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Abstract—Task allocation (TA) is essential when deploying
application tasks to systems of connected devices with dissimilar
and time-varying characteristics. The challenge of an efficient TA
is to assign the tasks to the best devices, according to the context
and task requirements. The main purpose of this paper is to
study the different connotations of the concept of TA efficiency,
and the key factors that most impact on it, so that relevant design
guidelines can be defined. The paper first analyzes the domains
of connected devices where TA has an important role, which
brings to this classification: Internet of Things (IoT), Sensor and
Actuator Networks (SAN), Multi-Robot Systems (MRS), Mobile
Crowdsensing (MCS), and Unmanned Aerial Vehicles (UAV). The
paper then demonstrates that the impact of the key factors on
the domains actually affects the design choices of the state-of-
the-art TA solutions. It results that resource management has
most significantly driven the design of TA algorithms in all
domains, especially IoT and SAN. The fulfillment of coverage
requirements is important for the definition of TA solutions
in MCS and UAV. Quality of Information requirements are
mostly included in MCS TA strategies, similar to the design
of appropriate incentives. The paper also discusses the issues
that need to be addressed by future research activities, i.e.:
allowing interoperability of platforms in the implementation
of TA functionalities; introducing appropriate trust evaluation
algorithms; extending the list of tasks performed by objects;
designing TA strategies where network service providers have a
role in TA functionalities’ provisioning.

Index Terms—Task allocation, Sensor and Actuator Networks,
Multi-Robot Networks, Mobile Crowdsensing, Internet of Things,
Umnanned Aerial Vehicles

I. INTRODUCTION

It is a matter of fact that we depend more and more on
applications that help us in our everyday activities and that
rely on the sensing, actuating, processing, and communications
tasks performed by connected devices with different capabili-
ties [1]. Enlarging the set of devices that can be inquired makes
the applications more powerful because this increases their
potentials and their robustness, as devices may suddenly fail,
and then some others should be activated and inquired [2]. The
applications we refer to are the more disparate, from those that
are needed to manage the domestic environment (for heating
rooms and controlling multimedia devices, for instance) to
those for making the industrial plant secure and comfortable
(e.g., alerting the worker about dangerous maneuvers).

The technology drivers for this scenario are connected
devices with heterogeneous functionalities, capabilities, and
often limited resources (e.g. battery-powered, low processing
speed) that cooperate to achieve the common objective of

executing applications made of one or more tasks. In this
scenario, properly allocating the required tasks to the available
devices is critical, as severe issues may arise when this is
not done. Indeed, the selected devices may not be able to
fulfill the minimum task requirements, thus jeopardizing the
achievement of the task goals. On the other hand, when
task allocation (TA) does not ensure fair use of resources,
the risk of overloading some devices increases. Under these
circumstances, such devices may not be able to work properly
and this may eventually lead to failures. Accordingly, the
strategy for the allocation of the tasks has a significant impact
on the performance of the whole application, in terms of
accuracy of information provided, reliability of the services,
and robustness to failures.

It is quite straightforward that an efficient TA strategy has
a heavy impact on the application execution outcome, as well
as on the performance of the whole network. However, the
concept of efficient TA is not univocal, and the same TA
solution can be optimal in some cases and inadequate in
others. Therefore, to choose an efficient TA strategy, it is first
necessary to determine which design principles need to be
considered, and which factors most affect its efficiency.

Based on these considerations, the main objective of this
paper is to define some guidelines that support the design of
an efficient TA strategy among connected devices. Indeed, this
work has the ambition to be the first to address the challenge
of analyzing how the concept of TA efficiency changes based
on the reference domain and on the application requirements.
According to the results of such study, the paper determines
which design principles need to be applied for an efficient TA
strategy, according to a combination of factors, which depend
on the system infrastructure and on the required application.

