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Abstract

O↵ering timely support to users in eCoaching systems is a crucial factor to keep
them engaged. However, coaches usually follow many users, so it is hard to prioritize
those they should interact with first. Timeliness is especially needed when health
implications might be the consequence of a lack of support.

Thanks to the data provided by U4FIT (an eCoaching platform for runners we
will describe in Chapter 1) and the rise of high-performance computing, Artificial
Intelligence can turn such challenges into unparalleled opportunities. One of its
sub-fields, namely Machine Learning, enables machines to receive data and learn for
themselves without being programmed with rules. Bringing this intelligent support
to the coaching domain has many advantages, such as reducing coaches’ workload
and fostering sportspeople to keep their exercise routine.

This thesis’s main focus consists of the design, implementation, and evaluation
of Machine Learning models in the context of online coaching platforms. On the one
hand, our goal is to provide coaches with dashboards that summarize the training
behavior of the sportspeople they follow and with a ranked list of the sportspeople
according to the support they need to interact with them timely. On the other hand,
we want to guarantee a fair exposure in the ranking to ensure that sportspeople of
di↵erent genres have equal opportunities to get supported. Past research in this
field often relied on statistical processes hardly applicable at a large scale.

Our studies explore opportunities and challenges introduced by Machine Learn-
ing for the above goals, a relevant and timely topic in literature. Extensive ex-
periments support our work, revealing a clear opportunity to combine human and
machine sensing for researchers interested in online coaching. Our findings illustrate
the feasibility of designing, assessing, and deploying Machine Learning models for
workout quality prediction and sportspeople dropout prevention, in addition to the
design and implementation of dashboards providing trainers with actionable knowl-
edge about the sportspeople they follow.

Our results provide guidelines on model motivation, model design, data collec-
tion, and analysis techniques concerning the applicable scenarios above. Researchers
can use our findings to improve data collection on eCoaching platforms, reduce bias
in rankings, increase model e↵ectiveness, and increase the reliability of their models,
among others.
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Chapter 1

Introduction

1.1 Motivation

With the rise of mobile technologies and the spread of Internet access over the world,
people’s lifestyle and habits changed. People nowadays pursue a more sedentary
lifestyle which has become an increasing problem for people’s health. A sedentary
lifestyle has been reported to be the cause of several serious illnesses such as weight
gain, high blood pressure, diabetes, high levels of cholesterol, depression, and several
other chronic diseases. In 2020, WHO updated the previous recommendations they
released in 2010. They rea�rm messages that some physical activity is better than
none, that more physical activity is better for optimal health outcomes and provide
a new recommendation on reducing sedentary behaviors. These guidelines highlight
the importance of regularly undertaking both aerobic and muscle-strengthening ac-
tivities.

Researchers from di↵erent domains put together their knowledge to tackle this is-
sue from di↵erent perspectives to foster people towards a healthy and active lifestyle.
Computer scientists and technologists exploited the development of mobile applica-
tions and wearable technologies in the last few years to build solutions that help
people keep motivated to exercise and to perform a regular physical activity known
as e-health persuasive technologies (eHPTs) [SF20]. Several studies put in evidence
that the usage of these kinds of support has to be monitored by high-qualified figures.

In this context, as a researcher I am contributing to the development of U4FIT
(https://www.u4fit.com), a remote coaching ecosystem that connects sportspeople
to personal trainers, who can then provide tailored, supervised training programs.
This way, U4FIT o↵ers a persuasive technology that encourages people to pursue an
active lifestyle under the supervision of specialized coaches. It is made up of a web
application and a mobile client. The mobile application uses the devices’ sensors
to record training statistics, while the web application provides users with an area
where they can manage their workout settings and find workout session statistics; it
also serves as a dashboard for the coaches, so that they can find all the tools needed

https://www.u4fit.com
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Figure 1.1: User-trainer interaction flow in the U4FIT platform

to handle requests of tailored workout plans. After the user chooses a coach and
specifies her objectives and current physical skills, the coach receives the user’s data
and creates a tailored workout plan and sends it to the sportsman’s app. When
the user receives the workout plan, the virtual personal trainer functionality of the
mobile app guides her to correctly complete the workout and the mobile app records
training data. At the end of the workout, the coach receives training statistics and
remotely monitors the user’s performance, modifies the workout (if needed), and
motivates her by means of the messaging system.

The goal of my research is to provide coaches with tools that optimize their work
and reduce their work load to follow sportspeople in an e�cient and e↵ective way.

1.2 Challenges

Much recent research in the machine learning field emphasized the importance of
applying learning algorithms to a real-world context [JM15, Sar21]. Nevertheless,
the same studies highlighted how challenging it is to use machine learning models
for real-world applications. They spotted many challenges that researchers and ML
professionals could encounter when dealing with real-world data. Building a suc-
cessful machine learning-based system mainly depends on two things: the learning
algorithm and the data. To choose a learning model that is suitable for the tar-
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Business
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Scientific 
Value

Real 
Value

Figure 1.2: An industrial Ph.D. student should find a trade-o↵ between scientific
value, business value, and their personal/career value.

get application, one should take many considerations; If the data are inadequate
to learn, such as non-representative, poor-quality, irrelevant features, or insu�cient
quantity for training, then the machine learning models may become useless or will
produce lower accuracy. For this reason, during the Ph.D. journey, I have spent
much time developing parts of the U4FIT platform that were crucial to performing
the research presented in this thesis and which may be helpful for future works.
As an industrial Ph.D. student, I faced many challenges; The biggest challenge was
creating value for di↵erent stakeholders. Namely, the industrial Ph.D. student’s job
is to create value for science, business, and themselves by working on things that let
them grow from a professional perspective depending on their aspirations. Besides
this challenge, several others were also highlighted by state-of-the-art. This thesis
will focus on research around the following key challenges:

• Many data gathered through wearable sensors have erred values or do not
correspond directly to the workout activities in workout plans;

• The data raw made available by the U4FIT platform, without any pre-
processing, is insu�cient to reasonably build and validate machine and deep
learning models for specific tasks, which is needed in the design of meaningful
remote coaching interventions;

• Real-world data su↵er from huge imbalance when it comes to some machine
and deep learning classification tasks;

• In order to deploy the machine learning algorithms we developed, we need
servers that have a minimum performance to be able to handle data pipelines
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that could be needed at inference time; This could be costly for small and
medium-sized companies such as U4FIT;

• Coaches need to know di↵erent factors about their followees such as their work-
out history, the training load, and intensity, among others, to provide them
with suitable workout plans that fit their needs and that are not likely to cause
them injuries or over-training syndromes; For this reason, it is challenging for
coaches to follow several sportspeople,

• Many sportspeople stop training regularly or drop out working out after a few
weeks using the platform. This is a common behavior among sportspeople as
it was reported by Fletcher et al. [FBB+92] only the 50% of people that start
an exercise routine will continue to keep the habit for more than six months.

As AI-based eCoaching will play a consistent role in everyday coaches’ and sports-
people’s lives, it becomes compelling to approach such critical challenges and provide
appropriate support for solving them.

1.3 Thesis goal

Thesis goal. Support coaches in their daily activities, by developing tools
that summarize their work and facilitate their decision-making processes.

As we highlighted in Section 1.2, the coaches follow a lot of sportspeople on a
daily basis. Thus, given the complexity of the results uploaded by the sportspeo-
ple, it is challenging for coaches to monitor and analyze the history of the users
they follow. This thesis aims to support coaches by providing them with actionable
knowledge about the behavior of their sportspeople. To this end, we present the
approaches we designed and built to help coaches in di↵erent aspects of their daily
activities. Some of these approaches exploit Machine Learning based algorithms;
meanwhile, others consist of dashboards that summarize the results, workout fre-
quency, and the evolution in time of the performance achieved by sportspeople
during workouts sessions.

1.4 Outline

The rest of this thesis is organized as follows: Chapter 2 provides a brief introduction
to the most representative machine-learning concepts underlying this thesis.

Chapter 3 presents an overview of the leading research works related to the
strategies, techniques, and technologies developed to help sportspeople in pursuing
their physical goals. These works are regarding recommender systems for health
and wellness, dropout prediction techniques in remote coaching/learning platforms,
and algorithmic fairness.
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After describing the related works, this thesis is composed of three main parts;
Part I is composed of Chapter 4 and Chapter 5; it describes the machine learning
algorithms we developed to help coaches interact e↵ectively and e�ciently with the
sportspeople they follow. Namely, in Chapter 4, we present a machine-learning
algorithm that predicts the workout quality of sportspeople to recommend them to
their coach using a personalized learning-to-rank approach that takes into account
algorithmic fairness constraints. The goal of this algorithm is to provide coaches with
a ranked list of sportspeople that need timely support due to a loss in the quality
of their workout performance; in the other hand, we reduce the gender unfairness
in the ranked list such that the sportspeople are supported fairly regardless of their
gender.

Chapter 5 instead describes a deep learning-based approach to help coaches spot
sportspeople that are likely to drop out of their exercise routine. The goal of this
algorithm is to spare coaches the time to analyze the whole workout history of the
sportspeople they follow by providing them with a list of users that are likely to give
up training and recommend them to their coaches so that they can interact with
them and motivate them to exercise.

Part II is composed of Chapter 6 that describes the tools that are actually
deployed in production. These tools consist of di↵erent dashboards that provide
coaches with actionable knowledge about the training behavior of the sportspeople
they follow. Particularly, one of these dashboards is based on the application of the
machine learning algorithm described in Chapter 5.
Another goal of these tools is to gather meaningful data for future research work.

Finally, Chapter 7 o↵ers concluding remarks on the implications of our research
and provides some opportunities for future work in this field.
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Chapter 2

Machine Learning Fundamentals

This chapter provides essential context around artificial intelligence, machine learn-
ing, and deep learning concepts leveraged by this thesis.

2.1 What is Machine Learning?

Over the last decades, computer science and engineering researchers investigated
strategies and techniques to make computers perform tasks that usually require
human intelligence [Nil14]. This field, known as Artificial Intelligence (AI), includes
Machine Learning (ML) and Deep Learning (DL), in addition to other rule-based
algorithms (Figure 2.1).

When we talk about Machine Learning, we are talking about a particular branch
of AI that uses data and algorithms to mimic the way humans learn. ML mainly
focuses on building systems that are given in input data and answers about a par-
ticular task and learn, on their own, patterns that can be applied to unseen data
(Figure 2.2) [CMM84]. Examples that are relevant to the target task are given as an
input to the machine learning system that learns patterns from these data, making

Artificial 
Intelligence

Machine 
Learning

Shallow 
Learning

Deep 
Learning

Figure 2.1: Hierarchy in artificial intelligence, machine learning, deep learning fields.
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Data Answers

Patterns

Machine Learning System

Figure 2.2: Machine Learning systems.

it possible to get complex patterns for solving the task. For instance, a machine-
learning model for object classification is fed with human-labeled images from which
a set of rules for associating pictures to object labels are learned.

Deep learning (DL) is an ML branch wherein patterns are learned from data
through consecutive manipulation through a sequence of stacked layers [LBH+15].
It di↵ers from traditional machine learning, namely shallow learning, which learns
only one or two layers of data representations. The transformation implemented
by a deep neural layer is parameterized by its weights. Hence, learning means
optimizing the weights of all layers, such that the network correctly maps inputs to
expected targets. Given the predicted and actual targets, the system computes a
score through a loss function that captures how well the network maps the current
samples. The score is then used by the optimizer that arranges the weight values
through a Back-propagation algorithm so that the loss score will be lower in the
next iteration. Repeating the loop a su�cient number of times makes it possible to
learn weight values that minimize the loss, obtaining a trained model.

2.2 Types of Machine Learning

Several approaches can be suitable for defining problems faced by a machine-learning
system (Figure 2.3).

The machine learning problems can be classified into four broad cate-
gories [Lis15], namely:

• Human-Supervised learning is based on learning how to map data to known an-
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Figure 2.3: Types of machine learning algorithms.

notations (i.e., labels). Most applications, such as object recognition, speaker
verification, sentiment prediction, and language understanding, fall into this
category;

• Self-Supervised learning implies supervised learning with labels generated from
the input data, typically using a heuristic algorithm. For instance, auto-
encoders, where the inputs are also the generated targets, take full advantage
of self-supervised learning;

• Unsupervised learning aims to find interesting transformations of the input
data without knowing any or only a subset of targets. Sample applications are
survival analysis, data denoising, dimensionality reduction, and clustering;

• Reinforcement learning is based on an agent which receives information about
its environment and learns to choose actions that will maximize some reward.
For instance, a neural network that outputs game actions to maximize its score
can leverage it.

Over this thesis, we mainly focus on supervised learning problems. Therefore,
the subsequent sections provide information tailored to this type of problem.

2.3 Experimental Workflow

Common pipelines solving a machine-learning problem include problem definition,
data pre-processing, model development and model evaluation (Figure 2.4).
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Figure 2.4: Common pipeline to solve a ML problem.

2.3.1 Problem Definition

This step serves to define the type of problem (e.g., binary classification, multi-class
classification, multi-label classification, scalar regression). Identifying the problem
type guides the choices made at the following steps, such as the model architecture,
the loss function, etc. In addition, inputs and outputs need to be defined and, based
on that design choice, good training data should be retrieved. For instance, learn-
ing to classify the sentiment of reviews implies having both reviews and sentiment
annotations. The hypothesis is usually that the learning algorithm can predict the
outputs given the inputs; hence, the retrieved data should be su�ciently informative
to learn the relationship between inputs and outputs. Therefore, ML can only be
used to get the patterns present in the training data and recognize what it has seen
there.

2.3.2 Data Pre-Processing

This step aims to make data more manageable by algorithms through vectorization,
normalization, missing values handling, and/or feature extraction:

• Vectorization. Inputs and outputs should be numerical vectors, irrespective of
the data (e.g., images, text). Turning data into vectors is called vectorization.
For instance, text can be represented as a list of integers standing for sequences
of words. On the other hand, this step is not needed when data is already in
numerical form.

• Normalization. It should be noted that feeding into an ML model data that
takes large values or is heterogeneous could prevent the model from converging.
To make learning easier, data should have values ranging between 0 and 1. For
instance, image data encoded as integers ranging between 0 and 255 is usually
cast to float and divided by 255 so that they become float values ranging
between 0 and 1. Similarly, when predicting users’ identities, each feature
could be normalized to have a standard deviation of 1 and a mean of 0.
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Figure 2.6: The common components of a deep-learning model.

• Missing Values Handling. If there could be missing values when predicting
through an ML model, it is generally a good practice to simulate such a situa-
tion also during model training. To this end, while training, missing values as
0 could be introduced by copying some training samples and dropping some
features that may become missing while predicting. In this way, the model
can learn that the value 0 means missing data and starts ignoring the value.

