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Abstract: Bariatric surger (BS) is characterized by lipid metabolic changes as a response to the massive
release of non-esterified fatty acids (NEFA) from adipose depots. The study aimed at evaluating
changes in polyunsaturated fatty acids (PUFA) metabolism and biosynthesis of the lipid mediators
N-acylethanolamines (NAE), as indices of nuclear peroxisome proliferator-activated receptor (PPAR)-
α activation. The observational study was performed on 35 subjects (27 female, 8 male) with obesity,
undergoing bariatric surgery. We assessed plasma FA and NAE profiles by LC-MS/MS, clinical
parameters and anthropometric measures before and 1 and 6 months after bariatric surgery. One
month after bariatric surgery, as body weight and clinical parameters improved significantly, we
found higher plasma levels of N-oleoylethanolamine, arachidonic and a 22:6-n3/20:5-n3 ratio as
evidence of PPAR-α activation. These changes corresponded to higher circulating levels of NEFA and
a steep reduction of the fat mass. After 6 months 22:6-n3/20:5-n3 remained elevated and fat mass was
further reduced. Our data suggest that the massive release of NEFA from adipose tissue at 1-Post,
possibly by inducing PPAR-α, may enhance FA metabolism contributing to fat depot reduction and
improved metabolic parameters in the early stage. However, PUFA metabolic changes favor n6 PUFA
biosynthesis, requiring a nutritional strategy aimed at reducing the n6/n3 PUFA ratio.

Keywords: obesity; bariatric surgery; non-esterified fatty acid (NEFA); N-oleoylethanolamine (OEA);
peroxisome proliferator-activated receptor (PPAR)-α

1. Introduction

The growing morbidity of obesity and its associated metabolic diseases are challenged
with different strategies from reduced calorie intake in combination with physical activity,
to radical changes towards a healthy lifestyle. Since overweight reduction and improve-
ment of associated metabolic dysfunctions are very modest and few data support their long
term maintenance [1], pharmacologic treatments are recommended when these approaches
fail; however, many anti-obesity drugs have been withdrawn from the market due to
their limited weight loss potential and serious adverse effects, such as cardiovascular
events [2], gastrointestinal, hepatic and kidney injuries [3,4], mood disorders, and even
suicidal susceptibility [5].

Bariatric surgery, causing food restriction and intestinal malabsorption, represents the
most effective approach so far for the treatment of obesity, because it sustains weight loss
and before that, often within days, improves glycemia [6] and other metabolic parameters
e.g., triglycerides (TG) and HDL-cholesterol [7]. The most performed bariatric surgery
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includes Sleeve Gastrectomy (SG) and Roux-en-Y Gastric Bypass (RYGB). Both procedures,
but mostly RYGB, can induce nutritional deficiencies [7].

One week after RYGB, enhanced insulin sensitivity and fasting hepatic insulin clear-
ance was shown in 10 subjects with obesity and with or without type 2 diabetes [8]. In
the same study, increased glucagon-like peptide 1 secretion and insulin sensitivity in the
muscle and adipose tissue were observed from the third month to 1 year after RYGB [8].

The bidirectional communication between the gut and the brain, referred to as the
‘gut-brain axis’, links the emotional and cognitive centers of the brain with peripheral
intestinal functions. This network includes the central nervous system, the autonomic
nervous system, the enteric nervous system and the hypothalamic pituitary adrenal axis [9].
To maintain energy homeostasis the hypothalamus controls the gut-brain axis through
several signaling molecules such as growth hormone, leptin, ghrelin, and the endocannabi-
noids (EC) N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) [10–12].
Obesity, inflammation, insulin resistance and dyslipidemia are often associated to EC
system hyper-tone, dysregulation of AEA congeners, and N-acylethanolamine (NAE) [13].
These molecules are considered controllers of energy balance and different metabolic
parameters, peculiarly AEA, stimulates energy intake and storage [14], while the NAE
N-oleoylethanolamine (OEA) mediates anorectic signals [15]. Changes in their levels have
been observed in mice fed high fat high sugar diets for 56 days which showed glucose
intolerance, since the day three, followed by weight gain and hyperinsulinemia [16].