Papers such as [3][4][5][6] have also surveyed the solutions
for TA but limited their analysis to one or two specific
domains. On the other hand, [1] widens the analysis to TA
in distributed systems, describing the approaches based on
their: control model, resource optimization method, method
for achieving reliability, coordination mechanism among het-
erogeneous nodes, and model considering network structures.
As compared to previous works, this paper is a comprehensive
study of the TA strategies present in the literature for all
the domains that rely on connected devices. Furthermore, it
considers the impact that the specific domain, along with
its characteristics and typical applications, has on the design
choices of a TA mechanism.
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Based on the increasing importance of the TA functionali-
ties, in this paper we analyze the major challenges, character-
istics, and approaches. With respect to similar past works, we
provide key significant novel contributions:
• the analysis of the state of the art has been conducted

by identifying and scrutinizing all the five major do-
mains where TA has a key role, i.e., Internet of Things
(IoT), Sensor and Actuator Networks (SAN), Multi-Robot
Systems (MRS), Mobile Crowdsensing (MCS) and Un-
manned Aerial Vehicles (UAV);

• the distinctive factors that characterize these domains
with respect to the TA functionalities are identified and
extensively discussed, together with the design elements
that have driven the definition of the proposed solutions;

• the issues that need to be addressed by future research
activities are also discussed, which are: the interoper-
ability of platforms in the implementation of TA func-
tionalities, the introduction of appropriate trust evaluation
algorithms, an extension of the list of tasks that the object
could perform, and the involvement of network service
providers.

The paper is organized as follows. In Section II, the paper
briefly presents the key characteristics of applications and
tasks and the relationships among them. In Section III, the
distinctive factors of the IoT, SAN, MRS, MCS, and UAV
domains are analyzed to understand how these impact the TA
functionalities, as discussed in Section IV. In Section V, the
main proposed TA algorithms are surveyed, by providing a
relevant classification in terms of challenges that are addressed
by the TA problem and proposed approaches. Section VI
discusses the challenges for future research activities. Con-
clusions are finally drawn.

II. KEY CHARACTERISTICS OF APPLICATIONS AND TASKS

Many applications rely on the execution of tasks by con-
nected devices, e.g., monitoring the temperature in a given
room, analyzing the context in a specific area, detecting
security threats in a public square, conducting collaborative
jobs by robots in an industrial plant. Accordingly, the set
of possible applications is quite variegated and goes from
very simple sensing tasks to those where the collaboration of
intelligent objects is needed. Most of the time, the devices to
which allocate specific tasks are not statically determined but
appropriate algorithms are required to identify the best ones
based on those that are actually available and that have the
right attributes. To better understand the relationship between
tasks, applications, and TA to network devices, assume that
the application to be executed is: turn on the air conditioning
when the average over 10 minutes of temperature and humidity
sampled at least every minute go higher than respectively 25◦

C and 75%. This application, which has to be assigned to the
nodes of the network depicted in Fig. 1b, can be subdivided
into the following tasks, as shown in Fig. 1a:
• TSENS: temperature sensing;
• HSENS: humidity sensing;
• AVET: average temperature computation;
• AVEH: average humidity computation;

Reference Application

TSENS HSENS

AVET AVEH

CHECK

ACSWTC

(a) Example application
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ACSWTC AVET; 
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(b) Example network

Fig. 1: Example of (a) subdivision of a reference application
into tasks and (b) network of nodes with the related tasks that
they can perform. A TA strategy associates each task in (a) to
one or more nodes in (b) so that the application is executed

• CHECK: average temperature and humidity check;
• ACSWTC: switch on and off the air conditioning accord-

ing to the average temperature and humidity values.
As it can be seen in Fig. 1a, a hierarchical dependency can

be identified among these tasks, where the higher-level tasks
need as input the outputs of the lower-level tasks.

Suppose that the network is made of the devices represented
in Fig. 1b, where the tasks that each device can perform are
indicated in the labels connected to them. As it is shown in the
Figure, only nodes 1, 2, and 4 can perform TENS, nodes 2,
3, and 4 can perform HSENS, nodes 1, 4, and 5 can perform
AVET, nodes 3, 4, and 5 can perform AVEH, nodes 5 and 6
can perform CHECK, and node 6 can perform ACSWTC. The
aim of a TA solution is to assign each application task to the
combination of network nodes that can perform them, by also
satisfying their requirements.

