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Abstract
Historical interactions leveraged by recommender systems are often non-uniformly distributed across
items. Though they are of interest for consumers, certain items end up therefore being biasedly under-
recommended. Existing treatments for mitigating these biases act at a single step of the pipeline (either
pre-, in-, or post-processing), and it remains unanswered whether simultaneously introducing treat-
ments throughout the pipeline leads to a better mitigation. In this paper, we analyze the impact of bias
treatments along the steps of the pipeline under a use case on popularity bias. Experiments show that,
with small losses in accuracy, the combination of treatments leads to better trade-offs than treatments
applied separately. Our findings call for treatments rooting out bias at different steps simultaneously.
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1. Introduction

Conventionally, recommender systems rank items in order of their decreasing relevance for
a given consumer, estimated via machine learning. The literature thus focused on optimizing
relevance for consumer’s recommendation utility [1]. However, biases such as those against item
popularity may emphasize the occurrence of filter bubbles, thus hampering the recommendation
quality and several beyond-accuracy aspects [2, 3, 4]. Mitigating the impact of a bias becomes
therefore fundamental. Existing treatments for their mitigation are often performed at a single
step of the pipeline [5, 6, 7, 8]. Controlling biases by acting only at a single step might lead to
sub-optimal trade-offs and, hence, bias-aware pipelines are urging more advanced solutions.

In this paper, we analyze the impact of introducing bias mitigation at different steps of the
pipeline simultaneously under a popularity bias scenario, summarizing the findings of our
recently published work [9]. Specifically, being two widely-adopted classes of recommendation
algorithms highly biased against item popularity, we applied mitigation treatments in pre-
processing, through an interaction sampling that balances the training examples where the
observed item is more or less popular than the unobserved item, and in in-processing, through a
regularization term that minimizes the biased correlation between relevance and item popularity.
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Experiments proved that combining the treatments at two different steps leads to better trade-
offs among recommendation quality, beyond-accuracy objectives, and popularity bias reduction.

2. Datasets and Methods

In this section, we introduce the datasets, algorithms, protocols, evaluation metrics, and the
pre- and in-processing mitigation treatments adopted in our analyses.

Datasets. Our analyses and experiments were run on two real-world datasets, namely Movie-
lens1M and COCO600k. On one side, MovieLens1M (ML-1M) [10] contains 998,131 ratings
applied to 3,705 movies by 6,040 users of the online service MovieLens. The sparsity of the
user-item matrix is 0.95, and each user rated at least 20 movies. On the other hand, COCO600k
(COCO) [11] includes 617,588 ratings provided by 37,704 learners to 30,399 courses of an online
platform. The sparsity of the user-item matrix is 0.99, and each learner rated at least 10 courses.

Algorithms. Our study covers two personalized recommendation algorithms based on a Point-
Wise [12] and a Pair-Wise [13] optimization strategy, respectively. They were chosen due to
their performance and wide adoption as a basis of several state-of-the-art recommender systems
[14, 15, 16]. Note that our methodology makes it easy to run this analysis on other algorithms.

Protocols. We performed a temporal train-test split with the most recent 20% of ratings per
user in the test set and the remaining 80% ones in the training set. User and item matrices
are initialized with values uniformly distributed in the range [0, 1]. Each model is served
with training batches of 256 examples. For the Point-Wise model, for each user 𝑢, we created
𝑡 = 4 unobserved-item examples ((𝑢, 𝑗), 0) for each observed item ((𝑢, 𝑖), 1). For the Pair-Wise
model, we created 𝑡 = 4 triplets (𝑢, 𝑖, 𝑗) per observed item 𝑖; the unobserved item 𝑗 is randomly
selected. Such parameters were tuned to find a balance between effectiveness and efficiency.