In a human study including 65 patients with obesity that underwent laparoscopic SG
surgery, Azar et al. followed the patients for up to 12 months and found postoperatively
reduced levels of 2-AG, AEA, and arachidonic acid (20:4-n6); interestingly the delta of EC
levels between pre- and post-operation were correlated with the delta of different metabolic
parameters, waist circumference (WC), free fat mass (FFM), total cholesterol, and TG [17].

Insulin resistance related to obesity and associated pathologies is considered partly
responsible for changes in circulating fatty acid (FA) levels [18], therefore is not surprising
to observe alterations in EC and NAE levels, which depend on the availability of their
respective diet-derived FA [19–23].

It is known that a hyperactive EC system is associated with obesity and relative
metabolic disturbance, while little information is available whether the early ameliorations
of metabolic parameters, which precede body weight and fat mass (FM) reduction, ob-
served after bariatric surgery (as RYGB or SG), are related to changes EC and congeners.
Therefore, in this study we aimed to evaluate the anthropometric data, metabolic param-
eters, circulating EC, NAE and FA prior to surgery and in early postoperative stages, at
1 and 6 months after bariatric surgery, in order to understand whether the massive release
of NEFA from adipose tissue, by inducing PPAR-α, may enhance FA metabolism contribut-
ing to fat depot reduction and improved metabolic parameters in the early stage, and
thereby shed light on the mechanisms underlying these ameliorations.

2. Materials and Methods
2.1. Reagents

The acetonitrile, methanol, chloroform, n-hexane, ethanol, acetic acid, FA standards,
all HPLC/MS grade, and deferoxamine mesylate were purchased from Sigma Chemicals
Co. (St. Louis, MO, USA). Ascorbic acid, potassium hydroxide, and hydrochloric acid were
purchased from Carlo Erba (Milano, Italy). FA standards including linoleic acid (18:2-n6),
20:4-n6, docosatetraenoic acid (22:4-n6), α-linolenic acid (18:3-n3), eicosapentaenoic acid
(20:5-n3), docosahexaenoic acid (22:6-n3), palmitic acid (16:0), palmitoleic acid (16:1), stearic
acid (18:0), and oleic acid (18:1-n9) were obtained from Sigma (Milan, Italy). Internal
deuterated standards for the AEA, 2-AG, and OEA quantification by isotope dilution ([2H]8

AEA, [2H]5 2-AG, [2H]2 OEA, N-palmitoylethanolamine [2H]4 PEA) were purchased from
Cayman Chemicals (Ann Arbor, MI, USA).
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2.2. Study Design

Changes in polyunsaturated fatty acids (PUFA) metabolism and lipid mediators NAE,
as indices of nuclear peroxisome proliferator-activated receptor (PPAR)-α activation were
evaluated in individuals with obesity scheduled to undergo bariatric surgery in order to
understand mechanisms underlying body composition and, eventually, glucose and lipid
metabolism ameliorations, up to 6 months after the surgery.

2.3. Participants

Sixty-eight white Caucasian participants scheduled to undergo bariatric surgery were
recruited at the Bariatric Surgery Centre, G. Brotzu Hospital (Cagliari, Italy) from February
2019 to September 2020. A subset of patients was enrolled in the study based on medi-
cal records and in-person interviews with a multidisciplinary team comprising surgical,
nutritional, and psychological expertise. Diet counselling after bariatric surgery followed
the clinical practice guidelines by the American Association of Clinical Endocrinologists,
The Obesity Society, and American Society for Metabolic & Bariatric Surgery [24]. Patients
diagnosed with major diseases (e.g., diabetes or kidney disease), food allergies, pregnant or
breastfeeding, taking medications that could affect lipid metabolism were excluded from
the study.

