
GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2021 1

Dynamic Min and Max Consensus and Size
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Abstract— In this paper we propose two distributed con-
trol protocols for discrete-time multi-agent systems (MAS),
which solve the dynamic consensus problem on the max
value. In this problem each agent is fed an exogenous
reference signal and has the objective to estimate and track
the instantaneous and time-varying value of the maximum
among all the signals fed to the network by exploiting only
local and anonymous interactions among the agents. The
first protocol achieves bounded steady-state and tracking
errors which can be traded-off for convergence time. The
second protocol achieves zero steady-state error and re-
quires knowledge of an upper bound to the diameter of
the graph representing the network. Modified versions of
both protocols are provided to solve the dual dynamic min-
consensus problem. These protocols are then exploited to
solve a distributed size estimation problem in a network
of anonymous agents in a dynamic setting where the size
of the network is time-varying during the execution of the
estimation algorithm. Numerical simulations are provided
in order to corroborate the characterization of the proposed
protocols.

Index Terms— Dynamic consensus, max consensus, dis-
tributed estimation, multi-agent systems, network size esti-
mation, anonymous networks.

I. INTRODUCTION

In the past decade there has been a significant interest in
the design of distributed algorithms to solve the consensus or
agreement problem over networked systems.

Problem of interest and motivation. In a consensus
problem the agents agree upon a state value by making only
use of local information coming from neighboring agents.
In its simplest formulation, the consensus problem considers
autonomous multi-agent systems, i.e., the agents are required
to converge to a state value which is function of the initial state
of the network. On the contrary, in the dynamic consensus
problem the agents are assumed to be non-autonomous and
are required to converge to a state value which is a function
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of the time-varying reference signals given as input to the
agents, most commonly the average [23] and the median
value [32], [37], or, not yet explored, the minimum and
maximum value. The dynamic max/min-consensus problem is
thus the focus of this paper. We develop dynamic consensus
protocols which achieve consensus and track the value of the
maximum or, alternatively, the minimum value among the
set of reference signals. Existing applications of max/min-
consensus protocols involve monitoring and optimization [21];
distributed synchronization, such as time-synchronization [10]
and target tracking [31]; network parameter estimation, such
as cardinality [24], diameter and radius [12], as well as
highest/lowest node degree [5].

Related literature. The so-called max-consensus problem
has been thoroughly investigated. Its objective is to make the
states of a network of agents converge to the maximum of their
initial states [30]. First protocols solving the max-consensus
problem have been proposed by Cortes [9] and by Tahbaz and
Jadbabaie [34], in continuous-time and discrete-time frame-
works, respectively. The popular discrete-time protocol in [34]
was originally formulated for the min-consensus problem,
which was later studied by Nejad et al [27] for the max-
consensus problem in a max-plus algebraic setting, providing
the characterization of the convergence rate. Its functioning, as
most of other methods, consists in flooding the system with the
biggest observed value, which may be outdated so far. Other
approaches include soft-max estimators [34], [40], gossip
based or randomized approaches [1], [21], nonlinear Perron-
Frobenius theory [11], [13]. The max-consensus problem has
been addressed in more general scenarios. Convergence results
for time-varying networks with synchronous switching topolo-
gies have been investigated in [28]. Asynchronous updates and
communications affected by time-delays have been consid-
ered in [18], while a stochastic framework for asynchronous
updates has been proposed in [21]. The effect of noise in
communications among the agents has been characterized
in [26], [39]. Finally, in the context of open multi-agent
systems where the size and composition of the network is
time-varying, a gossip algorithm has been proposed in [1].

Instead, the literature has focused significantly on the dy-
namic average-consensus problem (also known as distributed
average tracking problem); an insightful tutorial has been
provided by Kia et al. in [23]. Spanos’ et al. work was
pioneering in the continuous-time framework, by considering
the derivative of the reference signals to design the dynamics
of the estimator [33], while the discrete-time case has been
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addressed by Zhu and Martinez some years later by consid-
ering discrete-time derivatives of the reference signals [41];
both algorithms require a specific initialization of the network
and cannot handle noise in the communication or link failures.
To overcome these limitations several approaches have been
been proposed both in continuous-time [14], [17], [22] and in
discrete-time [11], [16], [25].

The dynamic consensus problem naturally arises in the
framework of open multi-agent systems, where the compo-
sition of the network and its size change over time. In this
recent topic of research, interesting contributions can be found
in [14], [15], [19], [20], [36] where the authors formulate
consensus and dynamic consensus problems for networks of
time-varying size. The works in [19], [20], [36] consider
stochastic arrivals and departures of agents in the network
while [14], [15] does not consider a model for agent arrivals
and departures from the network.

Main contributions. This paper provides two protocols to
solve the dynamic max-consensus problem:

– The first protocol is proved to achieve bounded steady-
state and tracking error which can be traded-off for improved
convergence time by tuning the protocol parameters;

– The second protocol is proved to achieve zero steady-state
error and bounded tracking error, while it requires knowledge
of an upper bound to the diameter of the graph representing
the network to be executed;

– The bounds on the steady-state and tracking error for both
protocols are theoretically characterized;

– The dual version of the proposed protocols to solve the
dynamic min-consensus problem are derived;

– The proposed protocols are employed in the scenario of
open multi-agent systems where agents can join and leave the
network during the algorithm execution, solving for the first
time the distributed size estimation problem for an anonymous
network with time-varying size.

The latter problem was previously addressed by means
of the popular max-consensus protocol for the time-invariant
scenario by Varagnolo et al. [35]. We exploit our novel
dynamic max-consensus protocols to enable the tracking of the
size of a time-varying network, avoiding the need for network
wide re-initialization of the distributed estimation procedure.

Structure of the paper. In Section II some preliminaries
and the notation used in this paper are presented. In Section III
the dynamic max/min-consensus problem is formalized along
with the main working assumptions. In Section IV the pro-
posed protocols are presented in detail and their performance
is theoretically characterized. In Section V the dynamic max-
consensus problem is applied to solve the distributed size
estimation problem in open and anonymous multi-agent net-
works. In Section VI numerical simulations corroborating the
theoretical analysis are provided. Finally, concluding remarks
and future research directions are given in Section VII.

II. NOTATION AND PRELIMINARIES

We denote by R and N the sets of real numbers and positive
integer numbers, respectively.