• Feature Extraction. Using human knowledge about the data and the ML
algorithm can make the algorithm work better. Feature extraction is usually
adopted by shallow algorithms not having hypothesis spaces rich enough to
learn valuable features by themselves. For instance, in speaker verification,
inputs for neural networks are typically based on pre-processed data, such as
spectrograms and filterbanks extracted from the raw audio. Modern DL makes
it possible to be fed raw data and let neural networks extract useful patterns.
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2.3.3 Model Development

The goal at this step is to develop an ML model able to solve the original
task [Cho17]. As we mentioned in Chapter 2.2, in this thesis we mainly focus
on supervised learning problems. That said, three key choices to build the model
should be considered: (i) model architecture that should learn meaningful data rep-
resentations, (ii) di↵erentiable optimization function that should match the type of
problem, (iii) optimization configuration that should support the model in minimiz-
ing the objective function. Some shallow-learning models structured as depicted in
Figure 2.5 are described below.

• Decision Trees (DTs) [BFOS17] predict the value of a target variable by learn-
ing decision rules from input features. The model has a root node containing
all data features of the training set. Then, the root node is split into several
children according to a given criterion. This process recursively continues on
children until no nodes to be split exist.

• Support Vector Machines (SVMs) [DLPS14] map each training data sample
to a point in an N-dimensional space, where N is the number of features and
the value of each feature is the value of a particular coordinate. Then, it
finds the set of hyper-planes that better di↵erentiate the points based on the
targets. A linear combination of vectors determines the location of the decision
boundaries producing the best separation.

• Random Forest (RF) [Bre01] is a meta estimator that (i) fits several decision
tree classifiers on various random data sub-samples and (ii) uses averaging to
improve the predictive accuracy and to control over-fitting. Each decision tree
is a weak classifier, while all the decision trees combined aim to be a more
robust classifier.

• Gradient Boosting (GB) [NK13] is also an ensemble algorithm that improves
the accuracy of a predictive function through incremental minimization of the
error term. After the initial base learner (almost always a tree) is grown, each
tree in the series is fit to the so-called ”pseudo residuals” of the prediction
from the earlier trees to reduce the error.

Some deep-learning models structured as depicted in Figure 2.6 are described
below [Sch15].

• Feed-forward Neural Networks(FNN) were one of the first components applied
to learn from data using DL [HLR06, ZZ06]. One or more levels of nodes,
namely perceptrons, are randomly joined by weighted connections in a many-
to-many fashion. These networks were historically thought of in order to
simulate a biological model where nodes are neurons, and links between them
represent synapses. Based on the input values fed into the network, nodes of a
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certain level can be activated, and their signal is broadcasted to the subsequent
level. In order to activate nodes of a subsequent level, the signal generated at
a level is weighted and must be greater than a given threshold.

• Recurrent Neural Networks (RNNs) are tailored for processing data as a se-
quence [VXD+14, GMH13]. In contrast to FNNs, RNNs have cyclic connec-
tions among nodes of distinct levels. Recurrent connections connect past data
with the one that is currently being processed, simulating a state memory.
The forward pass is similar to FNN forward pass. The di↵erence is that the
activation of a node depends on both the current input and the previous status
of the hidden layers. This workflow is useful when data presents patterns from
the past to the future. As an extension, Bidirectional RNNs (BiRNNs) walk
through the training data forward and backward using two hidden RNNs com-
bined into a common output layer, making it possible to find patterns from
both past and future data [SP97].

• Long Short-Term Memory (LSTM) extends RNNs by employing recur-
rent connections and adding memory blocks in their recurrent hidden lay-
ers [SSB14, HS97]. These memory blocks save the current temporal state and
make it possible to learn temporal observations hidden in the data. Using
memory blocks allows relating the current data being processed with the data
processed long before, solving the problem experienced by common RNNs.
For this reason, LSTMs have been proved to have a positive impact on se-
quence prediction tasks. Bidirectional layers using two hidden LSTMs can be
leveraged to process data both forward and backward.

• Convolutional Neural Networks (CNNs) perform filtering operations on the
nodes of a layer, abstracting and selecting only meaningful nodes. Such net-
works have been historically applied in Computer Vision [SVSS15, DSG14].
Hence, they are not directly applicable to texts, as the text should be vector-
ized before applying convolutional filters to them. Each filter is composed of a
kernel that slides on the vector representation and repeats the same function
on each element until all vectors are covered.

As part of the optimization for DL, the error for the current state of the model
must be estimated repeatedly. This requires the choice of an error function, namely
a loss function. Such a function is used to estimate the loss of the model so that
the weights can be updated to reduce the loss on the next evaluation. Based on
the type of ML problem, there are several adequate loss functions. For instance, for
regression problems, common loss functions are Mean Squared Error, Mean Squared
Logarithmic Error, and Mean Absolute Error; for binary supervised classification,
Binary Cross-Entropy, Hinge Loss, and Squared Hinge Loss are usually adopted; for
multi-class classification, common solutions are Multi-Class Cross-Entropy, Sparse
Multi-Class Cross-Entropy, and Kullback Leibler Divergence. Please refer to [JC17]
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Figure 2.7: Common ML evaluation protocols.

for further details on each function. Finally, within DL, an optimizer is integrated
to update the weights and minimize the loss function. The optimizer uses the
loss function to move in the right direction to reach the global minimum. Common
optimizers include Root Mean Square Propagation (RMSProp) [TH17] and Adaptive
Moment Estimation (ADAM) [KB14].

2.3.4 Model Evaluation

Evaluating a model always needs to subdivide the available data into (i) a training
set, (ii) a validation set, and (iii) a test set. During training, the model is fed
with the training set and evaluated on the validation set. The latter data is used
because developing a model usually involves tuning its configuration (e.g., choosing
the number of layers or the size of the layers). Such tuning can be achieved by using
as feedback the performance of the model on the validation set. To test performance
on unseen data, a completely di↵erent data set is used to evaluate the model: the
test set. The common procedures for splitting data are provided in what follows
(Figure 2.7) [Mar16]:

• Held-Out Validation. A subset of the data is set apart for testing, typically
around 10% and 20% of the whole dataset. The model is trained on the rest
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of the data, and its performance is evaluated on the test set. However, if little
data is available, then the validation and test sets may contain too few samples
to be statistically representative, preventing the validity of the experimental
results.

• k-Fold Validation. The data is split into K equal-sized partitions. An in-
dependent instance of the model is trained on K–1 partitions and evaluated
on partition i. The process is repeated K times, with a di↵erent partition i
as a test set. The final metrics are averaged to obtain the final score. This
might solve issues related to significant variance on final metrics over di↵erent
train-test splits.

After splitting the data, the metrics for measuring success should be defined. The
metric should be directly aligned with the high-level goals, such as the success of the
business. For balanced-classification problems, where every class is equally likely,
Accuracy and area under the Receiver Operating Characteristic curve (ROC) are
standard metrics. For class-imbalanced problems, Precision and Recall are usually
used. For ranking problems or multi-label classification, Mean Average Precision
is generally adopted. In some cases, custom metrics are defined. Such metrics
represent the output of the protocol. As the universal tension in ML is between
optimization and generalization, the ideal model is the one that stands right at the
border between under-fitting and over-fitting. Hence, all the pipeline steps should
be repeated until the model closely reaches this goal.
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Chapter 3

Related Work

3.1 Recommender Systems for Health and Well-
ness

Several studies emphasized the importance of providing users with personalized
recommendations, to support them in having a healthy and active lifestyle, and to
design e↵ective interventions [Smy19, KWB06, YTFK+17].

In this context, some studies focused on recommending physical activities tai-
lored to the user profile. Donciu et al. [DIDT11] bring together the social dimension
acquired from a growing community and expert knowledge defined within an ontol-
ogy to provide users with diet and workout recommendations based on their profile
information, preferences, and declared purpose. In [HAST14], He et al. suggest
recommending physical activities to users based on the context (e.g., risk toler-
ance, budget, location, weather). Ahire et al. [AK15] use semantic web technology
to analyze users’ preferences, build a user profile based on this knowledge, then
recommend food and exercise inquiries to users based on their profile. Khwaja et
al. suggest recommending physical activities to users by considering the type of
personality [KFI+19]. Finally, in [NodAV14], Nassabi et al. propose tailoring the
recommendations according to the user’s health status, goals, and preferences.

Other approaches, instead, have focused on making recommendations to users
with specific characteristics. Tseng et al. provide people su↵ering from chronic
diseases (e.g., metabolic syndrome) with diet and exercise guideline recommenda-
tions [TLL+15]. Dobrican and Zampunieris [DZ16] focus on cardiac patients with
the goal of rehabilitation and thereby aims to provide the optimum of both auto-
mated and manual interventions [MAA+87]. Santos-Gago et al. suggest making
personalized recommendations to sportswomen by considering their menstrual cy-
cle [SSG+19]. Berndsen et al. and Smyth and Cunningham [BSL19, SC18b, SC18a]
propose supporting users in marathon preparation using recommender systems that
suggest to runners a challenging but achievable goal-time in addition to a tailored
plan based on a pace.
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Even though the use of recommender systems for health and wellbeing is an
emerging trend, recent studies put in evidence that having a health care expert-based
intervention is necessary when using these kinds of support [PKB18, MGA+16].
However, only a few works on technology-based physical activity promotion have
included expert knowledge in their recommendation process.

3.2 Dropout Prediction in eCoaching Platforms

Since there are no works that study dropout prediction in sports eCoaching plat-
forms to the best of our knowledge, we retain the closest domain to our research to
be student dropout prediction. Manhães et al. proposes a student dropout predic-
tion system to support academic administrators spot the ones who are in danger of
dropout in a public Brazilian University [MdCZ14]. According to the experiments,
the classifier Näıve Bayes achieved the best performance. Li et al. presents a method
based on behavior features and multi-view semi-supervised learning for dropout pre-
diction [LGL+16]. The study by Liu et al. [LWBT18] describes a time series-based
approach for disengagement prediction and illustrates the potential of the method by
applying the methodology to the Open University learning analytics dataset. Fei et
al. also presents an approach based on time series to solve the problem of dropout
prediction based on extensive experiments conducted on two MOOCs o↵ered on
Coursera and edX [FY15]. While Wang et al. and Qiu et al. propose approaches
based on Convolutional Neural Networks for solving dropout prediction problem in
MOOCs, resectively in [WYM17] and [QLHL19].

Although other work has been carried out on supporting users to keep an active
lifestyle, to the best of our knowledge, a lot of work has been done in the student
dropout prediction. Still, none of them predicts if users will train on a weekly basis
to spot and recommend sportspeople likely to lose motivation to their coach, based
on their recent behavior and their adherence to the objectives set by the coaches
following them.

3.3 Fairness in Rankings

Across time, there have been many debates on fairness and justice in moral philos-
ophy that led to many and di↵erent points of view and thus to di↵erent definitions
of fairness that are not well-agreed [Bin18]. Hence, in the Machine Learning field,
it is common to evaluate the fairness of an algorithm using measures that assess
how much this algorithm is discriminating against a protected group. Fairness in
the field of Information Retrieval and, more precisely in ranking problems, has been
approached from di↵erent perspectives.

Yang and Stoyanovich [YS17] suggest assessing fairness in rankings by adopting
measures based on statistical parity that compute the di↵erence in the distribution
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of di↵erent groups for di↵erent prefixes of the ranking (top-10, top-20, and so on).
Zehlike et al. [ZBC+17], face the challenge of generating a trade-o↵ between

fairness and utility in “Top-k ranking” by satisfying two levels of constraints. The
first level consists of making sure that the more relevant items are above less relevant
ones within the same group. In contrast, the second introduces a fairness constraint
that ensures that the proportion of protected group items in every prefix of the top-k
ranking is above a minimum threshold.

Several other works proposed di↵erent fairness constraints that mainly present
parity constraints restricting the fraction of items with each attribute in the rank-
ing [SJ18]. However, Biega et al. [BGW18] go beyond such parity constraints and
present a framework that ensures amortized fairness in rankings, based on the equity
of attention, by focusing on individual fairness while making exposure proportional
to relevance for all subjects, using an integer linear program to generate a series of
rankings.

In parallel with this work, Singh and Joachims in [SJ18] tackle the challenge
of the fairness of exposure in rankings by suggesting a more generic framework for
finding rankings that maximize the utility for the user while satisfying a specifiable
notion of fairness.The authors propose three fairness constraints:

1. Demographic Parity enforces that the average exposure of the documents
in the protected and non-protected groups are equal;

2. Disparate Treatment enforces that exposure of the protected and non-
protected groups to be proportional to their average utility;

3. Disparate Impact assures that the click-through rates for the groups as
determined by the exposure and relevance are proportional to their average
utility.

As mentioned in [SJ18], there is no single definition of a fair ranking, but fairness
constraints depend on context and application. Indeed, in some works that pre-
sented real-world applications of user recommendation under fairness constraints,
the authors have chosen measures that best fit their domain and context.

In [HTBL18], Hutson et al. highlighted the issue of bias, discrimination, and
exclusion w.r.t. race during the matchmaking process in the study and design of in-
timate platforms. Also, in the people recommendation domain, Geyik et al. [GAK19]
proposed a framework for ensuring fairness in the hiring domain. More precisely,
they exploited the concepts of equality of opportunity [HPS16] and fairness through
awareness [DHP+12] to create fair opportunities for all users seeking a job in the
LinkedIn Talent Search platform. In the context of educational recommender sys-
tems, Marras et al. introduced a novel fairness metric that monitors the equal-
ity of learning opportunity according to a novel set of educational principles and
proposed a re-ranking approach to mitigate unfairness in online educational plat-
forms [MBRF20].
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Chapter 4

Machine Learning Models for
Workout Quality Prediction

4.1 Introduction

eCoaching systems support users at achieving their personal goals [Kam17]. In
the context of health, they assist users in their self-care, sometimes through the
promotion of physical activity routines [KMM+15]. Human coaches have a key role
in keeping users engaged [BCMP17]. However, keeping users engaged on the long-
term is a challenging task, since a coach usually supports a lot of people1. In the
physical activity domain, this means that after a workout session a coach should get
in touch with the people they support (e.g., via a chat). In this sense, prioritizing
users after their workout is key, in order to get in touch first with those who need
more support (e.g., because they completed a workout with bad performances). A
lack of prioritization might have consequences that go beyond engagement and might
have direct implications on the health and well-being of users, since those with the
worst performances would have a delayed support.

Our contributions. In this chapter, we propose a recommender system that sug-
gests to a coach the sportspeople who performed a workout, according to their perfor-
mance. User recommendation (a.k.a. contact recommendation) is usually intended
as the task of suggesting one user to another, in order for them to connect [SCC19].
In our domain, a sportsperson can be recommended to a coach multiple times (even
very frequently, according to the sportsperson’s training schedule).

Our approach first models users according to their workout performance, then
ranks them in ascending order of workout quality, thus suggesting first those with
the worst performances. The choice of introducing a recommender system between
the end of a workout and the support o↵ered by the coach is not only motivated
by the large number of users that a coach follows, but also by the complexity of

1In the platform considered in this thesis, a coach follows on average 21.3 users.
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Figure 4.1: Workout results for a sportsperson
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workout results (a workout is usually composed by di↵erent activities, such as run-
ning, walking, and resting, and each activity is in turn made up of several statistics,
like the speed and covered distance, as illustrated in Figure 4.1), which need to be
contextualized with the characteristics of the users (e.g., gender, age, and workout
objective). With our proposal, we are o↵ering coaches an initial filtering of the
workout results, to facilitate their work. Hence, in the flow presented in Figure 1.1,
our solution enriches step 4. Concretely, when the app returns the workout results,
it would not only provide the coach with the fine-grained results of each user, but
the coach also sees a ranking of the users, thus being able to analyze first the results
of those who are supposed to be more in need.

