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Abstract. The paper studies the containment companion (or, right variable inclusion

companion) of a logic �. This consists of the consequence relation �r which satisfies all

the inferences of �, where the variables of the conclusion are contained into those of the

set of premises, in case this is not inconsistent. In accordance with the work started in

[10], we show that a different generalization of the P�lonka sum construction, adapted from

algebras to logical matrices, allows to provide a matrix-based semantics for containment

logics. In particular, we provide an appropriate completeness theorem for a wide family of

containment logics, and we show how to produce a complete Hilbert style axiomatization.
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1. Introduction

It is a recent discovery (see [9]) that the algebraic counterparts of weak
Kleene logics are formed by a (subquasivarities of) regularized variety, whose
members coincide with the P�lonka sum of Boolean algebras, the algebraic
semantics of propositional classical logic. Subsequently, the abstract con-
struction of the P�lonka sum of algebras has been generalized to logical
matrices [10]. The main outcome is that the suggested notion provides an
algebra-based semantics for a class of propositional logics, called logics of
left variable inclusion, of which paraconsistent weak Kleene represents the
most prominent example.

The logics in the weak Kleene “family”—essentially, Bochvar [8] and para-
consistent weak Kleene [29]—are syntactically characterized by imposing
certain limitations on the inclusions of variables to classical propositional
logic [14,50]. The extension of the construction of P�lonka sums to logical
matrices, introduced in [10], allows for an insightful investigation into the
algebraic features of those logics, where the inclusion of variables runs from
premises to conclusions. However, this is just one side of the coin of the log-
ics of variable inclusion; the other side consisting of those logics verifying
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inferences in which the variables occurring in the conclusion are contained
into the ones occurring in the premises. Consequence relations satisfying this
feature are usually known as containment logics; the syntactic requirement
which they share is a strengthened form of what Ferguson [24] understands
as Proscriptive Principle, which also resembles the one defining logics of
analytic containment [20,34].

The most famous example of containment logic is Bochvar logic B3 [8],
that is usually defined by a single matrix which features the presence of an
infectious truth-value (a peculiarity shared by the twin-sister paraconsistent
weak Kleene). B3 has been successfully applied in different contexts: avoiding
paradoxes in set-theory [8], modeling computer programs affected by errors
[21] and non-sensical information databases [15], capturing the notion of
truth in relation with on/off topic arguments [3].

The main condition defining containment logics mirrors the syntactic
requirement defining logics of left variable inclusion. This work aims at an-
swering the very natural question on whether it is possible to build a new
generalization of the P�lonka sum construction, suitable for obtaining a ma-
trix semantics for containment logics. For this reason, the present paper
may be understood as an ideal continuation of the path started in [10]. We
also tried to closely match the structure and the theoretical framework of
[10], in order to better underline how the intrinsic differences between the
variable inclusion constraints at stake affect the algebraic treatment of these
logics.

The paper is structured as follows. In Section 2, we recall all the prelim-
inary notions needed to go through the reading of the whole paper. They
basically consist of the basic notions of abstract algebraic logic and of the
theory of P�lonka sums. In Section 3, we formally introduce containment
logics. By providing an adequate notion of P�lonka sum for logical matri-
ces, we obtain soundness and completeness for the containment companion
�r of an arbitrary (finitary) logic �, with respect to the P�lonka sum of
the matrix models of �. In Section 4, we focus on a specific (though very
wide) class of logics, namely those possessing a binary term called parti-
tion function (a property shared by the vast majority of known logics). We
provide a method for obtaining a Hilbert-style axiomatization for a logic
�r (Theorem 29) out of an axiomatization for (a finitary) logic �. Finally,
in Section 5, we put at work our machinery and characterize the axioma-
tization of containment companions of some well-known logics, namely of
classical propositional logic, Belnap–Dunn and the Logic of Paradox.
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2. Preliminaries

For standard background on universal algebra and abstract algebraic logic,
we refer the reader, respectively, to [6], [11] and [27]. In this paper, algebraic
languages are assumed not to contain constant symbols. Moreover, unless
stated otherwise, we work within a fixed but arbitrary algebraic language.
We denote algebras by A,B,C . . . respectively with universes A,B,C . . . .
Let Fm be the algebra of formulas built up over a countably infinite set Var
of variables (which we indicate by x, y, z, . . . ). Given a formula ϕ ∈ Fm, we
denote by Var(ϕ) the set of variables really occurring in ϕ. Similarly, given
Γ ⊆ Fm, we set

Var(Γ) =
⋃

{Var(γ) : γ ∈ Γ}.

A logic is a substitution invariant consequence relation �⊆ P(Fm) × Fm
meaning that for every substitution σ : Fm → Fm,

if Γ � ϕ, then σ[Γ] � σ(ϕ).

Given formulas ϕ,ψ, we write ϕ �� ψ as a shorthand for ϕ � ψ and ψ � ϕ.
A logic � is finitary when for all Γ ∪ {ϕ} ⊆ Fm:

Γ � ϕ ⇐⇒ ∃Δ ⊆ Γ such that Δ is finite and Δ � ϕ.

A matrix is a pair 〈A, F 〉 where A is an algebra and F ⊆ A. In this case,
A is called the algebraic reduct of the matrix 〈A, F 〉.

Every class of matrices M defines a logic as follows:

Γ �M ϕ ⇐⇒ for every 〈A, F 〉 ∈ M and homomorphism h : Fm → A,

if h[Γ] ⊆ F, then h(ϕ) ∈ F.

We say that a logic � is complete with respect to a class of matrices M when
�M = �. Sometimes, we will refer to such homomorphisms h as evaluations.

A matrix 〈A, F 〉 is a model of a logic � when

if Γ � ϕ, then for every homomorphism h : Fm → A,

if h[Γ] ⊆ F , then h(ϕ) ∈ F.

A set F ⊆ A is a (deductive) filter of � on A, or simply a �-filter, when the
matrix 〈A, F 〉 is a model of �. We denote by Fi�A the set of all filters of �
on A.

Although the present paper does not address the study of reduced models
(for containment logics), in order to make it self-contained, we recall those
notions, concerning reduced models, that will be used. Let A be an algebra
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and F ⊆ A. A congruence θ of A is compatible with F when for every
a, b ∈ A,

if a ∈ F and 〈a, b〉 ∈ θ, then b ∈ F.

The largest congruence of A which is compatible with F always exists, and
is called the Leibniz congruence of F on A. It is denoted by ΩAF . The
Suszko congruence of F on A, is defined as

∼

ΩA
� F :=

⋂
{ΩAG : F ⊆ G and G ∈ Fi�A}.

The Leibniz and Suszko congruences allow to single out a distinguished
class of models of logics. More precisely, given a logic �, we set

Mod(�) := {〈A, F 〉 : 〈A, F 〉 is a model of �};

Mod∗(�) := {〈A, F 〉 ∈ Mod(�) : ΩAF is the identity};

ModSu(�) := {〈A, F 〉 ∈ Mod(�) :
∼

ΩA
� F is the identity}.