Maximum and minimum of a vector v = [v1, . . . , vm]⊺,
with m ∈ N, are denoted by

v = max
i=1,...,m

vi, v = min
i=1,...,m

vi. (1)

A multi-agent system (MAS) consists of n agents mod-
eled as dynamical systems interacting among each other.
The undirected graph G = (V,E) describes the pattern of
bidirectional interactions among the agents; V ⊂ N is the set
of nodes modeling the agents and E ⊆ (V × V ) is the set of
communication channels between them.

The state and the input of the i-th agent at time k ∈ N are
denoted with xi(k) ∈ Rm and ui(k) ∈ R, respectively. Agents
i and j are said to be neighbors if there exists an edge between
i and j, i.e., (i, j) ∈ E. A set of neighbors Ni is associated to
the i-th agent and it is defined as Ni = {j ∈ V : (i, j) ∈ E},
which represents the agents in the graph sharing a point-
to-point communication channel with agent i. For sake of
simplicity we denote N ◦

i = Ni ∪ {i}.
Communications among the agents are assumed to be

bidirectional, and thus the graph G is considered as undirected.
A path between two nodes i and j in a graph is a sequence of
consecutive edges πij = (i, k), (k, r), . . . , (s, t), (t, j) where
each consecutive edge shares a node with its predecessor. An
undirected graph is said to be connected if there exists a path
πij between any pair of nodes i, j ∈ V . The diameter of a
connected graph, denoted as δ(G), is defined as the longest
among the shortest paths among any pair of nodes i, j ∈ V .
For all connected undirected graphs it holds δ(G) ≤ n − 1
where n denotes the number of active agents in the network,
which is defined as the cardinality of the set V , i.e., n = |V |.
In this paper we also consider graphs with time-varying set of
edges E(k) and time varying set of nodes V (k). We describe
the interconnections at time k ∈ N among the n(k) active
agents with a time-varying graph G(k) = (V (k), E(k)).

III. PROBLEM STATEMENT

Consider a network of n agents modeled as discrete-
time dynamical systems with state xi = [x1

i , · · · , xm
i ] ∈ Rm,

each of which has access to time-varying reference signal
ui ∈ R and interacts with other agents according to a graph
G = (V,E) and a local interaction protocol

xi(k) = fi(ui(k), xj(k − 1) : j ∈ N ◦
i ). (2)

The dynamic max/min-consensus problem consists in the de-
sign of a local interaction protocol fi(·) which steers the agents
to track the maximum u(k) ∈ R or the minimum u(k) ∈ R
among the time-varying reference signals. In this work, we
provide two different local interaction protocols (2) that solve
for the first time in the current literature this problem.

Since the dynamic min-consensus problem can be reformu-
lated as a dynamic max-consensus problem by replacing all
the reference signals by the negative of their values, we present
and characterize only the protocols for the maximum seeking,
from which the dual protocols for the minimum seeking can be
readily derived. For the sake of consistency, such reformulation
and the derivation of the dual protocols are made explicit in
Section IV-D.
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TABLE I
CHARACTERIZATION OF THE DMC AND EDMC PROTOCOLS IN A CONNECTED GRAPH G WITH REFERENCE SIGNALS ui UNDER ASSUMPTION 1.

Π ≥ 0: MAXIMUM ABSOLUTE VARIATION OF SIGNALS ui . δG ∈ N: DIAMETER OF GRAPH G. α > 0, m ∈ N \ {0}: TUNING PARAMETERS.

Protocol State Tuning Local interaction rule Bound on the Convergence time
Parameters tracking error

DMC xi ∈ R α > Π xi(k) = max
j∈N◦

i

{xj(k − 1)− α, ui(k)} e(k) ≤ (α+Π)δG , Tc ≤ max

{
δG ,

x(k)− u(k)

α−Π

}

EDMC xi ∈ Rm m ≥ δG

x0
i (k) = ui(k)

xℓ
i(k) = max

j∈N◦
i

{
xℓ−1
j (k − 1)

}
, ℓ ∈ [1,m].

e(k) ≤ mΠ, Tc ≤ m

We characterize the performance of the proposed protocols
in terms of convergence time as well as tracking error

e(k) = max
i∈V

|xm
i (k)− u(k)|. (3)

A. Working assumptions

The variation of each reference signal over the time window
[k − T, k], with T ∈ N and k ≥ T , is defined as

∆ui(k, T ) = ui(k)− ui(k − T ), ∀i ∈ V. (4)

and, in a similar way, the variation of the maximum among
the reference signals is defined as

∆u(k, T ) = u(k)− u(k − T ). (5)

Next, we state our first assumption concerning the bounded-
ness of the reference signals’ variation, which is a common
assumption in the dynamic consensus literature.

Assumption 1. The maximum absolute variation1 of the
reference signals in one step, T = 1, is bounded by a constant
Π ≥ 0, i.e.,

|∆ui(k, 1)| ≤ Π, ∀i ∈ V, ∀k ≥ 0. (6)

In the main application of this paper, we also deal with
the scenario of an open multi-agent system (OMAS), wherein
agents may leave or join and the communication pattern
among them may change over time. Therefore a change in the
network may involve a variation of the number of active agents
and a variation of the active communication channels. These
changes in the network are encoded into a time-varying graph
G(k) = (V (k), E(k)) describing the interconnection among
the n(k) active agents. As soon as such a change occurs, the
new agents’ reference signals can be possibly much larger or
smaller than those of the agents previously connected to the
network. Thus, to address open networks we assume that the
frequency at which the agents can join or leave the network
is bounded as formalized next.

Assumption 2. There exists a minimum dwell time Υ ∈ N
between two consecutive changes of the graph G(k).

1Note that if the reference signals are sampled versions of continuous-
time signals, then by increasing the sampling frequency their variation in one
iteration is reduced. Thus, for any signal with bounded variation there exists
a sampling frequency such that Assumption 1 is also satisfied.

IV. PROPOSED DYNAMIC MAX/MIN-CONSENSUS
PROTOCOLS

In this section we present and characterize two distributed
protocols which solve the dynamic max-consensus problem.
The first one, presented in Section IV-B and called Dy-
namic Max-Consensus (DMC) Protocol, achieves bounded
steady-state and tracking error without requiring any further
information about the network topology. The second one,
presented in Section IV-C and called Exact Dynamic Max-
Consensus (EDMC) Protocol, achieves zero steady-state error
and bounded tracking error by requiring the knowledge of an
upper bound to the network diameter. For the convenience of
the reader, we anticipate in Table I the local interaction rules
employed by the DMC and EDMC Protocols, along with the
characterization of the convergence time and tracking error
provided in the reminder of this section.