The relationship between an application and its tasks is
regulated by three main criteria [7][4][3]:
• Task interconnection: the application to be executed can

be either single-task or multi-task, i.e. made by multiple
tasks (as in the example of Fig. 1a). In multi-task appli-
cations, tasks can be made in parallel (e.g., temperature
sensing from sensors in a given area when the average
value should be computed and provided), or they can
depend on one another, i.e. the output of one or more
tasks is used as input for other tasks (e.g., tasks in a
production chain);

• Same task assigned to multiple devices: some applications
may request the same task to one device (single-device
tasks) or more than one at the same time (multi-device
tasks), e.g. the same sensing can be assigned to multiple
sensors to increase information accuracy by leveraging
location diversity.

• Task repetitiveness: tasks can be categorized either as
event-driven tasks, whose result is required only once by
the application (e.g., ring a bell when a host arrives), or as
periodic tasks, which repeat themselves after a fixed time
interval and are generally associated with a frequency
(e.g., periodic acquisition of video shots to detect the
presence of intruders).
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Application tasks can be grouped into five main categories:
• Data collection: it can be performed either by sensors,

which provide a measurement of a physical quantity, or
by user interface devices, which request data directly to
users;

• Data delivery: it entails the communication of data from
one device to another;

• Processing: it consists of producing output by processing
some input data. It can be performed by any device with
sufficient computing capabilities;

• Storing: it requires storing data in a device with sufficient
memory capacity;

• Actuating: it is performed by actuators, which are usually
energy-consuming line-powered nodes, whose function is
to convert energy into motion. This includes also showing
the output of the application in a given display.

Each task is characterized by some quality requirements,
mainly in terms of: Quality of Service (QoS), i.e. the service
requirements of end-to-end communications; and Quality of
Information (QoI), i.e. the degree of accuracy of the provided
information. Such requirements are typically related to ranges
of time (e.g. information collected within a precise time
window, task finished before a specific deadline), location
(e.g. close to a point of interest, inside a specific room), or
information quality (e.g. accuracy, completeness). Sometimes,
these are also represented by Quality of Experience (QoE)
requirements which are combinations of the previous ones, to
describe the desired quality as an overall acceptability level
as perceived subjectively by end-users, depending on their
expectations and context.

Based on these considerations, an effective TA technique
assigns application tasks to the system1 devices taking into
account devices capabilities of executing the tasks with the
required quality. Nevertheless, there can be many possible
combinations that solve this problem, with utterly different
outcomes both on the application results and on the state
of the system once the execution of the application is com-
pleted. In other words, the same application can be executed
in compliance with its requirements but selecting devices
to perform tasks more efficiently so that, for instance, the
impact on energy consumption or communication overhead
is reduced. To assess the impact of different TA schemes on
different application scenarios and the final system status, in
the following Section the factors that mainly affect the TA
design are analyzed.

III. FACTORS IMPACTING ON TASK ALLOCATION

As it is evident from the previous Section, and in particular
from the example shown in Fig. 1, the performance of a TA
solution depends on both the application (Fig. 1a), mainly in
terms of requirements, and the system infrastructure, corre-
sponding to the network in the example of Fig. 1b. Indeed,
from the analysis of the literature about TA among cooperating
connected devices, some factors that depend either on the
system infrastructure or on the required application can be

1From now on, we refer to “system” as the set of available devices and
relevant interconnecting infrastructure, as well as the algorithm for TA

identified as particularly critical, as they severely affect the
system efficiency and fulfillment of application requirements.
Therefore, such factors are also crucial for efficient TA. In this
Section, these factors and their impact on TA are examined in
detail.

Heterogeneity: it is typical of scenarios where cooperating
devices have very different characteristics (e.g. available re-
sources, functionalities, communication protocols) [8][9][10].
The higher the heterogeneity, the higher the number of el-
ements that need to be considered simultaneously by the TA
strategy, as it needs to encompass different device capabilities,
characteristics, and functionalities, often at the same time (i.e.
multi-objective TA).