The above classes of matrices are called, respectively, the classes of models,
Leibniz reduced models (or, simply reduced models), and Suszko reduced
models of �.

Given a logic �, we set

Alg∗(�) = {A : there is F ⊆ A s.t. 〈A, F 〉 ∈ Mod∗(�)}, and

Alg(�) = {A : there is F ⊆ A s.t. 〈A, F 〉 ∈ ModSu(�)}.

Alg(�) is the class of algebraic reducts of matrices in ModSu(�). The class
Alg(�) is called the algebraic counterpart of � as, for the vast majority of
logics �, Alg(�) is the class of algebras intuitively associated with �.

Trivial matrices have a central role in the whole paper. We say that a
matrix 〈A, F 〉 is trivial if F = A. We denote by 〈1, {1}〉 the trivial matrix,
whose algebraic reduct 1 is the trivial algebra. Observe that the latter matrix
is a model (resp. reduced, Suszko reduced model) of every logic. Moreover,
if � is a logic and 〈A, F 〉 ∈ ModSu(�) is a trivial matrix, then 〈A, F 〉 =
〈1, {1}〉. A set of models of a logic � is said to be non trivial, if it does
not contain trivial matrices. We indicate by Mod+(�) the set of non trivial
models of a logic �.

P�lonka Sums

As standard references on P�lonka sums we mention [38,39,41]. A semilattice
is an algebra A = 〈A,∨〉, where ∨ is a binary associative, commutative and
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idempotent operation. Given a semilattice A and a, b ∈ A, we set

a ≤ b ⇐⇒ a ∨ b = b.

It is easy to see that ≤ is a partial order on A.

Definition 1. A direct system of algebras consists of:

1. a semilattice I = 〈I,∨〉;
2. a family of similar algebras {Ai : i ∈ I} with pairwise disjoint universes;

3. a homomorphism fij : Ai → Aj , for every i, j ∈ I such that i ≤ j.

Moreover, fii is the identity map for every i ∈ I, and fik = fjk ◦ fij , for
i ≤ j ≤ k.

Let X be a direct system of algebras as defined above. The P�lonka sum of
X, in symbols P�l(X) or P�l(Ai)i∈I ,1 is the algebra in the same type defined
as follows: the universe of P�l(Ai)i∈I is the union

⋃
i∈I Ai. Moreover, for

every n-ary basic operation g and a1, . . . , an ∈ ⋃
i∈I Ai, we set

gP�l(Ai)i∈I (a1, . . . , an) := gAj (fi1j(a1), . . . , finj(an)),

where a1 ∈ Ai1 , . . . , an ∈ Ain
and j = i1 ∨ · · · ∨ in.

Observe that if in the above display we replace g by any complex formula
ϕ in n variables, we still have that

ϕP�l(Ai)i∈I (a1, . . . , an) = ϕAj (fi1j(a1), . . . , finj(an)).

Notation: Given a formula ϕ, we will often write ϕP�l instead of ϕP�l(Ai)i∈I

when no confusion shall occur.
The theory of P�lonka sums is strictly related with a special kind of binary

operation, called a partition function.

Definition 2. Let A be an algebra of type ν. A function · : A2 → A is
a partition function in A if the following conditions are satisfied for all
a, b, c ∈ A, a1, . . . , an ∈ A and for any operation g ∈ ν of arity n � 1.

P1 a · a = a;

P2 a · (b · c) = (a · b) · c;
P3 a · (b · c) = a · (c · b);

P4 g(a1, . . . , an) · b = g(a1 · b, . . . , an · b);
P5 b · g(a1, . . . , an) = b · a1 ·... ·an.

1When no confusion shall occur, we will write P�l(Ai) instead of P�l(Ai)i∈I .
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Different definitions of partition function appeared in the literature. We
adopted the one which uses the minimal number of defining conditions (see
[41]).

The next result underlines the connection between P�lonka sums and par-
tition functions:

Theorem 3. [38, Thm. II] Let A be an algebra of type ν with a partition
function ·. The following conditions hold:

(1) A can be partitioned into {Ai : i ∈ I} where any two elements a, b ∈ A
belong to the same component Ai exactly when

a = a · b and b = b · a.

Moreover, every Ai is the universe of a subalgebra Ai of A.

(2) The relation ≤ on I given by the rule

i ≤ j ⇐⇒ there exist a ∈ Ai, b ∈ Aj s.t. b · a = b

is a semilattice order.

(3) For all i, j ∈ I such that i ≤ j and b ∈ Aj, the map fij : Ai → Aj,
defined by the rule fij(x) = x · b is a homomorphism. The definition
of fij is independent from the choice of b, since a · b = a · c, for all
a ∈ Ai and c ∈ Aj.

(4) Y = 〈〈I,≤〉, {Ai}i∈I , {fij : i ≤ j}〉 is a direct system of algebras such
that P�l(Y ) = A.

The statement of Theorem 3 displayed above relies on the assumption
that the algebraic language contains no constant symbols.2 It is worth re-
marking that the construction of P�lonka sums preserves the validity of reg-
ular identities, i.e. identities of the form ϕ ≈ ψ such that Var(ϕ) = Var(ψ).

3. Algebraic Completeness

The usual presentations of Kleene three-valued logics divide them into two
families, depending on the meaning given to the connectives ∧,∨: strong log-
ics—including Strong Kleene and the Logic of Paradox [43]—and weak log-
ics—Bochvar logic (B3) and paraconsistent weak Kleene (or Halldén logic).

2When considering types containing constants, then additional conditions should be
added to the definition of partition function. This results into a decomposition over a
semilattice having a least element: constants of the P�lonka sum will belong to the algebra
whose index is the least element. For further details, see [40].
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Figure 1. The algebra WK of weak Kleene tables

Logics in each family differentiate upon the choice of the truth-set: {1} in
Strong Kleene and Bochvar, {1, 1

2} in the logic of Paradox and paraconsis-
tent weak Kleene. Bochvar [8] is the logic induced by the matrix 〈WK, {1}〉
of the so-called weak Kleene tables3 displayed in Figure 1.

It is not difficult to check that the algebra WK is the P�lonka sum of the
two-element Boolean algebra B2 and the trivial (Boolean) algebra 1

2 (over
the index set given by the two-element semilattice).4

Bochvar logic can be equivalently presented as follows.

Theorem 4. [50, Theorem 2.3.1] The following are equivalent:

(1) Γ �B3 ϕ;

(2) Γ �CL ϕ with Var(ϕ) ⊆ Var(Γ) or Γ is an inconsistent set of formulas.

In other words, Bochvar logic is the consequence relation obtained out
of classical logic, imposing the constraint that variables of the conclusion
(formula) shall be included into those of the set of premises, when the latter
is not inconsistent. For this reason, B3 is often referred to as a containment
logic, see for e.g. [24,36].

