s) be an arc-length parametrized curve immersed in a surface
S. The vector field T = γ′ is the unit tangent to γ, while we denote by
NS = JT its unit normal. Here, J is the counter-clockwise rotation by an
angle π/2 defined in the tangent bundle of S. Then, if ∇ denotes the Levi-
Civita connection of S, the following Frenet-type equation holds

∇T T = κg(s)NS , (6)

where κg(s) is the geodesic curvature of γ.
Next, looking at the tangent and normal components of (5), we obtain

the following characterization of triharmonic curves in surfaces.

Proposition 3.1. An arc-length parametrized curve γ(s) immersed in a sur-
face S is a triharmonic curve if and only if its geodesic curvature is a solution
of the following system of differential equations

κgκ
′′′
g + 2κ′

gκ
′′
g − 2κ3

gκ
′
g = 0, (7)

κ(4)
g − 15κg

(

κ′
g

)2 − 10κ2
gκ

′′
g + κ5

g + KS

(

κ′′
g − 2κ3

g

)

= 0, (8)

where KS = 〈RS (T,NS) NS , T 〉 is the Gaussian curvature of S along γ.
Here, ( )′ denotes the derivative with respect to the arc-length parameter s.

Proof. Triharmonic curves on S are the arc-length parametrized curves solu-
tions of (5). Applying (6) as many times as needed and after a long straight-
forward computation we obtain that (5) can be written as

−5
(

κgκ
′′′
g + 2κ′

gκ
′′
g − 2κ3

gκ
′
g

)

T

+
(

κ(4)
g − 15κg

[

κ′
g

]2 − 10κ2
gκ

′′
g + κ5

g + KS

[

κ′′
g − 2κ3

g

]

)

NS = 0

obtaining the desired result. �

We now proceed with the construction of a surface S admitting trihar-
monic curves with nonconstant curvature.

Let α(s) be an arc-length parametrized curve of R3 with curvature given
by κ(s) = ‖α′′(s)‖. If κ(s) �= 0, that is, if α(s) is not a line, then the torsion
of α(s) is

τ(s) =
det (α′, α′′, α′′′)

‖α′ × α′′‖2 =
det (α′, α′′, α′′′)

κ2(s)
,
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where × denotes the usual vector product. Do not confuse the notation with
the tension field τ(ϕ) defined in Sect. 2. For a non-linear curve α(s) in R

3,
we denote the usual Frenet frame along α by

{T (s) = α′(s), N(s) = α′′(s)/κ(s), B(s) = T (s) × N(s)}
where N and B are the unit normal and unit binormal to α, respectively.

Consider now the ruled surface S immersed in R
3 defined by the local

parametrization x(s, t) = α(s) + tN(s). Then, the Gaussian curvature along
α(s) satisfies KS (α(s)) = −τ2(s). Note also that the geodesic curvature of
α(s), as a curve in S, is, up to a sign, κ(s), the curvature of α(s) as a curve
in R

3. Thus, after a change of orientation in S, if necessary, we can assume
without loss of generality that κg(s) = κ(s). Using this in Eqs. (7)–(8), we
have that α(s) is a triharmonic curve in S if and only if

κκ′′′ + 2κ′κ′′ − 2κ3κ′ = 0, (9)

κ(4) − 15κ (κ′)2 − 10κ2κ′′ + κ5 − τ2
(

κ′′ − 2κ3
)

= 0. (10)

Equation (9) only depends on the curvature κ(s) while (10) depends on both
κ(s) and τ(s). Therefore, if there exists a nonconstant solution of (9) such
that κ′′(s) �= 2κ3(s), we can define a suitable torsion τ(s) as a solution of
(10).

We recall that, by the Fundamental Theorem of Curves, an arc-length
parametrized curve in R

3 is completely determined, up to rigid motions, by
its curvature and torsion. As a consequence, the nonconstant curvature κ(s)
which is a solution of (9) and the suitable election for the torsion τ(s), so
that Eq. (10) is satisfied, completely determine the curve α(s) and, conse-
quently, the surface S. Moreover, α(s) shall be a triharmonic curve in S with
nonconstant (geodesic) curvature κg(s) = κ(s).

