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SUMMARY

Unlike human and rat hepatocellular carcinoma, chemically
induced mouse hepatocellular carcinomas do not show Nrf2
mutation/activation. Furthermore, metabolic reprogram-
ming of neoplastic cells is absent as well. The results suggest
that the mouse is not the ideal model to investigate the role
of nuclear factor (erythroid-derived 2)-like 2 in
hepatocarcinogenesis.

BACKGROUND & AIMS: Activation of the kelch-like ECH-asso-
ciated protein 1 (Keap1)–nuclear factor (erythroid-derived 2)-like
2 (Nrf2) pathway has been associated with metabolic reprog-
ramming in many tumors, including hepatocellular carcinoma
(HCC). However, the contribution of Nrf2 mutations in this pro-
cess remains elusive. Here, we investigated the occurrence of Nrf2
mutations in distinct models of mouse hepatocarcinogenesis.

METHODS: HCCs were generated by experimental protocols
consisting of the following: (1) a single dose of diethylnitros-
amine (DEN), followed by repeated treatments with the
nuclear-receptor agonist 1,4-bis-[2-(3,5-dichloropyridyloxy)]
benzene; (2) repeated treatments with 1,4-bis-[2-(3,5-
FLA 5.6.0 DTD � JCMGH873 proof � 28
dichloropyridyloxy)]benzene alone; (3) a single dose of DEN
followed by exposure to a choline-deficient L-amino
acid–defined diet; and (4) a single dose of DEN with no further
treatment. All of these protocols led to HCC development within
28–42 weeks. Activation of the Keap1-Nrf2 pathway was
investigated by analyzing the presence of Nrf2 gene mutations,
and the expression of Nrf2 target genes. Metabolic reprog-
ramming was assessed characterized by Qevaluating the
expression of genes involved in glycolysis, the pentose phos-
phate pathway, and glutaminolysis.

RESULTS: No Nrf2 mutations were found in any of the models
of hepatocarcinogenesis analyzed. Intriguingly, despite the
described cooperation between b-catenin and the Nrf2
pathway, we found no evidence of Nrf2 activation in both early
dysplastic nodules and HCCs, characterized by the presence of
up to 80%–90% b-catenin mutations. No HCC metabolic
reprogramming was observed Qeither.

CONCLUSIONS: These results show that, unlike rat hep-
atocarcinogenesis, Nrf2 mutations do not occur in 4 distinct
models of chemically induced mouse HCC. Interestingly, in the
same models, metabolic reprogramming also was minimal or
absent, supporting the concept that Nrf2 activation is critical
for the switch from oxidative to glycolytic metabolism. (Cell Mol
September 2021 � 1:17 am � ce DVC
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TCPOBOP, 1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene.
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Timplicated in hepatocellular carcinoma (HCC), one
of the leading causes of cancer-related deaths worldwide,1

is still fragmentary. Among the several modifications
involved in HCC development, those involving NRF2
(encoded by NFE2L2) are of particular interest, because
the role of the kelch-like ECH-associated protein 1–nuclear
factor (erythroid-derived 2)-like 2 (KEAP1–NRF2)
pathway in cancer progression has provided conflicting
results.2–4 NRF2 is a master transcriptional activator of
genes encoding enzymes that protect cells from oxidative
stress and xenobiotics, and of various drug efflux pump
members of the multidrug resistance protein family.5

NRF2 is negatively regulated and targeted to proteaso-
mal degradation by KEAP1.6–9 Several studies have re-
ported that point mutations in KEAP1 or NRF2 genes often
are present in primary tumors.10–15 Regarding human
HCC, 2 studies performing whole-exome sequencing have
shown mutations of either NRF2 (6.4%) or KEAP1 (8%),
suggesting that the dysregulation of this pathway may play
a relevant role in a subset of human HCCs.16–18 Notably,
increased levels of NRF2 messenger RNA (mRNA) have
been found to be associated with poor prognosis in human
HCC.19

Although activation of this pathway has been shown in a
variety of models of rodent hepatocarcinogenesis, the
impact of Nrf2 mutations on this process remains elusive.
Indeed, although a striking incidence of gene mutations has
been found in preneoplastic and neoplastic rat hep-
atocytes,20–22 in mouse models the oncogenic role of Nrf2
was instead attributed to its increased nuclear translocation
and transcriptional activity, as a consequence of the accu-
mulation of p62 it is binding to Keap1, and consequent
release of Nrf2.23–26

This study aimed to investigate whether Nrf2 mutation/
activation occurs in distinct mouse models of hep-
atocarcinogenesis. In addition, because it recently was re-
ported that in human HCCs characterized by b-catenin
mutations the KEAP1–NRF2 pathway is activated indepen-
dently from mutations of these genes,27,28 we also wished to
determine whether Nrf2 mutations could co-occur in b-
catenin mutated HCC. Finally, we also investigated whether
metabolic reprogramming, a hallmark of cancer cells, takes
place in these experimental models. The results showed the
complete absence of Nrf2 mutations in all the examined
murine models of hepatocarcinogenesis. They also indicated
that the Keap1–Nrf2 pathway is not activated in Ctnnb1
mutated HCCs, as well as in other models of mouse HCC.
Finally, the analysis of the expression of genes involved in
glycolysis, pentose phosphate pathway (PPP), and glutamine
metabolism did not show any clear evidence of metabolic
reprogramming.
FLA 5.6.0 DTD � JCMGH873 proof � 28
Results
Nrf2 Mutations Are Absent in HCCs Generated
by Diethylnitrosamine þ 1,4-Bis-[2-(3,5-
Dichloropyridyloxy)]Benzene or 1,4-Bis-[2-(3,5-
Dichloropyridyloxy)]Benzene Alone