In this work, we model the recommendation problem as a ranking problem,
since our goal is not to predict the quality of a workout with a score (rating), but
to provide the coach with an e↵ective ranking of the users to support, in so-called
“Personalized Learning to Rank” approaches [AB15]. Indeed, predicting the rating
of a workout is not enough to provide a coach with e↵ective information about
the user, since the performance in the last workout should be contextualized with
the usual behavior of the user; e.g., it would be much more urgent to support a
user who does a poor workout but usually does well, than to support a user who
performed a poor workout, but always does so (in this second case, a coach expects
that the performance of that user would not be optimal). In a nutshell, we model
users’ workout performance by contextualizing it to their recent behavior and use
this modeling to provide a personalized ranking of these users to the coaches.

As previously mentioned, sensitive attributes of the users, such as gender, are
used by our ranking algorithm. Hence, there might be the risk for the users who
belong to a certain gender to receive a disparate treatment, i.e., to receive a less timely
support, because of an attribute that should not a↵ect their ranking position. Hence,
it is important that users receive a fair exposure, i.e., that their ranking positions
are not a↵ected by their gender. However, relevance estimation by itself does not
guarantee fairness of exposure [BGW18, SJ18]. In order to deal with this issue, we
provide metrics to assess fairness of exposure and an e�cient algorithm to re-rank
the unfair lists.

To the best of our knowledge, in the athletic field, no one has ever developed a
system able to support users by ranking them in a fair way, helping their human
coaches prioritizing who needs the most immediate support.

Although contact recommenders have been widely studied in the litera-
ture [GP16, SCC19], our novelty goes much beyond the application domain. Indeed,
classic contact recommenders are not necessary anymore after two people connect,
while a user connects to a coach through a recommendation multiple times (i.e., each
time they perform a workout). Later in the chapter, we will also highlight di↵erences
at an algorithmic level, which make our problem fundamentally new.

Specifically, our contributions can be summarized as follows:

• We present an approach to model the performance of the users in a running
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workout session;

• We introduce an algorithm to rank the users according to the support they
need and recommend them to the coach;

• We provide, for the first time in the literature of athletic-related user recom-
mendation, algorithms to provide fairness of exposure in the results;

• We validate our proposal on a real-world dataset collected from an eCoaching
platform on standard metrics to assess ranking quality.

Roadmap. The rest of the chapter is structured as follows: Section 4.2 presents
the preliminaries, to provide foundations to our work. In Section 4.3, we introduce
the dataset and our approach to workout modeling. Section 4.4 describes the user
recommendation algorithm, and in Section 4.5 we present the experimental frame-
work and results. We conclude the chapter in Section 4.6.

4.2 Preliminaries

Here, we present the preliminaries, to provide foundations to our work.

4.2.1 Recommendation scenario

Let U be a set of users, and C be a set of coaches, both belonging to the eCoaching
platform. The subscriptions of users to the services of the coaches is a binary relation
S ✓ U ⇥C; we denote as Sc the users that are followed by a coach c 2 C. Moreover,
we denote as Rw the set of raw features captured by eCoaching platform during a
workout w 2 W .

Our first goal is to build a model of each workout, denoted as Mw, which cap-
tures information about the workout performance of a user, and contextualizes this
performance with the previous behavior of the user. More formally, we will build a
function f : R!M , which takes the raw features R, to build a new set of features
M . Given the set of workout plans prepared by a coach, which is a binary relation
P ✓ C ⇥M , we denote as Pc the plans prepared by a coach c 2 C. Given a coach
c 2 C our final goal is to build a functions, g : Pc ⇥ Sc ! Sc, considers the set of
workouts of the users followed by a coach and ranks those users according to their
performance; The users will be ranked from the poorly performing to the better
performing one.

4.3 Dataset and Workout Modeling

In this section, we provide the details of the dataset we employed in this study, and
we provide a first characterization of the data. Later, we present the pre-processing
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Figure 4.2: Ratings distribution in the dataset. The x axis (Rating) reports
each rating that could be assigned by a trainer, and y axis (Count) reports the
number of workout that received that rating.

steps we performed on the obtained workouts and our approach to model workouts.
Our research is based on a real-world dataset, containing 47,555 activities that

compose 8,486 workouts (our set W ). This means that each workout is composed
by several activities. The workouts were performed by the set U of 412 users. Users
have a di↵erent running experience and the coach is aware of the background of the
users she follows.

The coaches in the platform evaluated these workouts by assigning a rating
(denoted as rw, where w is the workout who received that rating) ranging between
1 and 5. As we are dealing with real-world data, we encountered the problem
of class imbalance. Figure 4.2 represents graphically the distribution of ratings,
where “Count” indicates the number of samples having the corresponding rating.
We will deal with this phenomena before the classification process, as described in
Section 4.5.1.

Table 4.1 describes the raw features of each workout in the original dataset (our
set R) and Figure 4.3 presents the distribution of activities and workouts.

4.3.1 Dataset Characterization

In this section, we delve into our data, to understand how it is distributed. This
characterization also serves as a motivation to our problem, since we provide in-
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Table 4.1: Description of the raw features. We use four columns to characterize
each feature. Concretely, we report the feature’s ID (the u prefix denotes a user

feature, the w prefix a workout feature, and a an activity feature), the feature’s
name, the type with which its values can be represented, and a textual description
of it.

ID Feature Type Description
u1 User ID int ID of the user
u2 User Birth Date Date Date of birth of the user
u3 User Gender string Gender of the user (M for male, and F for female)
u4 User Height int Height of the user (in meters)
u5 User Weight int Weight of the user (in kg)
w1 Workout ID int ID of the workout
w2 Burnt Calories float Amount of calories burnt during the workout session.
w3 Workout Date date The date when the workout was performed
a1 Activity ID int ID of the activity
a2 Distance Objective int The distance goal given by the coach to the sportsperson for that

activity (in meters)
a3 Covered Distance float The distance covered by the sportsperson when performing that

activity
a4 Speed Objective int The speed goal given by the coach to the sportsperson for that

activity (in km/h)
a5 Average Speed float The average speed performed by the sportsperson for that activity

(in km/h)
a6 Time Objective int The time goal given by the coach to the sportsperson for that ac-

tivity (in seconds)
a7 Time Elapsed float The time performed by the sportsperson for that activity (in sec-

onds)
a8 Pace Objective int The pace goal given by the coach to the sportsperson for that ac-

tivity (in min/km)
a9 Average Pace float The average pace performed by the sportsperson for that activity

(in min/km)
a10 Activity Type string The type of that activity (either walking, running, or resting)
a11 Activity Label string The label of that activity (either, pace, distance, time, or unknown,

indicating the type of objective the activity has; the unknown label
is taken by those activities that do not have an objective)
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Figure 4.3: Distributions of activities and workouts. Cumulative distribution
of activities per workouts (left). Cumulative distribution of workouts per users
(Right).

sights on data imbalance from multiple perspectives, and conjecture on the possible
implications it can have when ranking workout results.

From the left part of Figure 4.3, we can see that almost 70% of the activities
in the dataset compose only the first 3000 workouts (hence, less than one third
of the workouts comprise 70% of the activities). This means that those workouts
are composed of a lot of activities, which makes it very challenging for coaches to
analyze and evaluate in a short time. For this reason, it would be helpful to provide
coaches with a ranking of users in order to spot immediately the sportspeople that
need timely support. Thus, by optimizing the coaches’ workload, our system will
certainly help increase the e�ciency and e↵ectiveness of eCoaching. Observing the
right part of the figure, we can remark that almost 70% of the workouts in the
dataset where performed by the first 100 users (hence, by around one fifth of the
users). This means that the first 100 users performed a considerable number of
workouts, which makes it interesting to contextualize our modeling also with the
workout history of users.

From Figure 4.4, instead, we notice that the percentage of workouts performed
by male sportspeople is mostly twice the percentage of workouts performed by their
female counterpart. Hence, in our dataset, the male users represent the majority
group. The di↵erent in the number of workouts performed by di↵erent genders
in our dataset may lead our system to be biased w.r.t. the workouts performed
by the users of the gender that performed more workouts (i.e., males). We would
like to remark once again that the gender should not impact the ratings, since the
coaches that created the workout plans and rated the performance of users take into
consideration the gender of users, their experience, and their health conditions.
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Table 4.2: Workout Modeling Features. We use five columns to model each
workout. Concretely, we report the feature’s category, its ID, the feature’s name,
the type with which its values can be represented, and a textual description of it.

Category ID Feature Type Description
f1 Workout ID int ID of the given workout, directly derived from w1

Distance-based features

f2 Distance Objective float Sum of the distance objectives of the activities of the considered
workout (feature a2 in Table 4.1)

f3 Covered Distance float Sum of all the covered distances of the activities of the consid-
ered workout (feature a3 in Table 4.1)

f4 Distance Gap float Obtained by first calculating the di↵erence between the dis-
tance objective (feature a2 in Table 4.1) and covered distance
(feature a3 in Table 4.1) for each activity in the workout, and
then averaging the obtained values (this feature indicates how
well the users respected their distance objective)

f5 Distance Gap Variance float Variance of the distance gaps in each activity considered to
compute feature f4 (this feature indicates how far are the in-
dividual values from the average)

f6 Distance Gap Standard
Deviation

float Standard deviation of the distance gaps in each activity consid-
ered to compute feature f4 (this feature also indicates how far
are the individual values from the average, but it is expressed
in the same units as the data)

Temporal features

f7 Time Objective int Sum of the time objectives of the activities of the considered
workout (feature a6 in Table 4.1)

f8 Workout Duration float Sum of all the time the user has taken to complete the activities
of the considered workout (feature a7 in Table 4.1)

f9 Temporal Gap float First create the di↵erence between the time objective (feature
a6 in Table 4.1) and elapsed time (feature a7 in Table 4.1) for
each activity in the workout, and then average the obtained
values (this feature indicates how well the user respected her
time objective)

f10 Temporal Gap Variance float Variance of the temporal gaps in each activity considered to
compute feature f9

f11 Temporal Gap Standard
Deviation

float Standard deviation of the temporal gaps in each activity con-
sidered to compute feature f9

Pace-based features

f12 Pace Objective int Average of the pace objectives of the activities of the considered
workout (feature a8 in Table 4.1)

f13 Average Pace float Average of the paces of the activities of the considered workout
(feature a9 in Table 4.1)

f14 Pace Gap float Obtained by first calculating the di↵erence between the pace
objective (feature a8 in Table 4.1) and average pace (feature
a9 in Table 4.1) for each activity in the workout, and then
averaging the obtained values (this feature indicates how well
the user respected her pace objective)

f15 Pace Gap Variance float Variance of the pace gaps in each activity considered to com-
pute feature f14

f16 Pace Gap Standard Devia-
tion

float Standard deviation of the pace gaps in each activity considered
to compute feature f14

Workout characteristics

f17 Walking Activities’ Per-
centage

float Percentage of activities in a workout where feature a10 is equal
to walking

f18 Running Activities’ Per-
centage

float Percentage of activities in a workout where feature a10 is equal
to running

f19 Percentage of Activities
with an Objective

float Percentage of activities in a workout where feature a11 is not
equal to unknown

f20 Percentage of Well-
performed Activities

float Percentage of activities in a workout that have any gap equal
to 0

f21 Week Day int The day of week when the workout was performed; this feature
takes values from 1 to 7, and is obtained from the feature w3
in Table 4.1

f22 Week Number int The week of year when the workout was performed; this feature
takes values from 1 to 53, to account for years who have 53
weeks, , and is obtained from the feature w3 in Table 4.1

f23 Month int The month when the workout was performed; this feature takes
values from 1 to 12, and is obtained from the feature w3 in
Table 4.1

f24 Days From Previous Work-
out

int The number of days from the previous workouts session.

User characteristics and behavior

f25 User Age int Created using feature u2 described in Table 4.1, in order to
contextualize the workout performance with the age of the user

f26 User Gender categorical Directly computed from feature u3 described in Table 4.1 (0
for female, 1 for male)

f27 User Height int Directly computed from feature u4
f28 User Weight int Directly computed from feature u5
f29 User BMI float Computed using features f27 and f28
f30 User Fidelity int Number of workout sessions the user has performed from the

first time they used the platform.
f31 Mean Rating float Decaying average of the ratings rw obtained by the user in

previous workouts. This feature allows us to monitor the evo-
lution in the performance of a user, by giving more impor-
tance to the last sessions without neglecting the past ones.
The decaying average of the element X at the position N is:
XN = 3

4 ·XN�1 +
1
4 ·XN�2.
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Figure 4.4: Percentage of workouts performed by each gender. For each
gender of the dataset, we report the percentage of workout performed by the users
that recognize themselves as belonging to that gender.

4.3.2 Data Pre-processing and Feature Extraction

Data Pre-processing. From all the workouts in the dataset, we removed all those
that are not reliable. A workout is not reliable when at least one of the following
conditions is met: (i) covered distance > 43, 000 meters, (ii) workout duration >

5 hours, (iii) rest time > 1 hour, (iv) average speed > 16 km/h. We also removed
the workouts that were not performed under the supervision of a coach. After remov-
ing the irrelevant workouts, the final dataset consists of 5,823 workouts performed
by 291 users.
Feature Extraction. Given the raw features available in our dataset and presented
in Table 4.1, the next goal is to model each workout, by doing some feature engi-
neering. We regrouped all the activities that belong to each workout and excluded
the activities that have resting as activity type (feature a10) since, according to
coaches, they are not considered when evaluating workout quality; for this reason,
they should not be part of our user modeling and recommendation algorithm.

In Table 4.2, we describe the features we created, and how they are derived from
the original ones.

4.4 Fair User Recommendation

In this section, we describe the algorithm we implemented to recommend users who
need support of the coach.
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4.4.1 Motivation

Before we go into the detailed steps of our approach, it is important to highlight
why our approach departs from the main classes of recommender systems (collabo-
rative filtering and content-based approaches) and from classic people recommender
systems:

• Classic people recommenders exploit the topology of the social network
(“since you are connected to these users, you might connect to these”); this
would not fit our work, since in this work we are not recommending sports-
people to coaches that might suit them, but we recommend to coaches those
who need support after a workout;

• Collaborative-filtering approaches do not consider item features, which
are essential to predict if a user needs support or not (we are basing support on
a prediction of workout quality). Moreover, collaborative filtering approaches
consider static items (e.g., a movie does not change over time), while in our
domain there is no such thing as two identical workouts. Hence, collaborative
algorithms would not fit our approach either;

• Content-based approachesmatch two users based on the content they post.
While training results are a form of content exploited by our algorithm, the
matching between the coach and the sportsperson is not what triggers our
recommendations.

