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Abstract: We introduce the industrial portfolio of a wind farm of a hypothetical company and
its valuation consistent with the financial market. Next, we propose a static risk management
policy originating from hedging against volumetric risk due to drops in wind intensity and we
discuss the consequences. The hedging effectiveness firstly requires adequate modeling calibration
and an extensive knowledge of these atypical financial (commodity) markets. In this hedging
experiment, we find significant benefits for weather-sensitive companies, which can lead to new
business opportunities. We provide a new financial econometrics approach to derive weather risk
exposure in a typical wind farm. Our results show how accurate risk management can have a real
benefit on corporate revenues. Specifically, we apply the spot market price simulation (SMaPS) model
for the spot price of electricity. The parameters are calibrated using the prices of the French day-ahead
market, and the historical series of the total hourly load is used as the final consumption. Next, we
analyze wind speed and its relationship with electricity spot prices. As our main contribution, we
demonstrate the effects of a hypothetical hedging strategy with collar options implemented against
volumetric risk to satisfy demand at a specific time. Regarding the hedged portfolio, we observe that
the “worst value” increases considerably while the earnings-at-risk (EaR) decreases. We consider
only volumetric risk management, thus neglecting the market risk associated with electricity price
volatility, allowing us to conclude that the hedging operation of our industrial portfolio provides
substantial benefits in terms of the worst-case scenario.

Keywords: risk management; wind farms; weather risk; weather derivatives; value-at-risk; day-
ahead electricity prices

1. Introduction

Weather risk can have a significant impact on economic and financial activities since
unfavorable and unexpected weather conditions can lead to various types of losses (see
Muller and Grandi [1]). For this reason, in recent years, financial professionals have
created hedging instruments to address this risk. Controversies concerning the relation
between risk management and its impact on the firm’s value are a daily occurrence (see
Pérez-Gonzalez and Hun [2]). To properly perform risk management, which includes
identification, measurement, and hedging of the source of risk, it is important to first learn
how the risk affects the business.

There are many economic activities whose revenues are directly (or indirectly) in-
fluenced by weather variables (see for example Muller and Grandi [1], Salgueiro and
Tarrazon-Rodon [3] and Stulec et al. [4]). An amusement park or a ski resort may suffer
great losses from a drop in visitors due to adverse weather conditions. Air traffic control in
an airport can prevent aircraft from taking off due to strong gusts of wind.

In contrast, when a thunderstorm occurs, a hydroelectric power station can increase
its production because the movement of water masses enables the conversion of kinetic
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energy to electricity. This situation is a frequent occurrence in the Italian market, which has
a production system based mainly on hydroelectric power, along with coal and methane
gas plants. The exploitation of non-renewable sources for use as intermediate goods, such
as fuel oil, natural gas, or coal increases the variable costs of production as a result of the
use of coal or thermoelectric power plants as well as environmental damage.

For this reason, in the last decade, weather derivatives have increasingly gained
prominence in financial commodities as a hedging instrument against meteorological
conditions that influence the production and consumption of energy (see Dawkins [5]). For
example, in a wind farm, if the kinetic energy produced by the movement of air masses
is not sufficient for conversion into electricity, this can lead to losses for the producers of
green energy since these companies, following the merit order, must subsequently exploit
non-renewable energy sources such as oil, gas, and coal. This results in a sudden increase in
the variable costs required to satisfy peaks in electricity demand. Moreover, these weather
phenomena may occur constantly, and considering that electricity contract periods are
established with an hourly time horizon, the occurrence of these events on a large scale
may involve monetary losses worth EUR millions.

Today, the renewable energy sector has become so self-sufficient that it no longer
requires any subsidies. Natural gas power plants, which crushed the economics of the coal
industry, are on a path of being undercut by renewable power and big batteries. According
to the Rocky Mountain Institute’s report, by 2035 it will be more expensive to run 90%
of the gas plants currently being proposed in the U.S. than it will be to build new wind
and solar farms equipped with storage systems. In the context of the energy industry,
the management of volumetric risk induced by weather conditions has become a novel
addition to the usual risk-management operations.

The multiple applications of weather derivatives have been extensively studied in the
existing literature. Alexandridis and Zapranis [6], Burger et al. [7], Jewson and Brix [8],
and Roncoroni et al. [9] present the general applications of weather derivatives along with
a description of the main pricing techniques.

Regarding more specific applications, we discuss some of the related studies below.
Alaton et al. [10] addressed the problem of pricing a derivative based on temperature.

Cui and Swishchuk [11] focused on the volume risk associated with weather. For this
purpose, they applied a dynamic hedging strategy based on temperature futures. Fernan-
des et al. [12] investigated hydrological risk using particular collar options. They found
evidence that the probability of hydrological risk decreases when the expected revenue
of generators increases. Collar options have been applied also in a more general asset-
management framework by Barucci et al. [13]. Lee and Oren [14] studied the pricing
of weather derivatives to hedge volumetric risk. Another class of weather derivatives is
quanto options, which allow the hedging of both price and volumetric risks.

Among other types of recent applications, we include, for example, the work of Bressan
and Romagnoli [15], examining multivariate weather derivatives to hedge climate risk and
investigating the links between climate risk hedging and financial stability. Furthermore,
Kanamura et al. [16] focus on the theoretical pricing of wind energy derivatives within the
framework of renewable energy risk management.

Regarding the pricing of these options, two distinct procedures can be adopted.
Benth et al. ([17,18]), in their study, developed a closed formula derived from hypotheses
relying on the dynamics of the underlying factors. In contrast, Caporin et al. [19] applied
a Monte Carlo simulation, which deals with more general conditions (in the absence of
closed formulas); however, this method has a longer estimation time. Benth et al. [20]
also utilized a Monte Carlo simulation but the authors directly modeled the production
of photovoltaic energy, the subject of their study, instead of the factors that influence it.
Finally, as regards very recent applications of weather derivatives with different purposes,
we mention Rodriguez et al. [21] (wind barrier options), Kaufmann et al. [22] (price and
volumetric risk in a wind farm through futures), and Wieczorek-Kosmala [23] (exposure to
weather risk in the energy sector).
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Our study aims to demonstrate the effects of a hypothetical hedging strategy imple-
mented against volumetric risk induced by the insufficiency of the movement of air masses
required to create adequate kinetic energy to satisfy demand at a specific time. To this end,
we follow a stochastic approach. Our weather derivatives are designed to grant traders a
certain monetary amount if, in future periods, the power generated by wind turbines is
insufficient. In turn, the trader must pay a certain monetary amount if there is an “excess”
of kinetic energy commensurate with wind speed. Therefore, this hedging foresees returns
from an industrial perspective via revenues of wholesale electricity, intended to partially
offset any “loss” suffered in the financial portfolio and vice versa. The main contribution of
our study lies in showing the effects of utilizing a hedging strategy against volumetric risk.
Based on the assumptions adopted, the results of our analysis show a real transition to the
right of the abscissa axis that is the range of the random variable that describes the revenues
of an electric company. We find an ineffective reduction in the revenue volatility when it
is measured in terms of earnings-at-risk. For this reason, we assert that volumetric risk
management should be considered in conjunction with market risk management. These
original aspects of our study’s contribution fill a gap in the literature listed above.

The paper is organized as follows. In Section 2, we introduce the fundamental power
system and its relationship with wind speed. The industrial portfolio and the stochastic
model for wind speed are described in Section 3. In Section 4, we present the main results
concerning the delta-neutral strategy. Finally, Section 5 concludes.

2. Fundamental Power Model and Wind Speed

In this section, we introduce the characteristics, the models, and the calibration pro-
cesses related to the main variables, namely spot electricity price and its relationship with
wind speed. Specifically, we introduce the spot market model using the Spot Market
Price Simulation (SMaPS) model [7] in Section 2.1. Each power market has its context, but
we provide an example that can be applied in any situation. Subsequently, we explore
wind speed and its relationship with electricity prices, required for the evaluation of wind
power’s price sensitivity, in the next subsections.