Previous studies have shown that a single treatment
with diethylnitrosamine (DEN) followed by repeated treat-
ments with 1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene
(TCPOBOP), the most potent agonist of constitutive
androstane receptor and a nongenotoxic mouse hep-
atocarcinogen, or TCPOBOP alone induced HCC develop-
ment in 100% of mice and that 81 and Q90% of HCCs,
respectively, showed Ctnnb1mutations.29 Chronic treatment
with TCPOBOP is associated with liver dysplasia and
enhanced oxidative stress, although the proteins responsible
for the increased oxidative stress have yet to be identified.30

Because activation of Nrf2 represents one of the major
antioxidant defense mechanisms leading to increased tran-
scription of several cytoprotective enzymes and enhanced
cell survival,6,8,9 we investigated whether activation of the
Keap1–Nrf2 pathway could be involved in HCC development
in mice.

Our previous studies have shown that rat preneoplastic
and neoplastic lesions induced by protocols of chemical
hepatocarcinogenesis have a very high incidence of Nrf2
mutations.20–22 Therefore, we initially investigated the
presence of gene mutations in laser-microdissected mouse
HCCs developed 28 weeks after a single dose of DEN fol-
lowed by repeated treatments with TCPOBOP (experimental
protocol 1). Microscopically, these tumors showed features
typical of HCC such as atypic nuclei, cellular pleomorphism,
and mitoses, as well as cell death (Figure 1A). Selected areas
of livers from mice treated with TCPOBOP alone or un-
treated mice also were included in the analysis as control
groups. Because published works indicate that most of the
Nrf2 mutations occur in exon 2,31 we sequenced this exon in
20 HCCs using Sanger fluorescence–based sequence anal-
ysis. Quite unexpectedly, no mutation of Nrf2 was observed
in any of the 20 examined HCCs generated by the treatment
consisting of DEN þ TCPOBOP (Table 1), as well as in
control livers or livers from mice treated with TCPOBOP
alone for 28 weeks.

Next, we analyzed Nrf2 mutations in HCCs generated
after 42 weeks of repeated treatment with TCPOBOP in the
absence of DEN (experimental protocol 2). Similar to what
was observed in HCCs obtained with the DEN þ TCPOBOP
protocol, these tumors were characterized by nuclear
September 2021 � 1:17 am � ce DVC
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Table 1.Analysis of Nrf2 Mutations in Different Experimental Settings

Treatment Strain Sex Time of death Tumors n, Nrf2 mutations, N Ctnnb1 mutations, N

DEN þ TCPOBOP C3H F 28 weeks 20 0 81% (Ref. 29)

TCPOBOP C3H F 42 weeks 11 0 90.9% (Ref. 29)

DEN þ CDAA C57BL M 25 weeks 10 0 ND

DEN B6C3F1 F 40 weeks 11 0 ND

CDAA, choline-deficient L-amino acid–defined diet; DEN, diethylnitrosamine; TCPOBOP, 1,4-bis-[2-(3,5-dichloropyridyloxy)]
benzene.
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atypia, pleomorphism, and increased mitotic activity
(Figure 2A). As shown in Table 1, no Nrf2 mutation was
found in these HCCs.

These results indicate that unlike preneoplastic and
neoplastic lesions developed in rat livers after DEN treat-
ment, mouse HCCs generated by the 2 aforementioned
protocols are completely devoid of Nrf2 mutation.
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The Keap1–Nrf2 Pathway Is Not Activated in b-
Catenin Mutated HCCs

Recent work on the mouse and human HCCs character-
ized by b-catenin mutations has shown that the Keap1–Nrf2
pathway is activated independently from NRF2 mutations,
suggesting cooperation between the oncogenic b-catenin
and Nrf2 pathways in Ctnnb1-mediated HCC tumorigen-
esis.27,28 Because HCCs generated by DEN þ TCPOBOP or
TCPOBOP alone display from 80% to 90% of Ctnnb1 mu-
tations,29 we wished to assess whether activation of the
Keap1–Nrf2 pathway could occur concomitantly with b-
catenin mutation, but independently from Nrf2 mutation.