Workout quality and its relation to previous users’ behavior and their objectives
are what drive the recommendation of a user to a coach, thus making our problem
new from a recommendation point of view. Hence, no direct comparison of our work
to existing people recommenders is possible.

Continuing, we motivate our choice to provide fairness via a re-ranking approach
and how our method departs from the existing ones. Mitigation methods for un-
fairness in rankings can be categorized into pre-processing, in-processing, and post-
processing methods, as illustrated in Figure 4.5;

• Pre-processing methods aim to mitigate disparities in user ranks by inter-
vening at the level of training data, either before these candidates are processed
by a ranking algorithm or during the ranking process;

• In-processing methods intervene on the ranking algorithm such that it
produces a ranked outcome that meets the specified fairness criteria;

• Post-processing methods intervene on the output ranking in such a way
that it meets the specified fairness criteria.
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Figure 4.5: Unfairness mitigation at di↵erent stages of ranking. The bottom
boxes (Pre-processing, In-processing, and Post-processing) indicate the three forms
of mitigation strategy. Each bottom box points to another box (Training Data,
Model Training, and Output Rankings), which indicates at what stage of the pipeline
the strategy makes an intervention.

From the perspective of fairness, we opted for a post-processing method by mak-
ing a classic assessment of the exposure given to the di↵erent genders in the ranking.
Here, the application domain is new, by providing fairness to users in need of support
in eCoaching platforms.

A re-ranking algorithm is the only option when optimizing ranking-based met-
rics, such as visibility and exposure. An in-processing regularization, such as
those that have been presented in [KAAS18, BCD+19], would not be possible,
since at prediction stage the algorithm does not predict if and where an item will
be ranked in a recommendation list; hence, no direct comparison with these ap-
proaches is possible. This is not due to the specific choice of algorithms, since
this consideration would also hold for list-wise approaches. Re-rankings have
been introduced to reduce disparities, both in the context of non-personalized
rankings [ZBC+17, SJ18, BGW18, CSV18, ZC20, PBG+20] and of recommender
systems [MMB+18, BSO18], with approaches such as Maximal Marginal Rele-
vance [CG98].

However, all these algorithms optimize only one property (either utility or expo-
sure). As we will show later in our ablation study, optimizing for one metric is not
enough, so no direct comparison with these approaches is possible.

4.4.2 Our Approach

The user recommendation process is divided into two main steps:

1. Performance-based ranking: we rank the sportspeople based on the per-
formance in the last workout, contextualized to their recent behavior.



48CHAPTER 4. MACHINE LEARNINGMODELS FORWORKOUTQUALITY PREDICTION

2. Fair re-ranking: we assess how fair is the ranking algorithm in terms of
exposure of the sportspeople and provide a re-ranking algorithm for the cases
in which sportspeople of a given gender are a↵ected by disparate exposure.

The steps are now described in detail.

4.4.3 Performance-based Ranking

The intuition behind this algorithm is that predicting the quality of a workout is a
central element in order to provide a recommendation to a coach. For this reason,
we initially predict the rating that the coach would assign to a given workout. The
input received by the classifier is the workout model composed of the 30 features
we engineered in Section 4.3.2. Di↵erent classes of classification algorithms can be
employed for the purpose of predicting workout quality, from ordinal to multi-class
approaches. As we will show in Section 4.5.2, the chosen class of algorithms implies
treating the ground truth as a continuous or disjoint set of classes (ordinal and multi-
class classification, respectively); in our evaluation, we explore the e↵ectiveness of the
two classification strategies in our context. The output of a classifier is a predicted
rating, denoted as r̂w.

Finally, we rank the users based on the predicted rating r̂w. The “urgency” with
which they will get support depends on their performance during their last workout
session. In general, a high r̂w leads to a high rank. Instead, if r̂w is low, the user
will get a more timely support.

A recommendation list R for a coach is represented by the list of users followed
by them, ranked by ascending r̂w.

Since coaches and sportspeople have a continuous relationship, we simulate the
recommendation scenario of the real-world application. Under this scenario, we
assume that the coach will check who might need support by checking the u4fit
application at regular intervals. To simulate these intervals, we start by ranking
the users that performed the first 5 workouts for each coach, then we update the
ranking for each coach whenever the sportspeople followed by this coach perform 5
new workouts.

4.4.4 Fair Re-ranking

Every output generated by the previous step is a list of users to be recommended to a
coach, based on their likelihood of needing support, according to their performance.

The classification algorithm uses the gender of the users as a feature used in
the classification process (feature f24), systematically under-exposing the users of
a given gender would mean that the ranking is a↵ected by the so-called disparate
treatment. Disparate treatment means that users belonging to a given gender might
be ranked lower w.r.t. to their counterpart, even though they might need the same
(or more) support.
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Hence, the first step is to assess how fair is the ranking, in terms of the exposure
given to the users [SJ18]. The exposure that a user gets in a ranking is given by:

Exposure (u|R) =
1

log(1 + j)
(4.1)

where j is the position the user covers in R.
In order to measure how “deserving” is that user to cover position j in the

ranking, we measure their utility according to:

Utility (u|R) =
2rel(u) � 1

log(1 + j)
(4.2)

where rel(u) = max(rw)� r̂w.
It should be trivial to note that the utility of a user corresponds to their DGC,

which is a common practice in the literature [SJ18].
Let Gi denote the subgroup of users having the same gender. The Exposure and

Utility for that group are calculated as follows:

Exposure (Gi|R) =
1

|Gi|
X

u2Gi

Exposure(u) (4.3)

and

Utility (Gi|R) =
1

|Gi|
X

u2Gi

Utility(u). (4.4)

We first assume a recommendation list (ranking) to be fair if the two groups get
the same Exposure, defined as follows:

Exposure (G0|R) = Exposure (G1|R) . (4.5)

In order to assess if a recommendation list is fair, we measure Demographic Parity
Ratio (DPR) as follows:

DPR (G0, G1|R) =
Exposure (G0|R)

Exposure (G1|R)
(4.6)

A DPR equal to 1 indicates the users of a given gender get a fair exposure, while
a value lower or greater than 1 tells us which group is disadvantaged in terms of
disparate exposure.

The DPR metric only accounts for the position in which users are ranked, with-
out accounting for their utility, in demographic parity fashion. To account also for
the Utility of the users of a given group, we introduce another constraint that con-
siders it, to balance Exposure of the two groups while preserving ranking quality:

Exposure (G0|R)

Utility (G0|R)
=

Exposure (G1|R)

Utility (G1|R)
. (4.7)
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In order to assess if a recommendation list is fair, we measure Disparate Treat-
ment Ratio (DTR) as follows:

DTR (G0, G1|R) =
Exposure (G0|R) /Utility (G0|R)

Exposure (G1|R) /Utility (G1|R)
(4.8)

A DTR equal to 1 indicates fair exposure for the users, while a value lower or
greater than 1 tells us which group is disadvantaged in terms of disparate exposure.

In case our two metrics, DPR and DTR, report scores di↵erent from 1, we
developed a re-ranking approach to generate a fair exposure. The intuition behind
our algorithm is that each pair of users that have a di↵erent gender and appear
consequently in a ranking is a candidate for a swap, so that the disadvantaged
gender can be given more exposure. Our approach is summarized in Algorithm 1.

ALGORITHM 1: Order-Based Re-ranking

input : X: users sorted by rank, D: fairness metric (either DTR or DPR)
output: R: ranked list of users that respects group fairness constraints

1 d empty dictionary;
2 s empty dictionary;
3 d[X] D;
4 s[X] getAllSwappableRows(X);
5 while s[X] is not empty do
6 p getNextPair(s[X]);
7 remove p from s[X];
8 X temp swapPair(X, p);
9 D temp calculateD(X temp);

10 if D HasImproved(D,D temp) then
11 X  X temp;
12 D  D temp;
13 d[X] D;
14 s[X] getAllSwappableRows(X);
15 end
16 end
17 R the ranking in d that have the best D value;
18 return R;

The algorithm takes as input the list of users in a ranking update and a metric D
that measures either Disparate Treatment Ratio (DTR) or Demographic Parity Ra-
tio (DPR). First, the algorithm creates two empty dictionaries; in the first, we save
the rankings as keys, with the metric D associated to that ranking stored as value
and, in the second, we save the ranking as key and the list of possible pairs of users
to swap as value. In line 3, we save in the first dictionary (d) the original ranking
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as key and the respective D as value. Then, in line 4, the function getAllSwap-
pableUsers looks for the disadvantaged gender (if D < 1, then G0 is disadvantaged,
while if D > 1, then G1 is disadvantaged) and returns a list containing the pairs of
indexes of the users that could be swapped, ordered by their occurrence, such that
the disadvantaged gender may get more attention. Then, we save the ranking and
the users to swap respectively as key, value in the second dictionary (s).

In line 6, we take the first pair of users to swap and check if D has improved
(i.e., abs(1 � D) > abs(1 � D temp)). If this is the case, we save the new ranking
and the respective D to d, update the users to swap given this new ranking, and
repeat this process until we make sure there are now users that we can swap and
that can improve the value of D for the ranking (lines 5-16). Finally, from d we take
the ranking that has the best D value.

4.5 Experimental Framework

This section describes the experiments performed to validate our proposal.

4.5.1 Experimental Setup

The experimental framework exploits the Python scikit-learn 0.19.1 library. The
experiments were executed on a computer equipped with a 3.1 GHz Intel Core i7
processor and 16 GB of RAM.

The learning phase and consequently the prediction of most Machine Learning
classifiers may be biased towards the occurrences that are frequently present in the
dataset [RK17, KWMM09].

Researchers have suggested two main approaches to deal with data imbalance:
the first approach consists of tuning the data by performing a sampling, and the
other is to tweak the learning algorithm [KWMM09]. Due to its e↵ectiveness in our
data, we employed the first approach.

More specifically, we have considered the oversampling approach, since it is more
e↵ective for small dimension datasets [SKW16]. We opted for Synthetic Minority
Over-sampling Technique Tomek (SMOTETomek), since it creates completely new
samples and eliminates only examples belonging to the majority class instead of
replicating the existing ones, which o↵ers more examples to the classifier to learn
from. This means that the minority class examples are over-sampled, whereas the
majority class examples are under-sampled [CBHK02, BPM04].

In our framework, we applied SMOTETomek using imbalanced-learn, which is a
package that provides with a bunch of sampling approaches used in datasets showing
high class imbalance [LNA17].
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4.5.2 Evaluation Strategy

In this section we present our strategy to evaluate our proposal.

Workout Quality Prediction

In order to rank the users that need timely support, we first predict the quality of
their performance during the last workout that the coach assigned to them. To this
end, we compare two kinds of classification, the first is Ordinal classification (which
takes into account the order of ratings) and the second is Multi-class classification
(which does not take into account the order of ratings).

Ordinal Classification. In this study, we compared four ordinal classifiers, which
consider as classes the ordered set of ratings.

1. Ordinal Ridge (OR). This classifier overwrites the Ridge classifier in scikit-
learn, so that it uses the (minus) absolute error as score function;

2. Least Absolute Deviation (LAD). This classifier optimizes the sum of the ab-
solute errors;

3. Logistic Immediate-Threshold (LIT). This classifier implements the ordinal
logistic model, considering the Immediate-Threshold variant;

4. Logistic All-Threshold (LAT). This classifier implements the ordinal logistic
model, considering the All-Threshold variant.

Multi-class Classification. To treat the workout-quality prediction problem as
a multi-class classification, we compared four tree-based classifiers, as these perform
better compared to those that are not tree-based when it comes to low-dimensional
data [RK17].

Gradient Boosting (GB) is an ensemble algorithm that improves the accuracy
of a predictive function through incremental minimization of the error term. After
the initial base learner (almost always a tree) is grown, each tree in the series is fit
to the so-called “pseudo residuals” of the prediction from the earlier trees with the
purpose of reducing the error [NK13].

Random Forest (RF) is a meta-estimator of the family of the ensemble methods.
It fits a number of decision tree classifiers, such that each tree depends on the values
of a random vector sampled independently and with the same distribution for all
the trees in the forest [Bre01].

Extra Trees (ET) is another ensemble method. Similarly to Random Forest, it
uses a random subset of candidate features while splitting a tree node; however,
instead of looking for the most discriminative thresholds, thresholds are drawn at
random for each candidate feature and the best of these randomly-generated thresh-
olds is picked as the splitting rule [GEW06].
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Decision Tree (DT) is a non-parametric supervised learning method used for
classification and regression. One of the main advantages of decision trees with
respect to other classifiers is that they are easy to inspect, interpret, and visualize,
given they are less complex than the trees generated by other algorithms addressing
non-linear needs [BCI+18].

Strategy. To validate our proposal, we performed five sets of experiments:

1. Classifiers comparison. We evaluated the ordinal and multi-class classifiers,
by running them on all the features. We compared the accuracy metrics they
obtained, in order to determine the most e↵ective one;

2. Feature sets importance evaluation. After choosing the most e↵ective
ordinal and multi-class classifiers, we evaluated the importance of the used
features by measuring the correlation between the value of each feature and
the values predicted using the best performing classifier, to understand how
each feature impacts the quality of workouts;

3. Ablation study. We took away the least important features one by one, and
evaluated the classification accuracy, to check how the less relevant features
a↵ected the e↵ectiveness of the classifiers;

4. Re-training simulation. To simulate the real-world scenario, we re-train
and monitor the performance of the best ordinal and multi-class classifiers
each 100 workouts (i.e., we first train the classifier on the first 100 workouts
and evaluate its performance on the following 100 on then we train on the first
200 and evaluate its performance on the following 100).

Ranking Under Fairness Constraints

To rank the users we sort them according to the rating predicted by the best clas-
sifier. Then, we compare the e↵ectiveness and the fairness of the resulting ranking,
before and after applying Algorithm 1 described in Section 4.4.4.

To simulate the real-world scenario, we re-rank the users for each coach every n

new workouts.

4.5.3 Metrics

Workout Quality Prediction. Our approach ranks users on the basis of their
workout performance. For this reason, the first set of evaluation metrics should be
capable of capturing how e↵ective is a classification approach at predicting workout
quality. Given that the ground truth is represented by 5-star ratings, we had to
choose metrics that are most suitable for multi-class datasets. Nevertheless, the
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majority of the performance measures present in the literature are designed only for
two-class problems [GFB+11].

However, several performance metrics for two-class problems have been adapted
to multi-class. Some measures that fit well our needs, give us relevant information
about the performance of our classifier, and are successfully applied for multi-class
problems are Accuracy, Recall, Precision, F2-score, and Informedness [GFB+11]. In
what follows, we present these metrics in detail.

Accuracy is defined as:

Accuracy =
TP + TN

P +N
(4.9)

where P represents positively labeled instances, whereas N represents negatively
labeled ones. TP represents the true positives (i.e., instances of the positive class
that are correctly labeled as positive by a classifier), TN represents the true negatives
(i.e., instances of the negative class that are correctly labeled as negative by a
classifier). It represents the fraction of all instances that are correctly classified.