The following definition originates in [33] (but see also [13,47]) and gen-
eralizes the notion of inconsistent set to an arbitrary logic �.

Definition 5. A set of formulas Σ is an antitheorem of a logic � if σ[Σ] � ϕ,
for every substitution σ : Fm → Fm and formula ϕ.

Observe that, if the set Σ(y1, . . . , yn), where the variables y1, . . . , yn really
occur, is an antitheorem for �, then, by substitution, also Σ(x) (where only
x occurs) is an antitheorem for �. In other words, if a logic � possesses an
antitheorem Σ, then it possesses an antitheorem in one variable only. When

3In accordance with [50], here we are actually considering Bochvar “internal calculus”,
which is only one of the two logics introduced in [8]. The “external calculus” consists of a
linguistic extension of the weak Kleene tables, with a connective t, interpreted (for every
evaluation h) as h(tϕ) = 1 if and only if h(ϕ) = 1 (for further details, see [8,25,32]).

4We refer the reader interested in further details directly to [9].
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referring to this fact, we will write Σ(x). The most intuitive example one
can keep in mind is the following: for any formula ϕ, the set {ϕ,¬ϕ} is
an antitheorem of intuitionistic, classical and both local and global modal
logics.

The above presented characterization of Bochvar logic suggests that a
logic �r satisfying an analogous criterion on the inclusion of variables as
that of Theorem 4 can be associated to any arbitrary logic �.
Definition 6. Let � be a logic. �r is the logic defined as

Γ �r ϕ ⇐⇒
{

Γ � ϕ and Var(ϕ) ⊆ Var(Γ) or
Σ ⊆ Γ,

where Σ is an antitheorem of �.
We will refer to �r as the containment companion (or, right variable

inclusion companion) of the logic �. A comment on Definition 6 is in order.5

Observe, at first, that it follows from the definition that �r and � have the
same antitheorems. This motivates our choice of inserting the condition
on antitheorems for defining the containment companion (�r) of a logic �.
Indeed, the “dual” notion of logic of left variable inclusion (�l), considered
in [10]—where the inclusion of variables works from premises into conclusion
(so, from left to right)—has the same theorems of �. This feature is dually
restored for inclusion of variables from conclusion to premises (right to left)
by requiring �r to have the same antitheorems of �. It is useful to remark
that, for logics possessing no antitheorems (as, for instance, Belnap–Dunn
or the Logic of Paradox), the containment companion of a logic coincides
with the “analytic fragment” (see, for instance, [23]).

Bochvar logic is not the unique example of containment logic that can
be found in literature. Indeed, the logic Sfde, introduced by Deutsch [18]
(see also [4,16,48]), can be counted as the containment companion of the
Logic of Paradox: a result that has firstly been shown in [23, Observation
9] (and that, also, follows from our analysis, see Subsection 5.3). Moreover,
the logic FDEϕ, introduced by Priest [44], and, independently by Daniels
[17], is actually the “containment companion” of Belnap–Dunn logic (on
which we will come back in Section 5.2). This fact is actually proved in
[22, Theorem 28].6 Also one of the four-valued logics introduced by Tomova
(see Example 14) is a containment logic, more precisely the containment
companion of PWK.

5We thank an anonymous reviewer for suggesting a clarification on this matter.
6We thank an anonymous reviewer for suggesting this literature, of whose existence we

were not aware.
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Lemma 7. Let � be a finitary logic. Then �r is finitary.

Proof. Suppose that Γ �r ϕ. By definition of �r, two cases are to be
considered:

i) Γ � ϕ with Var(ϕ) ⊆ Var(Γ);

ii) Γ contains an antitheorem Σ of �.

i) Clearly, | Var(ϕ) |< ∞, hence there exist formulas γ1, . . . , γn ∈ Γ such that
Var(ϕ) ⊆ Var(γ1)∪· · ·∪Var(γn). Since � is finitary, then there exists a finite
set Γ′ ⊆ Γ such that Γ′ � ϕ. If Var(ϕ) ⊆ Var(Γ′), then also Γ′ �r ϕ, i.e. �r is
finitary. So, suppose that Var(ϕ) �⊆ Var(Γ′). Consider Δ = Γ′∪{γ1, . . . , γn}.
Obviously, Δ is finite, Var(ϕ) ⊆ Var(Δ) and Δ ⊆ Γ. By monotonicity of �,
Δ � ϕ, hence Δ �r ϕ, i.e. �r is finitary.

ii) Since Σ is an antitheorem for �, then Σ � ϕ. Hence
Σ �r ϕ and Σ is finite (as � is finitary).

Since the algebra WK is a P�lonka sum (of Boolean algebras), it makes
sense to ask whether the matrix 〈WK, {1}〉 can be constructed as P�lonka
sum of (two) matrices. To the best of our knowledge, the construction of
P�lonka sums between matrices has been developed exclusively in [10]. How-
ever, it is not difficult to check that the above-mentioned construction, when
applied to the matrices 〈B2, {1}〉 and 〈12 , ∅〉 (where B2 and 1

2 stand for the
two-element Boolean algebra and the trivial algebra, respectively), does not
result in 〈WK, {1}〉. This suggests that a different notion of direct system
of logical matrices shall be introduced.

Definition 8. An r-direct system of matrices consists of:

(i) A semilattice I = 〈I,∨〉.
(ii) A family of matrices {〈Ai, Fi〉 : i ∈ I} such that

I+ := {i ∈ I : Fi �= ∅} is a sub-semilattice of I.

(iii) a homomorphism fij : Ai → Aj , for every i, j ∈ I such that i ≤ j,
satisfying also that:

• fii is the identity map, for every i ∈ I;
• if i ≤ j ≤ k, then fik = fjk ◦ fij ;
• if Fj �= ∅ then f−1

ij [Fj ] = Fi, for any i ≤ j.

As the nomenclature highlights, the above introduced notion of direct
system of matrices is essentially different from the one in [10]. The main
difference concerns the interplay between homomorphisms of the system
and filters of matrices.
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Given a r-direct system of matrices X, we define a new matrix as

P�l(X) := 〈P�l(Ai)i∈I ,
⋃

i∈I

Fi〉.

We will refer to the matrix P�l(X) as the P�lonka sum over the r-direct system
of matrices X. Given a class M of matrices, P�l(M) will denote the class of
all P�lonka sums of r-direct systems of matrices in M.

Let h : Fm → P�l(Ai) be a homomorphism from the formula algebra into
a generic P�lonka sum of algebras. Then, for any formula ϕ ∈ Fm, we set

ih(ϕ) :=
∨

{i ∈ I : h(x) ∈ Ai, x ∈ Var(ϕ)}.

In words, ih(ϕ) indicates the index where the formula ϕ is interpreted by
the homomorphism h, into a P�lonka sum. Moreover, for any Γ ⊆ Fm, we
set ih(Γ) :=

∨{ih(x) : x ∈ Var(Γ)}.