Based on these criteria, thirty-five subjects (8 men and 27 women) with an average age
of 41.9 y, body mass index (BMI) of 43.4 kg/m2 (range 33.1–58.5 kg/m2) participated in
this study (Table 1); they were enrolled to undergo either SG (n = 14, 5 men and 9 women)
or RYGB (n = 21, 3 men and 18 women). All bariatric surgery was performed by the same
surgical team. The sample size was calculated a priori using a 0.01 significance level and
80% power, based on the assumption that the expected within-patient standard deviation
was 0.05 and the minimal detectable difference in treatment means was of 0.03 units (20%
difference in values) (G*Power 3.1.9.2). An overview of the study design is represented in
Scheme 1.
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Scheme 1. Study design and experimental procedure. Discrepancy in number of subjects, n, in
data analysis are due to the limited sample amount available and/or their loss during the analysis
procedure. Body mass index (BMI), free fat mass (FFM), fat mass (FM), neck (NC), waist (WC),
hip (HC) circumferences, triglycerides (TG), LDL-cholesterol (LDL-Chol), alanine aminotransferase
(ALT), gamma-glutamyl transferase (GGT), endocannabinoids (EC), N-acylethanolamine (NAE)
non-esterified fatty acids (NEFA), fatty acids (FA).
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The study was conducted according to the guidelines of the Declaration of Helsinki
and approved by the Ethics Committee of the University Hospital of Cagliari (Prot.
PG/2019/1546 31.01.2019). Informed consent was obtained from all subjects involved
in the study. This observational study was registered on ClinicalTrials.gov (accessed on 30
January 30) with the Identifier: NCT04984785.

Table 1. Main anthropometric characteristics of subjects at baseline before bariatric surgery.

Female Male

Surgery (n) SG (9) RYGB (18) SG (5) RYGB (3)
Age (y) 41.0 ± 1.98 44.6 ± 3.60

BMI (kg/m2) 42.7 ± 0.91 45.7 ± 2.63
Weight (kg) 107.3 ± 2.96 138.4 ± 9.91

FM (kg) 53.0 ± 2.18 60.6 ± 6.90
FFM (kg) 54.3 ± 0.94 77.9 ± 3.17

Values are means ± SEM. Number of subjects (n), age (y), Roux-en-Y Gastric Bypass (RYGB), Sleeve Gastrectomy
(SG), body mass index (BMI), fat mass (FM), free fat mass (FFM).

2.4. Experimental Procedure

Each participant was tested in three separate visits: before (Pre), one month (1 Post)
and six months (6 Post) after bariatric surgery. The same anthropometric measurements and
experimental procedures were completed in all three visits. Specifically, neck, waist and
hip circumferences were measured, and body weight and height were taken to calculate
the BMI (kg/m2). Bioelectrical impedance analysis (BIA) was performed by Bodygram
101 Plus (Akern, Pontassieve, Italy); the instrument allowed measurements on subjects
with weights of up to 200 kg. A constant current source at a frequency of 50 kHz and 8 mÅ
was applied to estimate body composition.

Furthermore, in each visit, a sample of venous whole blood following overnight
fasting, was collected and promptly centrifuged at 2000× g for 15 min at room temperature.
From whole blood, haemoglobin and blood cell count were measured. While in plasma we
determined LDL-Chol, TG, fasting glycemia, uric acid, creatinine, albumin, and alanine
aminotransferase (ALT) and gamma-glutamyl transferase (GGT). Aliquots of plasma were
stored at −80 ◦C for lipid analyses.

2.5. Lipid Analyses
2.5.1. Endocannabinoids and N-acylethanolamines

The total lipids were extracted from the plasma by a chloroform/methanol 2:1, (v/v)
solution, and deuterated EC and NAE were added as internal standards for their quan-
tification. Analyses of EC and NAE from chloroform were carried out by an Agilent 1100
HPLC system (Agilent, Palo Alto, CA, USA) equipped with a mass spectrometry Agilent
Technologies QQQ triple quadrupole 6420 (LC-MS/MS) with an ESI source, using positive
mode (ESI+) for the compounds and their deuterated homologs quantification as described
in [25].