Recall is defined as:

Recall =
TP

P
(4.10)

and it measures the completeness of a classifier.
Precision is defined as:

Precision =
TP

TP + FP
(4.11)

and it measures the exactness of a classifier.
F2-score is defined as:

F2 = 5 · Precision ·Recall

4 · Precision+Recall
(4.12)

and it is a metric that considers both recall and precision.
None of the metrics presented so far takes into account the true negative rate

(defined as TN/N) and this is an issue when dealing with imbalanced datasets
[Pow11]. Considered this, we decided to measure Informedness, which is the clearest
measure of the predictive value of a system [Pow12]. Informedness is defined as:

Informedness = Recall + true negative rate� 1 (4.13)

where true negative rate is TN/N . It ranges between -1 and 1, where 1 represents
a perfect prediction, 0 no better than random prediction, and -1 indicates total dis-
agreement between prediction and observation. This metric is particularly e↵ective
for multi-class problems as opposite to the accuracy [GFB+11].
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Table 4.3: Ordinal classifiers comparison. In each line, we report the results
obtained by each classifier. The first column indicates the classifier’s name, while
the following columns are associated with each considered evaluation metric. The
values in bold represent the best results for each metric.

Classifier Accuracy F2-Score Recall Precision Informedness
OR 0.917 0.917 0.917 0.919 0.883
LAD 0.575 0.561 0.575 0.601 0.487
LIT 0.803 0.797 0.803 0.827 0.730
LAT 0.790 0.782 0.790 0.815 0.710

Ranking Under Fairness Constraints. To evaluate the ranking quality, we
compare the ranking lists generated as output by the model and those given as the
ground truth (i.e., the user rankings shaped based on the ratings assigned to each
coach for the workouts in the test set). The most suitable metric for this purpose is
the Normalized Discounted Cumulative Gain (NDCG).

We compared our rankings e↵ectiveness using an exponential gain and logarith-
mic decay based on the graded relevance judgments. In our case, NDCG at position
k is defined as:

NDCG@k(R) =
1

N

kX

j=1

2rel(uj) � 1

log(j + 1)
(4.14)

where N is the maximum possible DCG given the known relevant users, uj is the
u
th-ranked user returned by R, and rel (uj) is the binarized relevance assessment of

this user [RC10]. NDCG values range between 0 and 1; the higher the value, the
better.

4.5.4 Experimental results

In this section, we present our results.

Classifiers comparison

• Ordinal classification. Table 4.3 (visually presented in Figure 4.6) shows
that LIT, LAT, and OR achieved a good performance, where LAD achieved
the worst results. The ordinal classifier that gets the best scores for all the
metrics is OR. It achieves an F2-Score of almost 92% and an Informedness of
0.88, which means that we are correctly predicting the rating of a workout in
92% or more of the cases. Based on these results, OR is the ordinal classifier
chosen for the subsequent analyses.

• Multi-class classification. Table 4.4 (visually presented in Figure 4.7) shows
that almost all the classifiers have a good performance, but RF is the one that
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Figure 4.6: Ordinal classifiers comparison. Each block of columns reports the
results obtained for each metric. Each column denotes an ordinal classifier. The
higher the value, the better is the classifier.

Table 4.4: Multi-class classifiers comparison. In each line, we report the results
obtained by each classifier. The first column indicates the classifier’s name, while
the following columns are associated with each considered evaluation metric. The
values in bold represent the best results for each metric.

Classifier Accuracy F2-Score Recall Precision Informedness
GB 0.925 0.925 0.925 0.927 0.899
RF 0.929 0.929 0.929 0.930 0.912
ET 0.900 0.900 0.900 0.901 0.879
DT 0.916 0.916 0.916 0.916 0.901

Figure 4.7: Multi-class classifiers comparison. Each block of columns reports
the results obtained for each metric. Each column denotes a multi-class classifier.
The higher the value, the better is the classifier.
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Figure 4.8: Features’ importance for the OR classifier. Each line reports the
relative importance of a feature, in a score between 0 and 100. The higher is the
score, the more important is the feature.

gets the best scores for all the metrics. Concretely, RF achieves an F2-Score
of almost 93% and an Informedness of 0.91, which means that we are correctly
predicting the rating of a workout in 93% or more of the cases. Based on these
results, RF is the multi-class classifier chosen for the subsequent analyses.

• Ordinal vs. Multi-class classification. The best ordinal classifier and
the best multi-class classifier achieve a similar performance for the ratings
prediction task, nevertheless, RF performs slightly better than OR for all the
metrics. This is true for all the metrics we consider to evaluate classification
quality. This leads us to our first observation.

Observation 1. The ratings that the coaches use to assess workout quality
are in a continuous scale and, conceptually, an ordinal classifier would better
suit this task. However, the multi-class classifiers outperform the ordinal
ones. Hence, we conjecture that coaches might have a more schematic way
of evaluating workouts, better captured by multi-class approaches.

Feature sets importance evaluation.

Fig. 4.8 illustrates the impact of each feature on the performance of OR, using a
scale ranging from 0 (no importance) to 100 (very important). We can see that
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Figure 4.9: Features’ importance for the RF classifier. Each line reports the
relative importance of a feature, in a score between 0 and 100. The higher is the
score, the more important is the feature.

the features that have more impact on the classification process are mainly those
that model the recent behavior of the users and their adherence to their workout
objectives. The mean rating is the most important feature, and we assume that
this is due to the fact that it represents the decaying average of the recent ratings
achieved by the users, and since users usually tend to change their behavior gradually
their performance is very correlated with their recent ratings. We can see also that
the e↵ort (Burnt Calories), the month when the workout sessions were planned,
and the percentage of well-performed activities have a significant impact on the
workout quality prediction. However, user characteristics were not very relevant to
the classifier.

Fig. 4.9 illustrates the impact of each feature on the performance of RF, using
a scale ranging from 0 (no importance) to 100 (very important). We can see that
the features that have more impact on the classification process are mainly those
that model the recent behavior of the users and their adherence to their workout
objectives. The mean rating is the most important feature also according to RF. We
can see also that the covered distance, average pace, and the week number have a
significant impact on the workout quality prediction. However, user characteristics
and workout characteristics were not very relevant to the classifier.
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Figure 4.10: Results returned by training OR with di↵erent sets of features.
For each set of features, denoted in the x axis (Setting), we report the value obtained
by each metric.

Figure 4.11: Results returned by training RF with di↵erent sets of features.
For each set of features, denoted in the x axis (Setting), we report the value obtained
by each metric.

Ablation study.

During the ablation study, we train the classifier on di↵erent feature settings by
removing features one by one, starting from the least important (i.e., for OR, the
first setting runs the classifier without the User BMI, while in the second setting we
removed User BMI and Average Pace, and so on).

Training OR on fewer features showed that it achieves a better performance using
the feature set 18 (i.e., when we do not consider the first 18 less important features
while training the classifier), as reported in Figure 4.10.

Training RF on fewer features showed that it achieves a better performance using
the feature set 14 (i.e., when we do not consider the first 18 less important features
while training the classifier), as reported in Figure 4.11.

Table 4.5 shows the best performance of OR and RF after training them on fewer
features. Both classifiers achieve a very good performance, though RF outperforms
OR for all the metrics we considered.
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Table 4.5: Performance of OR and RF when trained on the best feature
sets. Each line reports the results of a metric and each column the classifier asso-
ciated with the reported results.

Classifier OR RF
Accuracy 0.928 0.945
F2 0.927 0.945
Recall 0.928 0.945
Precision 0.931 0.948
Informedness 0.902 0.930

Figure 4.12: Evolution of the performance of OR. The x axis (Batch size)
contains a point every 100 workouts, that is when a classifier gets retrained. The y

axis (Metrics) reports the value obtained by each metric with the associated batch
size.

Observation 2. Regardless of the users’ characteristics and how a workout
is made up, the workout quality depends above all on how much the runners
stick to their workout objectives and how much e↵ort they are putting during
workouts. Apart from being adherent to the goals set by the coach, the
period of the year when the workouts are planned can also influence the
performance of runners; we conjecture that this last phenomenon means
that good weather positively influences workout quality.

Re-training simulation.

In this evaluation, we re-train and assess the e↵ectiveness of the classifiers every 100
workouts.

Considering ordinal classification, Figure 4.12 shows that OR maintains a good
performance over time, with the F2-score values ranging between 81% and 99%. A
peculiarity of this classifier is that it can predict e↵ectively even when training on a
subset of workouts.

Considering the most e↵ective multi-class classifier, Figure 4.13 shows that when
training on fewer workouts (less than 300) the performance of RF is low but, when
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Figure 4.13: Evolution of the performance of RF. The x axis (Batch size)
contains a point every 100 workouts, that is when a classifier gets retrained. The y

axis (Metrics) reports the value obtained by each metric with the associated batch
size.

training on 300 workouts or more, the classifier maintains a good performance over
time (F2-score ranges between 86% and 99%).

Ranking

For each coach, we started by ranking the users that performed the first 5 workouts,
and we updated the rankings each new 5 workouts. We do this for the last 50
workouts performed by the users followed by all the coaches. Then, we mitigated
unfairness for each ranking update w.r.t. our disparate treatment metrics, DPR

and DTR.

• Ranking quality. Figure 4.14 shows the evolution of the average NDCG@10
over time before and after mitigating unfairness in ordinal and multi-class
based rankings. We notice that before mitigating unfairness, all the rank-
ings achieved an NDCG@10 of 1 using both multi-class based and ordinal
based rankings. This means that the ratings predicted by the classifier re-
flect both workout performance and the timeliness with which sportspeople
should be contacted. After mitigating unfairness, we remark that the values
of NDCG@10 get lower as the number of ranking updates grows. This could be
explained by the fact that, while we are mitigating unfairness, we reorder the
users such that they get assisted in a fair way and this influences the quality
of rankings. However, we can see that after mitigating unfairness, the ordi-
nal based rankings maintain a slightly higher NDCG@10 than the multi-class
based ones.

• Global evolution of DPR and DTR over time before and after mit-
igating unfairness. Figure 4.15 illustrates the evolution of the average
|DPR � 1| (how far is DPR w.r.t. its perfect value) before and after miti-
gating unfairness in ordinal and multi-class based rankings for each ranking
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Figure 4.14: Ranking accuracy results. The x axis (Ranking update) contains a
point every 5 workouts, that is when a classifier gets retrained. The y axis (Average
NDCG@10) reports the NDCG@10 obtained by each classifier in the associated
ranking update. We report these results before and after mitigation (blue and
orange line, respectively), for multi-class and ordinal classifiers (continuous and
dashed lines, respectively).

update. From Figure 4.15, we see that over time the average |DPR � 1| gets
closer to 0 after applying Algorithm 1 to mitigate unfairness, but its values
get higher as the number of ranking updates grows. The values of |DPR� 1|
for ordinal and multi-class based rankings are very similar, though, ordinal
based rankings achieved a slightly better DTR compared to multi-class based
rankings.

Figure 4.16 illustrates the evolution of the average |DTR�1| (how far is DTR
w.r.t. its perfect value) before and after mitigating unfairness in ordinal and
multi-class based rankings for each ranking update. From Figure 4.15, we see
that, like |DPR � 1|, over time the average |DTR � 1| gets closer to 0 after
applying Algorithm 1 to mitigate unfairness, but its values get higher as the
number of ranking updates grows. Nevertheless, the values of |DTR � 1| are
closer to 0 comparing to the values of |DPR � 1| before and after mitigating
unfairness.

In contrast with what we have seen in Figure 4.15, according to DTR the
multi-class based strategy is the one that generates more fair rankings.

Figure 4.17 illustrates the evolution of DPR before and after mitigating unfair-
ness in ordinal and multi-class based rankings for each ranking update. From
Figure 4.17, we see that the average DPR mostly ranges between 0.95 an 1.09
for all the ranking updates in ordinal and multi-class based rankings. Before
mitigating unfairness, the values of DPR are ranging between 1 and 1.09 and
after unfairness mitigation the values are ranging between 0.95 and 1.06. We
can deduce that the values of DPR after mitigation vary more, but are closer
to 1.

In addition, we can notice that in majority of cases the discriminated gender
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Figure 4.15: Fairness in terms of demographic parity. The x axis (Ranking
update) contains a point every 5 workouts, that is when a classifier gets retrained.
The y axis (Average |DPR� 1|) reports the distance of each classifier with respect
to the expected DPR score in a ranking update. We report these results before
and after mitigation (blue and orange line, respectively), for multi-class and ordinal
classifiers (continuous and dashed lines, respectively).

Figure 4.16: Fairness in terms of disparate treatment. The x axis (Ranking
update) contains a point every 5 workouts, that is when a classifier gets retrained.
The y axis (Average |DTR� 1|) reports the distance of each classifier with respect
to the expected DTR score in a ranking update. We report these results before
and after mitigation (blue and orange line, respectively), for multi-class and ordinal
classifiers (continuous and dashed lines, respectively).
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Figure 4.17: Demographic parity scores. The x axis (Ranking update) contains
a point every 5 workouts, that is when a classifier gets retrained. The y axis (Average
DPR) reports raw DPR score returned in a ranking update. We report these results
before and after mitigation (blue and orange line, respectively), for multi-class and
ordinal classifiers (continuous and dashed lines, respectively).

Figure 4.18: Disparate treatment scores. The x axis (Ranking update) contains
a point every 5 workouts, that is when a classifier gets retrained. The y axis (Average
DTR) reports raw DTR score returned in a ranking update. We report these results
before and after mitigation (blue and orange line, respectively), for multi-class and
ordinal classifiers (continuous and dashed lines, respectively).
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in terms of demographic parity is the male gender (DPR > 1).

Figure 4.18 illustrates the evolution of DTR before and after mitigating un-
fairness in ordinal and multi-class based rankings for each ranking update.
Figure 4.18 shows that the average DTR values mostly range between 0.97
and 1.05 for all the ranking updates in ordinal and multi-class based rankings.
Before mitigating unfairness the values of DTR are ranging between 0.97 and
1.05, meanwhile after the mitigation the values are ranging between 0.98 and
1.04. We can deduce that the values of DTR after mitigation are less variate
comparing to the values of DPR and closer to 1. Furthermore, we notice that
for almost all the ranking updates, the ordinal classification based rankings are
achieving better results compared to multi-class classification based rankings
with respect to DTR.

Moreover, we notice that, in terms of disparate treatment, the discriminated
gender is the female gender (DTR < 1), unlike what we have observed earlier
when assessing fairness using DPR.

At this point, one may pose the question: Which metric is telling the truth
about the discriminated gender? Both metrics are somehow right about the
discriminated group, except that DPR is not considering the performance of
sportspeople when measuring unfairness, while DTR also includes the utility of
the rankings instead, and thus considers also the performance of sportspeople
when assessing unfairness. For this reason, we may consider that DTR is more
suited to our application’s context, especially for the fact that not considering
the utility of rankings when mitigating unfairness could influence negatively
the quality of the users’ experience by attributing sportspeople an exposure
that is not proportional to their performance during their last workout session.

To explore more in depth this phenomena, we represented graphically the
evolution of DPR and DTR before and after mitigating unfairness in all the
rankings where females are more than males and the ones where females are
more than males (Figures 4.19, 4.20, 4.21, and 4.22). We analyze our results
in our following analysis.