We first introduce the popular protocol solving the max-
consensus problem over time-invariant signals and show its
bias if applied in the case of time-varying signals, which is
instrumental to understand the functioning of the protocols
presented in the subsequent sections.

A. Bias of the max-consensus protocol with time-varying
signals

The popular protocol which solves the (static) max-
consensus problem [18], [26], [27], [34] makes use of the
following local interaction rule,

xi(k) = max
j∈N◦

i

{xj(k − 1)}, (7)

with xi ∈ R. This protocol enables the agents’ states to
converge to the maximum among the initial states. Thus, as-
suming a set of constant reference signals ui(k) = ui(0) ∈ R
for k ∈ N, the protocol enables to estimate their maximum by
requiring the following initialization step

xi(0) = ui(0). (8)

A naive generalization of this protocol to deal with time-
varying reference signals could be

xi(k) = max
j∈N◦

i

{xj(k − 1), ui(k)}. (9)

In the case of constant reference signals, the protocol in eq. (9)
is equivalent to the one in eq. (7); in the case of time-varying
signals, it is biased since it provides a monotonic estimation.
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Fig. 1. Biased behavior of conventional max-consensus protocol in
eq. (9) with time-varying reference signals.

This is major drawback that prevents the protocol in eq. (9)
from tracking max value in the case it is non-monotonic.

As an example of this biased behavior, Figure 1 shows
the evolution of a random network of agents executing the
protocol in eq. (9) with time-varying reference signals and
without any re-initialization logic: as one can notice, the
tracking is lost every time the maximum among the reference
signals decreases below the agents’ states. Therefore, only a
re-initialization of the protocol execution in the whole network
can mitigate such an estimation bias for time-varying reference
signals, which is a significant drawback for the implementation
of a distributed algorithm in large-scale networks.

The above discussion is illustrative of the complexity of
the problem under study. In the following, we provide two
different strategies to modify the conventional protocol in
order to overcome the issue of re-initializing the network and
thus allowing the tracking of time-varying reference signals.

B. Dynamic Max-Consensus Protocol
Consider a network of agents with scalar state xi ∈ R.

The strategy proposed in this section suggests to equip the
generalized version of the max-consensus protocol, given in
eq. (9) and discussed in the previous section, with an additive
tuning parameter α > 0, resulting in the following local
interaction rule

xi(k) = max
j∈N◦

i

{xj(k − 1)− α, ui(k)} . (10)

the DMC Protocol details the employment of this local
interaction rule, while in the next theorem we provide its
characterization.

Theorem 1. Consider a MAS executing the DMC Protocol
under Assumption 1 and consider a generic initial instant of
time k0 ∈ N. If graph G is connected and if

α > Π, (11)

then there exists a convergence time Tc ≥ 0 such that the
tracking error is bounded for k ≥ k0 + Tc by

e(k) ≤
∣∣αδG +∆u(k, δG)

∣∣ ≤ (α+Π)δG , (12)

where δG is the diameter of graph G, while e(·) and ∆u(·)
are given in eq. (3) and (5), and it holds

Tc ≤ max

{
δG ,

x(k0)− u(k0)

α−Π

}
. (13)

DMC Protocol: Dynamic Max-Consensus
Input: Tuning parameter α > 0.
Initialization: xi(0) ∈ R for i ∈ V .
Init. for opt. conv. time: xi(0) = ui(0) for i ∈ V .
Output: xi(k) ∈ R for i ∈ V .
for k = 1, 2, . . . each node i does

Gather xj(k − 1) from each neighbor j ∈ Ni

Update the current state according to

xi(k) = max
j∈N◦

i

{xj(k − 1)− α, ui(k)}

Proof: Given a generic time k0 ∈ N, we are going to
prove that the maximum and minimum among the agents’ state
for k ≥ k0 +max{δG , T ′} satisfy

x(k) = u(k), (14)

x(k) ≥ u(k) + ∆u(k, δG)− αδG , (15)

where T ′ is given by

T ′ =
max {x(k0)− u(k0), 0}

α−Π
. (16)

• Proof of eq. (14). Let T ≥ 1, then it holds

x(k0 + T ) = max
i∈V

xi(k0 + T )

= max
i∈V

max
j∈N◦

i

{xj(k0 + T − 1)− α, ui(k0 + T )}

= max
i∈V

{xi(k0 + T − 1)− α, ui(k0 + T )}

= max{x(k0 + T − 1)− α, u(k0 + T )}
= max{x(k0 + T − 2)− 2α, u(k0 + T )}

=
...

= max{x(k0)− Tα, u(k0 + T )} (17)

and since by Assumption 1 it holds |∆u(k, T )| ≤ TΠ, we
further conclude that

x(k0 + T ) = max{x(k0)− Tα, u(k0 + T )}
= max{x(k0)− Tα, u(k0) + ∆u(k, T )}
≥ max{x(k0)− Tα, u(k0)− TΠ} (18)

Due to the assumption in eq. (11), there exists a time T ′ such
that the lower bound to the maximum state is smaller than the
lower bound to the maximum input at time k0 + T ′, i.e.,

x(k0)− T ′α < u(k0)− T ′Π.

The smallest value of T ′ which solves the above inequality
corresponds to the time given eq. (16). From eq. (17), it
follows that for T ≥ T ′ it holds

x(k0 + T ) = u(k0 + T ),

thus showing that eq. (14) holds for k ≥ k0 + T ′.
• Proof of eq. (15). We define the set

V0 = {i ∈ V : xi(k0) = x(k0)}
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denoting the set of agents whose state at time k0 is the
maximum among all others. We now consider the set of one-
hop neighbors of nodes in set V0 and denote it with V1, which
is formally defined next

V1 = {i ∈ V : (i, j) ∈ E, j ∈ V0} .
By induction on ℓ = 1, 2, . . ., we also define the sets

Vℓ =

{
i ∈ V : (i, j) ∈ E, j ∈

ℓ−1⋃
s=0

Vs

}
,

for which it holds Vℓ ⊆ Vℓ+1. Now, the state of agents in V1

at time k0 + 1 can be lower bounded as follows

xi(k0 + 1) = max
j∈N◦

i

{xj(k0)− α, ui(k0 + 1)}

= max{x(k0)− α, ui(k0 + 1)}
≥ x(k0)− α, ∀i ∈ V1

where the second step follows from the fact that each agent
i ∈ V1 has at least a neighbor j ∈ V0 with state value at time
k0 is xj(k0) = x(k0), by definition. For the sake of clarity, let
us consider another step and compute a lower bound to the
state of agents in V2 at time k0 + 2,

xi(k0 + 2) = max
j∈N◦

i

{xj(k0 + 1)− α, ui(k0 + 2)}

≥ max{x(k0)− 2α, ui(k0 + 2)}
≥ x(k0)− 2α, ∀i ∈ V2.