Evaluation Metrics. To assess the quality of the recommended lists, we consider the Normal-
ized Discounted Cumulative Gain (NDCG) score [17]. The higher the NDCG score achieved by
the recommender system is, the higher the quality of the generated recommendations is for
consumers. Conversely, to assess beyond-accuracy objectives, we consider the Novelty of the
recommendations, computed as the inverse of the average popularity of a recommended item,
and the Coverage of the catalog, computed as the ratio of items appearing at least once across
recommender lists [18]. For both, the higher the score is, the better the objective is met.

To assess popularity bias, we consider the Item Equal Opportunity (IEO) score, that encourages
the true positive rates of different items to be the same [19]. Under this definition, platform
owners may care more about preserving and retaining a certain degree of item popularity, while
checking that no further distortions are emphasized by algorithmic bias on recommendation
distributions. Therefore, a less biased algorithm tends to recommend each item proportionally
to its representation in the ground-truth user preference. If there is a perfect equality of being
recommended when items are known to be of interest, then the IEO score is 1. The IEO score
decreases towards 0 when the probability of being recommended is high for only few items of
interest. This case occurs when most of the niche items never appear in the recommended lists,
even if they are of interest (i.e., bias emphasized the popularity phenomenon). Thus, the IEO
score ranges between 0 and 1, and the greater it is, the less the popularity bias is emphasized.



Treatment NDCG IEO
ML-1M COCO ML-1M COCO

Pair-Wise Point-Wise Pair-Wise Point-Wise Pair-Wise Point-Wise Pair-Wise Point-Wise
None 0.12 0.10 0.03 0.04 0.07 0.21 0.01 0.05
Sam 0.07 0.06 0.02 0.03 0.16 0.25 0.03 0.12
Reg 0.11 0.11 0.01 0.03 0.12 0.19 0.01 0.12

Sam+Reg 0.09 0.08 0.04 0.06 0.19 0.28 0.06 0.15

Table 1
Impact of individual and combined treatments on recommendation quality and item equal opportunity.

Mitigation Treatments. We consider a combination of both pre- and in-processing operations,
performing training examples mining and regularized optimization.

Training Examples Mining (sam). Under a point-wise optimization setting, 𝑡 unobserved-item
pairs ((𝑢, 𝑗), 0) are created for each observed user-item interaction ((𝑢, 𝑖), 1). The observed
interaction ((𝑢, 𝑖), 1) is replicated 𝑡 times to ensure that the regularized optimization can work.
On the other hand, under a pair-wise optimization setting, for each user 𝑢, 𝑡 triplets (𝑢, 𝑖, 𝑗)
per observed user-item interaction (𝑢, 𝑖) are generated. In both settings, the unobserved item 𝑗
is selected among the items less popular than 𝑖 for 𝑡/2 training examples, and among the items
more popular than 𝑖 for the other 𝑡/2 examples. These operations enable our regularization, as
the training examples equally represent both popularity sides associated with the popularity of
the observed item, during optimization. We denote training examples as 𝐷.

Regularized Optimization (reg). The training examples in 𝐷 are fed into the original recom-
mendation model in batches 𝐷𝑏𝑎𝑡𝑐ℎ ⊂ 𝐷 of size 𝑚 to perform an iterated stochastic gradient
descent. Regardless of the family of the algorithm, the optimization approach follows a regular-
ized paradigm derived from the original point- and pair-wise optimization functions. Specifically,
the regularized loss function is formalized as a 𝜆-weighted combination of the original accuracy
term and a bias mitigation term that aims at minimizing the correlation between (𝑖) the predicted
relevance and (𝑖𝑖) the observed-item popularity. The model is penalized if its ability to predict a
higher relevance directly depends on the popularity of the item.

3. Experimental Results

In this section, we empirically evaluate the proposed treatments, answering to three key research
questions: what are the effects of our mitigation elements separately and jointly (RQ1), what is
the impact of our mitigation on internal mechanics (RQ2), and to what extent the treatments
impact on beyond-accuracy objectives (RQ3). Experiments are organized below, accordingly.