Device resource availability: especially for scenarios
with resource-constrained devices, mainly in terms of bat-
tery [11][12], computing [13], storage [14], and band-
width [15], efficient resource management is one of the main
objectives of TA. Indeed, inefficient use of resources can cause
their depletion, leading to faults and failures that may be
difficult to cope with.

Mobility: for systems characterized by mobile devices such
as smartphones, vehicles, robots, or drones, the TA strategy
has to be designed so that it can easily adapt to topology
changes, also integrating device mobility tracking and pre-
diction [16][17]. Speed-related issues need to be considered:
devices whose speed is very high (e.g. vehicles) are less
likely to provide reliable information about a specific location,
especially when the area to be covered is narrow [18][19].
Another issue is related to periodic tasks, which cannot be
assigned permanently to mobile devices as these are not always
located in the area of interest. This means that tasks need to
be recurrently reallocated according to the dynamism of the
scenario.

Communication range: whenever the application includes
processing tasks, some or all of these can be executed by
devices located in the route between the source(s) and the
destination, including the sources themselves, according to the
selected TA scheme [20][21]. This is the concept behind fog
and edge computing, which is particularly suitable for systems
characterized by short-to-medium-range communications such
as Low-Power Wireless Area Networks (LP-WAN) or Device-
to-Device (D2D) communications, where devices can interact
directly and cooperate autonomously. Indeed, when source
devices communicate directly with remote destination devices
(e.g. with the cloud) through long-range communications, in-
termediate processing is generally not possible nor convenient.

User involvement: whenever a user is involved in task
execution and is thus requested to take an action (e.g. provide
feedback, move to a point of interest to take a photo), a reward
is offered in return [22]. Such a reward is typically propor-
tional to the effort required to complete the task. Accordingly,
TA strategies are designed so that a fair trade-off between task
costs and outcome is identified.

Application complexity: it depends on the task intercon-
nection and the number of devices that can be involved in
TA. Straightforwardly, multi-task multi-device applications are
much more complex than one-task one-device ones. Therefore,
in the former case, also TA is much more complex and needs
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to consider also the order in which tasks are expected to be
executed [23].

Stringent requirements: for TA to be effective, constraints
on QoS [18], QoI [24], and QoE [25] requirements need to
be included when designing the TA strategy. Stringency on
requirements is directly related to the number of devices that
can be selected to allocate tasks to. Indeed, the more stringent
the requirements, the lower the likelihood to find many devices
that can fulfill them, and this can also affect the probability
of disruption of the system.

Task repetitiveness: TA can either be instantaneous, i.e. it
is valid for one single task execution and is based on the
current state of the system, or time-extended, i.e. tasks are
scheduled over a planning horizon [4]. While event-driven
tasks can only exploit instantaneous TA, for periodic tasks,
either instantaneous or time-extended TAs can be chosen.
In the former case, the TA strategy is evaluated with the
same frequency as the task, and therefore it needs to be
lightweight, in order not to overload the system. In the latter
case, the strategy is more complex, as it also needs to predict
the future state of the system with enough accuracy, so that
faults and failures are prevented. Furthermore, also in this
case reallocation needs to be expected whenever unpredicted
changes to the system are experienced.

IV. DOMAINS OF COOPERATING CONNECTED DEVICES

As mentioned in the previous Section, the key factors that
affect TA efficiency depend on both the application to be
performed and the system infrastructure. Therefore, combina-
tions of applications and system infrastructures with common
impacting factors are likely to have common TA design
principles. The objective of this Section is thus to analyze the
literature to find whether there is some categorization of appli-
cations and system infrastructures, hereinafter called domains,
characterized by common factors’ impact. Accordingly, in the
following Section, the identified categorization will drive the
study of the common TA design principles.