Remark 9. Notice that the index ih(Γ) is defined provided that the set
Var(Γ) is finite. For several results, we will assume that the logic � is finitary.
Hence, by Lemma 7, also �r is finitary, and this allows us to consider finite
sets Γ ⊆ Fm, for which the existence of ih(Γ) is assured. Moreover, observe
that, for every homomorphism h : Fm → P�l(X) from the formula algebra
into a generic P�lonka sum over an r-direct system of matrices X, and every
Γ ∪ {ϕ} ⊆ Fm, it is immediate to check that Var(ϕ) ⊆ Var(Γ) implies
ih(ϕ) ≤ ih(Γ).

Lemma 10. Let X be an r-direct system of non trivial models of a finitary
logic �. Then P�l(X) = 〈P�l(Ai),

⋃
i∈I Fi〉 is a model of �r.

Proof. Let X be an r-direct system of non trivial models of �. Assume
Γ �r ϕ. Since � is finitary, so it is also �r (by Lemma 7), there exists a finite
subset Δ ⊆ Γ, such that Δ �r ϕ. We distinguish the following cases:

(a) Σ ⊆ Δ, where Σ is an antitheorem of �;

(b) Δ � ϕ with Var(ϕ) ⊆ Var(Δ).

Since X contains non-trivial models only, the case (a) easily follows by notic-
ing that, for any homomorphism h : Fm → P�l(Ai), h[Σ] �⊆ F =

⋃
i∈I Fi.

Therefore Σ �P�l(X) ϕ, hence also Δ �P�l(X) ϕ.
Suppose (b) is the case, i.e. Δ � ϕ with Var(ϕ) ⊆ Var(Δ). Let h : Fm →
P�l(Ai) be a homomorphism such that h[Δ] ⊆ F . Since Δ is a finite set, then
we can fix j := ih(Δ) and, for any formula δ ∈ Δ, we have h(δ) ∈ Fih(δ).
This implies that each ih(δ) ∈ I+ and, as I+ forms a sub-semilattice of I,
we have that j ∈ I+.
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Now, define g : Fm → Aj as

g(x) := fih(x)j ◦ h(x),

for every x ∈ Var(Δ). For any δ ∈ Δ, we have g(δ) = fih(δ)j ◦ h(δ), hence
g[Δ] ⊆ Fj . From the fact that Δ � ϕ and 〈Aj , Fj〉 ∈ Mod(�), it follows
that g(ϕ) ∈ Fj . Setting k := ih(ϕ), by Remark 9, we have k ≤ j and this,
together with the observation that Fj �= ∅, implies f−1

kj [Fj ] = Fk. Moreover,
we claim that Fk �= ∅. Suppose, by contradiction, that Fk = ∅. Then, by
definition of r-direct system of matrices, we have that f−1

kj [Fj ] = ∅, that
is: there exists no a ∈ Ak such that fkj(a) ∈ Fj . On the other hand, since
Var(ϕ) ⊆ Var(Δ), then g(ϕ) = fkj ◦ h(ϕ) ∈ Fj , a contradiction.

From the fact that g(ϕ) ∈ Fj together with f−1
kj [Fj ] = Fk, we conclude

h(ϕ) ∈ Fk. This proves that h(ϕ) ∈ Fk ⊆ ⋃
i∈I Fi.

Remark 11. Observe that the assumption on the non-triviality of models
of the logic � is crucial in Lemma 10, as witnessed by the following example.
Let � be a theoremless logic possessing an antitheorem Σ (an example is the
almost inconsistent logic). Set X = 〈A ⊕ 1, A〉 to be the r-direct system
of models of �, consisting of the two algebras A and 1 with the unique
homomorphism f : A → 1 (plus the identity homomorphisms). Recall that
an antitheorem can be expressed in one varible only, thus Σ(x) � y, for
an arbitrary variable y, and therefore Σ(x) �r y. However, P�l(X) is not a
model of the latter inference (consider, for instance, an evaluation v : Fm →
P�l(A ⊕ 1) such that v(x) = a ∈ A and v(y) = 1).

Observe that, if the logic � does not possess an antitheorem, then the
following holds:

Corollary 12. Let X be an r-direct system of models of a finitary logic �
possessing no antitheorems. Then P�l(X) is a model of �r.

Given a logic � which is complete with respect to a class M of matrices,
we set M∅ := M ∪ 〈A, ∅〉, for any arbitrary A ∈ Alg(�).

Theorem 13. Let � be a finitary logic which is complete with respect to a
class of non trivial matrices M. Then �r is complete with respect to P�l(M∅).

Proof. We aim at showing that �r= �P�l(M∅).
(�r ⊆ �P�l(M∅)). Consider Γ �r ϕ and a P�lonka sum 〈P�l(Ai),

⋃
i∈I Fi〉 of

matrices in M∅. Set A = P�l(Ai) The cases in which Γ contains an antithe-
orem of � or 〈A, ∅〉 is a model of � follow by Lemma 10.

So, assume 〈A, ∅〉 is not a model of � and that Γ does not contain
an antitheorem of �. Let h : Fm → A be a homomorphism such that
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h[Γ] ⊆ ⋃
i∈I Fi. Suppose, in view of a contradiction, that h(ϕ) �∈ ⋃

i∈I Fi. Set
ih(ϕ) = j and ih(Γ) = k; since Var(ϕ) ⊆ Var(Γ) then j ≤ k, by Remark 9.
We define a homomorphism v : Fm → Ak, as follows

v(x) := flk ◦ h(x),

where l = ih(x). Clearly, v[Γ] = fkk ◦ h[Γ] = h[Γ] ⊆ Fk and v(ϕ) = fjk ◦
h(ϕ) ∈ Ak � Fk, since h(ϕ) ∈ Aj � Fj and Fj = f−1

jk [Fk] (as we know that
Fk �= ∅). Therefore, we have Γ �� ϕ, which is a contradiction.
(�P�l(M∅) ⊆ �r). By contraposition, we prove that Γ �

r ϕ implies Γ �P�l(M∅) ϕ.
To this end, assume Γ �

r ϕ. If Var(ϕ) ⊆ Var(Γ), clearly Γ � ϕ. Therefore
there exists a matrix 〈Ai, Fi〉 ∈ M and a homomorphism h : Fm → Ai

such that h[Γ] ⊆ Fi and h(ϕ) /∈ Fi. Upon considering the r-direct system
X = 〈〈Ai, Fi〉, {i}, id〉 and the homomorphism h, we immediately obtain
Γ �P�l(M∅) ϕ.

The only other case to consider is Var(ϕ) � Var(Γ). Preliminarily, ob-
serve that the assumption Γ �

r ϕ implies that Γ contains no antitheorem
Σ for �. Therefore, since M is a class of models complete with respect to
�, there exists a matrix 〈B, G〉 ∈ M and a homomorphism v : Fm → B
such that v[Γ] ⊆ G and v(ϕ) /∈ G. Consider any r-direct system formed by
the matrices 〈B, G〉 and 〈A, ∅〉 for an appropriate A ∈ Alg(�) (the choice
A = 1 is always appropriate), with 〈A, ∅〉 indexed as top element. Denote
by B ⊕ A∅ a P�lonka sum over the r-direct system just described.