2.1. Fundamental Power Model: SMaPS

We calibrated the SMaPS model with data from the European Energy Exchange
EEX (https://www.eex.com/en/, last accessed 23 August 2019) regarding the wholesale
electricity market in France. The EEX spot market is a “day-ahead market” where hourly
power contracts for the 24 h of the following day are traded. We obtained the hourly time
series of the European Power Exchange (EPEX) spot market day-ahead electricity auction
prices for France (ticker Bloomberg: PWNXFR XX, where instead of XX the delivery time of
electricity for the following day must be selected), with technical specifications as shown in
Figure 1.

https://www.eex.com/en/
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Figure 1. Ticker Bloomberg: PWNXFR 01 (last accessed 23 August 2019).

In an exploratory analysis conducted in line with our research purpose, we first con-
sidered a period from 01/01/2016 to 31/12/2018. Given the development of hedging
strategies in the first semester of 2019, we calibrated our models using the first six months
of 2016, 2017, and 2018 since we used a seasonal autoregressive integrated moving aver-
age (ARIMA) model to simulate power price scenarios for the particular seasonality of
those months.

We calibrated the data based on Burger et al.’s [7] SMaPS model. To this end, we
describe the spot market price as a discrete-time stochastic process {Pt, t = 0, 1, ...} with
hours as the time units. The original model is a structural three-factor model, based on the
following stochastic processes:

i. The load process (Lt)t≥0;
ii. The short-term process (Xt)t≥0;
iii. The long-term process (Yt)t≥0;

all of which are independent of each other, along with the following additional factors:

iv. (Logarithmic) price load curve, abbreviated as PLC, f (t, ·), t ≥ 0;
v. The average relative availability of power plants (vt)t≥0.

The structural equation of the SMaPS model is

Pt = exp{ f (t, Lt/vt) + Xt + Yt}, t = 0, 1, 2, 3, ... (1)

In the following sections, we introduce the model with the above modifications,
individually study each component and report the main aspects of the simple calibration
process used. Unlike the original model proposed, we utilize a variant of a component of
the SMaPS structural equation: the load process.

Unlike the original model, wherein the load process Lt is defined as the actual load
destined to support the real demand for an asset, we consider a sequence of random
variables Lt (indexed with respect to discrete time) as the random process associated
with the forecast of a given amount of electricity at a scheduled hour of the following
day by participants in a day-ahead auction. These data on energy transmission systems
(i.e., Entso-e (https://transparency.entsoe.eu/load-domain/r2/totalLoadR2/show, last
accessed 23 August 2019)) can be found under the heading “Day-ahead Total Load Forecast”,
which precisely describes the forecast by the main market agents of the aggregate electricity
demand on the day following the established time.

We highlight the efficiency of using the SMaPS model for electric power utilities.
Indeed, most utilities provide extensive data and expert knowledge for estimating the total
load forecast. In addition, other works conducted simultaneously within, for example,
another section of a hypothetical company (always inherent in the definition of the aggre-

https://transparency.entsoe.eu/load-domain/r2/totalLoadR2/show
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gate electricity demand) can lead to accurate forecasts regarding a long-term horizon. For
this reason, this risk driver, which sums up the domestic load, industrial load, etc. and
contributes significantly to the settlement of the spot price of electricity, can be determined
exogenously. Therefore, we obtained extremely precise data and a good understanding of
the predictable nature of power prices.

Therefore, we identified, modeled, and forecasted (regarding the out-of-sample anal-
ysis performed in the next sections) the total load that market participants intended to
support in the day-ahead auction.

Moreover, due to data unavailability, we assumed that vt = 1 (for t ∈ N).

2.2. Statistical Analysis, Model Selection, and Model Fit: Short-Term Stochastic Process

This section is dedicated to the implementation and statistical analysis of the short-
term model component. In particular, we look at the theory applied directly to the empirical
evidence, and therefore the estimation and best fitting techniques adopted to obtain the best
forecast, in our opinion, of the latent variable that describes electricity spot price changes
with a short-term period.

The statistical evaluation for Xt parameters was conducted assuming that Yt ≡ 0 in
Equation (1) (see Burger et al. [7]). Once the PLC f (t, ·) was applied, we calculated X(t) as

Xt = ln Pt − f (t, Lt), (2)

whose sole realization is shown in Figure 2.
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Figure 2. Empirical PLC of the French power market.

Hence, f (t; x) can be understood as the expected value of ln Pt at each Lt level for
any time t. The short-term process Xt, based on the observed data, has a mean value of
2.1905× 10−17 and a standard deviation of 0.3960.

Figure 3 displays the X(t) solo trajectory during the period 1/01/2016 to 31/01/2016,
and the bottom panel depicts the estimated ACF.
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Once we obtained f (t; x), we searched for a model that could describe changes in the
price of short-term electricity. The f (t; x) was computed applying a default smooth spline
to the data (we used the default spline present in the ‘R’ software, given by a third-degree
polynomial).

From an accurate analysis of the empirical autocorrelation function shown in Figure 3,
we note the presence of a strong linear dependence with the 24 h lagged time series.
Following the same procedure as the authors of the model, and due to the correlation at the
24th lag, we modeled Xt using a seasonal ARIMA (SARIMA) stochastic process (Brockwell
and Davis [24,25]) with a periodicity of 24 h.

Next, we briefly discuss the fitting of the SARIMA process to the short-term latent
variable. We note that our short-term process calibration method does not foresee the use of
the Kalman filter (Burger et al. [7]), but the standard method is used to obtain the SARIMA
model parameters, assuming that Yt ≡ 0 in this estimation phase.

The model able to produce a satisfactory result was SARIMA (1, 0, 1)× (2, 0, 0)24.
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Figure 3. Top panel: the time series of X(t) reported for January 2016. Bottom panel: the estimated ACF.

The parameters obtained and reported below aim to maximize the Akaike information
criterion (AIC) and log-likelihood function. AIC is the main decision criterion for most of
the calibration processes in this study.

Given a time series Xt = {X1, X2, ...}, we define the backward shift operator as

BXt = Xt−1 t > 1



Energies 2022, 15, 1343 7 of 30

The model obtained can be represented through characteristic polynomials. If we set
φ(z) = 1− φ1z, Φ(z) = 1−Φ1z−Φ2z2, θ(z) = 1 + θ1z (with z ∈ C), the stochastic process
Xt ∼ SARIMA (1, 0, 1)× (2, 0, 0)24 can be expressed in the compact form

φ(B)Φ(B24)Xt = θ(B)Zt (3)

where Zt denotes white noise with mean of 0 and standard deviation σZ > 0. Therefore,
Equation (3) becomes

Xt = φ1Xt−1 + Φ1Xt−24 + Φ2Xt−48 − φ1(Φ1Xt−25 + Φ2Xt−49) + Zt + θ1Zt−1 (4)

As mentioned earlier, the decision criterion for estimating the parameters involves the
maximization of the log-likelihood function and AIC. The training-set error measures are
also reported in Table 1.

Table 1. Log-likelihood function, AIC, and error measures for the parameter estimation.

Indicator Value

log-likelihood function 7,172.87
AIC −14,335.74
mean error (ME) −8.32 × 10−5

root mean square error (RMSE) 0.138999
mean absolute error (MAE) 0.08493454
mean percentage error (MPE) 0.58%
mean absolute percentage error (MAPE) 2.40%
mean absolute scaled error (MASE) 0.4164696

Substituting φ1 = 0.8688, Φ1 = −0.2764, Φ2 = −0.1377, θ1 = 0.1828, and σZ = 0.0193
we can replicate the model SARIMA (1, 0, 1) × (2, 0, 0)24, obtained from our statistical
analysis of the observed data.

Next, a normality test was performed on the estimated residuals of the SARIMA
model. The distance between the empirical distribution of the data and the benchmark
distribution was estimated using the Kolmogorov–Smirnov test or Kolmogorov distance.
In this case, the hypothesized continuous cumulative distribution function is the normal
distribution with mean zero and variance σ2

Z. The normality hypothesis is rejected because
the p-value is 0, indicating the rejection of the null hypothesis that residuals are drawn from
the normal distribution. Moreover, looking at the middle plot in Figure 4, a leptokurtic
empirical distribution of Zt is observed.