Because sustained activation of the Keap1–Nrf2
pathway in the absence of NRF2 mutations already has
been reported in animal models of rat hepatocarcino-
genesis,20,22 we examined such a possibility in tumors
induced by DEN þ TCPOBOP or TCPOBOP alone. To verify
the status of the Keap1–Nrf2 pathway, we analyzed the
mRNA profiling of these HCCs and their respective con-
trols. As previously reported,29 hierarchical clustering
analysis of gene expression patterns performed on these
HCCs did not identify any significant difference between
HCCs generated by a genotoxic agent DEN and those
caused by repeated administration of TCPOBOP alone.
Figure 1. (See previous page). Histologic and molecular ana
crophotographs showing HCCs generated in mice treated with
TCPOBOP and killed 28 weeks thereafter (H&E: left, �20; righ
treated livers. P values were determined using the Ingenuity s
pathway. Red, up-regulation; white, not modified; grey, no expre
not pass the P value .05. (D) qRT-PCR analysis of Nqo1, Hmox1
in panel A. In the HCC group, each dot corresponds to 1 tu
compared with controls. The endogenous control gene mouse
as means þ SD. *P < .05. (E) Representative image of a mouse
preneoplastic nodule generated by the R-H model,21 both staine
__; ASK1, ___; CAR, ____; CTRL, control; DENA, _____; ERK, _
MAPK, ________; MEK, _________; MEKK, __________; PI3K
______________; ROS, reactive oxygen species; RXR, ________
[2-(3,5-dichloropyridyloxy)]benzene).

FLA 5.6.0 DTD � JCMGH873 proof � 28
With regard to the Keap1–Nrf2 pathway, functional anal-
ysis of differentially expressed genes did not identify the
Nrf2-mediated oxidative stress response among the most
affected pathways. Moreover, when IPA Qwas applied to
investigate the Nrf2 target genes, the results showed that
the expression of most of the Nrf2 target genes were not
affected or even down-regulated (Figures 1B and C and
2B and C).

Next, to validate the transcriptomic profiling data we
performed quantitative reverse Q-transcriptase polymerase
chain reaction (qRT-PCR) analysis on the same complemen-
tary DNA (cDNA) used for gene sequencing. The results
showed that among the examined Nrf2 target genes (Nqo1,
Hmox1, Gclc, Gsta4), Gsta4 was the only one significantly up-
regulated in tumors compared with control livers
(Figure 1D). Along the same line, no significant change in the
expression of any of the same Nrf2 target genes was
observed in HCCs generated by repeated treatment with
TCPOBOP in the absence of DEN (Figure 2D). Lack of Nrf2
activation in mouse HCCs was confirmed by immunohisto-
chemical analysis of NQO1 Q, the best known target gene of
Nrf2, showing that neoplastic mouse hepatocytes were
completely negative (Figures 1E and 2E). Conversely, intense
NQO1 immunostaining was observed in rat hepatocytes from
nodules previously shown to carry Nrf2 mutation and acti-
vation of the Keap1–Nrf2 pathway (Figure 1F).20
The Keap1–Nrf2 Pathway Is Not Activated in b-
Catenin Mutated Dysplastic Nodules

Our previous studies reported that activation of the
Keap1–Nrf2 pathway occurs as early as in preneoplastic
nodules induced in rats by protocols of chemical
lyses of HCCs of DEN D TCPOBOP-treated mice. (A) Mi-
a single dose of DEN, followed by repeated treatment with
t, �40). (B) Enriched functional pathways in HCCs vs TCP-
coring system. (C) Nrf2-mediated oxidative stress response
ssion; yellow, genes whose expression was modified but did

Q39Q40, Gclc, and Gsta4 mRNA levels in 15 HCCs of mice treated as
mor analyzed. Gene expression is reported as fold change
Gapdh was used for normalization. The results are expressed
HCC induced as in panel A. (F) Representative image of a rat
d with antibody anti-NQO1 (left, �20; right, �5). AHR Q41, _; AKT,
_____; IL, interleukin; LPS, lipopolysaccharide; LXR, _______;
, _________; PKC, ___________; PXR, _____________; Ras,
_______; TAK1, ________________; TCP, TCPOBOP (1,4-bis-
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hepatocarcinogenesis.32 To rule out the possibility that the
Nrf2 signaling pathway is activated during the early phase
of tumorigenesis in mice, we investigated the Keap1–Nrf2
FLA 5.6.0 DTD � JCMGH873 proof � 28
pathway in low- and high-grade dysplastic nodules
generated 21 weeks after a single dose of DEN followed by
weekly injections of TCPOBOP. At this time point, the
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Q21