To obtain solutions of (9), we follow [10]. Assume that κ(s) �= 0 and
multiply (9) by κ. This makes the first two terms an exact derivative. At the
same time, the last term is clearly a derivative and, hence, we can integrate
once obtaining

5κ2κ′′ − 2κ5 = c1 (11)

for some real constant c1. Next, since we are seeking nonconstant solutions we
assume that κ′(s) �= 0 and multiply (11) by 2κ′κ−2. After this multiplication,
we obtain an exact equation whose first integral is

5 (κ′)2 = c2 − 2c1
1
κ

+ κ4 (12)

for another real constant c2.
Equation (12) represents a biparametric family of first order differential

equations in separable variables. Therefore, the family of solutions depends
on three parameters. However, the last of these parameters can be omitted
after translating the origin of the arc-length parameter s, if necessary.

To have an explicit solution, we consider the simplest possible case,
c1 = c2 = 0. In this case, Eq. (12) can easily be solved obtaining that

κ(s) =
√

5
s

. (13)
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It turns out that the function κ(s) given in (13) satisfies

κ′′(s) − 2κ3(s) = −8
√

5
s3

�= 0

and, hence, as mentioned above, we can obtain a function τ(s) so that Eq. (10)
also holds. After some simplifications, we get

τ(s) =
3
√

7
2s

. (14)

Remark 3.2. The curve α(s) in R
3 uniquely determined (up to rigid motions)

by the curvature and torsion given by (13) and (14) respectively, satisfies the
relation

τ(s) =
3
2

√

7
5

κ(s).

Curves satisfying a relation of the type τ(s) = λκ(s), λ ∈ R, are known in
the literature as Lancret curves, i.e. they are curves making a constant angle
with a fixed direction, [1].

We point out that for any choices of constants c1 and c2 in (12), the
solution of that equation defines a nonconstant curvature, κ(s). Moreover,
Eq. (10) always defines a torsion τ(s). In fact, using (11), we can see that if
κ(s) is not constant, then κ′′ �= 2κ3 always holds.

In conclusion, we can summarize the above discussion in the following
proposition.

Proposition 3.3. Let α(s) be an arc-length parametrized curve of R3 with non-
constant curvature κ(s) which is a solution of (12) and nonconstant torsion
τ(s) given by (10). Let S be the ruled surface in R

3 locally parametrized by
x(s, t) = α(s) + tN(s). Then, α(s) is a triharmonic curve in S with noncon-
stant geodesic curvature κg(s) = κ(s).

3.1. Proof of Theorem 1.1

Now, using Proposition 3.3, we are going to prove Theorem 1.1. Let α(s)
be the unique (up to rigid motions) curve parametrized by arc-length in R

3

whose curvature and torsion are given by (13) and (14), respectively. Let
S be the surface in R

3 locally parametrized by x(s, t) = α(s) + tN(s) and
denote by i : S ↪→ S ×R

n−2 the canonical inclusion of S in the product space
S ×R

n−2 (of dimension n) defined by i(p) = (p,0) for any p ∈ S. Then, it is
a straightforward computation to check that i (α(s)) is a triharmonic curve
in S × R

n−2 with nonconstant curvature κ(s) = ‖∇T T‖ given in (13). This
finishes the proof of Theorem 1.1.

3.2. Triharmonic Curves in 2-Dimensional Space Forms

We now consider triharmonic curves with constant geodesic curvature im-
mersed in a surface. Clearly, as mentioned above, if γ(s) is a geodesic of S,
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that is, if its geodesic curvature vanishes identically then Eqs. (7)–(8) are triv-
ially satisfied. On the other hand, if γ(s) has non-vanishing constant geodesic
curvature then it is triharmonic if and only if along γ

KS =
1
2
κ2

g.

In particular, the Gaussian curvature, KS , along a proper triharmonic curve
γ must be a positive constant.