We note that the stochastic process {Zt} (Brockwell and Davis, [24]) considered to be
white noise with a mean of 0 and a variance σ2 > 0, can be given as

{Zt} ∼WN(0, σ2)

if and only if {Zt} has a zero mean and autocovariance function
γh = E[ZtZt−h], h ∈ Z:

γh =

{
σ2 h = 0
0 h 6= 0

(5)

In contrast, a necessary condition confirms that it is appropriate to verify and study
the autocorrelation structure in Equation (5) for residuals.

Hence, a Ljung–Box lack-of-fit hypothesis test was performed. The p-value was larger
than 0.05 (0.9359), indicating the absence of autocorrelation among the residuals at the 5%
significance level. The above results were confirmed by analyzing the estimated ACF of the
residuals in Figure 4.
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2.3. The Long-Term Process

In Equation (1) of the SMaPS model, the long-term stochastic process Yt follows a
random walk with drift

Yt+1 = Yt+
(

µt −
1
2

σ2
Y

)
+σYεY

t (6)

where σY > 0, µt is the random walk drift (µt ∈ R, ∀t > 0) and
{

εY
t , t = 1, 2, ...

}
are

random variables, normally distributed and uncorrelated to each other. Although SMaPS
is a discrete model, for this phase it is convenient to consider Equation (6) in terms of its
continuous-time definition. In addition, regarding the question of notation in the models
present in the financial literature, this is in accordance with the Black model, formulated in
1976, with particular regard to the hypothesis of log-normal distribution applied to futures
with underlying electricity for the estimation of volatility σY.
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Figure 4. Summary of Xt residuals.

The continuous-time generalization of Equation (6) is a Brownian motion (see Cont &
Tankov, [26]) with drift

P : dYt =
(

µt −
1
2

σ2
Y

)
dt + σYdWε

t (7)

(where Wε
t is the standard Brownian motion).

Next, we switch to an equivalent martingale measure P∗, assuming the market price
of risk is zero for the non-hedgeable short-term process Xt and the load process Lt. Further
justification of this assumption is given in Burger et al.’s [7] work. Thus, the equation for
the long-term process under P∗ becomes

P∗ : dYt =
(

µ∗t −
1
2

σ2
Y

)
dt + σYdWε

t (8)
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where µ∗t = µt − ξt is the new drift, which includes the market price of risk ξt for Yt. Under
this new probability measure, futures prices (for single hours) at time t for delivery in T are
given by the conditional expectation that

Ft,T = E∗[PT |Ft], (9)

whereFt = σ(Ps : s ≤ t) denotes the σ-algebra generated by the price Pt process. Assuming
zero risk premia for Lt and Xt (see Burger et al. [7], Section 2), we can set the conditional
expectation under P∗ equal to the natural conditional expectation. At this point, with
T − t large enough, we approximate the conditional distributions of LT and XT with
their stationary distributions. Hence, for the assumption made, it is possible to adopt the
following approximations (see Burger et al. [7]):

E∗[exp( f (T, LT))|Ft] ≈ E[exp( f (T, LT))], (10)

E∗[exp(XT)|Ft] ≈ E[exp(XT)] = eV[XT ]/2. (11)

Neglecting the rounding errors and considering

P̂T = eV[XT ]/2E[exp( f (T, LT))] (12)

as the deterministic “technical price”, the single-hour futures prices Ft,T become

Ft,T = P̂TE∗t [exp(YT)] = P̂T exp
(

Yt +
∫ T

t
µ∗s ds

)
. (13)

Reorganizing Equation (13) and solving for µ∗t we obtain the explicit expression

µ∗T =
∂

∂T

(
log

Ft,T

P̂T

)
(14)

In practice, we can assume that µx is constant for intervals Ti ≤ x < Ti+1. Relating
to the considered range, its value µ∗T can then be calculated using a discrete version of
Equation (14) as

µ∗Ti
=

1
Ti+1 − Ti

(
log
( Ft,Ti+1

P̂Ti+1

)
− log

(
Ft,Ti

P̂Ti

))
. (15)

Long-Term Component Calibration

This calibration involves first estimating the deterministic “technical price”, P̂T . Ac-
cording to Equation (12), the following are needed to calculate E[exp( f (T, LT)]:

1. The {Xt} ∼SARIMA(1, 0, 1)× (2, 0, 0)24 variance;
2. The LT probability distribution.

Regarding the Xt ∼ SARIMA (1, 0, 1) × (2, 0, 0)24 model, we applied a numerical
procedure to obtain V[XT ], by simulating 500,000 trajectories of the model described. For
T = 3, 648 (152 days), V[XT ] was estimated as 0.12385. The simulated distribution of XT is
shown in Figure 5.

To determine the technical price P̂T , we need the values of Lt in the future. To present
an example that can be replicated in any context, the Lt variable is not treated as an
exogenously determined variable, for example, the numerical vector that describes the
judgment of the respective department within an electric utility company.

Therefore, we consider a SARIMA model again for 24 h. As was done for {Xt},
we consider the best SARIMA model capable of maximizing the log-likelihood function
(−104,788.6) and AIC (209,593.2). The SARIMA process estimated for the sequence of
random variables Lt (t = 1, 2, ...) which describes the electricity load demanded over time is

Lt ∼ SARIMA(3, 0, 1)× (2, 1, 1)24
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and it can be presented in both the compact form

φ∗(B)Φ∗(B24)(1− B24)Lt = θ∗(B)Θ∗(B24)Wt, Wt ∼WN(0, σ2
W); (16)

and the extended form. Given Dt = (Lt − Lt−24), we obtain:

(1− φ∗1 B− φ∗2 B2 − φ∗3 B3)(1−Φ∗1 B24 −Φ∗2 B48)Dt = (1 + θ∗1 B)(1 + Θ∗1 B24)Wt. (17)

Substituting φ∗1 = 1.9740, φ∗2 = −1.3408, φ∗3 = 0.3537, θ∗1 = −0.4058, Φ∗1 = 0.2982,
Φ∗2 = −0.1354, Θ∗1 = −0.7495, and σW = 805.29 we estimated our model.
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Figure 5. The empirical probability distribution of XT .

Next, by simulating N (with N = 500,000) trajectories of {Lt} as defined in Equation (16),
an estimate according to Equation (10) was obtained using the following estimator:

PLCT =
1
N

N

∑
i=1

exp( f (T, Li(T))). (18)

Calibrating our model by taking the first semester of each calendar year, for T− t = 180
days (4320 h), we obtained

PLCT = e 44.30

and subsequently, using Equation (12), the technical price

P̂T = eV[XT ]/2PLCT = e 48.03

The same procedure was repeated for T + 31− t = 211 days (5,064 h) and the result
was

PLCT+31 = e 46.61,

which means P̂T+31 = e 50.34.
The set of parameters required to make Equation (6) operational is complete once we

define µ∗.
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For simplicity, we assume (Burger et al. [7], p. 22) that µ∗T is constant, thus obtaining
an annual drift for the last observation in the sample on 31/12/2018.

To implement the hedging strategy against volumetric risk induced by wind speed,
the drift factor for the next 6 months (out-of-sample analysis) was calculated as follows.

The technical characteristics of the futures prices are displayed in Figures 6 and 7.

Figure 6. Ticker Bloomberg: ELFBM F20.

Figure 7. Ticker Bloomberg: ELFBM G20.

In particular, for t = 31/12/2018 and T = 1/1/2020, based on the prices in the
financial markets, we find a price today for electricity delivery in a year of

Ft,T = e 69.92,

and for t = 31/12/2018 and T + 31 = 1/2/2020,

Ft,T+31 = e 71.39.