Figure 3. qRT-PCR anal-
ysis of Nqo1, Gclc, and
Gst4a in dysplastic nod-
ules. (A–C) qRT-PCR
analysis of Nqo1, Gclc,
and Gst4a in 14 dysplastic
nodules of mice subjected
to a single dose of DEN,
followed by repeated
treatments with TCPOBOP
and killed 21 weeks there-
after. In the dysplastic
nodules group, each dot
corresponds to 1 nodule
analyzed. Gene expression
is reported as fold change
relative to livers from un-
treated mice. Results are
expressed as means ± SD.
**P < .01. (D and E). Serial
sections of mouse liver
showing low-grade (up-
per panels) and high-
grade (lower panels)
dysplastic nodules posi-
tive for glutamine syn-
thetase (GS) and negative
for NQO1 immunostaining
(�5). CTRL, control;
TCP, TCPOBOP (1,4-bis-
[2-(3,5-dichloropyridyloxy)]
benzene).
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earliest neoplastic lesions are identifiable in the liver of
mice subjected to this protocol.29 For this purpose, we
analyzed the expression of 3 well-known Nrf2 target genes
(Nqo1, Gclc, and Gsta4). As already reported, 13 of 16
(81%) of these dysplastic nodules showed Ctnnb1 muta-
tion.29 The results of qRT-PCR analysis did not show any
clear evidence of activation of the Nrf2 pathway. Indeed,
although Nqo1 expression was enhanced compared with
control liver, albeit at a very low level, no significant
change was observed for Gst4a and Gclc (Figure 3A–C).
The lack of activation of the Nrf2 pathway was confirmed
further by immunohistochemistry analysis, which showed
a lack of Nqo1 staining in both low- and high-grade
dysplastic nodules identified by their positivity to gluta-
mine synthetase (Figure 3D and E).
Figure 2. (See previous page). Histologic and molecular ana
with TCPOBOP alone. (A) Microphotographs showing HCCs g
with TCPOBOP and killed 42 weeks thereafter (H&E: left, �20; r
treated livers. P values were determined using the Ingenuity s
pathway. Red, up-regulation; green, down-regulation; white,
expression was modified but did not pass the P value .05. (D)
levels in 11 HCCs of mice treated as in panel A. In the HCC
expression is reported as fold change relative to livers from
Representative image of a mouse HCC negative for Nqo1 immu
(3,5-dichloropyridyloxy)]benzene).
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Metabolic Reprogramming Does Not Occur in
Mouse HCCs Subjected to DEN þ TCPOBOP or
TCPOBOP Alone

Nrf2 not only maintains redox homeostasis in quiescent
cells, but also stimulates glucose consumption, PPP, and
promotes the glutamine-utilizing reactions in the post-
–ribose-5-phosphate steps,33 all suggestive of the metabolic
reprogramming often associated with cancer cells.34 How-
ever, whether Nrf2 activation is a sine qua non condition for
metabolic reprogramming is unknown. Therefore, we
wished to determine whether metabolic reprogramming
was associated with neoplastic development in tumors
lacking Nrf2 activation. Because enhanced glycolysis and
activation of PPP are a common feature of cancer cells, we
lyses of HCCs of mice subjected to repeated treatments
enerated in the liver of mice exposed to repeated treatments
ight, �40). (B) Enriched functional pathways in HCCs vs TCP-
coring system. (C) Nrf2-mediated oxidative stress response
not modified; grey, no expression; yellow, genes whose

Q42Q43qRT-PCR analysis of Nqo1, Hmox1, Gclc, and Gsta4 mRNA
group, each dot corresponds to 1 tumor analyzed. Gene

untreated mice. Results are expressed as means ± SD. (E)
nostaining (�20). CTRL, control; TCP, TCPOBOP (1,4-bis-[2-
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Figure 4. qRT-PCR analysis of G6pc, Glut1, Hk2, G6pdx, Mct4, and Gls in HCCs of mice treated with DEN and
TCPOBOP. (A–E) qRT-PCR analysis of G6pc, Glut1, Hk2, G6pdx, and Mct4 in 15 HCCs of mice treated with a single dose of
DEN, followed by repeated treatment with TCPOBOP and killed 28 weeks after DEN treatment. In the HCC group, each dot
corresponds to 1 tumor analyzed. Gene expression is reported as fold change relative to livers from untreated mice. Results
are expressed as means ± SD. *P < .05. (F) qRT-PCR analysis of Gls in HCCs from mice treated as in panel A. Gene
expression is reported as fold change relative to livers from untreated mice. Results are expressed as means ± SD. (G)
Immunohistochemical analysis of a mouse HCC. (H) Immunohistochemical analysis of a rat preneoplastic nodule stained with
an antibody antiglutaminase (left, �20; right, �5). CTRL, control; DENA Q44, _____; GLS, _____; TCP, TCPOBOP (1,4-bis-[2-(3,5-
dichloropyridyloxy)]benzene).
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Figure 5. qRT-PCR analysis of G6pc, Glut1, Hk2, G6pdx, and Mct4 in HCCs of mice treated with TCPOBOP alone. (A–E)
qRT-PCR analysis of G6pc, Glut1, Hk2, G6pdx, andMct4 in 11 HCCs of mice subjected to repeated treatments with TCPOBOP
and killed 42 weeks thereafter. Gene expression is reported as fold change relative to livers from untreated mice. Results are
expressed as means ± SD. ***P < .001. (F) qRT-PCR analysis of Gls in 11 HCCs of mice treated as in panel A. In the HCC group,
each dot corresponds to 1 tumor analyzed. Gene expression is reported as fold change relative to livers from untreated mice.
Results are expressed as means ± SD. CTRL, control; TCP, TCPOBOP (1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene).
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investigated whether the expression of the glucose trans-
porter 1 (Glut1), hexokinase 2 (Hk2), glucose-6 phosphate
dehydrogenase (G6pdx) (the key limiting enzyme of the
oxidative branch of PPP), and Mct4 (Slc16a3, responsible for
lactate extrusion) were altered in HCCs induced by DEN þ
TCPOBOP. Because Nrf2 also is involved in glutamine
metabolism and glutaminolysis,33 we determined the
expression levels of glutaminase (Gls). Finally, we also
examined the expression of G6pc, the enzyme that catalyzes
the hydrolysis of glucose-6-phosphate to glucose in the
terminal step of glycogenolysis and whose deficiency leads
to increased glycolysis. As shown in Figure 4A–E, only the
expression of Glut1, but not that of Hk2, G6pdx, G6pc, or
Mct4, was up-regulated significantly in HCCs generated by
DEN þ TCPOBOP. No change in the mRNA levels of Glut1,
FLA 5.6.0 DTD � JCMGH873 proof � 28
Hk2, and Mct4 or G6pdx was found in tumors treated with
TCPOBOP alone, although a significant decrease of G6pc
mRNA levels was observed (Figure 5A–E).