We then assume that the surfaces S has positive constant Gaussian
curvature, KS = ρ > 0. These surfaces are locally isometric to the sphere
S
2(ρ). In this case, as first proved by Maeta in [12, Corollary 5.3], circles

satisfying κ2
g = 2ρ are proper triharmonic curves. It turns out that these

are all the proper triharmonic curves in surfaces with constant Gaussian
curvature as proved in the following theorem.

Theorem 3.4. Let S be a surface with constant Gaussian curvature KS and
let γ(s) be a triharmonic curve in S with geodesic curvature κg. If KS ≤ 0,
then γ(s) is a geodesic. On the other hand, if KS > 0, γ(s) is either a geodesic
or a circle satisfying κ2

g = 2KS.

Proof. We consider first the case where the geodesic curvature is constant.
As argued above, if γ(s) is a triharmonic curve in S with constant geodesic
curvature κg, then either γ(s) is a geodesic (κg = 0) or 2KS = κ2

g holds.
Clearly, the latter is only possible whenever KS > 0.
Next, we are going to prove that there are no triharmonic curves in S with
nonconstant geodesic curvature. Assume that γ(s) is a triharmonic curve with
nonconstant geodesic curvature, κg(s). Then, following [10] again, Eq. (7) can
be integrated, as we have done for (11), obtaining

κ′′
g =

c1
5κ2

g

+
2
5
κ3

g (15)

and, as for (12),
(

κ′
g

)2 =
c2
5

− 2c1
5κg

+
1
5
κ4

g, (16)

where c1 and c2 are real constants. Since γ(s) is triharmonic, Eqs. (7) and (8)
must be satisfied simultaneously. We now differentiate (7) and combine with
(8) to eliminate the term κ

(4)
g . Then, with the aid of (15) and (16) we ob-

tain, after a long but straightforward computation, the following polynomial
equation of degree ten in κg

51κ10
g + 75κ9

g + 40KSκ8
g + 63c2κ

6
g − 84c1κ

5
g − 5c1KSκ3

g − 6c1c2κg + 14c21 = 0.

Thus κg must be constant, which contradicts the assumption that γ(s) is a
triharmonic curve with nonconstant geodesic curvature. This concludes the
proof. �

Surfaces with constant Gaussian curvature are locally isometric to 2-
dimensional space forms M2(ρ), that is the Euclidean plane R

2 if ρ = 0; the
round 2-sphere S

2(ρ) if ρ > 0; the hyperbolic plane H
2(ρ) if ρ < 0. Then,

interpreting Theorem 3.4 to 2-dimensional space forms we obtain
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Corollary 3.5. Let M2(ρ) be a 2-dimensional Riemannian space form. If ρ ≤
0, the only triharmonic curves are geodesics. If ρ > 0, triharmonic curves
are either geodesics or circles satisfying κ2

g = 2ρ.

4. Triharmonic Helices in Homogeneous 3-Dimensional Spaces

In this section, we are going to study proper triharmonic curves with constant
curvature in a Riemannian manifold M3 of dimension 3.

Let us denote by γ(s) an arc-length parametrized curve immersed in
M3 and let us put γ′(s) = T (s). Assume that γ(s) is non-geodesic, then γ(s)
is a Frenet curve of rank 2 or 3 and the standard Frenet frame along γ(s) is
denoted by {T (s), N(s), B(s)}. The Frenet equations are

⎧

⎪

⎨

⎪

⎩

∇T T (s) = κ(s)N(s),
∇T N(s) = −κ(s)T (s) + τ(s)B(s),
∇T B(s) = −τ(s)N(s),

(17)

where κ(s) is the curvature of γ(s), while the function τ(s) is the torsion of
γ(s). We shall say that a curve is a Frenet helix if both κ(s) and τ(s) are
constant.

Using Eq. (17) in the equation τ3(γ) = 0, (5), we can obtain a system of
three differential equations characterizing triharmonic curves in M3. Each of
those differential equations corresponds to the tangent, normal and binormal
component of the vector equation (5). In particular, the tangent component
yields immediately the following result.