By induction, we conclude that for ℓ = 1, 2, . . .

xi(k0 + ℓ) ≥ x(k0)− ℓα, ∀i ∈ Vℓ.

The above lower bound holds for all agents i ∈ V with
ℓ ≥ δG since the longest shortest path between two nodes in a
connected graph is at most equal to its diameter δG and thus
VδG = V . We conclude that

xi(k0 + δG) ≥ x(k0)− αδG , ∀i ∈ V.

Notice that the lower bound for ℓ = δG is tight, in fact for
ℓ = δG + T with T > 0 one can verify that

xi(k0 + δG + T ) ≥ x(k0)− α(δG + 1)

≥ x(k0 + T ) + Tα− α(δG + T )

≥ x(k0 + T )− αδG , ∀i ∈ V,

since it always holds that x(k0) ≤ x(k0 + T ) + αT . We
conclude that for all k ≥ k0 + δG it holds

xi(k) ≥ x(k − δG)− αδG , ∀i ∈ V.

Finally, if also eq. (14) holds, then the next chain of inequal-
ities holds for k ≥ k0 +max{δG , T ′},

x(k) = min
i∈V

xi(k)

≥ x(k − δG)− δGα

≥ u(k − δG)− δGα

≥ u(k) + ∆u(k, δG)− αδG ,

thus showing that eq. (15) holds for k ≥ k0 +max{δG , T ′}.

The bounds in eq. (14) and eq. (15) are both satisfied for
k ≥ k0 +max{δG , T ′}. This proves that the convergence time
Tc is upper bounded as in eq. (13). Finally, the bound on the
tracking error can be derived for k ≥ k0 + Tc as follows

e(k) = max
i∈V

|xi(k)− u(k)|

= max{|x(k)− u(k)|, |x(k)− u(k)|}.
Exploiting the upper bound in eq. (14) and the lower bound
in eq. (15) we derive

e(k) = max{|x(k)− u(k)|, |x(k)− u(k)|}
= |x(k)− u(k)|
≤

∣∣∆u(k, δG)− αδG
∣∣ .

Furthermore, by exploiting Assumption 1, it holds that
∆u(k, δG) ∈ [−ΠδG ,ΠδG ], and therefore

e(k) ≤ (α+Π)δG ,

completing the proof.
In the next corollaries we make explicit the convergence

time in the case of optimal initialization and the steady-state
error in the case of constant reference signals.

Corollary 1. The convergence time for Theorem 1 is min-
imized by the initialization xi(k0) = ui(k0), which gives

Tc ≤ δG . (19)

Corollary 2. The estimation error for Theorem 1, in the
case all reference signals remain constant for an interval
T ′ > Tc, satisfies the following condition

e(k) ≤ αδG , k ∈ [k0 + Tc, k0 + T ′]. (20)

It is clear that the parameter α plays a fundamental role in
the proposed protocol. The first main consideration concerns
the fact that it is strictly positive, which allows one to avoid the
usual centralized initialization of the max-consensus protocol.
In fact, for α = 0 the proposed protocol becomes the naive
generalization discussed in Section IV-A, which has been
shown to be biased and unsuitable to solve a tracking problem.
Thus, for α = 0 the results in Theorem 1 do not hold, even
in the case of constant reference signals, i.e., Π = 0: the
requirement α > 0 avoids the initialization in eq. (8).

A second important consideration is about the role that the
parameter α plays in the trade-off between estimation error
and convergence time. On one hand, to minimize the tracking
error one needs to choose α as small as possible, according
to the design condition in eq. (11). On the other hand, the
choice of α also affects the convergence time Tc, with smaller
values of α giving a larger convergence time. A pragmatic
design criterion for α is to first fix the desired tracking error
and then choose the largest α satisfying the error performance
constraint, while minimizing the convergence time.

A last remark concerns the homogeneity in the choice of the
parameter α among the agents. This restriction can be relaxed
by allowing the agents to use different αi still satisfying
condition (11) without affecting the validity of the protocol.
Following the same proof steps of Theorem 1, one can derive
that if each agent selects its own αi, the error remains bounded
as in eq. (12), when α is replaced by α = maxi∈V αi.
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C. Exact Dynamic Max-Consensus Protocol
Consider a network of agents with vector state

xi = [x0
i , x

1
i , . . . , x

m
i ]⊺ ∈ Rm+1 where m ∈ N is an upper

bound on the diameter of the underlying communication
network, i.e., m ≥ δG . The strategy proposed in this section
suggests to replicate the initialization step in eq. (8) of
the conventional protocol at each instant of time in the
first element x0

i of the state vector and then cascade the
conventional protocol in eq. (7) over the remaining state
variables: the estimate of each agent is the last state xm

i . The
proposed local interaction rule is formalized next

x0
i (k) = ui(k)

xℓ
i(k) = max

j∈N◦
i

{
xℓ−1
j (k − 1)

}
, ℓ = 1, . . . ,m. (21)

The EDMC Protocol details the employment of this local
interaction rule, while in the next theorem we provide its
characterization.

Theorem 2. Consider a MAS executing the EDMC Proto-
col under Assumption 1 and consider a generic initial instant
of time k0 ∈ N. If graph G is connected and if

m ≥ δG , (22)

then there exists a convergence time Tc ≥ 0 such that the
tracking error is bounded for k ≥ k0 + Tc by

e(k) ≤
∣∣∆u(k,m)

∣∣ ≤ m ·Π, (23)

where e(·) and ∆u(·) are given in (3) and (5), and it holds

Tc ≤ m. (24)

Proof: At time k0, we define the set

V0 =

{
i ∈ V : x0

i (k0) = max
j∈V

x0
j (k0)

}
.