Regarding Qglutaminolysis, we found that despite the
increased expression of glutamine synthase previously
found in HCC that developed in mice treated with
DEN þ TCPOBOP or TCPOBOP alone,29 no change in the
expression of mRNA levels of Gls, the enzyme generating
glutamate from glutamine, was observed in HCCs
generated by both of these experimental protocols
(Figures 4F and 5F). Accordingly, no enhanced protein
expression was found in neoplastic mouse hepatocytes
by immunohistochemistry (Figure 4G), whereas Gls was
strongly enhanced in rat preneoplastic hepatocytes
(Figure 4H).
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Figure 6. qRT-PCR anal-
ysis of Nrf2 target genes
in HCCs of mice treated
with DEN and fed a CDAA
diet. (A) Microphotograph
showing a HCC generated
in the liver of a mouse
treated with a single dose
of DEN, followed by a
CDAA diet for 30 weeks
(H&E, �20). (B–E) qRT-
PCR analysis of Nqo1,
Hmox1, Gclc, and G6pdx
mRNA levels in 9 HCCs of
mice treated as in panel A.
In the HCC group, each
dot corresponds to 1 tu-
mor analyzed. Gene
expression is reported as
fold change relative to
livers from untreated mice.
Results are expressed as
means ± SD. CAAQ45 ,
_______; DENA, _____.
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Overall, these results indicate that metabolic reprog-
ramming involving a shift toward glycolysis, PPP activation,
and glutaminolysis does not take place in mouse HCCs
developed by these animal models.
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Nrf2 Mutations Are Absent in HCCs Generated
by DEN þ Choline-Deficient L-Amino
Acid–Defined Diet

We envisaged the possibility that the lack of Nrf2 mu-
tations observed in mouse HCCs treated with TCPOBOP
could be owing to some as yet unknown inhibitory effect of
TCPOBOP on Nrf2-mutated hepatocytes. To test this hy-
pothesis, we scored the presence of Nrf2 mutations in 10
HCCs generated by a single dose of DEN followed by feeding
a choline-deficient L-amino acid–defined diet (CDAA) for 25
weeks (experimental protocol 3); notably, in rats the same
regimen led to a high frequency of Nrf2 mutations, ranging
FLA 5.6.0 DTD � JCMGH873 proof � 28
from 90% at the early stage of tumorigenesis to 25% in
HCCs.22 However, unlike rat HCCs, no Nrf2 mutations could
be observed in any of the examined murine tumors gener-
ated by a single dose of DEN followed by feeding a CDAA
diet (Table 1).
The Keap1–Nrf2 Pathway Is Not Activated in
HCCs From Mice Subjected to DEN þ CDAA

To investigate whether Nrf2 activation still could take
place in mouse HCCs generated by this protocol of hep-
atocarcinogenesis (Figure 6A), we analyzed the expression
of Nrf2-target genes. As shown in Figure 6B–E, no change of
the expression of the 4 examined Nrf2 target genes (Nqo1,
Hmox1, Gclc, or G6pdx) was detected in the tumors, sug-
gesting that the Keap1–Nrf2 pathway is not activated and
therefore it does not exert a pivotal role in chemically
induced mouse HCC.
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Figure 7. Frequency of Nrf2 mutations in human beings,
rats, and mice.
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Nrf2 Mutations Are Absent in HCCs Obtained by
a Single Dose of DEN

It was reported that although Nrf2 KO mice are
completely refractory to DEN-induced HCC, tumors devel-
oped in wild-type mice by a single dose of DEN in the
absence of any promoting procedure alone display 100%
Nrf2 mutation.35 To rule out that promoting procedures of a
different nature (TCPOBOP or CDAA) could somehow
interfere with the expansion of Nrf2 mutated cells, we
scored mutations of this gene in mice in which HCC was
induced by a single dose of DEN to weanling mice, without
any further treatment (experimental protocol 4). However,
none of the 11 HCCs induced by this protocol showed Nrf2
gene mutations (Table 1).