Proposition 4.1. Let γ(s) be an arc-length parametrized (proper) triharmonic
curve immersed in a 3-dimensional Riemannian manifold M3, then

2
d
ds

(

κ2κ′′) = κ
d
ds

(

κ2
[

κ2 + τ2
])

, (18)

where κ = κ(s) and τ = τ(s) are the curvature and torsion of γ(s), respec-
tively.

As a consequence of Proposition 4.1, we conclude with the following
characterization of proper triharmonic curves in M3 with constant curvature.

Corollary 4.2. Let γ(s) be a proper triharmonic curve immersed in a
3-dimensional Riemannian manifold M3 with constant curvature κ(s) = κo.
Then the curve γ(s) is a Frenet helix. Moreover, the curvature κo �= 0 and
the torsion τo satisfy the system

(

κ2
o + τ2

o

)2 − (

2κ2
o + τ2

o

) 〈RM (N,T ) T,N〉 − κoτo〈RM (B,N) T,N〉 = 0,

(19)
(

2κ2
o + τ2

o

) 〈RM (N,T ) T,B〉 + κoτo〈RM (B,N) T,B〉 = 0.

(20)

Proof. Since γ(s) is a proper triharmonic curve, its curvature and torsion sat-
isfy (18), which implies, since the curvature κ(s) = κo is a nonzero constant,
that the torsion is necessarily constant, proving that the curve is a Frenet
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helix. Finally, assuming that the curvature κo �= 0 and the torsion τo are con-
stant, the normal component and the binormal component of (5) become,
after a long but straightforward computation, (19) and (20), respectively.
�

4.1. Triharmonic Helices in Homogeneous 3-Dimensional Manifolds

From now on, we are going to restrict ourselves to the analysis of proper
triharmonic helices in homogeneous 3-dimensional manifolds.

A Riemannian manifold Mn is said to be homogeneous if for every two
points p and q in Mn, there exists an isometry of Mn mapping p into q. For
homogeneous 3-dimensional manifolds (n = 3) there are three possibilities for
the degree of rigidity, since they may have the isometry group of dimension
6, 4 or 3. The maximum rigidity, 6, corresponds to 3-dimensional space forms
M3(ρ).

Applying Corollary 4.2, for proper triharmonic curves in a 3-dimensional
space form M3(ρ), allows us to state the following proposition.

Proposition 4.3. Let γ(s) be a proper triharmonic curve immersed in a 3-
dimensional space form M3(ρ), then γ(s) has constant curvature if and only
if it has constant torsion.

Proof. We just need to prove that a triharmonic curve in M3(ρ) with constant
torsion has also constant curvature. Let γ(s) be a proper triharmonic curve
with constant torsion τ(s) = τo. If τo = 0, we can assume that the curve γ(s)
lies on a totally geodesic surface of M3(ρ), that is, on M2(ρ). Then, from
Corollary 3.5 we end the proof.
Therefore, we assume that τ(s) = τo �= 0. By contradiction, we suppose that
the curvature of γ(s), κ(s), is not constant. Using the Frenet equations (17)
the tangent and binormal components of (5) become

κκ′′′ − (

2κ2 + τ2
o

)

κκ′ + 2κ′κ′′ = 0, (21)

4κ′′′ − 4τ2
o κ′ − 9κ2κ′ + 2ρκ′ = 0. (22)

Observe that, following the same method of Sect. 3 (see also [10]), Eq. (21)
can be integrated twice obtaining (compare with (12) for the case τo = 0)

5 (κ′)2 = c2 − 2c1
1
κ

+ κ4 +
5
3
τ2
o κ2, (23)

for some real constants c1 and c2.
On the other hand, if we multiply Eq. (22) by κ and combine it with

(21) to eliminate the term κ′′′, we reach to an exact differential equation
whose first integral is

4 (κ′)2 = co + κ2

(

ρ − 1
4
κ2

)

, (24)

for a real constant co.
Finally, combining (23) and (24), we get the following polynomial equa-

tion of degree five in κ,

21κ5 +
(

80
3

τ2
o − 20ρ

)

κ3 + (16c2 − 20c0) κ − 32c1 = 0,
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which contradicts the assumption that κ(s) is not constant. �

Now, if γ(s) is a Frenet helix in M3(ρ), since RM (B,N) T= RM (T,B) N
= 0, Eqs. (19) and (20) simplify to

(

κ2
o + τ2

o

)2
=

(

2κ2
o + τ2

o

)

ρ.