From Equation (15), for i = 1 (month, 31 days, 744 h), the µ∗T1
is

µ∗T1
=

1
744

(
log
(

Ft,T+31

P̂T+31

)
− log

(
Ft,T

P̂T

))
µ∗T1

= −0.0000351722.

Applying the same procedure for additional maturities Ti, we express µ∗T as a time
function. To complicate matters even more, we could further introduce a probabilistic
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model for µ∗(t), defined by an appropriate stochastic differential equation; however, in this
paper, we assume that µ∗T = µ∗ is constant. Therefore, we observe, in the out-of-sample
data in our analysis, a futures contract with underlying electricity and one-year delivery
(from the closure of the in-sample data) at a 0.12% lower price compared with the current
contracts observed in the market on 31/12/2018.

From Equation (13) we deduce that Ft,T , as a function of t, follows a geometric Brown-
ian motion with standard deviation

dFt,T

Ft,T
= σYdWε

t , dWε
t ∼ N(0, dt) (19)

Assuming j = 1 (day), and given the sample observed from 02/01/2017 to 31/12/2018
(with T still fixed at 1/1/2020) obtained from the ELFBM F20 OECM Index, we calculate
an empirical probability distribution of

f wdj =
Ft+j+1,T − Ft+j,T

Ft+j,T
, j = 1, ..., 509 (20)

which has a standard deviation of σY = 0.01022/
√

24 on an hourly basis.

2.4. Statistical Relationship between Wind Speed and the EPEX Spot Day-Ahead Electricity
Auction Price in France

Regarding the wind speed series, we used MERRA-2 (https://disc.gsfc.nasa.gov/,
last accessed 23 August 2019) to determine the hourly time series for the wind speed. More
specifically, we used the two-meter-eastward and two-meter-northward measures (codified
as “U2M” and “V2M”, respectively), from which we deduced the two-meter wind intensity.
Indeed, altitude from the ground modifies wind speed.

Next, we examined the links between wind speed and spot prices. In a preliminary
analysis, we observed a weak linear dependence between standardized spot prices and
wind speed. The results of this analysis are shown in Table 2.

Table 2. Correlation between EPEX spot day-ahead electricity auction price and hourly wind speed (m/s).

Weather Station Latitude Longitude Altitude Correlation (%)

LILLE 50.567 3.1 52 −10.66
STRASBOURG 48.549 7.633 153 −4.38
PARIS 48.7167 2.3844 89 −8.64
BREST 48.449 −4.416 99 −3.16
NANTES 47.15 −1.6088 27 −6.38
BORDEAUX 44.833 −0.699 49 −2.70
CLERMONT 45.783 3.167 332 −7.19
LYON 45.733 5.083 240 0.83
TOULOUSE 43.633 1.366 152 −3.96

In this subsection, we discuss the statistics of wind power price sensitivity to power
price in further detail.

Considering the vector y as the previous time series of the French spot day-ahead
power price and analyzing its conditional distribution, it is evident that a simple linear
regression model cannot capture price fluctuations that have a strong daily, weekly, and
yearly periodicity. This can be explained from a microeconomic viewpoint by looking
at the market price of electricity as the equilibrium price based on supply and demand
curves. Since electricity demand is very inelastic, the marginal costs of supply (shown in
the merit order curve) determine the price to a large extent. For this reason, we chose a
non-parametric function of the day-ahead total load forecast.

Following Engle’s [27] approach, we utilized the following mathematical relationship

https://disc.gsfc.nasa.gov/
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Pi = g(Li) + G′i γ + εi, εi ∼ iid(0, σ2), (21)

which matches the non-parametric regression model. Here, Pi denotes the spot price
of power in the day-ahead auction at the i − th hour; γ = (γ1, ..., γ8)

′ is the list of un-
known parameters; Li denotes the day-ahead total load forecast at the i − th hour, and
Gi = (Gi,1; ...; Gi,8)

′ is the wind speed at the i − th hour in the Lille, Strasbourg, Paris,
Brest, Nantes, Bordeaux, Clermont, and Toulouse weather stations located in France. Con-
sequently, using the observed sample to estimate the model given by Equation (21), we
determine the ĝ and γ̂ that minimize

1
n

n

∑
i=1

(pi − g(Li)− G′i γ̂)
2 + λ

∫ b

a
[g′′(u)]2du, (22)

with λ ≥ 0. For further explanations regarding the model defined in Equation (22) see, for
example, Craven [28] and Engle [27]; for this study, the model is assumed as defined by its
authors (obtained computationally with default parameters).

We note that Equation (21) does not describe a relationship with SMaPS. It is in-
troduced to analyze, using another model known from the literature, the relationships
between the price of electricity and wind speed. The valuation of the industrial portfolio is
undertaken using the SMaPs model only.

Table 3 reports our estimated linear statistics.

Table 3. Summary of linear components.

Weather Station Coefficients (EUR/m/s) Standard Error (m/s) Ratio p-Value

Lille −0.79460 0.09339 -8.5080 0.0000
Strasbourg −0.46830 0.11260 −4.1580 0.0000
Paris −0.84810 0.12960 −6.5440 0.0000
Brest −0.15570 0.06401 −2.4330 0.0150
Nantes −0.50610 0.09472 −5.3430 0.0000
Clermont −0.09214 0.10110 −0.9114 0.3621
Toulouse −0.32470 0.08145 −3.9860 0.0001

By definition, the model’s parametric values are interpreted as partial derivatives
of the dependent variable with respect to the various independent variables. Then, we
obtain the value of power’s sensitivity to wind speed based on data from the selected
weather stations. For example, if the wind speed in Nantes increases by 1 m/s, then we
expect a EUR 0.51 reduction in power price plus a margin of error. Figure 8 displays all the
regression coefficients and the non-parametric function for the total load.

In a more thorough inspection of Figure 8 (part of the semi-parametric model), we
observe the empirical merit order curve.

Finally, Figure 9 shows a portion of the model fitted. Due to the strong autocorrelation
in the residues shown in Figure 9, the model may not be suitable for forecasting as it
overlooks relevant information.
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Figure 8. Components of the semi-parametric model.
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Figure 9. Top panel: blue line represents the expected value of the model in Equation (21) and
black line represents the hourly time series of French power day-ahead auction. Bottom panel: the
estimated partial ACF.

3. Industrial Portfolio and Modification of Weather Risk Exposure Using
Weather Derivatives

To a large extent, the presence of assets suggests that each entity is capable of economic
assessment. In particular, the lack of a harmonized classification allows for the classic
distinction between tangible and intangible assets. Tangible assets include land, crops,
residential buildings, industries (factories and warehouses), raw materials, etc.

Assets admit the possibility of exchanging monetary amounts available with various
time lags (expiration dates) and the nominal/market value endowed. As such, a power
plant that generates electric power from both renewable and fossil fuel sources could be
interpreted as a tangible asset since it defines a future cash flow characterized by the income
from power production and sale.

In this section, we introduce the power industrial portfolio, using market-consistent
evaluation criteria because its income is closely linked to all commodity prices quoted on
the stock exchange.

Operationally, the market-consistent evaluation of industrial assets serves as the
starting point for hedging strategies using suitable financial instruments. This section is
organized as follows. In Section 3.1, we examine a hypothetical industrial portfolio of
wind farms equipped with real, typical wind turbines (D’Amico, [29]). Next, we determine
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the empirical probability distribution of the portfolio profit margin in the six months
immediately following the date of conclusion of all empirical analyses conducted so far. For
this purpose, we introduce the earnings-at-risk as a risk measure in Section 3.2 (Burger, [30]).
Lastly, in Section 3.3, we analyze the wind sensitivity of the wind-power industrial portfolio
using the scenario shock approach.

3.1. The Wind-Energy-Powered Park Module

Let us consider an enterprise that produces electricity via renewable sources. Previ-
ously, the enterprise entered the wholesale electricity business in France by investing in
wind-energy-powered park programs. From the perspective of the company’s balance
sheet, looking at a hypothetical income statement of a company that only produces renew-
able energy using wind farms, we develop some hypotheses operationally consistent with
the business, characterizing the segment of the energy market under consideration.