2.5.2. Fatty Acid Analyses

The total lipids were extracted by the method of Folch. Briefly, samples of human
plasma (1 mL) were dissolved into a 2:1 chloroform-methanol solution containing 2 µg of
vitamin E [26]. In order to obtain free FA, an aliquot of chloroform containing the lipid
fraction of each sample was mildly saponified and analyzed by an Agilent 1100 HPLC
system with a diode array detector (Palo Alto, CA, USA) as previously described in [27].
Since saturated FAs are transparent to UV detection, they were measured, after methylation,
by an Agilent 6890 gas chromatograph (Palo Alto, CA, USA) as described in [28].

The n3 highly-unsaturated fatty acid (n3 HUFA) score was calculated as the percentage
of the sum of n3 FA with 20 or more carbon atoms and three or more double bonds, divided
by the sum of total FA with 20 or more carbon atoms and more than three double bonds [29]:

ClinicalTrials.gov
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n3 HUFA score = (20:5-n3 + 22:6-n3 + 22:5-n3)/(20:5-n3 + 22:6-n3 + 22:5-n3 + 20:3-n6 + 20:4-n6 + 22:4-n6 + 22:5-n6 + 20:3-n9) × 100.

The ratio 16:1/18:2 was used as a marker of de novo lipogenesis because 16:1 has
been shown to be produced by de novo lipogenesis [30] and is scarcely present in the
diet, while 18:2, being an essential FA, may exclusively derive from the diet. In addition,
since circulating non-esterified FA (NEFA) are mainly derived from adipose tissue in
fasting humans, the ratio of 16:1/18:2 in NEFA could be considered an index of adipose de
novo lipogenesis.

The ratio 22:6-n3/20:5-n3 was used as a marker of peroxisomal β-oxidation induced
by PPAR-α, since 22:6-n3 biosynthesis requires a limiting step that is the β-oxidation
in peroxisomes, which is finely regulated by the transcription factor PPAR-α [31,32]; an
increase of the 22:6-n3/20:5-n3 ratio was taken as an indicator of PPAR-α activation [33,34].

2.6. Statistical Analysis

Data are expressed as the mean ± SEM, specifically NEFA as nmoles/mL plasma, FA,
EC and NAE as mol% of total FA. Unfortunately, we were not able to measure some plasma
parameters in all subjects due to the limited sample amounts available and/or their loss
during the analysis procedure. Because FA, EC, NAE clinical and anthropometric data were
not normally distributed (Shapiro-Wilk normality test), the statistical significances among
groups were assessed using the nonparametric Friedman One-Way Repeated Measures test
followed by Dunn’s correction for multiple comparisons. Data evaluated for both surgical
procedures, and stratified for gender, did not show relevant differences (data not shown),
therefore data were analyzed as one group.

Data were analyzed using the GraphPad Prism 6.01 Software (La Jolla, CA, USA) with
p ≤ 0.05 as the cut-off for statistical significance among groups.

3. Results
3.1. Body Composition and Blood Parameters

Bariatric surgery strongly impacted on body weight and body composition. As
reported in Figure 1, body weight, FFM and FM expressed as kg were strongly reduced at
1 month post-surgery (n = 33–35). BMI was reduced from 43.4, to 37.2 and 30.7 at 1 and
6 months after surgery, respectively. Six months after surgery, both FFM and FM decreased
by 10 and 25 kg, respectively. Stratification for gender and surgical procedures did not
show relevant differences (data not shown) as already previously shown [7]. Analysis
of these parameters represented as a percentage of total body weight showed a decrease
of FM and an increase in FFM (data not shown). Hip, waist, neck circumferences and
waist-to-hip ratio followed the same pattern of body composition measurements and were
reduced after surgery (Figure 1).

Plasma lipid profile improved in individuals who underwent bariatric surgery, as
demonstrated by the reduced (23.5%) TG at 6 Post as well as LDL-Chol (15.9%) (Table 2)
(n = 31). Fasting glycemia was reduced starting from the first month after surgery, returning
within the physiological range, less than 100 mg/dL.