Hence, using the latter, we conclude with the following classification of tri-
harmonic Frenet helices in 3-dimensional space forms.

Theorem 4.4. Let M3(ρ) be a 3-dimensional space form and consider a Frenet
helix γ(s) immersed in M3(ρ). If γ(s) is a triharmonic curve, then either it
is a geodesic or M3(ρ) = S

3(ρ) and the constant curvature of γ(s) is given
by

κ2(s) = κ2
o =

(

ρ − τ2
o

) ±
√

ρ (ρ − τ2
o ),

where τo is the constant torsion of γ(s). In particular, if τo = 0, we have that
γ(s) is a circle in S

2(ρ) satisfying κ2
o = 2ρ.

We focus now on homogeneous 3-dimensional spaces with the isome-
try group of dimension 4. These spaces include, amongst its simply con-
nected members, the product spaces S

2(ρ) × R and H
2(ρ) × R; the Berger

spheres; the Heisenberg group; and the universal covering of the special linear
group Sl(2,R). Cartan in [6] showed that all homogeneous 3-manifolds with
the isometry group of dimension 4 can be described by a Bianchi–Cartan–
Vranceanu (BCV) space M(a, b), where 4 a �= b2. We recall that BCV spaces
(see [3,6,13]) are described by the following two-parameter family of Rie-
mannian metrics

ga,b =
dx2 + dy2

[1 + a(x2 + y2)]2
+

(

dz +
b

2
ydx − xdy

[1 + a(x2 + y2)]

)2

, a, b ∈ R (25)

defined on M3 = {(x, y, z) ∈ R
3 : λa = 1 + a

(

x2 + y2
)

> 0}. We are going to
denote these BCV spaces by M(a, b), while the metrics ga,b, simply, by 〈, 〉.

Now, if we consider the orthonormal basis of vector fields given by
{E1, E2, E3}, where

E1 = λa
∂

∂x
− b y

2
∂

∂z
, E2 = λa

∂

∂y
+

b x

2
∂

∂z
, E3 =

∂

∂z
, (26)

we can write the expressions for the Levi-Civita connection as

∇E1E1 = 2 a y E2, ∇E1E2 = −2 a y E1 + b
2E3, ∇E1E3 = − b

2E2,
∇E2E1 = −2 a y E1 + b

2E3, ∇E2E2 = 2 a x E1, ∇E2E3 = b
2E1,

∇E3E1 = − b
2E2, ∇E3E2 = b

2E1, ∇E3E3 = 0.

(27)

Moreover, the nonzero components of the curvature tensor can be computed,
obtaining

R1212 = 4 a − 3
4
b2, R1313 = R2323 =

b2

4
. (28)

Observe that, from the above expressions of curvature tensor, if 4 a = b2

then M(a, b) represents a 3-dimensional space form. Therefore, from now on,
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we are going to assume that 4 a �= b2. In these cases, as mentioned before,
the family of metrics (25) includes all three-dimensional homogeneous metrics
whose isometry group has dimension 4. The classification of these spaces is
as follows

• If a = 0 and b �= 0, we have that M(a, b) ∼= H3, the Heisenberg group.
• If a > 0 and b = 0, M(a, b) ∼= (

S
2(4 a) − {∞}) × R.

• If a < 0 and b = 0, M(a, b) ∼= H
2(4 a) × R.

• If a > 0, b �= 0 and 4 a �= b2, then M(a, b) ∼= SU(2) − {∞}.
• And, finally, if a < 0 and b �= 0, we have that M(a, b) ∼= ˜Sl(2,R).