Therefore, based on the financial statements of the hypothetical company on 31/12/2018,
we assume a negligible cost of goods sold (COGS), and for our analyses, set its value as
zero. Thus, the total net sales (as well as revenue) are equivalent to the operating income.

Subsequently, following the format of financial statements, we deduce the general and
administrative expenses (G&A) from the operating income to obtain the Earnings Before
Interest, Taxes, Depreciation, and Amortization (EBITDA) of the company.
Remark

We neglect the COGS results for the possibility of identifying a single source of
business uncertainty linked to the company’s revenues. Considering COGS as negligible
or equal to zero implies a significant reduction in the firm’s revenue volatility. Reducing
uncertainty about the firm’s revenues reduces the EBITDA volatility, which in turn impacts
the firm’s present value (intrinsic enterprise value), encouraging investors to enter and
capture a share of the renewable energy market, thereby promoting its growth by making
it convenient in terms of expected revenues.
Remark

The hedging will be significantly weak since the volumetric risk associated with the
production of renewable energy is small compared to the market risk. As is known in the
markets, the price of electricity, being a secondary energy source, is closely correlated with
the price of other commodities such as oil (crude oil, Brent, WTI, etc.), which makes it a
source of uncertainty that affects both the company’s revenues (from the sale of the assets)
and the COGS.
Remark

If all electric utility companies in an area were able to develop new renewable tech-
nology capable of overcoming merit order technologies that exploit non-renewable energy,
there would be an immediate and significant reduction in revenue variability over time, and
consequently in the COGS, consolidating the current value of the company and attracting
new investors to the business.

In this practical example, we use a stochastic approach to defining the expected
revenues of the company at the time of evaluation, to which we apply the relevant risk
measure EaR. Finally, we show how ideal hedging can impact an industrial portfolio with
such characteristics.

We first introduce a sequence of random variables {At, t = 1, 2, ...}, where At repre-
sents the aggregate revenues at the time t > 0, in the balance sheet item “revenue” of
the income statement on the relevant closing date. The stochastic variable At is trivially
given by the product of the price Pt of the good and the quantity demanded S(t, ...), which
depends on several factors, at time t > 0. The random variable At is expressed in monetary
amounts (in this case, EUR).

We consider wind turbines located in Paris and Nantes with the following characteris-
tics:

• Hub height of the turbine: 95 m.;
• Rated power of the turbine: 2 MW;
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• Cut-in wind speed: 4 m/s;
• Rated wind speed: 13 m/s;
• Cut-out wind speed: 25 m/s.

Specifically, in the French wholesale electricity market context, the authorized depart-
ment organizes the sale of the amount of energy produced S(t; ...), t > 0, which is also a
sequence of random variables indexed with respect to time.

The net present value (NPV) of this ideal portfolio depends on the time horizon
considered in the evaluation since the related industrial assets do not expire like ordinary
financial instruments.

To implement a hedging strategy, we utilized a time horizon s > 0 to define the
present value of this portfolio for the horizon considered. In other words, the present value
of revenues at t0, the balance sheet date, for the next k months is a function V(t; ·) that
is applied to a stochastic process that describes revenues over time using a probabilistic
approach.

Therefore, the market value of the revenues of the wind-energy-powered industrial
portfolio that generates random positive cash flows is expressed through the pay-off
function as

A(s) = {At, At+1, ..., As}, s ≥ t > t0 (23)

where At represents the product of two random variables: the spot price of electricity and
the quantity produced and exchanged by individual H wind farms in operation, given by

At = Pt · [S1(t, ...) + S2(t, ...) + ... + SH(t, ...)], s ≥ t > t0 (24)

where [t, s] is the time frame considered and t0 is the evaluation time.
To complete our example, we consider wind farms located in z1 = Paris and z2 =

Nantes. Under the notation in Burger [30] (p. 127) regarding the definition of the function
V(t; ·), and for the assumptions made, i.e., t0 = 31/12/2018 and s = 4320 h, the NPV of
the power industrial portfolio for 320 h (six months ending on 1/7/2019) can be defined as

V(t0; A(s)) =
s

∑
t=1

e−r(t−t0)Pt{Q[t0; PC(Gt,z1 , Ce1 , ...)] + Q[t0; PC(Gt,z2 , Ce2 , ...)]} (25)

where Pt denotes the power spot price, r indicates the (deterministic continuously com-
pounded) interest rate, PC(·) represents the function that links wind farm power load
(MWh) to the variables that determine it, and Q represents the quantity of energy produced
by the wind farm. We estimate the power curve PC(·) and wind speed Gt,zi observed at
time t, expressed in hours, at the weather station zi, i.e., i = Paris, Nantes, where Ce1 , Ce2

are the installed wind power capacities (MW).
Since we plan to estimate the energy produced by a real wind turbine whose hub

is at a given altitude, we transform the wind intensity to this specified altitude. The
physical law that permits the conversion of wind intensity with respect to altitude is (see
D’Amico et al. [29])

vh = vh0 ·
(

h
h0

)ϑ

with ϑ =

(
ln

h
z0

)−1
(26)

where vh represents the wind speed measured at the height h of the wind turbine hub
and vh0 is the known value of the wind speed at the specified height h0 (here, h0 = 2 m).
Furthermore, the parameter z0 is a factor directly linked to the morphology of the site
surrounding our hypothetical wind turbine. For example, if the area has no buildings or
trees, this parameter ranges typically from 0.01 to 0.001, whereas for offshore applications,
this parameter is equal to 0.0001. In this survey, we take a mean value for an onshore
application of z0 = 0.005. Given this transformation, the main statistics of the wind
intensity at the desired altitude are then modified. The next step is to determine the energy



Energies 2022, 15, 1343 18 of 30

produced by the turbine. It is well known that wind turbines transform the kinetic energy
of wind into electrical power due to the rotational movement of the blades. The amount
of energy produced depends not only on wind intensity but also on the characteristics
of the blades. For this purpose, the turbine is characterized by the power curve, which
represents the amount of energy produced based on wind intensity. In general, the power
curve is linked to two critical values for wind speed. Below the first threshold (cut-in
value), the blades do not produce energy (the kinetic energy of the wind is too weak to
move them). Above the second threshold (cut-out value), the system is blocked to avoid
structural damage. Between these two thresholds, there is a polynomial relation (known
as the Betz law) between wind speed and energy produced (see [29]). In our survey, we
applied the following power curve:

PC(x) =


0 if 0 < x < 4
21.78x2 − 147.96x + 243.42 if 4 ≤ x ≤ 13
2, 000 if 13 < x ≤ 25
0 if x > 25

Note that the wind speed vh obtained in Equation (26) must be inserted into Equation
(25) instead of Gt,zi .

Wind Speed Stochastic Modeling

In this subsection, we briefly introduce the main models used to represent the wind
speed series. Let {Gt}t∈N be a time series and m(t, ·) be a function of time and exogenous
variables. An extended pure SARIMA model for Gt (Brockwell and Davis [24], McLeod
[31]) can be expressed with the help of the backward shift operator as

U(B)Φ′(Bs)Gt = θ′(B)Θ′(Bs)εt,

where {εt} represents white noise, and U(B), Φ′(B), and Θ(B) are polynomials, such that
all roots of U(B) are in the unit circle, while the roots of Φ(B) and Θ(B) are outside the
unit circle. If the unit roots are missing, the model is stationary with a mean of zero. The
SARIMA model can be represented in an equivalent form as

φ̂(B)Gt = θ̂(B)εt,

where φ∗(B) = U(B)Φ(B). This process (Brockwell and Davis [24]) is said to be causal (or
more specifically, to be a causal function of εt) if there exists a sequence of constants

{
ψj
}

such that ∑+∞
j=0 |ψj| < ∞ and

Gt =
+∞

∑
j=0

ψjεt−j ∀t ∈ Z. (27)

Causality is equivalent to the condition

φ̂(z) = 1− φ̂1z− ...− φ̂pzp 6= 0 ∀z ∈ C : |z| ≤ 1.