Bariatric surgery caused reduction of albumin from 1 Post, and not significant changes
were observed between 1 and 6 Post, while uricemia, ALT and GGT were strongly reduced
at 6 Post, creatine did not change (Table 2).
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Figure 1. Values of body weight (A), body mass index (BMI, (B)), free fat mass (FFM, (C)), fat mass (FM, (D)), neck (E),
waist (F), and hip (G) circumferences and waist-to-hip ratio (H) in subjects at baseline (Pre), one month (1 Post) and six
months (6 Post) after bariatric surgery. Values are presented as boxes (mean value) and whiskers (higher and lower values)
(Body weight n = 35; BMI n = 35; FFM kg n = 33; FM kg n = 33; NC n = 33; WC n = 33; HC n = 33). ** p < 0.01; *** p < 0.001;
**** p < 0.0001.
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Table 2. Plasma parameters in subjects at baseline (Pre), one month (1 Post) and six months (6 Post) after bariatric surgery.

PRE 1 POST 6 POST

Mean SEM Mean SEM Mean SEM

TRIGLYCERIDES, mg/dL 99.3 7.55 a 89.6 5.34 a 76.0 5.56 b

LDL-CHOLESTEROL, mg/dL 128.6 6.24 a 113.3 5.54 a 108.2 6.22 b

GLYCEMIA, mg/dL 107.3 4.67 a 96.0 3.07 b 88.4 2.27 b

ALBUMIN, g/dL 4.2 0.26 a 3.9 0.05 b 3.9 0.07 b

URICEMIA, mg/dL 5.9 0.22 a 5.6 0.33 a 4.5 0.29 b

CREATININE, MG/DL 0.76 0.001 a 0.79 0.01 a 0.75 0.01 a

ALT, IU/dL 30.2 3.17 a 44.3 7.84 a 18.9 1.84 b

GGT, IU/dL 26.8 3.50 a 25.1 2.36 a 14.3 1.35 b

Values are means ± SEM. Different letters indicate significant differences at p < 0.05 within each row, a represents a higher value with
respect to b. Triglycerides n = 31; LDL-cholesterol n = 30; Glycemia n = 31; Albumin n = 30; Uricemia n = 30; Creatinine n = 30; alanine
aminotransferase (ALT) n = 30; gamma-glutamyl transferase (GGT) n = 30.

3.2. Plasma Fatty Acid and Their Bioactive Derivatives

EC (2-AG and AEA) and congeners (OEA, and PEA) plasma levels were modified by
bariatric surgery as shown by LC-MS/MS analysis (Figure 2) (n = 25–28). OEA levels were
increased after 1 month and returned to baseline at 6 Post. AEA levels were reduced at 6
Post, and total NAE had a similar but not significant pattern. Plasma levels of 2-AG were
instead increased at 1 Post (Figure 2).
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Figure 2. Values of N-arachidonoylethanolamine (AEA, (A)), 2-arachidonoylglycerol (2-AG, (B)), N-oleoylethanolamine
(OEA, (C)), N-acylethanolamine (NAE, (D)), expressed as mol % of total fatty acid (FA), in subjects at baseline (Pre), one
month (1 Post) and six months (6 Post) after bariatric surgery. Values are presented as boxes (mean value) and whiskers
(higher and lower values) (AEA n = 28; 2AG n = 27; OEA n = 27; NAE n = 27). * p < 0.05; ** p < 0.01; *** p < 0.001.
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Levels of long chain polyunsaturated FA appeared differently affected by bariatric
surgery; 20:4-n6 and 22:6-n3, the major highly polyunsaturated FA n-6 and n-3, respectively,
were enhanced at 1 Post and returned to basal levels at 6 Post (Figure 3) (n = 33).
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Figure 3. Plasma FA and *n3 HUFA scores in subjects at baseline (Pre), one month (1 Post) and six months (6 Post) after
bariatric surgery. Values, expressed as mol % of total fatty acid (FA), are presented as boxes (mean value) and whiskers
(higher and lower values) (n = 33). ** p < 0.01; *** p < 0.001; **** p < 0.0001.

n3 HUFA score is calculated as the percentage of n3 HUFA (HUFA ≥ 20 carbons and
≥3 double bonds) in the total HUFA pool = (20:5-n3 + 22:6-n3 + 22:5-n3)/(20:5-n3 + 22:6-n3
+ 22:5-n3 + 20:3-n6 + 20:4-n6 + 22:4-n6 + 22:5-n6 + 20:3-n9) × 100 [29].