Effects of Mitigation Elements (RQ1). First, we show an ablation study that aims to assess
(𝑖) the influence of the pre-processing sampling and the in-processing regularization on the
model performance, and (𝑖𝑖) whether combining these two treatments can improve the trade-off
between recommendation quality and popularity bias at a cut-off of 10 (Table 1). On ML-1M,
combining our pre- and in-processing mitigation slightly decreased quality. However, the
increase in item equal opportunity with respect to no or single treatment is large. On COCO,
the combined treatment led to an improvement on both quality and item equal opportunity.

Impact on Internal Mechanics (RQ2). Then, we investigate if combining treatments can



Observed Item Unobserved Item ML-1M COCO
Pair-Wise Point-Wise Pair-Wise Point-Wise

Head Any 0.88 (– 0.05) 0.91 (– 0.04) 0.92 (– 0.02) 0.84 (– 0.14)
Mid Any 0.78 (+0.04) 0.85 (+0.01) 0.89 (+0.06) 0.82 (– 0.14)

Head Head 0.77 (– 0.11) 0.87 (– 0.05) 0.89 (+0.00) 0.85 (– 0.11)
Head Mid 0.93 (– 0.06) 0.95 (– 0.04) 0.95 (– 0.04) 0.83 (– 0.16)
Mid Head 0.68 (+0.10) 0.80 (+0.06) 0.82 (+0.13) 0.82 (– 0.10)
Mid Mid 0.89 (– 0.02) 0.90 (– 0.04) 0.94 (– 0.04) 0.81 (– 0.18)

Table 2
Pair-wise accuracy across user-item pairs, after applying our sam+reg approach. Numbers between
brackets indicate the difference in percentage-points with respect to the accuracy of the original model.

Beyond-Accuracy Objective ML-1M COCO
Pair-Wise Point-Wise Pair-Wise Point-Wise

Novelty 0.96 (+ 0.23) 0.96 (+ 0.14) 0.98 (+ 0.02) 0.99 (+ 0.05)
Coverage 0.36 (+ 0.12) 0.91 (+ 0.46) 0.07 (+ 0.56) 0.96 (+ 0.74)

Item Equal Opportunity 0.19 (+ 1.71) 0.28 (+ 0.33) 0.06 (+ 5.00) 0.15 (+ 2.00)

Table 3
Impact of the treatment combination on novelty, coverage, and item equal opportunity. Numbers in
brackets indicate the difference in percentage-points w.r.t. the values achieved by the original model.

reduce the biased gap in pair-wise accuracy between head (highly popular) and mid (moderately
popular) items. To answer this question, we computed the pair-wise accuracy for different
combinations of observed-unobserved head and mid item pairs for the combined treatment in
Table 2. The (mid, head) setup experienced a statistically significant improvement in pair-wise
accuracy. Conversely, as far as the algorithms end up being well-performing for mid items, pair-
wise accuracy on the setups involving observed head items slightly decreased. The improvement
is generally higher under a pair-wise optimization (Pair-Wise) and less sparse datasets (ML-1M).

Linking Regularization Weight and Recommendation Quality (RQ3). We investigate
finally how the combination of treatments influences beyond-accuracy objectives (novelty and
coverage) and popularity bias (item equal opportunity). The results are reported in Table 3.
Specifically, the combination ensured large gains in item equal opportunity, higher novelty and
a wider coverage. Lower gains on coverage were experienced by the Pair-Wise strategy.

4. Conclusions

In this paper, we analyzed the impact of combining bias mitigation treatments at different
steps of the recommendation pipeline under a popularity bias use case. Combining treatments
resulted in lower popularity bias at the cost of a negligible decrease in recommendation quality,
which confirms the trade-off experienced by other debiasing treatments [7, 20]. Our study
also brings forth the discussion about the positive impact of bias mitigation treatments on
beyond-accuracy objectives. The findings of this work call for treatments that root out bias at
each stage of the recommendation pipeline simultaneously.
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