A SARIMAX model can be defined as a regression with SARIMA residuals

Gt = m(t, ·) + Gc
t

U(B)Φ′(Bs)Gc
t = θ′(B)Θ′(Bs)εt,

where Gc
t = Gt − m(t, ·) is the centered Gt. This can be written equivalently as a single

equation
U(B)Φ′(Bs)(Gt −m(t)) = θ′(B)Θ′(Bs)εt,
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whereas the regression function f (t, ·) can depend on time and/or (possibly lagged) exoge-
nous variables.

First, we use simple regression to investigate and capture the linear dependence
between the Paris (dependent variable) and Nantes (independent variable) wind speed
time series (note that z1 is associated with Paris and z2 with Nantes), whose results and
goodness of fit are shown in Table 4. Using the fitted values Ĝt,z1 , obtained from the
regression model applied to the two historical in-sample wind series, we define the residual
Paris wind speed time series as

Gc
t,z1

= Gt,z1 − Ĝt,z1 .

We again use a seasonal ARIMA to model Gc
t,z1

. At least, the SARIMAX (2, 0, 0)×
(2, 0, 0)24 has the expression

φ′(B)Φ′(B24)
[

Gt,z1 − Ĝt,z1

]
= εt, εt ∼WN(0, σ2

ε ),

which is the best-fitting seasonal ARIMA model based on the values of Akaike’s information
criterion (−6776.99) and the Bayesian information criterion (−6736.1).

In Figure 10 we display two simulated paths of the Nantes (using SARIMA) and Paris
(using SARIMAX) models compared with the out-of-sample real wind speed time series. It
is evident that to depict variation in the regressors, we need to develop a simulation model
for the Nantes wind speed. All the features of the wind speed models are presented in
Tables 4 and 5, which show the Box–Cox transformed data.
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Figure 10. Overhead, hourly Nantes wind speed (red line) vs. simulation path (blue line), followed
by hourly Paris wind speed (red line) vs. simulation path (blue line) for the period 1 January–1
February 2019.
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Remarks
According to the modeling techniques used in previous literature (Benth et al. [18],

Alexandridis et al. [6]), we make the wind speed time series symmetrical with respect to x.
To this end, we use the Box–Cox transformation defined as

x(l) =


xl − 1

l
l 6= 0

ln(x) l = 0,
(28)

where parameter l is estimated by maximizing the log-likelihood function. The parameter
l̂mle is the more likely value, compared to the values that can be assumed based on the
observed data, such that the empirical distribution becomes symmetrical.

In particular, to measure the goodness of fit of the models, we report the mean error
(ME), the mean square error (MSE), the RMSE, the MAE, the MAPE, and the MASE of the
models fitted. MAPE is the most common measure used to forecast error and to determine
the comparative accuracy of forecasts as a function of loss, in order to select the best model.

Table 4. Main features of the Nantes SARIMA model.

Nantes wind speed Box–Cox transformed

model SARIMA (3,0,1)(2,0,0)24

Coefficients:
ar1 ar2 ar1 ma1 sar1 sar2 mean

1.1741 0.6337 −0.2947 0.7379 0.1847 0.1367 1.2876
(s.e.) 0.0060 0.0025 0.0026 0.0025 0.0061 0.0061 0.0307

Measures of goodness of fit

ME RMSE MAE MSE MAPE MASE
2.18× 10−5 0.1750 0.1165 0.0306 0.50% 0.1751

Table 5. Main features of the Paris SARIMAX model.

Paris wind speed Box–Cox transformed

model: SARIMAX (2,0,0)(2,0,0)24

coeff.
ar1 ar2 sar1 sar2

est. 1.1741 −0.2651 0.1728 0.1276
s.d. 0.0060 0.0059 0.0062 0.0061

Measures of goodness of fit

ME RMSE MAE MSE MAPE MASE
2.47× 10−5 0.2126 0.1427 0.0452 1.31% 0.2438

Exogenous: Nantes wind speed time series Box–Cox transformed (linear regression fitting)

est. s.d. t-value Pr(>|t|)
intercept 0.1567 0.0074 21.27 <2× 10−16 ***
Nantes 0.6191 0.0049 125.93 <2× 10−16 ***

Significance code: 0 ‘***’.

3.2. Earnings-at-Risk and Wind Sensitivity

According to Burger et al. [30], spot prices are much more volatile than forward prices,
especially for commodities that cannot easily be stored. For this reason, the distribution
of spot prices is often heavy-tailed and the assumption of a log-normal distribution is
inadequate. In this subsection, we use a scenario approach to obtain the probability
distribution of the wind-powered industrial portfolio market value (its NPV, using a
market-consistent approach) described by Equation (25).
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Next, we simulate every source of risk for the next semester using the newly con-
structed model. The sources of risk include volumetric risk due to wind speed fluctuations,
which affect energy production indirectly, and market risk, which depends on variations in
wholesale electricity prices.

Specific risk measures such as profit-at-risk, earnings-at-risk (EaR), and cash-flow-at-
risk are used to integrate spot market risks and thus provide an additional view regarding
portfolio risks.

In our introductory example, our ultimate goal is to define the probability distribution
of aggregate revenues for the next s hours, in the first instance, and then to introduce an
appropriate risk measure. We defined (Burger [30], p. 127) EaR as the difference between
the expected value of the revenues and the revenues, corresponding to a given confidence
level. For energy companies, this includes spot price revenues generated by assets, less all
production costs, plus all related trading and hedging transactions. To calculate the EaR,
we used the Monte Carlo method. Since EaR characteristics are in line with our research
purpose, we adopted the EaR as a risk measure.

Following De Felice and Moriconi ([32], p. 66), for a given probability level (i.e.,
α = 0.01%), we define the worst-case value of V(t0; A(s)) as the alpha-quantile qt0 of the
probability distribution of V(t0; A(s)). Therefore, the level of qt0 is a pessimistic value of
the revenues. In other words, this is the estimated amount at t0 of possible future revenues
reduction, such that lower values can occur with a probability level α = 0.01%.

Hence, the EaR, conditioned to the filtration available at t0 is given by

EaRt0,s := Et0

[
V
(

t0, A(s)
)]
− qt0 s > t0. (29)

The EaR expresses the maximum potential loss to security at the 99.99% level. The
procedure used to obtain the quantity in Equation (29) involves the following simple steps.
First, we use the SMaPS to simulate the hourly spot power price scenarios in the next
(out-of-sample) six months. Then, we simulate the hourly wind speed in the same way
and obtain the load scenario from the power curve. In the EaR definition, we omit the time
decay factor, the Solvency II standard formula.

Based on the models previously obtained, we simulated N = 100,000 paths of the
spot French market power price and 100,000 paths of the hourly wind speed in Nantes
and Paris over the next semester (out-of-sample), from 00:00 1/1/2019 to 23:00 02/08/2019
(s = 5, 135). More specifically, we let pi

t, gi
t,z1

, gi
t,z2

(i = 1, ..., N; t = 1, ..., s) be the simulated
trajectories,

V(t0, A(s)) =
1
N

N

∑
i=1

s

∑
t=1

pi
t
[
PC1(gi

t,z1
) + PC2(gi

t,z2
)
]

the Monte Carlo estimate of the conditional expected value in Equation (29), and q̃t0 the
α-quantile of the estimated density. Therefore, ultimately, we estimate the empirical EaR by

EaRt0,s := V(t0, A(s))− q̃t0 .

We depict a worst-case (with a probability level of 99.99%) portfolio value, q̃t0 = EUR
20,609,424, and the EaR = EUR 19,365,410. The empirical density is given in Figure 11.
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Figure 11. Industrial portfolio market value empirical probability distribution.

3.3. Scenario Approach for Wind Sensitivity

It is crucial to develop a common hedging strategy against wind speed fluctuations
and their impact on the profit margin variations in the power portfolio. As a working
hypothesis, additive shifts are considered for the value of a portfolio that is affected by
infinitely small fluctuations in wind speed:

G+(t) = lim
∆x→0

(
G(t) + ∆x

)
.