The Lie algebra of the infinitesimal isometries of M(a, b) with 4 a �= b2

admits the following basis of Killing vector fields

X1 =
(

1 − 2 a y2

λa

)

E1 +
2axy

λa
E2 +

by

λa
E3 ,

X2 =
2axy

λa
E1 +

(

1 − 2ax2

λa

)

E2 − bx

λa
E3 ,

X3 = − y

λa
E1 +

x

λa
E2 − b

(

x2 + y2
)

2λa
E3 ,

X4 = E3 ,

where {Ei}, i = 1, 2, 3, is the orthonormal basis introduced in (26).
Then, a surface which stays invariant under the action of any Killing

vector field, ξ, is called an invariant surface. In particular, invariant surfaces
under the action of the Killing vector field X4 are usually called Hopf cylin-
ders. These cylinders can be parametrized as x(s, t) = ψt(α̃(s)), where α̃(s)
denotes an arc-length parametrized curve orthogonal to X4 in M(a, b) while
{ψt ; t ∈ R} is the one-parameter group of isometries associated to X4.

Let γ(s) be an arc-length parametrized triharmonic curve with constant
curvature κ(s) = κo �= 0, immersed in a BCV space M(a, b) with 4a �= b2.
Then, by Corollary 4.2, we have that the torsion of γ(s) is also constant, that
is γ(s) is a Frenet helix. A partial converse of Corollary 4.2 holds in these
spaces.

Proposition 4.5. Let γ(s) be an arc-length parametrized triharmonic curve
with vanishing torsion immersed in a BCV space M(a, b) with 4a �= b2. Then,
the curvature of γ(s) is constant.

Proof. Let γ(s) denotes a triharmonic curve with τ(s) = 0. We first note
that, since the torsion vanishes, the binormal B is constant along γ. In fact,

∇T B(s) = −τ(s)N(s) = 0

holds from (17). Hence, in particular, B3 = 〈B,E3〉 is constant along γ and
so is

〈RM (N,T ) T,N〉 =
b2

4
+

(

4a − b2
)

B2
3 .

Finally, using that 〈RM (N,T ) T,N〉 is constant and τ(s) = 0, a similar
argument as in Theorem 3.4 concludes the proof. �
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Consider a proper triharmonic Frenet helix γ(s) with (constant) curva-
ture κo and torsion τo. Then, Eqs. (19) and (20) must hold and, using (28),
they become

(

κ2
o+τ2

o

)2−(

2κ2
o+τ2

o

)

(

b2

4
+

[

4a−b2
]

B2
3

)

− κoτo

(

4a − b2
)

T3B3 = 0, (29)
(

2κ2
o + τ2

o

)

N3B3 + κoτoT3N3 = 0, (30)

where T3 = 〈T,E3〉, N3 = 〈N,E3〉 and B3 = 〈B,E3〉.
If the constant torsion τo is identically zero, then (30) becomes N3B3 =

0, while (29) simplifies to

κ2
o = 2

(

b2

4
+

[

4a − b2
]

B2
3

)

(31)

if κo �= 0. Note that in this case, since τo = 0, ∇T B(s) = 0 holds and, hence,
B3 is a constant along the Frenet helix. The existence of proper triharmonic
helices with vanishing torsion depends on the value of the constant B3. In
fact, with the aid of Proposition 4.5, we have immediately the following result.

Theorem 4.6. Let γ(s) be an arc-length parametrized triharmonic curve with
vanishing torsion immersed in a BCV space M(a, b) with 4a �= b2. Then,
either γ(s) is a geodesic or γ(s) is a Frenet helix where its constant curvature
κo is given by (31). Moreover, B3 = 〈B,E3〉 is a constant satisfying

B2
3 <

b2

4 (b2 − 4a)

if b2 > 4a; or, B3 �= 0 if b2 < 4a. In particular, there are no proper trihar-
monic curves with vanishing torsion in the product space H

2(4a) × R.

Next, we focus on triharmonic helices with nonzero constant torsion.
We need the following technical lemma.

Lemma 4.7. Let γ(s) be a non-geodesic curve parametrized by arc-length im-
mersed in a BCV space M(a, b) with 4a �= b2. Then T3 = 〈T,E3〉 is constant
if and only if N3 = 〈N,E3〉 = 0.