In order to identify the domains, the papers present in the
Scopus database that have in the title, abstract or among their
keywords the words “network” and “task allocation” or “task
assignment” have first been selected2. The keywords of the
resulting papers have then been analyzed, and the ones that
describe the types of system infrastructure considered in the
papers have been selected. The resulting papers have then
been grouped according to the keyword(s) they are associated
with. To be easier to determine the differences between the
domains, the subdivision into domains has been made so that
the overlapping among the groups of papers, i.e. the ratio
of papers that are associated with more than one domain, is
less than 5%. According to these criteria, five main domains
have been identified: IoT, SAN, MCS, MRS, and UAV. The
association between domains and related keywords is enlisted
below:

• IoT: Internet of Things

2The result of this search on 17/02/2021 is of 2395 documents

TABLE I: Domain overlapping expressed as the ratio of papers
in each pair of domains

IoT SAN MCS MRS UAV

IoT – 2.7% 2.3% 0.0% 2.5%

SAN 2.7% – 1.6% 3.8% 3.2%

MCS 2.3% 1.6% – 0.0% 0.0%

MRS 0.0% 3.8% 0.0% – 1.9%

UAV 2.5% 3.2% 0.0% 1.9% –

• SAN: Wireless Sensor Networks, Sensor Networks, Wire-
less Sensor Network, Wireless Sensor Network (WSNs),
Ad Hoc Networks, Mobile Ad Hoc Networks

• MCS: Crowdsourcing, Spatial Crowdsourcing, Crowd-
sensing

• MRS: Multi-robot Systems, Robot Applications, Indus-
trial Robots

• UAV: Unmanned Aerial Vehicles (UAV)

As it is confirmed by Table I, such overlapping is almost
always lower than 3%, with the only exceptions of 3.8% and
3.2% corresponding respectively to the pairs WSN-MRS and
WSN-UAV. It is important to highlight that, even though the
categorization presented in this paper emphasizes the differ-
ences among the domains, the boundaries among them are
rather blurred, and real case scenarios often present nuances
that cannot be thoroughly represented by restricting them to
one single category.

Keyword analysis has been later carried out for each do-
main, to assess how much the factors impacting on TA, defined
in Section III, affect them. In particular, for each factor, the
papers with the following keywords have been selected:

• Heterogeneity: Diverse, Heterogeneity, Heterogeneous;
• Device resource availability: Battery, Computation Con-

strained, Computation Constraint, Energy Harvesting, En-
ergy Conservation, Energy Constrained, Energy Con-
straint, Energy Saving, Lifetime, Low Computation, Low
Capacity, Low Capability, Low Capabilities, Low Power,
Low Energy, Low Processing, Power Constrained;

• Mobility: Aircraft, Mobility, Mobile, Vehicle, Transport,
Movement, Motion, Smartphone, Wearable;

• Communication range: papers that do not have the key-
words 6LoWPAN, 802.15.4, 802.15.1, BLE, Bluetooth,
Body Area Network, D2D, Device-to-device, Infrared,
NFC, Personal Area Network, Short range, RFID, UWB,
Ultra wideband, WirelessHART, Z-WAVE, ZigBee;

• User involvement: Man machine, Human-machine,
Human-machine interaction, Human computer, Private
Information, Privacy, Sensitive Information, User;

• Application complexity: Artificial Intelligence, Big Data,
Complex, Computation intensive, Data Intensive, Data
Fusion, Data Mining, Large Dataset;

• Stringency of requirements: Accurate, Data Quality,
Delay-sensitive, Emergency, High quality, Information
Quality, Quality Assessment, Quality Control, Quality of
Information, Quality Requirements, Real Time, Reliable,
Time-constrained, Timing Constraints, Trust, Trustwor-
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thy, Trustworthiness;
• Task repetitiveness: Data collection, Monitor, Monitoring,

Periodic, Repetitive.
Fig. 2 depicts the level of importance of each factor as the
percentage of papers characterized by the keywords that are
relevant to that factor, for each domain. More specifically, the
innermost level corresponds to percentages from 0% to 20%,
and each intermediate level differs by 20% from the others up
to the outermost level, which corresponds to 80% to 100%.