The homomorphism g : Fm → B ⊕ A∅ defined as

g(x) :=
{

v(x) if x ∈ Var(Γ),
a otherwise.

for arbitrary a ∈ A easily witnesses Γ �P�l(M∅) ϕ, as desired.

Example 14. Let K4 = 〈{0, 1, 1
2 , n},¬,∧,∨〉 be the algebra given by the

following tables

¬
1 0
1
2

1
2

n n

0 1

∧ 0 1
2 n 1

0 0 1
2 n 0

1
2

1
2

1
2 n 1

2

n n n n n

1 0 1
2 n 1

∨ 0 1
2 n 1

0 0 1
2 n 1

1
2

1
2

1
2 n 1

2

n n n n n

1 1 1
2 n 1

The logic Kw
4n = 〈K4, {1, 1

2}〉 is included among the four-valued regular
logics counted by Tomova (see [37,49]). Observe that 〈K4, {1, 1

2}〉 is the
P�lonka sum (over the r-direct system) of the matrices 〈WK, {1, 1

2}〉 and
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〈n, ∅〉. Since PWK is complete with respect to 〈WK, {1, 1
2}〉, then, it follows

by Theorem 13, that Kw
4n = �r

PWK, i.e. Kw
4n is the containment companion

of PWK.

As PWK is the left variable inclusion companion of classical logic (see
[10]), the above example shows that the constructions yielding the (two)
companions (left variable inclusion and containment) can actually be iter-
ated, in alternation, starting from an arbitrary logic � (for further details
see [42]).

Remark 15. Observe that if � is a logic which is complete with respect to
a finite set of finite matrices, then so is �r (by Theorem 13). This means
that the containment companion of a logic � preserves “finite valuedness”,
a notion introduced and studied in [12].

Theorem 13 provides a complete class of matrices for an arbitrary logic of
right variable inclusion. This class is obtained performing P�lonka sums over
r-direct systems of models of � together with the matrices 〈A, ∅〉 for any
A ∈ Alg(�). Obviously, it is not generally the case that the matrix 〈A, ∅〉 is
a model of a logic �. For this reason, it is not always true that P�lonka sums
over an r-direct systems of models of � provide a complete matrix semantics
for �r. In this sense, the right variable inclusion companion of a logic is a
logic of “P�lonka sums” (of matrices) in a weaker sense compared to the case
of the left variable inclusion companion, fully described in [10]. Nonetheless,
if 〈1, ∅〉 ∈ Mod(�), the correspondence between �r and P�lonka sums is fully
recovered. This is actually the case of every theoremless logic, such as Strong
Kleene Logic, or �∧,∨

CL , the conjunction and disjunction fragment of classical
logic.

Corollary 16. A finitary containment logic �r is complete w.r.t. any of
the following classes of matrices:

P�l(Mod+(�) ∪ 〈A, ∅〉), P�l(Mod∗+(�) ∪ 〈A, ∅〉), P�l(ModSu+ (�) ∪ 〈A, ∅〉),
for A ∈ Alg(�).

Moreover, observing that if 〈1, ∅〉 ∈ Mod(�) then 〈1, ∅〉 ∈ Mod∗(�), the
following holds

Corollary 17. Let � be a finitary logic such that 〈1, ∅〉 ∈ Mod(�). Then
�r is complete w.r.t. any of the following classes of matrices:

P�l(Mod+(�)), P�l(Mod∗+(�)), P�l(ModSu+ (�)).

In case � does not possess antitheorems, then the above corollaries can
be restated as follows
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Corollary 18. Let � be a finitary logic without antitheorems. Then �r is
complete w.r.t. any of the following classes of matrices:

P�l(Mod(�) ∪ 〈A, ∅〉), P�l(Mod∗(�) ∪ 〈A, ∅〉), P�l(ModSu(�) ∪ 〈A, ∅〉),
for any A ∈ Alg(�).

Corollary 19. Let � a finitary logic without antitheorems such that 〈1, ∅〉 ∈
Mod(�), then �r is complete w.r.t. any of the following classes of matrices:

P�l(Mod(�)), P�l(Mod∗(�)), P�l(ModSu(�)).

4. Hilbert Style Calculi (For Logics with r-Partition Function)

Partitions functions, which have been defined for algebras (see Definition 2),
can be defined also for logics.7

Definition 20. A logic � has an r-partition function if there is a formula
x ∗ y, in which the variables x and y really occur, such that:

(i) x, y � x ∗ y,

(ii) x ∗ y � x,

(iii) ϕ(ε, �z ) �� ϕ(δ, �z ),

for every formula ϕ(v, �z ) and every identity of the form ε ≈ δ in Definition 2.

Condition (iii) in the Definition of r-partition function is actually equiva-
lent to say that the term operation ∗ is a partition function in every algebra
A ∈ Alg(�). This is the consequence of the following (known) fact in abstract
algebraic logic.

Lemma 21. Let � be a logic and ε, δ ∈ Fm. The following are equivalent:

(i) Alg(�) � ε ≈ δ;

(ii) ϕ(ε, �z ) �� ϕ(δ, �z ), for every formula ϕ(v, �z ).

Proof. See [27, Lemma 5.74(1)] and [27, Theorem 5.76].

7Partition functions have actually been defined for logics of left variable inclusions in
[10]. The definition given here is obviously different (as highlighted by the nomenclature),
as it takes into account the instrinsic difference between right and left variable inclusion
constraints.
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From now on, we will denote both the formula x ∗ y and the term
operation ∗ as r-partition functions with respect to a logic �.

The definition of partition functions for an arbitrary logic is introduced
also in [10, Definition 16]. It shall be noticed that Definition 20 is essen-
tially different (this also motivates the choice of the terminology r-partition
function). Nevertheless, in most cases (for instance, all substructural logics,
classical and modal logics) the very same formula plays both the role of a
r-partition function and of a partition function in the sense of [10, Definition
16].

Example 22. Logics with an r-partition function abound in the literature.
Indeed, the term x ∗ y := x ∧ (x ∨ y) is a partition function for every logic �
such that Alg(�) has a lattice reduct. Such examples include all modal and
substructural logics [28]. On the other hand, the term x ∗ y := (y → y) → x
as an r-partition function for all the logics � whose class Alg(�) possesses a
Hilbert algebra (see [19]) or a BCK algebra (see [30]) reduct.

Remark 23. It is easily checked that a logic � has r-partition function ∗ if
and only if �r has r-partition function ∗.

In the following, we extend P�lonka representation theorem to r-direct
systems of logical matrices.