Since by the EDMC Protocol it holds x0
i (k) = ui(k), then

V0 =
{
i ∈ V : x0

i (k0) = u(k0)
}
.

Let us now consider time the set V1 of one-hop neighbors of
nodes in set V0. Formally,

V1 = {i ∈ V : (i, j) ∈ E, j ∈ V0} .
The update rule (21) of the state x1

i for agents belonging to
this set reduces to

x1
i (k0 + 1) = u(k0), ∀i ∈ V1

because all agents i ∈ V1 have a neighbor j ∈ V0 with state
value x0

j (k0) = u(k0 − 1). By induction, for ℓ ≥ 1 define

Vℓ =

{
i ∈ V : (i, j) ∈ E, j ∈

ℓ−1⋃
s=0

Vs

}
,

and for all agents in these sets the update rule (10) of the state
xℓ
i reduces to

xℓ
i(k0 + ℓ) = u(k0).

By noticing that Vm ≡ VδG ≡ V , we infer that for all i ∈ V
and for any time k ≥ k0 +m, it holds

xm
i (k) = u(k −m), (25)

EDMC Protocol: Exact Dynamic Max-Consensus
Input: Network’s diameter upper bound m ∈ N.
Initialization: xi(0) ∈ Rm for i ∈ V .
Output: xm

i (k) ∈ R for i ∈ V .
for k = 1, 2, . . . each node i does

Gather xj(k − 1) from each neighbor j ∈ Ni

Update the current state according to

x0
i (k) = ui(k)

xℓ
i(k) = max

j∈N◦
i

{
xℓ−1
j (k − 1)

}
, ℓ = 1, . . . ,m

which proves that the convergence time Tc is at most
equal to the upper bound m as in eq. (24). Furthermore, by
Assumption 1 it holds u(k) = u(k − m) + ∆u(k,m) and
exploiting (25) we conclude that for any k ≥ m the bound on
the tracking error given in (23) is correct since

e(k) = max
i∈V

|xm
i (k)− u(k)| ≤

∣∣∆u(k,m)
∣∣ ≤ mΠ,

where the last inequality is due to Assumption 1.
In the next corollary we make explicit the steady-state error
in the case of constant reference signals.

Corollary 3. The estimation error for Theorem 2, in the
case all reference signals remain constant for an interval
T ′ > Tc + δG , satisfies the following condition

e(k) = 0, k ∈ [k0 + Tc + δG , k0 + T ′]. (26)

It is clear that the parameter m, which determines the
dimension of the state vector, plays a fundamental role in
the proposed protocol. Increasing the value of m involves
a greater memory burden and communication complexity.
However, since the precise value of the network diameter is
usually unknown, it is not possible to make the best choice
m = δG . Therefore, m should be set to be equal to the sharpest
available upperbound on the network diameter, ensuring in this
way the functioning of the protocol and the minimization of
the memory requirement.

D. Min-consensus Protocols
In the next remark we state the equivalence between

the dynamic max-consensus problem and the dynamic min-
consensus problem up to a change of variables.

Remark 1. The dynamic min-consensus problem in a MAS
where the agents have state xi(k) and have access to signals
ui(k) is equivalent to a dynamic max-consensus problem in
a MAS where the agents have state y(k) and have access to
signals vi(k) defined as follows

y(k) = −xi(k), vi(k) = −ui(k). (27)

The remark can be understood by noticing that

v(k) = −u(k) ⇒ v(k) = −u(k),

from which it follows that the problem of steering the agents’
state xi(k) = −y(k) to u(k) = −v(k) is equivalent to the
problem of steering the agents’ state y(k) to v(k).
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DSE Protocol: Dynamic Size-Estimation

Input: Number of random numbers p ∈ N.
Initialization: uij(0) ∼ U(0, 1) for j = 1, . . . , p

Output: n̂i(k) =
−p∑p

j=1 log(yij(k))
for i ∈ V (k).

for k = 1, 2, . . . each node i does
for j = 1, . . . , p do

Generate a random number if just joined
if i ∈ V (k) \ V (k − 1) then

uij(k) ∼ U(0, 1)

Execute either the DMC or the EDMC Protocol
with reference signals [u1j(k), u2j(k), . . .]

Store the estimated value in yij(k)

By means of the above discussion, one can derive the dual
local interaction rules to solve the dynamic min-consensus
problem. In particular, from the local interaction rule in
eq. (10) of the DMC Protocol we derive

xi(k) = min
j∈N◦

i

{xj(k − 1) + α, ui(k)} . (28)

and, similarly, from the local interaction rule in eq. (21) of the
EDMC Protocol we derive

x0
i (k) = ui(k)

xℓ
i(k) = min

j∈N◦
i

{
xℓ−1
j (k − 1)

}
, ℓ = 1, . . . ,m. (29)

Their characterization can be readily borrowed from Theo-
rem 1 and Theorem 2 by means of the equivalence given in
Remark 1.

E. Robustness to re-initialization

A main feature of the protocols we have provided and
characterized is that they don’t need to be re-initialized if the
network changes. This feature entails that if any change in
the network occurs, such as an unexpected variation of the
reference signals, a discontinuity of an agent’s state due to a
fault, or even a change of the topology or the number of active
nodes, there is no need to restart the algorithm at each agent,
as opposed to the popular max-consensus protocol.

This feature enables the employment of these protocols in
open networks, as in the case of the application we discuss in
the next section. When nodes can leave/join an open network
in an arbitrary fashion, a large convergence time and tracking
error may result. On the contrary, if the join/leave event can
be locally controlled, such degradation of the performances
can be avoided. For instance, if an agent joins or leaves under
the following circumstances, the results given in Theorems 1-2
and Corollaries 1-2-3 still hold:

• An agent that joins the network with a reference signal
lying in the convex hull of its neighbors’ states and
initializes its state to its reference signal;

• An agent that leaves the network with a reference signal
lower than its own state.

V. SIZE ESTIMATION OF OPEN NETWORKS

In this section we focus on the problem of estimating the
size of an open network, i.e., the number of active nodes in
it: we describe the interconnections at time k ∈ N among the
n(k) active agents with a time-varying graph G(k).