A similar analysis has been made also to define which
applications are more common in each domain. Fig. 3 shows
the stacked bar chart of several applications that are typical in
some of the considered domains, with the related percentages
of papers per domain. The keywords that were used to select
the papers on TA among connected nodes for each application
are:
• Intelligent Buildings: Intelligent Buildings, Smart Home,

Smart Building;
• Smart Healthcare: Health Care, Healthcare, Health, Struc-

tural Health Monitoring, Mhealth;
• Security Systems: Access Control, Intrusion Detection,

Security Systems, Identification;
• Smart Grid: Electric Power Transmission Networks,

Smart Power Grids, Smart Grid, Electric Network;
• Smart City: Air Quality, Noise Pollution, Smart City,

Smart Cities, Roads and Streets, Traffic, Urban Planning;
• Indoor Localization: Indoor Positioning Systems, Indoor

Localization;
• Accident Prevention: Accident prevention;
• Industry 4.0: Industry 4.0, Industrial Internet of Things

(IIoT), Supply Chains, Manufacture, Factory;
• Smart Agriculture: Agriculture, Agricultural, Crops;
• Photogrammetry: Photogrammetry, Image processing,

Aerial Photography, Optical Radar, Image Segmentation,
Image Enhancement, Satellite Imagery, Spectroscopy;

• Environmental Monitoring: Environmental monitoring,
Forestry, Vegetation;

• Disasters Management: Disasters, Search And Rescue,
Uncertain Environments, Unknown Environments;

• Military Operations: Military Operations, Military Vehi-
cles, Suppression Of Enemy Air Defense, Cooperative
Combats, Military Applications, Fighter Aircraft.

With the support of Fig. 2 and Fig. 3, in the following
subsections, each domain will be discussed by considering its
characteristics, main applications, and factors impacting on
TA.

A. Internet of Things

The IoT is characterized by heterogeneous devices that
communicate using the Internet [26] (see Fig. 4). IoT scenarios
encompass connected objects such as low-cost low-complexity
sensors (e.g. thermometers, smart meters), expensive complex
medical equipment, and smart hand-held devices, which co-
operate to create smart environments (e.g. smart homes [27],
smart transport [28], smart hospitals [29]). Since the IoT is
based on Internet communications, the communication range
is generally long [30]. Nevertheless, before reaching the

Heterogeneity

Device resource
availability

Mobility

Communication
range

User involvement

Application
complexity

Stringency of
Requirements

Task repetitiveness  IOT

 SAN

 MCS

 MRS

 UAV

Fig. 2: Major factors impacting the reference domains: this
radar chart shows the level of importance of each factor which
goes from very low values (center of the graph, corresponding
to 0%-20%) to very high (perimeter of the graph, correspond-
ing to 80%-100%)

0%

20%

40%

60%

80%

100%

IOT SAN MCS MRS UAV

Fig. 3: Stacked bar chart of the papers on TA among connected
nodes belonging to each domain per considered application

backbone network, in some cases, IoT devices communicate
directly creating ad-hoc and peer-to-peer networks [31]. Even
though device resource availability is moderate, especially in
terms of battery, computing, and storage, the IoT is usually
supported by edge and cloud computing, which provide the
required intelligence and memory. The heterogeneity is very
high, as different types of devices using different communi-
cation protocols at the same time are involved. Such hetero-
geneity is also reflected in a good balance between fixed (e.g.
servers, gateways, actuators) and mobile (e.g. smartphones,
smart vehicles) devices, hence the mobility can be considered
moderate. User interfaces are often provided to interact with
users, either to request data, accept commands/settings, or
show information (moderate user involvement). As compared
to the other domains, IoT applications are much more com-
plex, with moderate constraints at QoS, QoE (especially for
infotainment applications), and QoI levels. Task repetitiveness
is moderate, as the IoT includes both periodic [32] and event-
driven [33] tasks with almost equal proportions.
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Cloud Computing Servers