Theorem 24. Let � be a logic with r-partition function ∗, and 〈A, F 〉 be a
model of � such that A ∈ Alg(�). Then Theorem 3 holds for A. Moreover,
by setting Fi := F ∩ Ai for every i ∈ I, the triple

X = 〈〈I,≤〉, {〈Ai, Fi〉}i∈I , {fij : i ≤ j}〉
is an r-direct system of matrices such that P�l(X) = 〈A, F 〉.
Proof. Theorem 3 holds for A, by simply observing that ∗ is a partition
function for A. For the remaining part, it will be enough to show:

(a) for every i, j ∈ I such that i ≤ j, if Fj �= ∅ then f−1
ij [Fj ] = Fi;

(b) I+ is a sub-semilattice of I.

In order to prove (a), consider i, j ∈ I such that i ≤ j and let Fj be
non-empty. Assume, in view of a contradiction, that f−1

ij [Fj ] �= Fi. This
implies that Fi � f−1

ij [Fj ] or that f−1
ij [Fj ] � Fi. The first case immediately

leads to the contradiction that x, y � x∗y, while the second case contradicts
x ∗ y � x. This proves (a).

In order to prove (b), consider i, j ∈ I+ and let k = i ∨ j, with i, j, k ∈ I.
As ∗ is a r-partition function for �, x, y � x ∗ y. Since i, j ∈ I+, then Fi
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and Fj are non-empty, therefore there exist two elements a ∈ Fi, b ∈ Fj .
We have a ∗A b = fik(a) ∗Ak fjk(b) ∈ Ak. This, together with the fact that
〈A, F 〉 ∈ Mod(�) implies a ∗ b ∈ Fk, i.e. Fk �= ∅. So k ∈ I+ and this proves
(b).

Given a logic � with an r-partition function ∗ and a model 〈A, F 〉 of �
such that A ∈ Alg(�), we call P�lonka fibers of 〈A, F 〉 the members of the
class of matrices {〈Ai, Fi〉}i∈I given by the decomposition in Theorem 24.
From now on, when considering a model 〈A, F 〉 of a logic � with r-partition
function, we will assume that 〈A, F 〉 = P�l(X), for a given direct system
X = 〈〈I,≤〉, {〈Ai, Fi〉}i∈I , {fij : i ≤ j}〉, without explicitly mentioning the
r-direct system X.
Lemma 25. Let �r be a logic with r-partition function ∗, and 〈A, F 〉 ∈
Mod(�r), with A ∈ Alg(�r). Then, the P�lonka fibers 〈Ai, Fi〉, such that
i ∈ I+, are models of �.
Proof. Let Γ � ϕ and suppose, by contradiction, that there exists a ma-
trix 〈Aj , Fj〉, with j ∈ I+, and a homomorphism h : Fm → Aj such that
h[Γ] ⊆ Fj and h(ϕ) /∈ Fj . Preliminarily, observe that Var(ϕ) � Var(Γ) and,
moreover, if � has an antitheorem Σ, then Σ � Γ, for otherwise Γ �r ϕ, which
is in contradiction with our assumption that 〈A, F 〉 ∈ Mod(�r). Denote by
X the (non-empty) set of variables occurring in ϕ but not in Γ and, for
γ ∈ Γ, let Xγ := {γ ∗x : x ∈ X} and Γ−

γ := Γ�{γ}. Since ∗ is an r-partition
function for �r, we have γ∗x �r γ. Therefore γ∗x � γ and Xγ � γ, which im-
plies Xγ , Γ−

γ � ϕ, for any γ ∈ Γ. Observe that Var(ϕ) ⊆ Var(Xγ)∪Var(Γ−
γ ),

hence Xγ , Γ−
γ �r ϕ.

Since h(γ), h(ϕ) ∈ Aj and x ∈ Var(ϕ), for every x ∈ X, we have that
h(γ ∗ x) = h(γ), whence h[Xγ ] = h(γ). Now, for an arbitrary a ∈ A, we
define a homomorphism g : Fm → A, as follows

g(x) :=
{

h(x) if x ∈ Var(Γ) ∪ Var(ϕ)
a otherwise.

We have g[Xγ ] = h[Xγ ] = h(γ) ∈ Fj , g[Γ−
γ ] = h[Γ−

γ ] ∈ Fj and g(ϕ) =
h(ϕ) �∈ Fj . A contradiction.

The following example provides a simple instance of the above Lemma
25.
Example 26. Consider the matrix 〈B, F 〉 constructed as P�lonka sum of the
(non-trivial) Boolean algebras Ai,Aj ,Ak,As over the r-direct system de-
picted below (the index set is the four-element Boolean algebra): circles indi-
cate filters, consisting of the top elements 1i, 1j of Ai,Aj , respectively. Thus,
F = {1i, 1j}. Dotted lines represent arbitrary P�lonka homomorphisms.
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•

As

•

•

Ak

•

•

Aj

•

•

Ai

•

By Theorem 13, 〈B, F 〉 is a model of Bochvar logic B3. It can be easily
checked that B ∈ Alg(B3). Moreover, I+ = {i, j} and clearly 〈Ai, 1i〉, 〈Aj , 1j〉
∈ Mod(CL).

The presence of an r-partition function yields an important syntactic
consequence: it allows to adapt a Hilbert style calculus of a logic � into
a calculus, for its containment companion �r. Despite �r is defined via a
linguistic restriction constraint (on the inclusion of variables), the axiom-
atization that we obtain is free of any (linguistic) restriction. Throughout
the remaining part of this section, we implicitly assume that the logic �
possesses an antitheorem. Our analysis can be easily adapted to the case
where � does not have antitheorems (see Remark 30).

In what follows, by a Hilbert-style calculus with finite rules, we understand
a (possibly infinite) set of Hilbert-style rules, each of which has finitely many
premises.

Definition 27. Let H be a Hilbert-style calculus with finite rules, which
determines a logic � with a r-partition function ∗ and an antitheorem Σ.
Let Hr be the Hilbert-style calculus given by the following rules:

α ∗ ϕ � ϕ (H0)

α, β � α ∗ β (H1)
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α ∗ β � α (H2)

{γ1, . . . , γn} � {γi}, γi ∗ ψ � ψ (H3)

Σ � λ (H4)

χ(δ, �z ) � � χ(ε, �z ) (H5)

for every

(i) �ϕ axiom in H ;

(ii) γ1, . . . , γn � ψ rule in H (and γi such that i ∈ {i, . . . , n});

(iii) δ ≈ ε equation in the definition of partition function, and formula
χ(v, �z ).

Lemma 28. Let � be a logic with a r-partition function ∗, an antitheorem
Σ and let 〈A, F 〉 ∈ ModSu(�Hr). Then:

(i) 〈A, F 〉 = P�l(X), where X = 〈〈I,≤〉, {〈Ai, Fi〉}i∈I , {fij : i ≤ j}〉 is an
r-direct system of matrices;

(ii) if X contains a trivial matrix then A = 1.