Recalling the working hypotheses, we consider two wind farms located in Nantes
and Paris. Consequently, we measure the two differentiated wind risk exposures for single
geographical positions as

G+
1 (t) = lim

∆x→0

(
G1(t) + ∆x

)
G+

2 (t) = lim
∆x→0

(
G2(t) + ∆x

)
Thus, with all other variables that contribute to the definition of the portfolio value

being equal, the portfolio market value is calculated as

V
(

t0; A
(

s; G+
1 (t), ...

))
= V

(
t0; A

(
s; G1(t), ...

))
+

s

∑
t=1

S1(t), t0 < t < s (30)

V
(

t0; A
(

s; G+
2 (t), ...

))
= V

(
t0; A

(
s; G2(t), ...

))
+

s

∑
t=1

S2(t), t0 < t < s (31)
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where Sj(t) is the random amplitude of the shift caused by G+
j (t). Hence, the wind speed

risk exposures become (with j = 1, 2)

∂

∂Gj(t)
V(t0; X(s)) = lim

∆x→0

V(t0; A(s; Gj(t) + ∆x))−V(t0; A(s; Gj(t)))
∆x

, (32)

measured in EUR/ m
s . In Equation (32), the portfolio value is a random variable. It will

be adopted as a summary index of the distribution of V(t0; X(s)), the sample mean of the
empirical probability distribution obtained in the previous section. The additive shift in
Equations (30) and (31) occurs for fluctuations in both wind energy production and wind
speed. Following the analysis conducted in the first section, there is an average decrease of
EUR -0.005 per 0.01 m

s increase (all other conditions being equal) in the wind speed recorded
at Nantes. Based on these results, we decided to ignore price fluctuations due to wind
speed.

To obtain a numerical estimation of Equation (32), the wind speed scenarios are
generated again by applying a shift ∆x = 1 m

s on the trajectories of the wind models
previously used. Next, the Monte Carlo estimations for V(t0; X(s; Gj(t) + ∆x)), (j = 1, 2)
are given as

V(t0, X(s; G1(t) + ∆x)) =
1
N

N

∑
i=1

s

∑
t=1

pi
t
[
PC1(gi

t,z1
+ ∆x) + PC2(gi

t,z2
)
]

V(t0, X(s; G2(t) + ∆x)) =
1
N

N

∑
i=1

s

∑
t=1

pi
t
[
PC1(gi

t,z1
) + PC2(gi

t,z2
+ ∆x)

]
.

In summary, the risk exposures (wind speed risk) inherent in the wind generation
parks are estimated as

e1 = V
(

t0, A(s; G1(t) + 1)
)
−V

(
t0, A(s; G1(t))

)
(33)

e2 = V
(

t0, A(s; G2(t) + 1)
)
−V

(
t0, A(s; G2(t))

)
(34)

In particular, based on the N = 100,000 simulations with the horizon considered
before, we estimate a risk exposure of EUR 14,398,437 and EUR 20,490,884 for the wind
farms located in Paris and Nantes, respectively. Additionally, we calculate an hourly risk
exposure of EUR 2,803.98 and EUR 3,990.44, for Paris and Nantes, respectively.

4. Validation of the Delta Hedging Strategy Performance

To complete our analysis, and in terms of modern risk management, one last step
is necessary, i.e., determining the modification in risk exposure. Weather derivatives
are financial instruments that can be issued by organizations or individuals as part of a
risk-management strategy to reduce the inherently harmful and unforeseen consequences
associated with adverse weather conditions (with respect to economic operations). In
finance, a weather derivative is a contract whose price is based on a physical measure (air
temperature, atmospheric precipitation, humidity, wind speed, etc.) observed at a specific
meteorological station. Users of derivatives, as part of their strategy to hedge portfolio risks,
can efficiently eliminate the risk associated with adverse weather conditions. First, the low
volatility of company profits reduces the risk of large losses and bankruptcy. Second, it
reduces the volatility of the hypothetical company’s stock prices, along with an increasing
prices trend. The weather derivative is regulated financially using the pay-off function. The
pay-off defines precisely who and how much to pay on the contract due dates.

In line with the notation used in (Jewson and Brix, [8]), we consider a collar option. A
long position on a collar is a combination of a long position on a call option and a short
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position on a put option with the same underlying features but, usually, different strikes
and limitations. A long position on a collar option defines a type of pay-off function as

p(x) =



−M1, x < L1

τ(x− K1), L1 ≤ x < K1

0, K1 ≤ x < K2

τ(x− K2), K2 ≤ x < L2

M2, x > L2

(35)

or equivalently,

p(x) = max{−M1; min[τ(x− K1); max(0, min(τ(x− K2); M2)]}; (36)

where x denotes the wind speed at the given station, M1 and M2 are the limits agreed on
monetary disbursements, K1 and K2 are the fixed strikes (m/s), and τ represents the ticks.

4.1. Contract Issuing Phase

We assume the existence of two over-the-counter financial instruments with an under-
lying wind speed that allows the company to cover itself in case of expected reductions in
revenues caused by a drop in electricity production due to low wind speed.

The division agrees with the counterpart by purchasing financial protection defined
through two structured contracts VCol,1(t0) and VCol,2(t0), each equivalent to a portfolio of
k = 5135 collar options with expiry t = 1, ..., 5135, hedging against the small values of wind
speed that were registered every hour from 1/1/2019 to 2/8/2019.
The underlying factor chosen by the two counterparts is the meteorological observation
referred to Paris and Nantes in relation to the registered wind speed G1,t; G2,t.

In this case, the two counterparts agree to exchange a random monetary amount every
hour based on surveys of meteorological stations conducted with respect to contractually
established conditions. It is possible to express mathematically the monetary result of the
two structured contracts purchased by the company as follows

p1(G1,t) =



2,803.98, G1,t < 1
2,803.98 (2− G1,t), 1 ≤ G1,t < 2
0, 2 ≤ G1,t < 10
−2,803.98(G1,t − 10), 10 ≤ G1,t < 12
−5,607.96, G1,t ≥ 12

p2(G2,t) =



3,990.44, G1,t < 1
3,990.44 (2− G1,t), 1 ≤ G1,t < 2
0, 2 ≤ G1,t < 10
−3,990.44(G1,t − 10), 10 ≤ G1,t < 12
−7,980.87, G1,t ≥ 12

for the hours following the protection: t = 1, 2, 3, ..., 5135, with the wind speed expressed in
m/s. The slopes of the lines that describe the pay-offs of the collars are the risk exposures
determined previously, while the other parameters are arbitrary and may depend, in reality,
also on contractual factors. The coverage cost at t > t0 will be equal to (assuming the
hypothesis of a constant and deterministic risk-free interest rate r ∈ R):

VCol,i(t) =
5135

∑
m=t+1

EQ[e−r(m−t)pi(Gi,m)], i = 1, 2 (37)
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where the transformation of the stochastic wind process into the risk-neutral probability
measure is a non-trivial operation. We show in Figure 12 the pay-off of the collar option
p1(G1,t), which is similar to the collar option p2(G2,t).

2 4 6 8 10 12
G1,t

-4,000

-2,000

2,000

p1

Figure 12. Pay-off of the collar option p1(G1,t).

4.2. The Hedging Strategy and Its Impact on Risk Measures

After the purchase of the two structured contracts, the stochastic industrial portfolio
value at t0 becomes

V′(t0, A(s)) = V(t0, A(s)) + Vcol,1(t0) + Vcol,2(t0), s > t0.

At this point, retracing the steps mentioned in the previous section, we estimate the
probability distribution of V′(t0, X(s)) and recalculate all its respective risk measures. The
hedging strategy implemented implies that the new worst-case value appears to be EUR
29,306,880, with an improvement of 42.20% compared to the portfolio’s EUR 20,609,424
without the two structured financial instruments. Similarly, the overall EaR of the portfolio
is now valued at EUR 18,137,476, with a 6% reduction compared to the previous EaR
without the two structured contracts. This phenomenon is justified through the high
electric price volatility, compared to the many variables now common in the literature that
contribute to the peculiar variance of the hourly price of electricity.