We consider the framework of anonymous networks [38]
wherein the agents cannot be identified within the network,
thus guaranteeing security and privacy of the nodes but hinder-
ing their cooperation, and each node only knows its neighbors
and has not information on the topology, or at most only a little
information such as a bound on the network diameter. This
problem counts an high number of interesting applications,
e.g., maintenance purposes in ad-hoc wireless sensor networks
[7], optimization of query access plans in internet-scale data
networks [29], coordination of robotic agents [6], and so on.

A. Estimation methodology
In this section we describe and characterize our protocol for

estimating the time-varying network’s size. Our methodology
extends the one proposed by Varagnolo et al. [35] to networks
where the agents are free to join or leave at any time, thus
resulting in a time-varying network’s size n(k) to be estimated
by the agents. The implementation of the strategy is given in
the DSE Protocol, while its characterization is given in the
next section.

The methodology is based on statistical inference concepts
and can be outlined in three main steps: generation, estimation
and inference, described next.

1) (Generation) When a node i joins the network, it
generates p ∈ N \ {0} independent random num-
bers2 uij ∈ [0, 1] from a uniform distribution, i.e.,
uij ∼ U(0, 1) with j = 1, . . . , p;

2) (Estimation) The n(k) active nodes execute either the
DMC or the EDMC Protocol, thus each node i computes
p estimates yij of the maximum value uj among each
local set [u1j , u2j , . . .], with j = 1, . . . , p;

3) (Inference) Each node i infers the estimate n̂i(k) of t he
the network size n(k) by maximum likelihood estima-
tion from its own set of estimations ỹi = [yi1, . . . , yip].

The likelihood function measures the fitness of a statistical
model to a data sample (in our case, the maximum values uj),
for given values of the unknown parameters (in our case the
dimension of the network n). By noticing that the values uj

are the n-th order statistics of the sets [u1j , u2j , . . .] for any
j = 1, . . . , p and by noticing that they are independent and
identically distributed random variables forming the sample
ũ = {u1, . . . , up}, one can compute the likelihood function,
cfr. [35, Section III],

L(n|ũ) = np

p∏
j=1

un−1
j .

For further details about the derivation of the likelihood
function we refer the reader to the proof of Theorem 3. The

2The number p of generations is a design parameter: the higher is the
value of p, the better is the estimation at steady-state but the slower is the
convergence rate.
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value n̂ maximizing the likelihood function is the maximum
likelihood estimator of parameter n, that is given by

n̂ =
−p∑p

j=1 ln (uj)
. (30)

However, the i-th agent does not have the exact knowledge
of the values uj , but it only knows its own estimates yij ,
therefore the best it can do is to use the values yij instead of
uj , thus computing the estimate

n̂i =
−p∑p

j=1 ln (yij)
, ∀i ∈ V, (31)

which, in fact, is the output of the DSE Protocol.

B. Characterization of the DSE Protocol
Whenever an agent leaves or joins the network, the set of

reference signals changes, and so do their maximum values.
The DMC Protocol and the EDMC Protocol guarantee the
tracking of such time-varying signal thanks to their robustness
to the initial condition discussed in Section IV-E. Intuitively,
the rate at which the agents leave or join the network is
correlated to the variation of the maximum values to be
estimated and thus some critical scenarios may happen.

Here, we just make the assumption that our protocols can
run a sufficiently high number of iterations such that a stady
state is reached after each change of the network: the minimum
dwell time Υ between two changes of the network ensured
by Assumption 2 is required to be greater or equal than the
convergence time Tc of the employed protocol. In the next
theorem, we provide a characterization of the estimation error
in the above described scenario with a sufficiently large dwell-
time, even though we remark that the proposed protocol tracks
the correct value, with possibly larger worst case error, when
the assumption on the dwell time is not satisfied.

Theorem 3. Consider an OMAS executing the DSE Pro-
tocol under Assumption 2 and consider a generic initial
instant of time k0 ∈ N at which the network changes, i.e.,
G(k0−1) ̸= G(k0). Assume that the dwell time is greater than
the convergence time of the employed protocol3, i.e., Υ ≥ Tc.

For the DMC Protocol, the expected value of the estimations
n̂i(k) for k ∈ [k0 + Tc, k0 +Υ] is given by

E [n̂i(k)] = εp−1eεnp(εp)
p
Γ(1− p, εnp), (32)

where ε = αδG is the upperbound to the tracking error, and
Γ(·) denotes the upper incomplete gamma function4.

For the EDMC Protocol, the expected value of the estima-
tions n̂i(k) for k ∈ [k0 + Tc, k0 +Υ] is given by

E [n̂i(k)] =
np

p− 1
. (33)

Proof: By Assumption 2, the network remains unchanged
for k ∈ [k0, k0+Υ]. Thus, by the DSE Protocol the reference

3The dwell time expressed in absolute time units can be arbitrarily reduced
by simply increasing the frequency of the algorithm iterations.

4The upper incomplete gamma function Γ(a, x) is defined as follows
Γ(a, x) =

∫∞
x ta−1e−tdt. There does not exist a closed form of this func-

tion, but it is usually implemented in programming platforms. For example,
with MATLAB it can be computed with the command igamma(a,x). For
further details we refer the reader to [4].

signals and their maximum are constant in this interval of
time and Corollaries 2-3 hold. In the remaining of the proof
we consider the steady-state for k ∈ [k0 + Tc, k0 + Υ] and
omit the time dependence (k).

Consider the samples of numbers u1j , . . . , unj for any
j = 1, . . . , p. Each of these numbers is randomly generated
with probability distribution function P (a) = a for a ∈ [0, 1]
and P (a) = 0 otherwise. The maximum value of the sample

uj = max
j∈V

uij , ∀j = 1, . . . , p.

is the the n-th order statistics of the sample. Consider now the
sample obtained by the n-th order statistics of each random
number generated by the agents, i.e.,

ũ = {u1, . . . , up}.
All variables in the sample are i.i.d. random variables with
probability density function pn(a) = nPn−1(a) depending on
the parameter n. Thus, the likelihood function L(n|ũ) can be
computed as the product of the probability density functions,

L(n|ũ) =
p∏

j=1

pn(uj) = np

p∏
j=1

un−1
j .

In practice, it is often convenient to work with the natural
logarithm of the likelihood function, called the log-likelihood

L∗(n|ũ) = ln (L(n|ũ)) = ln

np

p∏
j=1

un−1
j


= p ln (n) + (n− 1)

p∑
j=1

lnuj .