Proof. (i) Since 〈A, F 〉 ∈ ModSu(�Hr), A ∈ Alg(�Hr). Moreover, observe
that ∗ is a r-partition function for �Hr (thanks to conditions (H1), (H2),
(H5)). These facts, together with Theorem 24, imply that 〈A, F 〉 = P�l(X),
where X = 〈{〈Ai, Fi〉}i∈I , {fij : i ≤ j}, 〈I,≤〉〉 is an r-direct system of
matrices.

(ii) Suppose that, for some j ∈ I, 〈Aj , Fj〉 is a trivial fiber of 〈A, F 〉,
i.e. Fj = Aj . Since Σ(x) is an antitheorem (for �) and (H4) is a rule of
Hr, then, for every i ∈ I, we have Ai = Fi, i.e. each fiber is trivial. Indeed,
if there exists a non trivial fiber 〈Ak, Fk〉 and an element c ∈ Ak � Fk,
then the evaluation h : Fm → A, defined as h(x) = a, h(y) = c (for an
arbitrary a ∈ Aj) is such that h[Σ(x)] ⊆ F while h(y) /∈ F , against the
fact that Σ(x) �Hr y. Moreover, the facts that each fiber is trivial and that
∼

ΩAF = id immediately imply A = 1.

Theorem 29. Let � be a finitary logic with an r-partition function ∗ and
an antitheorem Σ. Let, moreover, H be a Hilbert style calculus with finite
rules. If H is complete for �, then Hr is complete for �r.

Proof. Let us denote with �Hr the logic defined by Hr. We show that
�Hr =�r.

(⊆). It is immediate to check that every rule of Hr holds in �r.
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(⊇). We now show that ModSu(�Hr) ⊆ Mod(�r). So let 〈A, F 〉 ∈ ModSu

(�Hr). By Lemma 28-(i), we know that 〈A, F 〉 ∼= P�l(X), where X = 〈{〈Ai,
Fi〉}i∈I , {fij : i ≤ j}, 〈I,≤〉〉 is an r-direct system of matrices. The fact that
the matrix 〈Ai, Fi〉 ∈ Mod(�H) for each i ∈ I+ can be proved on the ground
of (H0) and (H3) by adapting the proof of Lemma 25 to the calculus Hr.
Recalling that H is complete for � we obtain that 〈Ai, Fi〉 ∈ Mod(�), for each
i ∈ I+. Moreover, by Lemma 28-(ii), we know that if X contains a trivial
matrix 〈Aj , Fj〉, then A = 1. Therefore, two cases may arise: (1) A = 1, (2)
X contains no trivial fibers. If (1), then clearly 〈A, F 〉 ∈ {〈1, ∅〉, 〈1, {1}〉}.
As �r is a theoremless logic {〈1, ∅〉, 〈1, 1〉} ⊆ Mod(�r). If (2), then we can
apply Lemma 10, so 〈A, F 〉 = P�l(X) ∈ Mod(�r).

Remark 30. It is easy to check that if the logic � does not possess an-
titheorems, then a Hilbert-style calculus for �r can be defined by simply
dropping condition (H4) from Definition 27. The completeness of �r with
respect to such a calculus can be proven by adapting the strategy in the
proof of Theorem 29.

5. Examples of Axiomatizations

In this last section, we show how to obtain Hilbert-style axiomatizations of
some containment logics.

5.1. Bochvar Logic

Bochvar logic is the containment companion of classical logic. Consider the
following Hilbert-style axiomatization of classical propositional logic:

(CL1) �ϕ → ϕ

(CL2) �ϕ → (ψ → ϕ)

(CL3) �ϕ → (ψ → χ) → (ϕ → ψ) → (ϕ → χ)

(CL4) �(¬ϕ → ¬ψ) → (ψ → ϕ)

(CL5) ϕ,ϕ → ψ � ϕ

Theorem 29 allows to provide the following complete Hilbert style calcu-
lus for Bochvar logic B3.

(CLr
1) α ∗ (ϕ → ϕ) � ϕ → ϕ

(CLr
2) α ∗ (ϕ → (ψ → ϕ) � ϕ → (ψ → ϕ)
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(CLr
3) α ∗ (ϕ → (ψ → χ) → (ϕ → ψ) → (ϕ → χ)) � ϕ → (ψ → χ) → (ϕ →

ψ) → (ϕ → χ)

(CLr
4) α ∗ ((¬ϕ → ¬ψ) → (ψ → ϕ)) � (¬ϕ → ¬ψ) → (ψ → ϕ)

(CLr
5) ϕ ∗ ψ,ϕ → ψ � ψ

(CLr
6) ϕ,ψ � ϕ ∗ ψ

(CLr
7) ϕ ∗ ψ � ϕ

(CLr
8) α,¬α � ϕ

(CLr
9) χ(δ, �z ) � �χ(ε, �z ) for every formula χ(x, �z) and equation δ ≈ ε in

Definition 2,

where ϕ ∗ ψ is an abbreviation for ϕ ∧ (ϕ ∨ ψ).

5.2. The Containment Companion of Belnap–Dunn

Belnap–Dunn B is a logic originally introduced as First Degree Entailment
within the research enterprise on relevance and entailment logic [2,5].

Consider the algebraic language of type 1, 2, 2, containing ¬,∨,∧. Recall
that a De Morgan lattice is an algebra A = 〈A,¬,∨,∧〉 of type 1, 2, 2 such
that:

(i) 〈A,∧,∨〉 is a distributive lattice;

(ii) ¬ satisfies the following equations:

x ≈ ¬¬x, ¬(x ∧ y) ≈ ¬x ∨ ¬y, ¬(x ∨ y) ≈ ¬x ∧ ¬y.

De Morgan lattices, originally introduced by Moisil [35] and, indepen-
dently, by Kalman [31] (under the name of distributive i-lattices) form a vari-
ety, which is generated by the four element algebra M4=〈{0, b, n, 1},¬,∨,∧〉,
whose lattice reduct is displayed in Figure 2 and negation in the following
table:

¬
1 0

b b

n n

0 1

B is the logic induced by the matrix 〈M4, {1, b}〉 (or, equivalently, by
〈M4, {1, n}〉, see [26, Proposition 2.3]). B is finitary and theoremless (purely
inferential). Moreover, the class Alg(B) coincides with the variety of De
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Figure 2. Hasse diagram of the De Morgan lattice M4.

Morgan lattices [26, Theorem 4.1]. Observe that the set {ϕ,¬ϕ} is not an
antitheorem of B (indeed ϕ,¬ϕ ��B ψ). It is not difficult to check that B does
not possess antitheorems.