Discussion
The Keap1–Nrf2 axis is a redox-sensitive signaling sys-

tem, regulating up to 10% of human genes.36 Activation of
NRF2 not only protects cells from oxidative stress and DNA-
damaging electrophiles, but it also confers cytoprotection
against high levels of reactive oxygen species, leading to
enhanced survival and resistance of cancer cells to chemo-
therapy.37 The findings that NRF2 overexpression and/or
somatic mutations of this gene take place in many human
cancers, including HCC,16,18 and that cancers with high
NRF2 levels are associated with poor prognosis,12,19 have
unveiled an oncogenic role of NRF2. Further support to the
oncogenic role of Nrf2 stems from the discovery that the
genetic inactivation of Nrf2 is sufficient to impair liver
tumorigenesis in rats and mice.21,35

Among the several mechanisms responsible for Nrf2
activation, gene mutations have been described in approxi-
mately 6% of human HCCs, and in rats, since very early
steps of the hepatocarcinogenic process, at a very high
incidence,16,18,20–22 suggesting their critical role in HCC
development. Notably, in human HCC, NRF2 mutations have
been reported to occur concomitantly with b-catenin mu-
tations.16 In support of cooperation between the
Keap1–Nrf2 pathway and b-catenin signaling, a very recent
article reported an enrichment of the NRF2 program in
FLA 5.6.0 DTD � JCMGH873 proof � 28
human HCCs with CTNNB1 Qmutations, largely independent
of NRF2 or KEAP1 mutations.27 The same study also
showed that mice with hepatocyte-specific oncogenic b-
catenin activation increased Nrf2 activation, most likely to
protect b-catenin–activated hepatocytes from oxidative
damage, thus favoring tumor development, and proposed
cooperation between oncogenic b-catenin signaling and the
NRF2 pathway in CTNNB1-mediated HCC.27 QFurthermore,
an independent work showed co-activation of b-catenin and
NRF2 in 9% of all human HCCs, and discovered that co-
expression of mutated CTNNB1 with mutant NRF2, but not
wild-type NRF2, led to rapid HCC development and mor-
tality.28 Thus, it appears that the frequency of Nrf2 muta-
tions greatly vary among HCCs occurring in different species
(Figure 7).

Quite surprisingly, the results of the present work
showed a complete lack of Nrf2 gene mutations in liver
mouse tumors generated by 4 different experimental
protocols. This finding was particularly unexpected
because DEN, the chemical used in the present study to
induce HCC, is a genotoxic carcinogen that, in rats, in-
duces Nrf2 gene mutation in 90% of preneoplastic le-
sions and in 25% of HCCs.22 In this context, it should be
noted that NRF2 mutations in rats occur in HCCs
generated by a regimen almost identical to the experi-
mental protocol 3 of the present study, consisting of a
single dose of DEN followed by a choline-deficient
diet.22 Furthermore, in light of the recent works
showing cooperation between b-catenin and Nrf2 in
promoting liver cancer,27,28 it is even more puzzling to
find a complete absence of Nrf2 mutation and/or acti-
vation of this transcription factor in HCCs developed by
DEN þ TCPOBOP or TCPOBOP alone that displayed up
to 80%–90% of mutations of Ctnnb1.29

The reason why DEN-induced Nrf2 mutations confer a
selective advantage to initiated hepatocytes in rat, but not
mouse, liver is unknown. Metabolic activation of DEN to its
carcinogenic electrophiles, generation of promutagenic le-
sions in DNA (ie, O6-EtG), and their fixation into daughter
cells, are similar in both species, as shown by the high
incidence of HCC induced in both rats and mice.38,39

Nevertheless, the type of mutation caused by DEN in
mouse tumors greatly varies depending on genetic back-
ground, age, sex, and other factors. Indeed, although the
majority of liver tumors generated by a single dose of DEN
are mutated in either the Ha-ras or the B-raf gene,40 the
prevalence of Ha-ras mutated tumors was significantly
higher in the susceptible C3H and B6C3F1 mouse strains
(39%–50%) than in the comparatively resistant C57BL
mouse (7%). In contrast, B-raf mutated tumors were more
frequent in C57BL mice (68%) than in the other 2 strains
(17%–45%).41 It also is worth mentioning that Ha-Ras and
B-raf mutations are rare in human HCCs, whereas more
relevant similarities with human HCC are shown by liver
tumors generated by mouse experimental models consisting
of a single application of DEN followed by promoting pro-
cedures, such as TCPOBOP or phenobarbital; indeed, these
tumors display 80%–90% of Ctnnb1 mutations,29,42 a con-
dition Qresembling human HCC in which mutations of this
September 2021 � 1:17 am � ce DVC
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gene were among the most frequent (32.8%).16 Our present
study showing a complete lack of Nrf2 mutations in 52 HCCs
generated with 4 different models of mouse hep-
atocarcinogenesis, 3 distinct strains, both sexes, different
age of the animals, and different doses of DEN, suggests that
Nrf2 mutations are a rare event in mouse HCC, possibly
because they do not provide any selective growth advantage
to chemically induced initiated mouse hepatocytes for their
clonal expansion to HCC.