Proof. For the arc-length parametrized curve γ(s), we write its unit tangent
vector field T (s) with respect to the orthonormal frame {Ei}, i = 1, 2, 3,
introduced in (26). Then, with the aid of (27), we compute (for details see
[5, Lemma 5.5])

〈∇T T,E3〉 =
d
ds

〈T,E3〉 = T ′
3(s) = κ(s)〈N,E3〉 = κ(s)N3,

where κ(s) �= 0 is the curvature of γ(s). We conclude that T3 is constant if
and only if N3 = 0. �

Now, suppose that N3 �= 0. In this case, from Lemma 4.7 and the relation
B′

3 = −τoN3 �= 0, both T3 and B3 are nonconstant functions and equation
(30) reads

(

2κ2
o + τ2

o

)

B3 + κoτoT3 = 0.
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Differentiating this equation, we conclude that τo = 0 since N3 �= 0, which
contradicts the assumption that the curve is a triharmonic helix with nonzero
constant torsion.

Therefore, for a proper triharmonic Frenet helix with nonzero torsion,
Eq. (30) is satisfied if and only if N3 = 0. Moreover, Frenet helices satisfying
N3 = 0 are geodesics of Hopf cylinders as proved in [2]. We thus have

Corollary 4.8. Let γ(s) be an arc-length parametrized triharmonic Frenet he-
lix immersed in a BCV space M(a, b) with 4a �= b2. If the torsion of γ(s) is
not zero, then γ(s) is a geodesic of a suitable Hopf cylinder.

In the final part of this section, we shall give the explicit parametriza-
tions of triharmonic helices. Assume that γ(s) is a non-geodesic arc-length
parametrized curve immersed in a BCV space M(a, b) with 4a �= b2 and sat-
isfying that N3 = 0. Then, following the computations of [5, §5.2], we have
that the curvature and the torsion of γ(s) are given by

κ(s) = ζ sin αo , (32)

τ(s) = −ζ cos αo − b

2
, (33)

where αo ∈ (0, π) is a constant and

ζ = β′(s) + 2a sin αo [y cos β(s) − x sin β(s)] − b cos αo > 0 (34)

for some function β(s). Moreover, the Frenet frame along γ with respect to
the orthonormal frame (26) is given by
⎧

⎪

⎨

⎪

⎩

T (s)=sin αo cos β(s)E1 + sinαo sin β(s)E2 + cos αoE3,

N(s)=− sin β(s)E1 + cos β(s)E2,

B(s)=T (s) × N(s)=− cos αo cos β(s)E1−cos αo sin β(s)E2+sin αoE3.

(35)

If we also require that γ(s) is a Frenet helix, then ζ is constant. Fur-
thermore, substituting the above data in (29) we conclude that for a proper
triharmonic Frenet helix the constant ζ must be a positive root of the four
degree polynomial

P4(ζ) = 4ζ4 + 8b cos αoζ
3 +

(

5b2 cos2 αo − 8
[

4a − b2
]

sin4 αo

)

ζ2

+b
(

b2 − 2
[

4a − b2
]

sin2 αo

)

cos αoζ − b2
(

4a − b2
)

sin2 αo. (36)

When a �= 0, the parametrization of Frenet helices in M(a, b) satisfying
N3 = 0 was given in [9, Lemma 2] (which is an adapted version of [5, The-
orem 5.6]). Using these results we have immediately the following explicit
description.

Theorem 4.9. Let γ(s) be an arc-length parametrized triharmonic curve with
constant curvature, κo, immersed in a BCV space M(a, b) with 4a �= b2 and
a �= 0. Let ζ be a positive root of the polynomial (36). Then, γ(s) is either
a geodesic (κo = 0) or a Frenet helix parametrized by one of the following
types:
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(i) If β(s) is a nonconstant solution of (34),

x(s) = μ sin αo sin β(s) + c1,

y(s) = −μ sin αo cos β(s) + c2,

z(s) =
b

4a
β(s) +

1
4a

([

4a − b2
]

cos αo − bζ
)

s,

where μ > 0 and c1, c2 are constants satisfying

c21 + c22 =
μ

a

([

b cos αo + ζ − 1
μ

]

+ aμ sin2 αo

)

.