The 22:6-n3/20:5-n3 ratio (a marker of PPAR-α activation [31,35]) and the 20:4-n6/18:2-n6
ratio, which represents an index of 18:2-n6 metabolism [36], were increased starting from
1 Post, an evidence of the enhanced n6 and n3 PUFA metabolism, and 22:6-n3/20:5-n3
ratio remained elevated at 6 Post (Figure 4) (n = 33). This was also confirmed by a steep
reduction of 20:5-n3 and 18:3-n3, with the latter returning to baseline at 6 Post, and a
progressive increase of 22:4 (Figure 3). n3 HUFA score levels remained relatively constant
over the period considered.

These changes occurred in parallel with higher circulating levels of NEFA (plus 56.6%)
at 1 Post which returned to basal levels at 6 Post (Figure 5) (n = 33). The ratio of the NEFAs
16:1/18:2, considered an index of de novo lipogenesis, was instead strongly reduced at
6 Post with respect to the baseline.
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Figure 4. Ratios of 22:6-n3/20:5-n3 (A) [31,33], and 20:4-n6/18:2-n6 (B) [36] in subjects at baseline (Pre), one month (1 Post)
and six months (6 Post) after bariatric surgery. Values, expressed as mol % of total fatty acid (FA), are presented as boxes
(mean value) and whiskers (higher and lower values) (n = 33). *** p < 0.001; **** p < 0.0001.
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Figure 5. Values of non-esterified fatty acid (NEFA) (A) and 16:1/18:2 (B) [30] expressed as nmol/mL of plasma in
participants at baseline (Pre), one month (1 Post) and six months (6 Post) after bariatric surgery. Values are presented as
boxes (mean value) and whiskers (higher and lower values) (n = 30). * p < 0.05; **** p < 0.0001.

4. Discussion

In line with data in the literature we observed a strong body weight reduction from
the first month; specifically, the FM reduction (15.8% p < 0.0001) was combined with a less
severe reduction of FFM (8.2% p < 0.0001). Waist and neck circumferences are recognized
as useful indicators of visceral fat accumulation [37]; accordingly, both neck circumference
and FM were significantly decreased starting from 1 Post.

It has been well established that bariatric surgery improves metabolism [6,7,38]. In
the present study, TG and LDL-Chol profile reduction was observed at 6 Post after body
weight loss, while from 1 Post, we observed a decrease in the glycemia concurrently to
body weight loss, suggesting that may be independent from fat mass reduction.

Reduced food intake and protein malabsorption may explain the significant decrease
of albumin observed at 1 Post (3.88 g/dL plasma) and at 6 Post (3.95 g/dL plasma),
however, values remained within the physiological range (3.4–5.4 g/dL) throughout the
observation period, suggesting a non-relevant protein deficiency in the time frame taken
into consideration.

It is known there is a mutual association between obesity and hyperuricemia [39].
Hyperuricemia may derive from a decreased renal excretion due to chronic renal failure
linked to increased BMI [40] and/or an excess of fructose intake in insulin-resistance
patients [41]. In addition, uric acid may promote fat storage [42]. In our study, uricemia
values were significantly reduced at 6 Post (4.47 mg/dL plasma) to physiological values
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(4–8 mg/dL), that might suggest rather than an amelioration of renal function, a metabolic
improvement and/or a reduction of fructose intake [43,44].

Serum GGT and ALT are common hepatic inflammatory markers altered in obe-
sity, non-alcoholic fatty liver disease (NAFLD) and fatty liver [45]. Their reduction at
6 Post to physiological values may suggest a significant improvement of obese-related
liver dysfunction.