In this context, it should be noted that the results of
experimental protocol 4 are apparently in contrast with
those of Ngo et al,35 who reported 100% of Nrf2 mutation
in mouse HCCs induced by a single dose of DEN in the
absence of promoting procedures. Although experimental
protocol 4 closely resembles that used by Ngo et al,35 dif-
ferences nevertheless exist that may be responsible for the
discrepancy concerning the frequency of Nrf2 mutation, as
follows: (1) dose of DEN (15 vs 25 mg/kg); (2) route of
administration: gavage vs intraperitoneal administration;
(3) strain: B6C3F1 vs C57BL6/129SV; and (4) sex: females
vs males. Although some of these differences (ie, dose or
route of administration) were unlikely to account for the
lack of Nrf2 mutation observed in our work, the different
strain used in the present work may be the key to explain
the discrepancy between the 2 studies. Indeed, although the
incidence of Ha-ras gene mutations in spontaneously
developed liver tumors was 50%–63% in mice of the same
strain used in our study (B6C3), DEN-induced tumors
showed a very low incidence of Ha-ras mutations (1 of 13
tumors; 7.7%).43 On the other hand, the BrafV637E muta-
tion, corresponding to the human BrafV600E mutation, was
detected in 54 of 63 (85.7%) hepatic lesions induced by
neonatal treatment with DEN in mice of the same strain
used in our study (B6C3F1 mice).44 Most important, the
same work showed that whole-exome analysis performed
in 4 tumors generated by neonatal treatment with DEN in
B6C3F1 mice was able to identify 98 mutations, but none of
them involved the Nrf2 gene. Thus, the different strains
used in our study and the study by Ngo et al35 may well be
responsible for the different results.

Independently of mutations, the present study did not
show clear evidence of activation of the Keap1–Nrf2
pathway in the examined models. Indeed, the expression of
Nrf2 target genes, such as Nqo1, Hmox1, Gclc, and Gsta4 was
not significantly changed in most of the tumors. The latter
finding reasonably rules out the possibility that other
mechanisms, such as increased nuclear translocation and
transcriptional activity resulting from p62 accumulation,
Nrf2 deglycation by fructosamine-3, Keap1 succination, and
degradation by fumarate or other oncometabolite,45 could
be involved in mouse HCC development.

As mentioned previously, Nrf2 redirects glucose and
glutamine into anabolic pathways suggestive of the meta-
bolic reprogramming often associated with cancer cells.33

According to the lack of Nrf2 mutations and its transcrip-
tional activation, no significant and convincing evidence of
metabolic reprogramming was found in the present study,
as documented by the lack of increase of Glut1, G6pdx, and
FLA 5.6.0 DTD � JCMGH873 proof � 28
Mct4 (representative of increased glucose consumption, PPP
activation, and lactate extrusion), or Gls, responsible for
glutaminolysis. Using a DEN þ phenobarbital mouse
experimental model, Unterberger et al46 showed that both
Ha-ras and Ctnnb1 mutated tumors showed a reduction in
the levels of glucose-6-phosphatase, a condition favoring
tumor cells because this enzyme catches glucose as an en-
ergy source. However, although glucose-6-phosphatase may
be used through the PPP, it resulted up-regulated Qin Ha-ras,
but not in Ctnnb1, mutated tumors. It also was surprising
that although transcriptional up-regulation of TCA Qcycle
enzymes, such as isocitrate dehydrogenase and citrate
synthase, was observed in Ctnnb1 mutated tumors,
increased lactate levels were observed in Ha-ras but not in
Ctnnb1 mutated tumors. These results were in line with
those obtained by Yuneva et al,47 who did not detect
increased lactate levels in MET-induced mouse liver tumors
characterized by activating b-catenin mutations, and sug-
gested that glucose and glutamine metabolism in HCC varies
with the nature of the activated oncogene.

In conclusion, our present study, unlike rat HCCs, shows
the following: (1) no Nrf2 mutation takes place in HCCs
generated by distinct mouse models of chemically induced
hepatocarcinogenesis (3 strains, both sexes, different ages of
animals, and different doses of DEN); (2) no increased
activation of the Keap1–Nrf2 pathway was observed in the
same tumors; and (3) no change in the expression of genes
involved in glycolysis, PPP, and glutamine pathway indica-
tive of metabolic reprogramming was observed in mouse
HCCs lacking Nrf2 activation but carrying Ctnnb1 mutations.
These results also suggest that for translational studies
investigating the role of Nrf2 mutation/activation in chem-
ically induced hepatocarcinogenesis, the mouse may not be
the ideal model because it does not recapitulate the human
landscape.

Materials and Methods
Female C3H mice (ages, 6–8 wks) were obtained from

Charles River (Milan, Italy). Two-week-old C57BL/6 male
mice were obtained from Charles River, and maintained at
the University Amedeo Avogadro of East Piedmont (Novara,
Italy). Seven-day-old B6C3F1 female mice (Charles River)
were kept at the Istituto Nazionale Tumori (Milan, Italy).
Guidelines for the Care and Use of Laboratory Animals were
followed throughout the investigation. All animal proced-
ures were approved by the Ethical Commission of the Uni-
versity of Cagliari, East Piedmont, and the Italian Ministry of
Health.