• Evolution of DPR and DTR over time before and after mitigating
unfairness when females are more than males. Figure 4.19 illustrates the
evolution of DPR in the rankings where females are more than males, before
and after mitigating unfairness in ordinal and multi-class based rankings for
each ranking update. We observe that in most cases the discriminated group
is the male group, which is the minority group in this case, and that the
minority group gets ranked in a more unfair way as the number of ranking
updates increases. This could be explained by the fact that, as the rankings are
updated, the number of ranked users gets larger and more diverse which makes
the original rankings more unfair. After mitigating unfairness the average DPR
gets closer to its perfect value, and the discriminated group could change for
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Figure 4.19: Demographic parity scores, when females are more than males.
The x axis (Ranking update) contains a point every 5 workouts, that is when a
classifier gets retrained. The y axis (Average DPR) reports raw DPR score returned
in a ranking update. We report these results before and after mitigation (blue
and orange line, respectively), for multi-class and ordinal classifiers (continuous and
dashed lines, respectively).

some ranking updates. Hence, we do not observe any di↵erence in terms of
DPR values when comparing ordinal and multi-class based ranking strategies.

Figure 4.20 illustrates the evolution of DTR in the rankings where females
are more than males, before and after mitigating unfairness in ordinal and
multi-class based rankings for each ranking update. According to DTR the
discriminated group is mostly the one of males, and after the mitigation of
unfairness the average DTR got closer to 1 in all the cases for the ordinal
classification based ranking strategy. Instead, for the multi-class classification
based rankings, we can notice that in one case the average DTR in higher than
the average DTR after mitigating unfairness, and this could be explained by
the fact that the values of DTR for that ranking update are more variate than
before mitigating unfairness.

• Evolution of DPR and DTR over time before and after mitigating
unfairness when females are less than males. Figure 4.21 illustrates the
evolution of DPR in the rankings where females are less than males, before
and after mitigating unfairness in ordinal and multi-class classification based
rankings for each ranking update. This figure shows that the discriminated
group according to DPR before mitigating unfairness is the male group, when
it appears that after mitigating unfairness the discriminated group is mostly
the one of females. Since, the values of average DPR before and after mitigat-
ing unfairness are very close for the multi-class and the ordinal classification
based ranking strategies. Figure 4.22 illustrates the evolution of DTR in the
rankings where females are less than males, before and after mitigating unfair-
ness in ordinal and multi-class classification based rankings for each ranking
update. According to the average DTR, the discriminated group for both
ranking strategies is mostly the one of females before and after mitigating
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Figure 4.20: Disparate treatment scores, when females are more than
males. The x axis (Ranking update) contains a point every 5 workouts, that is
when a classifier gets retrained. The y axis (Average DTR) reports raw DTR score
returned in a ranking update. We report these results before and after mitigation
(blue and orange line, respectively), for multi-class and ordinal classifiers (continu-
ous and dashed lines, respectively).

unfairness.

Observation 3. The discriminated gender when assessing fairness using
DTR coincides with the gender of the minority group. This phenomenon
aligns our work with what is usually observed in the fairness literature, where
the demographic group representing the minority in the training data is the
discriminated one [BFM20].

4.6 Conclusions and Future Work

In this chapter, we proposed and validated an approach to identify and rank sports-
people that need timely support due to low performance in workouts and recommend
them to their coaches so that they can be contacted with a higher priority. Fur-
thermore, we guarantee a fair exposure in the ranking, to make sure that users of
di↵erent genres have equal opportunities to get supported. Our approach models
the performance and running behavior of the users, in order to apply a ranking
algorithm to recommend users to coaches, according to their performance in the
last running session and the quality of the previous ones. Then, we presented a
re-ranking algorithm to provide fair exposure to users.

As future work, we look to introduce explainability and coach-in-the-loop
insights to improve the recommendations. Furthermore, we are currently preparing
a live user-evaluation, to see how coaches perceive our ranking and the fairness
dimensions we introduced in this work.
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Figure 4.21: Demographic parity scores, when females are less than males.
The x axis (Ranking update) contains a point every 5 workouts, that is when a
classifier gets retrained. The y axis (Average DPR) reports raw DPR score returned
in a ranking update. We report these results before and after mitigation (blue
and orange line, respectively), for multi-class and ordinal classifiers (continuous and
dashed lines, respectively).

Figure 4.22: Disparate treatment scores, when females are less than males.
The x axis (Ranking update) contains a point every 5 workouts, that is when a
classifier gets retrained. The y axis (Average DTR) reports raw DTR score returned
in a ranking update. We report these results before and after mitigation (blue and
orange line, respectively), for multi-class and ordinal classifiers (continuous and
dashed lines, respectively).



Chapter 5

Machine Learning Models for
Sportspeople Dropout Prediction

5.1 Introduction

Engagement is a key aspect in platforms that aim to support the users, such as
eCoaching platforms [BCMP17]. Besides motivational aspects, when eCoaching
is associated to health-related issues, such as keeping a healthy lifestyle, keeping
users engaged assumes extra importance. Sportspeople engagement can take several
shapes, from follow-up messages after workouts, through ensuring that sportspeople
work out at the right pace, to avoiding sportspeople dropout of the platform.

In this chapter, we focus on this last scenario, to predict sportspeople’s dropout in
an eCoaching platform. Specifically, we consider a real-world eCoaching platform,
where users receive from coaches weekly training plans. Our goal is to predict if users
will continue working out in the week following the current one, by analyzing their
behavior. Current approaches, deal with this task with a workout-centric approach;
considering the results of a workout, they predict if a user will continue working
out in the week following the workout, with classic classification algorithms that
are trained with 2-dimensional vectors [PPB+17]. This approach is clearly limited
from multiple perspectives as: (i) it does not consider the temporal evolution of
the workouts, which limits the training of classification algorithms, as they are not
learning the evolution in the way users work out; (ii) it cannot model complex
scenarios with tensors that go beyond two dimensions; this means that, also at an
algorithmic level, to model the interplay between sportpeople, their workout, and
time, we need ad-hoc approaches to predict the dropout; (iii) it cannot keep track,
during the training, of the whole history of the users, since 2-dimensional vectors
usually represent a single workout of a user.

Our contributions In this work, we tackle the under-explored perspective of the
support that coaches provide to users. A coach usually does a daily monitoring of
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the sportspeople they follow and of their performance, to track their adherence to
the workout plan they prepared. However, the role of a coach should be to go beyond
this day-to-day job, to be able to track possible losses in motivation. Given the high
amount of users a coach follows,1 it is challenging to track these phenomena, which
usually involve the contextualization of the last/recent workout(s) of a user with
their history and with what the coaches expects from them.

To address this problem, in this chapter we propose an approach to predict if
a user will workout in the week following the last workout. We propose a neural
architecture to predict sportspeople’s dropout from eCoaching platforms, capable
of modeling users’ workout behavior and its evolution over time. Specifically, our
modeling and prediction are based on a novel a Tri-branch convolutional neural net-
work that captures workout persistence, changes in terms of workout performance,
and the combination of both, to predict if a user will work out in the week following
the considered one or not. This week-based prediction is related to the platform we
consider in this study, where workout plans are given to users on a weekly basis.

We evaluate the e↵ectiveness of this approach in o✏ine fashion, considering
real-world data collected from the aforementioned eCoaching platform for running
activities. Results shows its e↵ectiveness against di↵erent baselines architectures.
This classification for dropout prediction has also been integrated in the platform
and is currently being evaluated by the coaches, in applied research fashion.

Specifically, our work provides the following contributions:

• We model users’ workout behavior in running, considering the temporal per-
spective of the workouts;

• We present a novel neural architecture to predict sportspeople workout;

• We evaluate our approach on real-world data and against state-of-the-art clas-
sification approaches and alternative architecture, showing the e↵ectiveness of
our approach.

Roadmap The rest of the chapter is structured as follows. Section 5.2 describes
the dataset we used in this study. Then, we present our approach in Section 5.3,
which is validated in Section 5.5. In Section 5.4 we present our experimental frame-
work. Finally, we provide concluding remarks in Section 5.6.

5.2 Data Description

Dataset. This research work is based on data collected by means of a real-world
eCoaching platform. The dataset contains 31,833 activities that compose 6,315
workouts. This means that each workout is composed by several activities. Each

1In the platform considered in this thesis, a coach follows on average 21.3 users.
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activity has a type (Running, walking, resting, extra), an objective (in terms of
pace, or in terms of distance or time) and a result (in terms of pace, distance, and
time). To the best of our knowledge, this is the only dataset containing historical
information about users and their workouts.

Each workout result is represented by the following aggregate statistics: (i) Ob-
jective distance; (ii) Objective time; (iii) Objective pace; (iv) Covered distance;
(v) Elapsed time; (vi) Average pace; (vii) Burnt calories; (viii) Percentage of run-
ning activities; (ix) Percentage of walking activities; (x) Percentage of activities that
have pace as objective; (xi) Percentage of activities that have distance as objective;
(xii) Percentage of activities that have time as objective; (xiii) Percentage of activ-
ities that does not have a specific objective; (xiv) Percentage of activities that are
extra; (xv) Device type (0 for the results uploaded via smartphone and 1 for the
results uploaded via other wearable devices); (xvi) Month in which a sportsperson
performed the workout; (xvii) Week day in which a sportsperson performed the work-
out; (xviii) Week of year in which a sportsperson performed the workout; (xix) Year
in which a sportsperson performed the workout; (xx) User gender; (xxi) User age;
(xxii) Number of days from the first day in which the user started using the plat-
form; (xxiii) Number of weeks from the first day in which the user started using the
platform; (xxiv) Number of workouts performed by the user from the first day they
started using the platform; and (xxv) Number of workouts performed by the user
during the same week.

Data pre-processing. From all the workouts in the dataset, we removed all those
that are not reliable. A workout is not reliable when at least one of the following
conditions is met: (i) covered distance > 43, 000 meters, (ii) workout duration >

5 hours, (iii) rest time > 1 hour, (iv) average speed > 16 km/h, and (v)
burnt calories < 3000. We also removed the workouts that were not performed
under the supervision of a coach. The final dataset contains 5,166 workouts per-
formed by 73 users.

Data split. As described in Section 5.3.1, we relied on these data to model the
users’ history. For each user, we selected the sets of workouts they performed each
week from the first time in which they used the platform, and exploiting all the
workouts they performed before the current week we predict whether they will train
at least once during the week that follows. For each week, 70% of the data was used
for training, 20% of the data was used for testing, and the rest for validation.

Data analysis. Figure 5.1 shows the number of users that worked out, at least
once, during the first four weeks in which they used the platform. We chose this
time span, since it allowed us to show an entire subscription period to the workout
plans, and it covers a relevant part of our user base. In the figure, we show the
behavior of the users considering the entire user base and only those that will (not)
dropout in a certain week.

As the analysis shows, the number of users working out reduces as the number
of weeks progresses and this is true for the scenarios we considered, minus the users
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Figure 5.1: Distribution of users over weeks.

who will dropout, who remain more or less constant over time. Hence, we can
observe that the users start loosing motivation as the number of weeks gets larger,
since the number of sportspeople working out shrinks from a week to another.

This drop in the amount of users over the weeks is especially true after the
third week. Considering that, after the fourth week, users are expected to renew
their subscription plan, this phenomenon shows how important it is to spot possible
losses in motivation. We can see that the most severe drop in the amount of users
after the third week can be observed for the users who will not drop out during
the subscription plan (green line). These are the most engaged users, since they
consistently workout during the subscription period, so it is important to keep them
engaged also when they have to renew their plan.

This observational analysis strengthens the motivation to our approach and leads
us to our first observation.

Observation 1. Users lose motivation over time. This is true during the
subscription period (first 4 weeks), but becomes more severe as the subscrip-
tion renewal gets closer. Hence, it is crucial for coaches to be notified timely
about sportspeople losing motivation, so that they can provide an adequate
support and engage with them to train.

5.3 Prediction Strategy

In this section, we present our approach and compare it to di↵erent prediction strate-
gies. In Section 5.3.1, we formulate the problem of sportspeople weekly dropout
prediction. Then, in Section 5.3.2, we present a classic machine learning based
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approach to sportspeople weekly dropout prediction. Finally, we detail the architec-
ture of the proposed Tri-branch Convolutional Neural Network (Tri-branch CNN)
for sportspeople weekly dropout prediction in Section 5.3.3.

5.3.1 Problem Formulation

To address the problem of predicting sportspeople dropping out due to losing moti-
vation to exercise, we model users to capture their behavior change over the weeks.
Specifically, for each sportsperson, we collect the workout statistics for each week in
which they used the platform. To model the users that trained in the i-th week and
predict if they will workout during the next week, each sportsperson is represented
as a third-order tensor X : R|F |⇥|W |⇥i, where |F | denotes the number of features
collected by the mobile application combined with data from other sensing devices,
|W | denotes the maximum number of workouts performed in one week by all the
considered sportspeople from their first week using the platform until the i-th week
(i.e. if a certain user performed a maximum number of workouts per week equals to
n before the i-th week and another user performed a maximum number of workouts
per week equals to m, if m > n then |W | = m), while i denotes the number of
weeks in which the sportsperson trained using the platform. If the sportsperson
performed at least a workout during the i-th week, we set X(i � 1, w, f) = 0, oth-
erwise X(i� 1, w, f) equals one. For the next-week training dropout prediction, we
seek to obtain a mapping function f✓ : X ! R, which yields a real value f✓(X)
indicating the dropout risk of each sportsperson.

5.3.2 Classic Machine Learning Prediction Strategies

Since classic machine learning algorithms does not support third-order tensors, we
first flatten the data from each week of training such that each user is represented by
a simple feature vector, then, we train and compare the performance of the classifiers
over the weeks. In this approach, we compared three tree-based classifiers, as these
perform better compared to others, which are not tree-based when it comes to low
dimensionality data [RK17].

Gradient Boosting (GB) is an ensemble algorithm that improves the accuracy
of a predictive function through incremental minimization of the error term. After
the initial base learner (almost always a tree) is grown, each tree in the series is fit
to the so-called ”pseudo residuals” of the prediction from the earlier trees with the
purpose of reducing the error [BM12].

Random Forest (RF) is a meta-estimator of the family of the ensemble meth-
ods. It fits a number of decision tree classifiers, such that each tree depends on the
values of a random vector sampled independently and with the same distribution
for all the trees in the forest.

Decision Tree (DT) is a non-parametric supervised learning method used for
classification and regression. One of the main advantages of decision trees with
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respect to other classifiers is that they are easy to inspect, interpret, and visualize,
given they are less complex than the trees generated by other algorithms addressing
non-linear needs [PPC+18].

5.3.3 Deep Learning Prediction Strategies
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Figure 5.2: The structure of the proposed Tri-branch CNN.

Tri-branch CNN

The intuition behind the choice of this architecture (Tri-branch CNN) comes from
the scenario in which human coaches would analyze the behavior of the sportspeople
they follow in the real world; Concretely, the coaches are likely to investigate the
workout history of their coachees from di↵erent perspectives:

• Their periodicity with which sportspeople workout during each week;

• Their performance change from a workout to another;

• Their behavior changes over the weeks.