Recall that a lattice filter of a De Morgan lattice A is a subset F ⊆ A
such that x ∧ y ∈ F if and only if x ∈ F and y ∈ F . The class of matrices

M = {〈A, F 〉 : A De Morgan algebra, F ⊆ A lattice filter}
is complete for B [26, Corollary 2.6]. Observe that 〈A, ∅〉 ∈ M, for any De
Morgan lattice A. As already mentioned, the containment companion of
Belnap–Dunn is the logic FDEϕ introduced, independently, in [44] and [17]
(the fact that �FDEϕ=�r

B is proven in [22]). FDEϕ is introduced in [44] as
the logic induced by the matrix 〈M4 ⊕ e, {1, b}〉, where M4⊕e is the P�lonka
sum of M4 with the trivial algebra e. From our analysis (see Theorem 13), it
follows that �r

B is complete with respect to P�l(M), i.e. the class of all P�lonka
sums over r-direct systems of matrices in M.

We present the Hilbert-style axiomatization for B which is introduced in
[26] (and, independently in [45]). Since B is theoremless, the calculus has no
axioms and the following rules:

(B1) ϕ ∧ ψ � ϕ;

(B2) ϕ ∧ ψ � ψ;

(B3) ϕ,ψ � ϕ ∧ ψ;

(B4) ϕ � ϕ ∨ ψ;

(B5) ϕ ∨ ψ � ψ ∨ ϕ;

(B6) ϕ ∨ ϕ � ϕ;

(B7) ϕ ∨ (ψ ∨ χ) � (ϕ ∨ ψ) ∨ χ;

(B8) ϕ ∨ (ψ ∧ χ) � (ϕ ∨ ψ) ∧ (ϕ ∨ χ);

(B9) (ϕ ∨ ψ) ∧ (ϕ ∨ χ) � ϕ ∨ (ψ ∧ χ);
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(B10) ϕ ∨ ψ � ¬¬ϕ ∨ ψ;

(B11) ¬¬ϕ ∨ ψ � ϕ ∨ ψ

(B12) ¬(ϕ ∨ ψ) ∨ χ � (¬ϕ ∧ ¬ψ) ∨ χ;

(B13) (¬ϕ ∧ ¬ψ) ∨ χ � ¬(ϕ ∨ ψ) ∨ χ;

(B14) ¬(ϕ ∧ ψ) ∨ χ � (¬ϕ ∨ ¬ψ) ∨ χ;

(B15) (¬ϕ ∨ ¬ψ) ∨ χ � ¬(ϕ ∧ ψ) ∨ χ.

A Hilbert-style axiomatization of �r
B, (see Definition 27 and Theorem 29)

is given by the following (ϕ ∗ ψ is an abbreviation for ϕ ∧ (ϕ ∨ ψ)):

(Br
1) ϕ,ψ � ϕ ∗ ψ;

(Br
2) ϕ ∗ ψ � ϕ;

(Br
3) (ϕ ∧ ψ) ∗ ϕ � ϕ;

(Br
4) (ϕ ∧ ψ) ∗ ψ � ψ;

(Br
5) ϕ ∗ (ϕ ∧ ψ), ψ � ϕ ∧ ψ;

(Br
6) ϕ,ψ ∗ (ϕ ∧ ψ) � ϕ ∧ ψ;

(Br
7) ϕ ∗ (ϕ ∨ ψ) � ϕ ∨ ψ;

(Br
8) (ϕ ∨ ψ) ∗ (ψ ∨ ϕ) � ψ ∨ ϕ;

(Br
9) (ϕ ∨ ϕ) ∗ ϕ � ϕ;

(Br
10) (ϕ ∨ (ψ ∨ χ)) ∗ ((ϕ ∨ ψ) ∨ χ) � (ϕ ∨ ψ) ∨ χ;

(Br
11) ϕ ∨ (ψ ∧ χ) ∗ ((ϕ ∨ ψ) ∧ (ϕ ∨ χ)) � (ϕ ∨ ψ) ∧ (ϕ ∨ χ);

(Br
12) ((ϕ ∨ ψ) ∧ (ϕ ∨ χ)) ∗ (ϕ ∨ (ψ ∧ χ)) � ϕ ∨ (ψ ∧ χ);

(Br
13) (ϕ ∨ ψ) ∗ (¬¬ϕ ∨ ψ) � ¬¬ϕ ∨ ψ;

(Br
14) (¬¬ϕ ∨ ψ) ∗ (ϕ ∨ ψ) � ϕ ∨ ψ;

(Br
15) (¬(ϕ ∨ ψ) ∨ χ) ∗ ((¬ϕ ∧ ¬ψ) ∨ χ) � (¬ϕ ∧ ¬ψ) ∨ χ;

(Br
16) ((¬ϕ ∧ ¬ψ) ∨ χ) ∗ (¬(ϕ ∨ ψ) ∨ χ) � ¬(ϕ ∨ ψ) ∨ χ;

(Br
17) (¬(ϕ ∧ ψ) ∨ χ) ∗ ((¬ϕ ∨ ¬ψ) ∨ χ) � (¬ϕ ∨ ¬ψ) ∨ χ;

(Br
18) ((¬ϕ ∨ ¬ψ) ∨ χ) ∗ (¬(ϕ ∧ ψ) ∨ χ) � ¬(ϕ ∧ ψ) ∨ χ;

(Br
19) χ(δ, �z ) � �χ(ε, �z ) for every formula χ(x, �z) and equation δ ≈ ε in

Definition 2.
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5.3. The Relevance Logic Sfde

The logic Sfde has been introduced by Deutsch [18]: it is induced the matrix
〈S4, {1, 1

2}〉, whose algebraic reduct S4 = 〈{0, 1
2 , m, 1},¬,∧,∨〉 is given in

the following tables.

¬
1 0
1
2

1
2

m m

0 1

∧ 0 1
2 m 1

0 0 0 m 0
1
2 0 1

2 m 1
2

m m m m m

1 0 1
2 m 1

∨ 0 1
2 m 1

0 0 1
2 m 1

1
2

1
2

1
2 m 1

m m m m m

1 1 1 m 1

Recall that a Kleene lattice is a De Morgan lattice satisfying x∧¬x ≤ y∨¬y.
Kleene lattices form a variety (KL), generated by the 3-element algebra
SK = 〈{0, 1, 1

2},¬,∨,∧〉, which is a subalgebra of S4 (and also isomorphic
to the two three-element subalgebras of M4).

The logic of Paradox LP (see [7,43,46]) is defined by the matrix 〈SK,
{1, 1

2}〉. The algebraic counterpart of LP is exactly the variety of Kleene
lattice, i.e. KL = Alg(LP). Ferguson [23] showed that �Sfde= �r

LP. A fact that
also follows from Theorem 13, by observing that the matrix 〈S4, {1, 1

2}〉 is
the P�lonka sum over the r-direct system of the two matrices 〈SK, {1, 1

2}〉
and 〈m, ∅〉.

A finite Hilbert style calculus for LP (see for instance [1]) can be obtained
by adding the axiom

(LP1) �ϕ ∨ ¬ϕ

to the calculus for the logic B described above. Therefore, by Theorem 29,
the calculus consisting of (Br

1) − (Br
19) and

(LPr
1) α ∗ ϕ ∨ ¬ϕ � ϕ ∨ ¬ϕ

is complete for Sfde.
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