Figure 13 shows the empirical probability distribution of V′(t0, X(s)) thus obtained.
Finally, Table 6 shows the partial matrices for space purposes, which contain the results
of the Monte Carlo simulations. Each matrix shows the initial and intermediate values
needed to define the empirical probability distribution of V(t0, X(s)) first, and subsequently
V′(t0, X(s)). Moreover, Figure 14 shows the first two trajectories simulated using the
SARIMAX model, to which the power curve (the figure in the middle) was applied, together
with the first trajectory of the electricity price simulated using the SMaPS model.

The proposed hedging strategy is applicable in a professional environment for several
reasons. First, there is a strong information asymmetry between the two parties entering
the financial transaction. The counterpart, which can be any investment bank, with its
valuations, estimates adverse climatic conditions for the next six months (e.g., a colder
winter than normal) and therefore considers our coverage to be advantageous. If this were
the case, monetary disbursement from the financial sector would be compensated by the
industrial one because, in adverse weather conditions, wind farms are able to produce
more energy (with variable costs close to zero) without the use of, e.g., thermoelectric
power plants (or buying energy from another supplier) to satisfy demand. For this reason,
the critical aspect of the entire industrial risk management process lies in the precision of
the calculation. Therefore, sophisticated techniques aimed at defining risk exposure as
precisely as possible must be used, in order for the adopted strategy to be considered valid.
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Figure 13. Empirical probability distribution of V′(t, X(s)).
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Figure 14. From the top down: two simulated trajectories of the wind speed of Paris and Nantes
cross-correlated with each other (45.69%), which enter the power curve. Lastly, a simulated trajectory
of the spot electricity price in France. Each simulation refers to the time horizon from 1/1/2019 to
2/08/2019.
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Table 6. Density profit margin evaluation before and after hedging strategy, using spot price and load scenarios for the 5135 single hours of the front year.

Hour Wind Park “Nantes” Wind Park “Paris” SMaPS Vcol1,j Vcol2,j V(t, xj(s)) V ′(t, xj(s))

i
Scenario:
j = 1, .., N
(MWh)

Scenario:
j = 1, .., N
(MWh)

Scenario:
j = 1, .., N
(EUR)

Scenario:
j = 1, .., N
(EUR)

Scenario:
j = 1, .., N
(EUR)

Scenario:
j = 1, .., N
(EUR)

Scenario:
j = 1, .., N
(EUR)

1 j N 1 j N 1 j N 1 j N 1 N 1 N 1 N
1 0 ... 0 0 ... 0 29.59 ... 33.32 2124.52 ... 2168.11 0 0 0 0 2124 2,168
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
19 0 ... 0 60.7 ... 0 38.26 ... 13.11 2450.82 ... 0 0 2767.15 2321 0 4773 2767
20 0 ... 0 0 ... 0 38.09 ... 13.08 1810.56 ... 0 0 2450.47 0 0 1810 2451
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
81 0 ... 341.4 2.5 ... 0 104.68 ... 75.72 2009.13 ... 0 0 3413.70 259 25,747 2268 29,272
82 0 ... 289.9 0 ... 0 78.74 ... 82.65 1546.86 ... 0 0 2737.33 0 23,959 1546 26,697
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
2391 2000 ... 14.7 1298.6 ... 0 12.07 ... 19.78 −3982.38 ... 0 0 3439.49 33,230 291.77 29,247 3731
2392 2000 ... 35.8 1549.3 ... 3.6 10.83 ... 21.94 −5607.96 ... 0 0 0 38,456 863.96 32,848 863
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
2500 0 ... 560.6 0 ... 1018.4 18.60 ... 25.78 0 ... 0 562.85 0 0 40,712 563 40,713
2501 0 ... 230.9 0 ... 560.9 20.97 ... 25.57 2054.52 ... 0 867.13 0 0 20,244 2922 20,245
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
5135 0 ... 153.7 0 ... 358.2 15.16 ... 17.96 1415.26 ... 0 3489.54 0 0 9193 4905 9194

kEur kEur kEur kEur kEur mlnEur mlnEur mlnEur mlnEur
Tot 1726.00 ... 2167.56 4594.57 5026.07 36,533 34,243 42,540 41,437
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5. Conclusions

Weather risk can lead to significant losses in industrial activities. This risk has received
considerable attention via the development of adequate financial products aimed at reduc-
ing the risk of losses arising from adverse weather conditions to a certain extent. In this
study, we addressed the production of electricity in a wind farm. In this case, connected
activities can suffer losses due to a decrease in the intensity of the wind because, for a
company that produces wholesale electricity, the insufficiency of the supply of energy
produced by the movement of air masses to meet the demand may result in increased
variable costs induced by the exploitation of non-renewable production sources, i.e., the
standard scheme of the merit order curve, which foresees the succession preference for
nuclear energy, lignite, coal, gas power stations, and gas turbines. The two main stochastic
variables considered in this study were wind speed and the price of electricity. Wind speed
was modeled using typical econometric models, while electricity price was modeled using
the SMaPS model developed by Burger et al. [7].

The two models were then simulated independently of each other. Our hypothesis
found justification by applying Engle’s model to formally characterize the relationship
between electricity price and wind intensity. Furthermore, we found that the changes in
price due to wind speed were negligible. For the management of an industrial portfolio,
we observed that developing a common hedging strategy against fluctuations in wind
speed could cause a slightly significant reduction (6%) in the variability of revenues if
this was measured by the EaR, which includes two weather derivatives. In contrast, we
also observed a 42% improvement in the worst-case scenario compared to the previous
portfolio.

We considered a practical application based on data relating to the French market
(hypothetical wind farms located in Nantes and Paris), from which we estimated all the
models’ parameters. In particular, we utilized a collar option. Through a hedging strategy,
we compared the characteristics of a particular industrial portfolio with and without
hedging. Regarding the hedged portfolio, we observed that the “worst value” increased
considerably, while the EaR decreased.

Incidentally, it should be noted that the value of the portfolio contains the coverage
cost and consequently can be arbitrarily modified based on the definition of the pay-off
used. However, we used a derivative with contractual conditions established at the outset,
and therefore we did not face the problem of establishing the price variation of the portfolio
based on the structure of the hedging derivative used.

These considerations, which represent an innovative aspect of our study, are only in
relation to volumetric risk management (Roncoroni et al. [9]), thus neglecting the market
risk associated with electricity price volatility, allowing us to conclude that the hedging
operation of our industrial portfolio provides substantial benefits in terms of the worst-case
scenario, for which the application of weather derivatives certainly helps to dampen losses
arising from unfavorable weather events.

It should be noted that there are many types of weather derivatives (since they are
linked to the structure of related pay-offs). With this in mind, we could analyze the perfor-
mance of different types of derivatives in subsequent studies. Another future contribution
could be the introduction of a stochastic and no-longer-deterministic interest rate structure.
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Symbols
The following symbols are used in this manuscript:

{Pt, t = 0, 1, ...} spot price of electricity
(Lt)t≥0 energy load process
(Xt)t≥0 short-term process for the SMaPS model
(Yt)t≥0 long-term process for the SMaPS model
f (t, ·), t ≥ 0 price load curve
(vt)t≥0 average relative availability of power plants (not used)
B() backward shift operator
Zt typical white noise
Ft,T futures price, at time t, of a contract that foresees delivery of 1MWh at time T > t
Dt = Lt − Lt−24
Gi,z wind speed at time i for station z
At aggregate revenue of the power company
Qi(t, ..) energy produced by wind plant
PC power curve
V(t0, A(s)) NPV of the industrial portfolio
Cei installed capacity of a wind plant
EaR earnings-at-risk
ei, (i = 1, 2) exposure to wind risk
p(x) pay-off of a long collar
VCol,i(t) coverage cost in t of the structured contract
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