For this reason, we based our approach on an end-to-end Convolutional Neural
Network, namely Tri-branch CNN, which takes as input the workout history of
the sportspeople from their first week using the platform to the current week and
predicts if they will train or not during the next week. The network accepts the
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tensor representation Xi of each spostsperson at the i-th week, and is made up of
three branches, i.e., workout branch, feature branch, and week branch. The three
branches are equipped with row-wise convolution, column-wise convolution, and
group-wise convolution, to capture the workout frequency, performance, and week-
aware characteristic of sportspeople behavior, respectively. Finally, we merge the
results of the three branches to obtain the output f✓(Xi) via two fully-connected
layers.

Figure 5.2 displays the architecture of the proposed Tri-branch CNN. In what
follows, we detail how we built each branch.

Workout branch: The way a sportsperson workout frequency changes each week
may influence their workout behavior during the next week. We adopt a row-wise
convolution of size 1⇥ |F | in the workout branch, which models the changes of the
workouts on each week. At the end of the network branch, we flatten each feature
map, to obtain a vector of size |W | ⇥ 1, which encodes the sportsperson’s workout
behavior on each week.

Feature branch: The way the sportsperson behaves during each workout session
may influence their motivation to workout. As we did for the week branch, we use
a column-wise convolution of size |W | ⇥ 1 in the feature branch, which captures
the changes of a certain feature during all the workouts performed during the week.
In the last layer of the branch, we shrink each feature map through the workout
dimension, resulting a vector of size 1 ⇥ |F | that represents the periodicity of a
sportsperson’s behavior for each workout feature.

Week branch: Through the week branch, we capture how the overall behavioral
changes of the sportspeople from a week to another. We introduce to the week
branch a group-wise convolution of size |W | ⇥ |W | and flatten the result of the
convolution to a vector that lets us observe the behavioral changes on each week,
and thus model the characteristic of a sportsperson’s weekly behavior over the entire
range of features and workouts.

In the three branches, we added after each convolution layer a batch normaliza-
tion layer to reduce the internal covariance shift issue caused by the change in the
distribution of network activations due to the change in network parameters during
training, which contributes also to accelerating the training of our neural networks,
as highlighted by Sergey Io↵e and Christian Szegedy in [IS15].

Note that the shape of the input layer depends on the week for which we are
predicting, thus, the kernel size in each convolution layer varies from a week to
another. But, the number of filters of the first layer was set to 32 which is the
closest power of 2 to the number of features (26 features), then the number of filters
in the other convolution layers was set respectively to 16 and 8. We adopted the
area under curve (AUC) as the performance metric.
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5.4 Experimental Framework

This section describes the experiments performed to validate our proposal. Sec-
tion 5.4.1 described the experiments performed using classic machine learning based
approaches, and Section 5.4.2 describes the experiments performed using deep learn-
ing based approaches. The experimental framework exploits the Python Tensorflow
2.5.0 and scikit-learn 0.22.1 libraries. The experiments were executed on a com-
puter equipped with a 3.1 GHz Intel Core i7 processor and 16 GB of RAM. Each
classification was repeated 10 times with a 10-fold cross-validation.

5.4.1 Classic Machine Learning Prediction Strategies

We trained each model on default parameters. The learning phase and consequently
the prediction of most Machine Learning classifiers may be biased towards the oc-
currences that are frequently present in the dataset [RK17, KWMM09].

Researchers have suggested two main approaches to deal with data imbalance:
the first approach consists of tuning the data by performing a sampling, and the
other is to tweak the learning algorithm [KWMM09]. Due to its e↵ectiveness in our
data, we employed the first approach.

More specifically, we have considered the oversampling approach, since it is more
e↵ective for small dimension datasets [SKW16]. We opted for Synthetic Minority
Over-sampling Technique Tomek (SMOTETomek), since it creates completely new
samples and eliminates only examples belonging to the majority class instead of
replicating the existing ones, which o↵ers more examples to the classifier to learn
from. This means that the minority class examples are over-sampled, whereas the
majority class examples are under-sampled [CBHK02, BPM04].

In our framework, we applied SMOTETomek using imbalanced-learn, which is a
package that provides with a bunch of sampling approaches used in datasets showing
high class imbalance [LNA17].

Baselines. In our study, we compare the performance of Gradient Boosting and
Random Forest classifiers, taking as a baseline a Decision Tree classifier.

Evaluation strategy. To validate our proposal, we perform two sets of experi-
ments:

1. Performance evaluation. We evaluate the performance of our approach and
compare it to the baseline to investigate the behavior of our classifiers against
a less complex model by the progress of weeks.

2. Hyper-parameter Tuning. During the hyper-parameter tuning phase, we
used the grid search algorithm to find the best setting for the best performing
classifier. Our choice to do this tuning for the most performing algorithm was
made because the search of the best hyper-parameters is very computationally
consuming.
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5.4.2 Deep Learning Prediction Strategies

We trained each neural network for 50 epochs with the mini-batch size of 16 and an
early stopping callback with patience set to 10. The learning rate was set to 10�3.
To deal with class-imbalance we opted for an over-sampling technique exploiting
tf.data API [MSKI21].

Baselines. In our study, we compare our Tri-branch CNN (described in 5.3.3) to
three neural network architectures:

• Vanilla CNN: a Convolutional Neural Network with a convolution of size 3⇥3
and composed of one 2D convolutional layer and a dense output layer with a
sigmoid activation function;

• Bidirectional LSTM: a neural network composed of a TimeDistributed input
layer, a Bidirectional LSTM layer and a dense output layer with a sigmoid
activation function;

• Feed-Forward: a feed-forward Neural Network composed of a dense input layer,
a dense layer with 32 units and a dense output layer with a sigmoid activation
function.

Evaluation strategy. To validate our proposal, we perform three sets of experi-
ments:

1. Performance evaluation. We evaluate the performance of our approach and
compare it to the two baselines to investigate the behavior of our Tri-branch
CNN against less complex networks by the progress of weeks.

2. Ablation study. We performed an ablation study to our Tri-branch CNN
to analyse the impact of network branches by using a single branch or the
combinations of any two of them, for the first four weeks of each user.

3. Tri-Branch CNN vs the best Tree-Based classifier We compare the per-
formance of Tri-Branch CNN approach with the best performing three based
classifier.

5.5 Experimental Results

Here, we present in detail the results obtained from each set of experiments. Sec-
tion 5.5.1 described the results obtained from each set of experiments performed
using classic machine learning based approaches, and Section 5.5.2 describes the
results obtained from each set of experiments performed using deep learning based
approaches.
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Table 5.1: Performance evaluation of di↵erent methods over weeks (The values that
are in bold represent the best results for each week)

Week RF GB DT
1 0.96 0.96 0.88
2 0.64 0.55 0.50
3 0.75 0.77 0.61
4 0.88 0.88 0.56

Table 5.2: Best setting and performance of RF after Grid Search

Week max depth n estimators AUC
1 8 32 0.96
2 14 200 0.68
3 4 16 0.73
4 5 100 0.88

Figure 5.3: Performance evaluation of di↵erent tree-based classifiers over weeks
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Table 5.3: Performance evaluation of di↵erent methods over weeks (The values that
are in bold represent the best results for each week)

Week Tri-branch CNN Vanilla CNN LSTM Feed-Forward
1 0.78 0.69 0.68 0.61
2 0.82 0.75 0.65 0.73
3 0.78 0.59 0.60 0.70
4 0.88 0.77 0.57 0.77

5.5.1 Classic Machine Learning Prediction Strategies

Performance Evaluation.

Table 5.1 shows the performance, in terms of AUC of the classifiers we considered
for this study. All the classifiers achieved a great performance in the first and the
last week, meanwhile the performance tends to lower for the second week and starts
to raise in the third week (this may be caused by the high class imbalance).

Hyper-parameter Tuning.

We estimated the best parameters for Random Forest using Grid Search. The
classifier was run with the default parameters, except for the number of trees in
the forest (n estimators parameter) and the max number of levels in each decision
tree (max depth parameter). This is because a larger number of trees in the forest
(n estimators) could improve the performance of Random Forest andmax depth lim-
its the number of nodes in each decision tree. The best parameters and performance
of RF after applying a Grid Search are presented in Table 5.2. After performing a
Grid Search, we managed to ameliorate the performance of RF for almost all the
weeks. For the third week training the classifier on the default setting had a slightly
better performance in terms of AUC, but after applying Grid Search it still achieved
a good performance using less trees and a lower number of levels in each decision
tree.

5.5.2 Deep Learning Prediction Strategies

Performance Evaluation

Table 5.3 shows the accuracy, in terms of AUC of our approach, Tri-branch CNN, and
of the three baselines on the data. As in our observational analysis, we consider as
time span first four weeks of training of each user. These results are also graphically
illustrated in Figure 5.4.

From Table 5.3 and Figure 5.4 we notice that all the deep learning based ap-
proaches achieve a good performance. We can see clearly that Tri-branch CNN is
the one that had the best performance compared to the deep learning baselines,
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Figure 5.4: Performance evaluation of di↵erent neural architectures over weeks

thus showing that modeling users also considering (i) the temporal aspects of their
workout behavior (Week branch) and (ii) how the features evolve (Feature branch),
can provide important benefits in terms of accuracy. The Feed-Forward and Vanilla
CNN have almost the same behavior along the weeks, where the LSTM model is
very influenced by the volume of data, as the number of users shrinks from a week
to another the performance of LSTM tends to lower.

Observation 2. To predict possible dropouts of the users, it is important to
model their behavior beyond workout results. The temporal evolution of the
performance and the focus on the specific features that compose a workout,
increase prediction accuracy.

Ablation Study (Impact of network branches)

To investigate the impact of the network branches in providing accurate predictions,
we train networks using a single branch or the combinations of any two of them.

In Table 5.4, we resume the performance of all the combinations of network
branches in terms of AUC for the first four weeks and the overall performance of each
network. Figure 5.5 illustrates the performance of our Tri-branch CNN compared
to networks composed of a single branch and combination of any two of them.

From Table 5.4 and Figure 5.5, we observe that the best performing network is
not the same for all the weeks. For the first and the fourth week, the best performing
networks are those composed of the combination of all the workout branches. Hence,
the branches that had a significant contribution were the one composed by the
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Table 5.4: Performance evaluation of di↵erent settings over weeks (The values that
are in bold represent the best results for each week. In the setting column, w: repre-
sents a CNN composed only of the workout branch, f: represents a CNN composed
only of the feature branch, g: represents a CNN composed only of the week branch,
and all stands for the Tre-branch CNN )

setting Week 1 Week 2 Week 3 Week 4 Mean
w 0.79 0.77 0.65 0.77 0.75
f 0.67 0.79 0.78 0.78 0.76
g 0.76 0.83 0.69 0.88 0.79
w+f 0.63 0.83 0.80 0.87 0.78
w+g 0.69 0.77 0.75 0.82 0.76
f+g 0.70 0.87 0.72 0.87 0.79
all 0.79 0.82 0.78 0.88 0.83

Figure 5.5: Performance evaluation of di↵erent settings over weeks (w: represents a
CNN composed only of the workout branch, f: represents a CNN composed only of
the feature branch, g: represents a CNN composed only of the week branch, and all
stands for the Tre-branch CNN )
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feature branch and week branch (f+g) for the second week, and the one composed
of workout branch and the feature branch (w+f) for the third week.

From Table 5.4, we can also see that regardless of the week for which we are
predicting, the Tri-branch CNN achieves the best average performance.

Observation 3. When the amount of information about each user is scarce
(first few weeks working out), the temporal evolution of their performance
and the workout results are the drivers towards an accurate classification,
confirming the need for a user-centered approach. As the weeks progress, we
know more about the users and their behavior, but these users become less,
the feature branch modeling how the values of each feature evolve, plays a
significant role in the classification process. Each perspective (technically,
each branch of our CNN) plays a di↵erent role over time, and acts in synergy
with the others.

Deep Learning vs the Classic Machine Learning Prediction Strategies

Figure 5.6: Performance evaluation of di↵erent approaches over weeks

Figure 5.6, illustrates the performance over weeks of Random Forest (the shallow
learning model that achieved the best performance) and Tri-Branch CNN (the deep
learning model that achieved the best performance). When predicting for the first
week, Random Forest achieves a better performance than Tri-Branch CNN. This
behavior is in line with what has been highlighted earlier in the literature by Rathore
et al. [RK17]. When predicting in the fourth week, Random Forest and Tri-
branch achieved almost the same performance, meanwhile Random Forest performed
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slightly better. Despite Random Forest outperforms Tri-Branch CNN in the first
and fourth week, Tri-Branch CNN maintains a good and stable performance allover
the weeks. Thus, we consider that Tri-branch CNN is more reliable w.r.t. Random
Forest. Indeed, when deployed into a real-world platform, our approach, Tri-branch
CNN, would provide constantly e↵ective predictions over time, while Random Forest
has a more unpredictable behavior according to the weeks in which it is trained.

In parallel with this work, Gattermann et al. [GIT21] showed the e↵ect of train-
ing on multiple time slices on the classification performance in churn prediction. The
results of this work emphasized that training on samples from multiple time slices
improves prediction performance, and that multi-slicing makes models more gener-
alizable [GIT21]. The observations made by Gattermann et al. are also confirmed
by the results of our experiments, since we see the benefits of training on multiple
time slices on quality of predictions and on the generalizability of the models.

5.6 Conclusions and Future Work

In this chapter, we proposed and validated an approach to identify sportspeople that
need timely support due to losses in their motivation to work out. To tackle this
problem, we proposed an end-to-end model, named Tri-branch CNN, that applies
convolutions along di↵erent dimensions (namely, the workouts in each week, the
features, and the weeks dimensions) to identify the users that are not likely to work
out in the next week. Results show the e↵ectiveness of our approach and the role of
each dimension at di↵erent prediction times.

We have recently completed the integration of our approach in the eCoaching
platform to let coaches interact with the users they follow in an e↵ective way. Hence,
this integration will allow us to perform an A/B testing and ameliorate the e↵ec-
tiveness of our system based on coaches’ feedback.

As future work, we look forward to introducing explainability and fairness in-
sights, to make sure that di↵erent groups of users are getting the same level of
attention. Furthermore, we will also study the feasibility of recommending tailored
workout plans that will be suggested to coaches and sent to users after being ap-
proved or modified (if necessary) by the coach.
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Applications





Chapter 6

Tools in support of the coaches

6.1 Introduction

An essential aspect of coaching is to monitor the progress of coachees over time.
To support sportspeople e↵ectively, coaches need to have an idea of the progress
in the performance of each sportsperson. Athletes could be exposed to many risk
factors such as injuries and over-exertion syndromes. The role of the coaches is to
early prevent these factors by monitoring the training load and progress. As we
mentioned in Section 1.2, one of the biggest challenges an industrial Ph.D. student
could face is to build products that create value for themselves, for the business, and
also for the scientific community. To this end, we developed a bunch of dashboards
that monitor the sportspeople’s progress w.r.t di↵erent aspects. These dashboards
are also crucial to collect meaningful data that we could use for further research
works and create value to the business by optimizing the work of coaches, so they
can follow their sportspeople e↵ectively and keep them motivated to train regularly.