User

Fig. 4: A typical IoT Scenario

B. Sensor and Actuator Networks

As the definition itself states, the most representative devices
of SAN are sensors and actuators [34], which are connected,
often through routing devices, to a grid-powered central unit,
i.e. the coordinator (see Fig. 5). Besides collecting data from
sensors and sending commands to actuators, the coordinator
manages its network and allocates tasks. It may be connected
to a backbone network or the Internet and it is usually the
only node in the SAN that has a long-range communication
link. Indeed, SAN typically create ad hoc short-range net-
works [35] among its nodes. Heterogeneity, in terms of device
types, their functionalities, and communication technologies
involved, is moderate [36]. Sensors and actuators have very
low device resource availability: they are typically battery-
powered, often non-rechargeable, and have very low comput-
ing and storage capabilities. Even though there may be mobile
devices, mobility can be considered moderate, as devices
are typically fixed. Typical SAN applications are made of
simple periodic sensing tasks (low application complexity and
high task repetitiveness) such as smart grids [37] or security
systems [38]. The collected data are usually not associated
with a specific user, but rather to an area: when present, user
interfaces are generally installed on coordinators and used
to show information and to accept simple commands (low
user involvement). Application requirements are moderately
stringent, especially for applications related to security and
healthcare.

C. Mobile CrowdSensing

MCS is devised to take advantage of crowds of smart
mobile devices (e.g. smartphones, smartwatches, smart vehi-
cles) performing location-specific sensing tasks [39]. Typical
applications go from outdoor Smart City scenarios [40] to
indoor localization and navigation [41][42]. Heterogeneity is
high since the involved devices have different characteristics
and functionalities. Even though battery-powered (frequently
recharged), smart devices typically have high computing and

User

Coordinator node

Actuator nodeSensor node

Fig. 5: A typical SAN scenario

storage capabilities, which are mainly used for other multi-
purpose applications. Accordingly, even though device re-
source availability is high, MCS applications need to be
designed so that they do not interfere with device usage.
MCS applications are based on continuously collecting huge
amounts of data from many devices at the same time (very
high task repetitiveness). As depicted in Fig. 6, data are
usually transmitted to the cloud through the Internet (e.g. using
WiFi or mobile communications), where they are processed to
obtain the required information (high application complexity).
Even though devices may coordinate autonomously using
peer-to-peer (e.g. device-to-device – D2D –) communication
protocols [43], they usually rely on long-range communi-
cations towards a central coordinator residing in the cloud.
The data, collected from personal user devices, can be either
objective (e.g. a photo) or subjective (e.g. personal feedback).
Furthermore, users may be requested to reach a specific
location to perform tasks. It is evident that MCS applications
can require very high user involvement, with disclosure of
personal data such as identity and location. Indeed, a reward
is often envisaged for each task accomplished. Requirements
are stringent, particularly in terms of reliable and trusted
measurements.

User

Cloud Computing Servers

Fig. 6: A typical MCS Scenario
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D. Multi-Robot Systems

MRS are made of quite homogeneous robots, equipped
with sensors and actuators, which can create ad-hoc networks
and/or connect to the Internet [44]. As shown in Fig. 7,
depending on the application scenario, robots can be grid-
powered and static (e.g. industrial robots [45]) or battery-
powered (usually rechargeable) and mobile (e.g. disasters man-
agement [46]), with mobility that, similar to SAN, is usually
limited and often indoor. Hence, the communication range is
considered moderate. Tasks can be either repetitive (typical of
industrial applications) or event-driven (more common in dis-
asters management). According to the tasks they are assigned
to, mobile robots are requested to move to specific locations to
execute them. Robots’ computing and storage capabilities are
usually much higher than those of sensors in SAN. Thus, they
are usually able to coordinate autonomously, either directly or
through a coordinator. Similar to SAN, robots usually do not
collect data about specific users, and user involvement is very
limited. MRS applications are moderately complex, with very
stringent requirements, especially in terms of robustness and
resilience to errors. Indeed, such requirements are particularly
stringent for critical applications such as accident prevention,
disaster management, and Industry 4.0.