Our data show that, in agreement with previous observation [18], alterations in FA
metabolism in response to obesity surgery may be associated to several factors such as
dietary changes and a modified enzymatic activity, mainly due to a different insulin
response. High plasma levels of long chain PUFA such as 20:4-n6, 22:4-n6 and 22:6-n3,
the simultaneous reduction of 18:3-n3 and 20:5-n3, precursors of 22:6-n3, and the elevated
ratio of 20:4-n6/18:2-n6 suggest an enhanced n6 and n3 PUFA metabolism. Similarly, we
observed an elevated 22:6-n3/20:5-n3 ratio, considered a marker of increased peroxisomal
β-oxidation [31], a limiting step induced by activation of PPAR-α, which has important
roles in the regulation of nutrient metabolism, including FA oxidation, gluconeogenesis,
and amino acid metabolism [46]. Likely, PPAR-α enhanced activity might be ascribed to a
56.6% increase of circulating NEFA observed at 1 Post, likely due to its massive release from
adipose tissue caused by dietary restriction which, by inducing PPAR-α, may enhance FA
oxidation and contribute to fat depot reduction and improved metabolic and inflammatory
parameters. In addition, sustained induction of PPAR-α may also reduce inflammation by
catabolizing pro-inflammatory eicosanoids [31].

NEFA levels, mainly from visceral adipose tissue [47], are usually steadily elevated in
the plasma of subjects with obesity irrespective of fasting conditions, due to the insulin
resistance. However, data in the literature conflict with some studies describing a decrease
in plasma NEFA levels [48], and others describing no changes [49]. The increase found in
circulating NEFA at 1 Post, which returned to pre surgery values at 6 Post, may suggest
that at 1 Post NEFA release from adipose tissue prevails the capacity of liver and other
tissues uptake, or alternatively there is a massive release due to the severe calorie restriction
in the immediate post-surgery. Interestingly, analysis of the NEFA profile showed that
16:1/18:2 ratio was reduced at 6 Post. Despite 16:0 and 16:0/18:2 having been identified as
the biomarkers of de novo lipogenesis [50], 16:1 has also been shown to be a marker of de
novo lipogenesis [30] and most likely released as NEFA from adipose tissue. Therefore, the
16:1/18:2 ratio in NEFA could also be considered an index of adipose de novo lipogenesis,
suggesting that reduced glycemia may result in less substrate availability for de novo
lipogenesis, further favoring fat mass reduction.

Activation of PPAR-α by increased NEFA levels at 1 Post may induce a plethora of
metabolic changes such as the activation of enzymes involved in FA metabolism with a
consequent increased 20:4-n6 and 22:6-n3 biosynthesis [51], and a raise of the NAE OEA
levels [52], which may further induce PPAR-α and thereby mitigate hunger and promote
FA β-oxidation. Indeed, we previously demonstrated in experimental models that PPAR-
α activation resulted in OEA increase, which further sustained PPAR-α activation by a
positive feedback mechanism [52]. As a matter of fact, OEA was shown to reduce the
accumulation of visceral fat by activation of PPAR-α [19–23]. The reduction of OEA at 6
Post may be ascribed to the minor induction of PPAR-α by the lower NEFA release from
adipose tissue. It would be interesting to envisage a strategy to induce PPAR-α at 6 Post by
nutritional [53] or pharmacological [54] treatments to evaluate whether OEA and 22:6-n3
levels will return to the high values found at 1 Post and further positively influence lipid
and energy metabolism and perhaps reduce relapse incidence (Figure 6).
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β-oxidation and increased circulating OEA levels further enhance PPAR-α activation and hence induce body weight loss
and improved glucose and lipid metabolism. In red the putative mechanism which may explain why four subjects (12%)
did not respond in the same way to circulating NEFA, leading us to hypothesize a ”resistance” to PPAR-α activation. Red,
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Remarkably, only in 4 patients were OEA levels at 1 Post not increased (non responders
–0.92 ± 1.38 responders 0.84 ± 2.92 Mean ± SD of difference from Pre at 1 month) despite
the higher levels of NEFA and they revealed lesser than 7% of fat mass reduction at 6 Post
(non responders –5.14 ± 2.90 Responders –11.97 ± 3.17 Mean + SD of difference from Pre
at 6 month), mainly visceral as indicated by corresponding values of waist circumference,
suggesting that these subjects may be regarded as non PPAR-α responders, probably
characterized by some sort of a “PPAR-α resistance”. The geographically and ethnically
homogenous cohort may represent a limitation of this study; it would be therefore crucial
to evaluate in a larger multicenter study whether OEA and NEFA levels may predict the
incidence of relapse, where OEA levels at 1 month post-surgery may represent an early
biomarker of relapse susceptibility, requiring personalized treatments to overcome PPAR-α
lower responsiveness. However, NEFA binding to PPAR families other than PPAR-α may
not be ruled out [55], therefore further studies should be devoted to investigating possible
activation of other PPAR isoforms.