As we mentioned in Chapter 5, a significant phenomenon that eCoaching plat-
forms su↵er from is the problem of sportspeople dropping out of training. Di↵erent
factors could cause this. Injuries, loss of motivation, going on holidays, or switching
to another platform may lead people to drop out exercising regularly. Nevertheless,
these factors have di↵erent impacts on people’s health. For this reason, we decided
to build and deploy a machine learning algorithm able to predict sportspeople drop
out before it occurs and notify their coaches in order to get in touch with them
and take action at an early stage. By helping coaches spot, at an early stage, the
people that will give up training regularly, we spare them the time of going through
the entire training history of their clients and analyzing the trends of their training
behavior and performance by directly providing them with a list of users who are
very likely not to train during the following week.

Thus, the developed products directly impact sportspeoples’ lifestyles and
coaches’ ability to follow more users e↵ectively and in less time. Moreover, by
optimizing the workload of coaches, U4FIT could generate more sales since a coach
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could follow more people than they usually follow without any loss in the quality of
their service. The value for the Ph.D. researcher is to learn cutting-edge technologies
that are significant for their future career and the data gathered using these systems
that could be useful for further research.

6.2 Sportspeople requests and Statistics Dash-
board

The first dashboard (illustrated in Figure 6.1) provides the trainers with two tables.
The first table shows the new user requests, and the second shows the statistics
about the number of workouts performed by each sportsperson during the last three
weeks and the dates on which the workout plans and user subscriptions end. From
this dashboard, the trainers could take di↵erent actions such as:

• Contacting a certain sportsperson;

• Creating a new workout-plan for a certain sportsperson;

• Consulting the profile of a certain sportsperson;

• Analyzing the results of the last workout session of certain sportsperson;

• Consulting other dashboards that monitor the sportspeople’s behavior.

6.3 Sportspeople Analytics Dashboard

To provide the coaches with a global vision about their sportspeople’s behavior,
we developed a dashboard composed of multiple charts showing the evolution in
time of the performance of each sportsperson they follow w.r.t. di↵erent metrics (as
illustrated in Figure 6.2).

In Figure 6.2, the first chart (top left) monitors the session-RPE against the
intensity levels of exercise; The second one (top right) monitors the distribution of
the distance covered by the sportsperson by the variation of time; The third chart
(bottom left) monitors the evolution of the Training Impulse (aka Trimp) over time;
The last graph shows the development of the average pace in each intensity zone
over time.

The click on each of the charts leads the trainer to another page showing a large
version of the chart provided with a menu the permits them to aggregate the data
in the chart by months, by weeks, or by days, as illustrated in Figure 6.3.

The metrics monitored by these charts are:

• Intensity Zones: Exercise is categorized into three di↵erent intensity zones.
These zones include low, moderate, and vigorous and could be based on heart
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Figure 6.1: Sportspeople requests and Statistics
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Figure 6.2: Charts monitoring the workout analytics of a sportsperson.

rates associated with 2 and 4 mmol/L of blood lactate as determined during an
incremental exercise test. The e↵ects of exercise are di↵erent at each intensity
zone [Gil96].

• Session RPE: Session-rating of perceived exertion (RPE) is a simple mod-
ification of the perceived exertion rating scale (RPE) initially developed by
Borg [BHL87], in which the participant is asked to rate the overall intensity of
the entire training session [FHW+95]. When this intensity score is multiplied
by the duration of the training session, a single number is obtained that repre-
sents the magnitude of that training session [Fos98]. The session RPE is a very
important measure because it allows us to estimate the e↵ort perceived by the
athlete during the training session. Through it, we can therefore monitor their
level of fatigue to avoid the risk of overexertion syndromes.

• TRIMP: TRIMP is an abbreviation of TRaining IMPulse. It is computed
from training intensity, measured as the mean exercise heart rate, and train-
ing duration, measured in minutes. It is considered an integrative marker of
exercise load during training and competition [STVS07].

• Average Pace: In running, the pace is usually defined as the amount of time
required to run a fixed distance. It is generally calculated as the number of
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(a) Left: Covered distance chart in the analytics dashboard. Right: Large view of the
covered distance chart

(b) Left: Menu of the covered distance per month chart. Right: Large view of covered
distance per week chart

(c) Left: Menu of the covered distance per week chart. Right: Large view of covered
distance per day chart

Figure 6.3: Aggregations of the covered distance chart.
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Figure 6.4: Calendar showing the workout history of a sportsperson.

minutes it takes to cover a kilometer or a mile. Researchers retain that the
pace is a much more significant quantity to a runner [Sas99]. Pacing is often
a crucial aspect of endurance events. Some coaches recommend training with
a combination of specific paces related to one’s fitness to stimulate various
physiological improvements.

6.4 Sportspeople Training History

To give the trainers an overview about the training load of the sportspeople thy
follow, we also provide them with a calendar that shows the workouts they performed
each day, and a summary of the results of each workout, as illustrated in Figure 6.4.
The calendar in Figure 6.4 can show the coaches the workout performed by day, by
month, or by year. The click on each workout in the calendar redirects the coach
to the workout plan where they can compare the training objectives to the results
achieved by the sportspeople to accurately evaluate their performance.
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6.5 Online dropout prediction

To help coaches spot the sportspeople willing to drop out, we developed a framework
composed of a front-end and a back-end. The front-end consists of a web interface
that provides coaches with the list of sportspeople predicted to drop out of exercise
next week. Instead, the back-end consists of an API that models and analyses the
sportspeople’s training history to predict through a machine learning algorithm if
they will perform at least a workout during the following week. In Section 6.5, we
present the technologies we exploited to build the back-end API. In Section 6.5.1, we
describe the technologies we used to build the front-end client, and in Section 6.5.2
we present the technical architecture of our framework.

Back-end (API)

The predictions API was developed using Python programming language, the scikit-
learn library for machine learning. We used Flask, Celery to handle multitasking,
to deliver our software as a container to build the API, and finally Docker to deploy
our software as a container.

This technologies are defined as follows:

• Python Python is a computer programming language often used to build
websites and software, automate tasks, and conduct data analysis. Python is
a general-purpose language, meaning it can be used to create various programs
and isn’t specialized for any specific problems.

• Scikit-learn Scikit-learn is a key library for the Python programming lan-
guage that is typically used in machine learning projects. Scikit-learn focuses
on machine learning tools, including mathematical, statistical, and general-
purpose algorithms that form the basis for many machine learning technolo-
gies.

• Flask Flask is a micro web framework written in Python. It is classified as a
microframework because it does not require particular tools or libraries. Ex-
tensions exist for object-relational mappers, form validation, upload handling,
various open authentication technologies, and several standard framework-
related tools.

• Celery As mentioned on the o�cial website, Celery is a distributed task queue
with which you can handle millions or even billions of tasks in a short time.
Celery requires a messaging agent to handle requests from an external source;
usually, this comes in the form of a separate service called a message broker.
There are many options for brokers available to choose from, including rela-
tional databases, NoSQL databases, key-value stores, and messaging systems.
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Here, we choose RabbitMQ as a messaging system. RabbitMQ is feature-
complete, stable, durable, and easy to install. It’s an excellent choice for a
production environment.

• Docker Docker is a set of platform as a service (PaaS) products that use
OS-level virtualization to deliver software in packages called containers. Con-
tainers are isolated from one another and bundle their own software, libraries,
and configuration files; they can communicate with each other through well-
defined channels.

6.5.1 Front-end (Client)

The web client was built using PHP programming language exploiting CodeIgniter
framework and JavaScript.

Bellow there are the definitions of each of these technologies:

• PHP PHP (recursive acronym for PHP: Hypertext Preprocessor ) is a widely-
used open source general-purpose scripting language that is especially suited
for web development and can be embedded into HTML.

• CodeIgniter CodeIgniter is a PHP MVC framework used for developing web
applications rapidly. CodeIgniter provides out-of-the-box libraries to connect
to the database and perform various operations like sending emails, uploading
files, managing sessions, etc.

• JavaScript JavaScript is a dynamic computer programming language. It is
lightweight and most commonly used as a part of web pages, whose implemen-
tations allow client-side scripts to interact with the user and make dynamic
pages. It is an interpreted programming language with object-oriented capa-
bilities.

6.5.2 Dropout Prediction Framework Architecture

This section presents the technical architecture of our framework.
Figure 6.5 illustrates the architecture of our framework. The workflow of our

framework is described as follows:

• The client sends a request to the back-end by means of a REST API;

• The back-end receives the request and send it to the celery producer;

• The producer adds a job to the broker’s queue;

• Celery worker takes jobs from the broker and executes them;



6.5. ONLINE DROPOUT PREDICTION 95

Front-end

REST API

Broker

Worker 
1

Worker 
2

Worker 
3

Worker 
4

Producer

Consumer

Figure 6.5: Dropout Prediction Framework Architecture.

Figure 6.6: Users predicted not to workout next week
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• the consumer receives the results of the executed jobs and returns them to the
Flask controller;

• Then, the modeling of users and prediction results are saved to a MySql
database;

• The API returns the response to the front-end;

• Finally, the front-end processes the response and renders the final result graph-
ically, namely a list of users that are not likely to train during the following
week, the date of their last workout, the date when the prediction was made,
and the predictions’ accuracy (Figure 6.6).

The back-end system is running on an Amazon EC2 t2.micro machine. The
main challenge here was to optimize the data pipeline such a way that it dose not
create memory leak problems since our system models the full users’ workout history
since they began training using the U4FIT platform. A simple solution could be
to increase the server’s memory, but this could be very costly w.r.t. the budget
of SMEs. For this reason, the proposed solution consisted of modifying the data
processing pipeline, without causing major changes to the original modeling, by
saving the last weeks modelings in the DB, and contextualizing the new performed
workouts with the last modeling in the DB.

6.6 Conclusions and Future Work

In this chapter, we presented the tools we developed to support coaches to reduce
their workload, giving them the possibility to monitor di↵erent aspects and metrics
that measure sportspeople’s performance and workout frequency. In addition to
that, we provided coaches with an online sportspeople dropout prediction system.
The system was enabled for a bunch of trainers in order to perform A/B testing.
On the other hand, the modeling of users’ data and prediction results were saved to
the DB for our system’s online validation and future research work.
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Chapter 7

Conclusions and future work

This industrial Ph.D. thesis focuses on exploiting machine learning techniques to
help personal trainers in Online Coaching Platforms to be e�cient yet e↵ective in
supporting sportspeople.

7.1 Contributions

Our research on machine learning in eCoaching provides the following contributions:

O✏ine contributions:

• User/Workout Modeling. We presented di↵erent approaches to model
users’ workout behavior in the running, considering the temporal perspective
of the workouts;

• Machine Learning. We presented di↵erent shallow and deep learning-based
architectures to predict sportspeople dropout and workout quality;

• Learning To Rank. We introduced an algorithm to rank the users according
to the support they need and recommend them to the coach;

• Algorithmic Fairness. We provided, for the first time in the literature of
athletic-related user recommendation, algorithms to provide fairness of expo-
sure in the results;

• Dataset. We make the datasets used in this thesis available in order to allow
the community to advance the research on this topic.

Online contributions:

• Tools in support of the coaches. We provided trainers in the eCoaching
platform with dashboards that optimize their workload to guarantee high-
quality support for the sportspeople;
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• Online Dropout Prediction. We designed, developed, and deployed a Ma-
chine Learning algorithm to help coaches spot sportspeople likely to give up
training.

Publications:

• Chapter 4 is based on the results of two papers: “Predicting Workout Quality
to Help Coaches Support Sportspeople” published in the Proceedings of the
Third International Workshop on Health Recommender Systems co-located
with Twelfth ACM Conference on Recommender Systems (HealthRecSys’18),
and “Fair Performance-based User Recommendation in eCoaching Systems”
under review to be published in the Special Issue on Recommender Systems
for Health and Wellbeing of User Modeling and User-Adapted Interaction
(UMUAI) journal;

• Chapter 5 is based on the paper “Sportspeople Dropout Prediction in eCoach-
ing Platforms” under review to be published in the proceedings of Special
Track on Health Informatics and Bioinformatics of the SIGAPP SAC 2022
conference.

7.2 Future Research Directions

Our research on machine learning for sports remote coaching platforms has produced
a variety of methods but still poses some interesting challenges that require further
investigation:

• Explainability and Interpretability. ML models embedded in eCoaching
artificial intelligence systems might su↵er from low explainability (e.g., on the
reason those particular recommendations are provided to the user). Hence, it
becomes crucial to understand how we can explain the output of a model and
how it varies based on changes in input or algorithmic parameters. Moreover,
it requires attention to how internal mechanics can be explained in human
terms.

• Fairness, Transparency, and Accountability. With the advent of AI-
based coaching, addressing bias within ML models will be a core priority due
to several reasons. Some biases can be introduced by using training data which
is not an accurate sample of the population (e.g., more men than women) or is
influenced by socio-cultural stereotypes (e.g., popularity). Moreover, advanced
properties built on top of biases, e.g., fairness, transparency, and accountabil-
ity, require attention. Future research should control these properties in the
developed models.
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• Online evaluation. ML models embedded in eCoaching artificial intelligence
systems might have a di↵erent behavior when deployed in production. A
model that has a high accuracy on a test dataset might not necessary do well
in production. That can be due mainly to di↵erences between data used in
training and testing the model and the data in the phase of production. For
example, collecting the data used for the training in a certain season of the
year, and the deploying of the model was done in a di↵erent season could
influence the accuracy of the model, another example could be the pandemic
or other external factors that could influence on the performance of our model.
For this reason it is crucial to track the models’ online accuracy and to perform
A/B testing in order to ameliorate the e↵ectiveness of our system based on
coaches’ feedback.



102 CHAPTER 7. CONCLUSIONS AND FUTURE WORK



Bibliography

[AB15] Xavier Amatriain and Justin Basilico. Recommender systems in in-
dustry: A netflix case study. In Francesco Ricci, Lior Rokach, and
Bracha Shapira, editors, Recommender Systems Handbook, pages 385–
419. Springer, 2015.

[AK15] Shreya B Ahire and Harmeet Kaur Khanuja. A personalized framework
for health care recommendation. In 2015 International Conference on
Computing Communication Control and Automation, pages 442–445.
IEEE, 2015.

[BCD+19] Alex Beutel, Jilin Chen, Tulsee Doshi, Hai Qian, Li Wei, Yi Wu, Lukasz
Heldt, Zhe Zhao, Lichan Hong, Ed H. Chi, and Cristos Goodrow. Fair-
ness in recommendation ranking through pairwise comparisons. In
Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD 2019., pages 2212–2220.
ACM, 2019.

[BCI+18] Ludovico Boratto, Salvatore Carta, Walid Iguider, Fabrizio Mulas, and
Paolo Pilloni. Predicting workout quality to help coaches support
sportspeople. In David Elsweiler, Bernd Ludwig, Alan Said, Hanna
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