(ii) If β(s) = βo is a constant such that sin βo cos βo �= 0,

x(s) = x(s),
y(s) = x(s) tan βo + c1,

z(s) =
1
4a

([

4a − b2
]

cos αo − bζ
)

s + c2,

where c2 ∈ R, the constant c1 is given by

c1 =
ζ + b cos αo

2a sin αo cos βo

and x(s) is a solution of the ordinary differential equation

x′(s) =
(

1 + a
[

x2(s) + (x(s) tan βo + c1)
2
])

sin αo cos βo.

(iii) If β(s) = βo is a constant satisfying sin βo cos βo = 0 (up to interchange
of x with y),

x(s) = xo = ∓ζ + b cos αo

2a sin αo
,

y(s) = y(s),

z(s) =
1
4a

([

4a − b2
]

cos αo − bζ
)

s + c1,

for a constant c1 ∈ R and where y(s) is a solution of the ordinary
differential equation

(y′(s))2 =
(

1 + a
[

x2
o + y2(s)

])2
sin2 αo.

In the particular case that b = 0, the polynomial (36) reduces to

P4(ζ)|b=0= 4
(

ζ2 − 8a sin4 αo

)

ζ2.

Since we are seeking positive roots, necessarily ζ2 = 8a sin4 αo holds, which
implies that a > 0. Therefore, we have the following consequence.

Corollary 4.10. There are no proper triharmonic curves with constant curva-
ture immersed in the product space H

2(4a) × R.

To end this section, we consider the case M(a, b) with a = 0 and b �= 0,
which is not included in Theorem 4.9. This case corresponds to the Heisenberg
group H3. We recall that H3 can be seen as the Lie group

(

R
3, ∗)

where ∗ is
defined by

(x1, y1, z1) ∗ (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 + b [x1y2 − y1x2]) ,
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for (xi, yi, zi) ∈ R
3, i = 1, 2.

We now derive the explicit parametrizations of triharmonic Frenet he-
lices in H3.

Theorem 4.11. Let γ(s) be an arc-length parametrized triharmonic curve with
constant curvature, κo, immersed in the Heisenberg group H3. If γ(s) is not
a geodesic (κo �= 0), then it is a Frenet helix parametrized (up to left transla-
tions) by

x(s) =
sin αo

ζ + b cos αo
(sin β(s) − sin λ) ,

y(s) =
− sin αo

ζ + b cos αo
(cos β(s) − cos λ) ,

z(s) =
(2ζ + b cos αo) cos αo + b

2 (ζ + b cos αo)
s +

b sin2 αo

2 (ζ + b cos αo)
2

× (sin λ cos β(s) − cos λ sin β(s)) ,

where β(s) = (ζ + b cos αo) s + λ (λ ∈ R), and ζ is a positive root of the
polynomial P4(ζ), (36), with a = 0.

Proof. We assume that γ(s) = (x(s), y(s), z(s)) is a non-geodesic arc-length
parametrized curve with constant curvature κo �= 0 in the Heisenberg group
H3. Since the curvature is constant and γ(s) is triharmonic, by Corollary 4.2,
γ(s) is a Frenet helix. Moreover, the triharmonic condition also implies that
N3 = 0 holds. Then the curvature and the torsion of γ(s) are given by (32)
and (33), respectively, where ζ is any positive root of P4(ζ), (36), for a = 0.
In particular, since ζ is constant, integrating (34) we obtain

β(s) = (ζ + b cos αo) s + λ

for some constant λ.
At the same time, the Frenet frame along γ(s) is described in (35). Hence,
we just need to solve the system of ordinary differential equations

x′(s) = sin αo cos β(s),
y′(s) = sin αo sin β(s),

z′(s) = cos αo +
b

2
sin αo (x(s) sin β(s) − y(s) cos β(s)) .

Finally, since in H3 it is enough to obtain the parametrizations of triharmonic
curves starting at (0, 0, 0) and then use left translations to move them around,
we can integrate the above system with the initial condition γ(0) = (0, 0, 0)
and conclude the proof. �
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