By computing the value n̂ maximizing the log-likelihood
function one obtains the best estimate of the size n of the
network, which is given by eq. (30). However, variables uj are
not known exactly at each node, and instead they know their
estimate yij . Therefore, the best estimation n̂i an agent can do
is to implement eq. (31). It is necessary to understand how the
error arising from the use of yij ̸= uj affects the estimation
of n̂. We start our discussion taking into consideration the
employment of the DMC Protocol for which a non-null error
is reached at steady-state. Then, as a special case for zero
error, we derive the result for the EDMC Protocol.

• Discussion for the DMC Protocol. By Corollary 2 the
steady-state error for the DMC Protocol in the estimating of
uj is bounded by the following

ej = max
i∈V

|yij − uj | ≤ δG · α = ε. (34)

A fundamental consideration, resulting from the constructing
proof of Theorem 1 and Corollary 2, is that at steady-state
the estimation yij of agent i of the quantity uj is always
an underestimation, i.e., yij ≤ uj for all i ∈ V . With this
consideration in mind, it is easy to realize that the worst case
is when at least one agent underestimates all variables uj with
maximum error ε = δGα. Thus, we consider such a worst case
scenario by assuming that

∃i ∈ V : yij = uj − ε, ∀j = 1, . . . , p. (35)
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Under condition (35) we obtain a lower bound n̂∗ on the
estimation n̂i of each agent, which is obtained as follows

n̂i =
−p∑p

j=1 ln
(
uj − ε

) =
−p∑p

j=1

[
lnuj + ln

(
1− ε

uj

)]
≥ −p∑p

j=1

[
lnuj + ln (1− ε)

] ≥ −p∑p
j=1

(
lnuj − ε

)
≥ p∑p

j=1(− lnuj) + pε
≥ 1

1
p

∑p
j=1(− lnuj) + ε

= n̂∗ (36)

At the denominator of (36) we can recognize the term

γ =
1

p

p∑
j=1

− lnuj . (37)

Now, consider the following conceptual steps:
1) The variables uj are beta random variables with shape

parameters equal to (n,1), since they are the n-th order
statistics of a sample of n random numbers drawn from
a continuous distribution;

2) The variables − lnuj are exponential random variables
with rate n due to the equivalence to the beta distribution
with parameters (n,1);

3) The variable γ as in eq. (37) is a gamma random variable
with shape p and rate pn since they are the averaged sum
of exponential functions.

Therefore, by means of the law of the unconscious statisti-
cian, we can calculate the expected value of n̂∗ in eq. (36) as
follows

E[n̂∗] =

∫ ∞

0

f(x)g(x)dx, (38)

where f(x) = 1/(x + ε) is the relation between n̂∗ and
the gamma variable γ, while g(x) is the probability density
function of the gamma variable γ, i.e.,

g(x) =
(np)

p

(p− 1)!
xp−1e−npx

Solution to (38) can be computed through several solver (we
have used Wolfram|Alpha Pro engine) and it is giving by

E[n̂∗] = εp−1eεnp(np)pΓ(1− p, εnp),

where Γ(p, x) is known as the upper incomplete gamma
function. We point out that this expression holds for n, p ∈ N
and ε ∈ R such that n ≥ 1, p > 1 and ε ≥ 0.

0 50 100 150 200 250 300
−1

−0.5

0

0.5

1

1.5

Step k
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Fig. 2. Example 1: Evolution of a MAS, with n = 10 agents in a line
configuration with diameter δG = 9, running the DMC Protocol. The
signal variation is bounded by Π = 0.02 and the protocol is designed
with α = 0.021. ε denotes the bound on the tracking error as in eq. (12)
and εss denotes the bound on the steady-state error as in eq. (20).

• Discussion for the EDMC Protocol. By Corollary 3 the
steady-state error in the estimating of uj is null. Solution
to (38) for ε = 0 is given by the following

E[n̂∗] =
np

p− 1
.

We point out that this expression holds for n, p ∈ N and ε ∈ R
such that n ≥ 1, p > 1 and ε ≥ 0.

VI. NUMERICAL SIMULATIONS

To illustrate the performance of the proposed protocols,
simulation results are given in this section. First, we substan-
tiate the results for the DMC and the EDMC Protocols about
their stability and error bounds by simulating a worst-case
scenario network with line topology. Second, we simulate the
DMC Protocol tracking a sinusoidal reference signal for dif-
ferent choices of the design parameters, showing convergence
time and tracking error can be traded-off. Third, we apply
these protocols in the context of distributed size estimation
of open networks considering the case of scale-free networks
with approximately fixed diameter.

A. Example 1: comparison of the DMC and the
EDMC Protocols

We simulate a network of n = 10 agents with line
topology. The choice of the line topology is instrumental to
run simulations in the worst case scenario. In fact, for line
graphs the information takes exactly δG = n − 1 = 9 steps
to flow through the network, thus maximizing the error for a
fixed number of agents.

Figures 2-3 show the evolution of the output variables
(dashed red lines) and of the maximum among the time-
varying reference signals (solid blue line) when the DMC Pro-
tocol or the EDMC Protocol are run over the MAS, respec-
tively. The agents are uniformly initialized in the interval
[0, 1.5] and the reference signals are set to be equal to −1 for
all nodes but the 6-th one, which is initialized at u6(0) = 0.5 to
be the maximum. All reference signals remain constant except
for the 6-th component, the maximum, which is time-varying
with respect to eq. (39), given in the next page, with initial
condition u6(0) = 0 and Π = 0.02 being the absolute variation
according to Assumption 1,

0 50 100 150 200 250 300
−1

−0.5

0

0.5

1

1.5

Step k
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Fig. 3. Example 1: Evolution of a MAS, with n = 10 agents in a line
configuration with diameter δG = 9, running the EDMC Protocol. The
signal variation is bounded by Π = 0.02 and the protocol is designed
with α = 0.021. ε denotes the bound on the tracking error as in eq. (23)
and the steady-state error is zero according to eq. (26)
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TABLE II
Example 1: DESIGN OF THE DMC AND THE EDMC PROTOCOLS AND

THEIR CHARACTERIZATION DUE TO THEOREMS 1-2.