Substantial anatomical changes along with reduced caloric intake and absorption
imposed by bariatric surgery lead to a new metabolic balance to sustain fat mass loss. Our
findings propose the contribution of FA-derived mediators on metabolic amelioration,
improved lipid profile, reduction of glycemia, and fat mass. Indeed, it has been observed
that NAE and specifically OEA reduces fat mass in rodents, possibly by activating PPAR-α
and, even if human studies are limited, OEA supplementation in humans was shown to
promote weight loss therapy [20]. Nonparametric Spearman correlation analyses consider-
ing the percentage of 1 Post (which was the time with major changes) versus Pre bariatric
surgery conditions (as 100%) identified a negative trend (r = –0.348 p = 0.059) between OEA
and BMI and between OEA and body weight (r = –0.335 p = 0.07).

Interestingly, increase of 20:4-n6 at 1 Post paralleled the increased levels of 2-AG, yet
the latter remained elevated at 6 Post despite reduced levels of its precursor, while AEA
was found reduced. However, as we recently demonstrated in animal models, AEA plasma
levels were strongly correlated to their precursor levels in adipose tissue, liver and brain
but not in plasma [56]. 2-AG plasma levels were shown to be correlated with increased
appetite, especially for calorie dense foods [57], therefore higher levels may not be desirable.
Previously we showed that 2-AG plasma levels may be successfully reduced by krill oil
as a source of 20:5-n3 and 22:6-n3 [58]. A return to Pre levels of OEA, several PUFA and
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NEFA at six months along with reduction of AEA and, possibly, lipogenesis at six months
post, may suggest the need of a dietary intervention in order to improve the long term
effect of bariatric surgery on the metabolic and FA profile and energy metabolism. Our
data show a low n3 HUFA score, which is a potential blood biomarker of n3 FA intake
and tissue status, in all the groups we considered; indeed values around 20 are considered
relatively low typical of low fish consumption [29,59]. Thus, n3 PUFA supplementation
may be envisaged to patients undergoing bariatric surgery and particularly to those with
2-AG higher levels and tendency to high consumption of calorie dense foods as a strategy
to avoid or limit relapse of morbid obesity.

5. Conclusions

FA metabolism may contribute to early metabolic changes occurring after bariatric
surgery, such as improved glycemia, lipid blood profile, reduced body weight and fat mass,
by modulating lipid mediator biosynthesis, in particular increasing OEA levels, which
activate specific receptors such as PPAR-α. Indeed, our data show that the massive release
of NEFA from adipose tissue, possibly inducing PPAR-α, may enhance FA metabolism and
contribute to fat depot reduction and improved metabolic parameters. However, PUFA
metabolic changes favor n6 PUFA biosynthesis, requiring a nutritional strategy aimed at
significantly reducing the ratio of n6/n3 PUFA to further ameliorate the FA profile and
energy metabolism. Therefore, a personalized nutritional approach may be proposed to
further sustain the response to bariatric surgery in order to reduce the relapse.
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