Experimental Protocol 1
Mice were injected intraperitoneally with DEN at a dose

of 90 mg/kg body weight. After a 1-week recovery period,
mice were treated intragastrically with TCPOBOP (3 mg/kg
body weight; Sigma-Aldrich Q) once weekly for 28 weeks.
Another group of mice received TCPOBOP alone, once a
week for 28 weeks. Untreated mice were used as a further
control group.
1296
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Experimental Protocol 2
Mice were treated with intragastric injections of TCPO-

BOP (3 mg/kg body weight) once weekly for 42 weeks. Age-
matched mice treated with dimethyl sulfoxide dissolved in
corn oil were used as controls.

Experimental Protocol 3
A single intraperitoneal injection of DEN (25 mg/kg body

weight) was given to 2-week-old male pups (C57BL/6
mice). At 6 weeks of age, animals were fed a CDAA obtained
from Laboratorio Dottori Piccioni (Gessate, Italy) for the
following 25 weeks.

Experimental Protocol 4
Seven-day-old B6C3F1 female mice received a single

dose of DEN (15 mg/kg body weight in 0.9% NaCl solution)
by gavage. Animals were killed 40 weeks later.

Laser-Capture Microdissection
Twenty HCCs from the livers of 8 mice treated with

DEN þ TCPOBOP and 11 HCCs from 5 animals given
TCPOBOP alone (experimental protocols 1 and 2) were
laser-microdissected as described previously.22 Liver
random areas of peritumoral tissue or control livers from
age-matched untreated control mice also were micro-
dissected. Macrodissection of 9 and 11 tumors was per-
formed in experimental protocols 3 and 4, respectively.

DNA Sequencing
Total RNA was extracted from frozen liver samples

using TRIzol Reagent (Thermo Fisher Scientific), according
to the manufacturer’s protocol. Total RNA was retro-
transcribed using the High-Capacity cDNA Reverse Tran-
scription Kit (Thermo Fisher Scientific). To identify Nrf2
mutations, we amplified exon 2 of the mouse Nrf2 gene,
using a touch-down PCR protocol (annealing temperature,
66�C–60�C). To analyze mouse cDNA sequences corre-
sponding to the second exon of Nrf2, we designed the
following 2 primers: forward 50-CCTCTGCTGCAAG-
TAGCCTC-30 and reverse 50-CAGGGCAAGCGACTCATGG-30.
All PCR products were amplified with High-Fidelity Taq
polymerase (Platinum Taq DNA Polymerase High Fidelity;
Invitrogen), purified (by exonuclease 1 and shrimp alka-
line phosphatase), and sequenced by fluorescent-based
Sanger direct sequencing in an ABI3130 DNA capillary
sequencer.

Microarray Analysis
The microarray expression profiles of RNA in HCCs and

adjacent noncancerous tissues described in our previous
study29 were re-analyzed from Gene Expression Omnibus
(accession number: GSE113708). Analysis was performed in
R studio. Quantile normalized data were downloaded using
Geoquery and the limma package was applied to perform
gene set testing and differential gene expression. Only genes
whose expression differed by at least 1.5-fold were
considered for further analysis.
FLA 5.6.0 DTD � JCMGH873 proof � 28
Functional Analysis Using IPA
Rat standard gene symbols (RGD Qids) were submitted to

the Ingenuity IPA analysis Qpipeline. Analysis of the path-
ways was based on the number of genes significantly dys-
regulated (fold difference cut-off, ±1.5) with corresponding
biological functions. The significance of each network and
the connectivity was estimated in IPA.
qRT-PCR Analysis
The same cDNA used for gene sequencing also was used

for qRT-PCR analysis. Total and microdissected RNA was
retrotranscribed using the High-Capacity cDNA Reverse-
Transcription Kit (Thermo Fisher Scientific). Analysis of
Nqo1, Hmox1, Gclc, Gsta4, Glut1, Mct4, G6pdx, Hk2, G6pc, and
Gls was performed using specific TaqMan probes (Thermo
Fisher Scientific) and Gapdh as the reference gene.
Immunohistochemistry
Liver sections were fixed in 10% buffered formalin and

processed for staining with H&E or immunohistochemistry.
Paraffin-embedded tissue was cut into 4-mm sections,
dewaxed, and hydrated. Endogenous peroxide was inacti-
vated using hydrogen peroxide. Slides were microwaved in
citrate buffer at pH 6.0 (ab93678; Abcam Q) or in EDTA buffer
at pH 8.0 (ab64216 Q), followed by overnight incubation with
the primary antibodies Nqo1 (ab28947; Abcam), G6pd
(ab87230; Abcam), and Gls (ab262716; Abcam). After
washes, the sections were incubated with the appropriate
polymer DAKO Envision secondary antibody at room tem-
perature. Signal was detected using the VECTOR NovaRED
Peroxidase (horseradish peroxidase Q) Substrate Kit (Vector
Laboratories). Sections were counterstained with Harris
hematoxylin solution (Sigma-Aldrich) and passed through
the dehydration process and covered.
Statistical Analysis
Statistical significance was performed using the Student

t test with Instat (GraphPad, San Diego, CA). The results of
observations are presented as the means ± SD value. P < .05
was considered a significant difference between groups.

All authors had access to the study data and reviewed
and approved the final manuscript.
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