Protocol Input Conv. Time Bound on the errors
(tracking) (steady-state)

DMC α = 0.021 Tc = 32 ε = 0.37 εss = 0.19
EDMC m = 9 Tc = 9 ε = 0.18 εss = 0

u6(k + 1) =



u6(k) if k < 100

u6(k)−Π if k ∈ [100, 150)

u6(k) if k ∈ [150, 200)

u6(k) + Π if k ∈ [200, 250)

u6(k) if k ≥ 250

. (39)

The design for the DMC Protocol and its characterization pro-
vided by Theorem 1 are given in Table II. These simulations
show how the protocols steer the agents to track the time-
varying maximum value u(k) among the reference signals,
corroborating the convergence times and the bound on the
errors given in Theorems 1-2 and Corollaries 2-3.

B. Example 2: design trade-off for the DMC Protocol

As a second simulation we consider the same network
and initialization of Section VI-A. The time-varying reference
signal u6(k) is a sinusoidal signal given by

u6(k) = u(k − 1) + 0.2 sin

(
k

10

)
, k ≥ 1,

with initial condition u6(0) = 0, which is also the maximum
signal to be tracked since all other reference signals stay
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Fig. 4. Example 2: Different evolution of a MAS, with n = 10 agents
in a line configuration with diameter δG = 9, running the DMC Protocol
with different designs. While the signal variation is bounded by Π =
0.0199, the top figures show the dynamic tracking with α = 0.02 and
the bottom figures show the dynamic tracking with α = 0.05.

constant at −1. Notice that for this signal the variation is
bounded by Π = 1.99.

Fig. 4 shows the evolution of the output variables (dashed
red lines) and the maximum time-varying reference signal
(solid blue line). In particular, in the above plots the DMC Pro-
tocol has been designed with α = 0.2, while in the bottom
plots with α = 0.5. We notice that the design of α = 0.2
provides a greater convergence time Tc = 70 and a smaller
tracking error e(k) ≤ 0.36 compared to the design α = 0.5
which gives a convergence time Tc = 35 and a tracking
error e(k) ≤ 0.63. Thus, the design of α provides a trade-
off between convergence time and tracking error.

C. Example 3: dynamic estimation in large networks

In this third simulation, we are going to increase the number
of agents in the network up to n = 104 while maintaining the
diameter fixed to δG = 9, as in the previous two examples. In
Fig 5 we report the simulations of a large network executing
the DMC Protocol (above) and the EDMC Protocol (below)
where the reference signals randomly vary with a variation
bounded by Π = 0.02 and α = 0.021.

This simulation is instrumental to emphasize two main
strengths of the proposed protocols: 1) The bound on the
tracking error of both protocols does not increase propor-
tionally to the dimension of the network: in fact, it can be
verified that these bounds correspond to the one computed in
the Example 1 for the case of a small line network with n = 10
agents; 2) The memory capability required by each agent in the
network does not increase proportionally to the dimension of
the network. In particular, the memory burden for each agent
for the DMC Protocol remains unaffected by the increase of
the network size, while for the EDMC Protocol the memory
burden only increases with the diameter of the network.
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ū(k) xi(k)

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Step k

ε e(k)

0 50 100 150 200 250 300
−1

−0.5

0

0.5

1

1.5

Step k
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Fig. 5. Example 3: Different evolution of a large MAS, with n = 104

agents in a random configuration with diameter δG = 9. The signal
variation is bounded by Π = 0.02. The top figures show the evolution
when DMC Protocol is employed, while the bottom figures show the
evolution when the EDMC Protocol is employed.



D. DEPLANO et al.: DYNAMIC MIN-MAX CONSENSUS AND SIZE ESTIMATION OF ANONYMOUS MULTI-AGENT NETWORKS 11

D. Example 4: dynamic size estimation
We choose to run simulations of the DSE Protocol over

scale-free networks [2], [3]. Such networks are known to be ul-
trasmall [8], meaning that their diameter scales very slow with
the dimension of the network, behaving as d ≈ ln(ln(N)).

We randomly generate a scale-free network by means of
Barabási–Albert (BA) model [2], which iteratively constructs
a random scale-free networks using a preferential attachment
mechanism given an initial small network, not necessarily
scale-free. We use as initial network a line network of 5
nodes, and then we run the algorithm until a network of
n = 100 nodes is generated whose diameter is of the order of
the original small network, i.e., d ≈ 5. In order to simulate
nodes leaving and joining the network without losing the
connectivity and the scale-free structure of the graph, we
randomly deactivate or activate some of the last 25 nodes
added to the network by the algorithm every Υ = 5 · 102
steps. This choice does not have any impact on the simulation
results: every nodes who leaves the network does not keep
any information from the last active period. In fact when a
node rejoins the network, it generates a new random number
and initializes its state to this number. We remark that the log
in and log out actions occur without any coordination among
the agents, thus dealing with fault conditions such as a node
which suddenly stops working.

Fig. 6 shows the estimation of the size of a network by
means of the DSE Protocol which makes use of either the
DMC Protocol or the EDMC Protocol. For the sake of clarity,
we have decided to plot the worst estimation n̂i among the
agents. We also recall that this constitutes a generalization of
the method proposed in [35] to open networks.

VII. CONCLUSIONS

In this paper we provided two distributed protocols, namely
the DMC and the EDMC Protocols, enabling the agents of an
anonymous network to track the time-varying maximum value
of a set of reference signals given as inputs to the agents. The
difficulty of the problem, which so far was an open problem
in the current literature, arises from the necessity to allow
the estimates to decrease, whereas most methods consist in
flooding techniques which saturates the estimations with the
biggest observed value, which may be outdated by now. Dual
protocols are derived to solve the minimum seeking problem.

A main feature of the proposed protocols is their robust-
ness to re-initialization, which allows their extension to open
networks, where the agents are allowed to log in and out of
the network. This motivated our our main application, i.e.,
the dynamic tracking of the number of active agents in open
networks, a problem which goes by the name of cardinality
or size estimation. By means of the dynamic max-consensus
protocols, we extended the strategy proposed in [35] and
solved for the first time a distributed size estimation problem
for an anonymous and time-varying networks.

Future work will further investigate the use of the DMC
and the EDMC Protocols to solve other distributed estimation
problems in networks which change in both topology and size
and possible application of the algorithms in the context of
distributed optimization.
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Fig. 6. Example 4: Dynamic size estimation of an open and time-varying
network by means of the DSE Protocol.
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