Fig. 7: A typical MRS scenario

E. Unmanned Aerial Vehicles

UAV, also known as Unmanned Aerial Systems (UAS), are
networks of drones or remotely operated aircraft that cooperate
either for monitoring purposes or to support cellular networks
and enhance their QoS [47] (see Fig. 8). UAV have been
historically used mainly as relay networks to support military
operations [48]. Thanks to the advances in technology, they
have recently found application in civilian and commercial
environments, in particular for smart agriculture [49], pho-
togrammetry [50], environmental monitoring [51], and disas-
ters management [52]. Applications are mainly made of data
collection and delivery tasks, without much complexity. Even
though they are battery-powered, UAV’s aircraft generally
have good computation and storage capabilities [53] (i.e.
device resource availability is high). Heterogeneity is low, as
the involved devices have quite homogeneous equipment and
functionalities. Similar to SAN and MRS, UAV are usually
made of short-range ad-hoc networks of locally cooperating
objects. Long-range communications are typically assigned

to coordinator nodes, which also act as sinks by collecting
data and communicating them through a backbone network.
Humans rarely interact with UAV, therefore user involvement
is very low. UAV applications can include either event-
driven tasks with stringent requirements (e.g. emergency- and
military-related applications), or periodic monitoring tasks
with more relaxed requirements (e.g. photogrammetry, en-
vironmental monitoring, and smart agriculture). Thus, task
repetitiveness and stringency of requirements are considered
moderate.

Fig. 8: A typical UAV scenario

V. DISCUSSION ABOUT TASK ALLOCATION APPROACHES

Based on the study of the literature on TA among connected
devices in the different domains and on the discussion about
the impact on the design of a TA strategy of the eight factors
characterizing the domains (see Fig. 2), it is possible to infer
four challenges that can be addressed by TA solutions among
connected objects, and that are discussed in the following.
Table II shows to which extent each of these challenges has
characterized the proposed solutions so far. The percentage
values have been assessed by analyzing the ratio of papers,
belonging to each domain, with keywords related to the
considered challenge. More specifically, analogously to what
has been done in Section IV, the keywords of the papers that
have in the title, abstract or among their keywords the words
“network” and “task allocation” or “task assignment” were
analyzed and the papers with the following keywords were
selected:
• Resource management: Bandwidth, Communication Cost,

Communication Overheads, Computation Offloading,
Computational Complexity Costs, Efficiency, Efficient
Allocations, Energy Aware, Energy Balance, Energy Con-
servation, Energy Efficiency, Energy Efficient, Load Bal-
ancing, Optimal Processing, Power Management, Re-
source Allocation, Resource Aware, Resource Manage-
ment, Resource Utilizations;

• QoS: Delay Constrained, Delay Constraints, Delay-
sensitive, Latency Constrained, Latency Constraints,
Low-latency, Quality Of Service, QoS, Real Time, Real
Time Systems, Task Completion Time, Timing Con-
straints;

• QoI: Accuracy, Accurate, Data Quality, Information Man-
agement, Information Quality, QoI, Quality of Data,
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TABLE II: How frequently the TA challenges are considered
in the different domains

Domain Resource
mngmt.

Quality rqmts. Coverage Incentive
QoS QoI QoE

IoT 91% 53% 22% 6% 16% 10%

SAN 67% 34% 20% 1% 27% 14%

MCS 60% 12% 33% 2% 60% 34%

MRS 35% 16% 13% 1% 37% 12%

UAV 45% 25% 9% 0% 53% 10%

Quality of Information, Quality of Sensing, Quantity of
Samples, Reliability, Reputation, Trust, Trustworthiness,
Trustworthy;

• QoE: Quality Of Experience, QoE, Satisfaction;
• Coverage: Coalition Formation, Communication Relays,

Coverage, Destination-aware, Dynamic Alliance, Dy-
namic Coalition, Fleet Operations, Location Based Ser-
vices, Location Information, Motion Planning, Multi-
robot Coordination, Path Planners, Path Planning, Path-
planning Algorithm, Route Planning, Self Organizations,
Self Organizing Maps, Target tracking, Trajectory Plan-
ning;

• Incentive: Auction, Budget Balance, Budget Constraint,
Budget Constraint, Budget Control, Incentive, Incentive
Mechanism, Incentive Models, Profit, Reward.

The percentages that are shown in Table II report the number
of papers that have these keywords as compared to the total
number of papers for the considered domain.

The following two subsections discuss respectively the iden-
tified challenges and the main approaches that are commonly
used in TA algorithms.

A. Challenges Typically Addressed by Task Allocation Ap-
proaches

Resource management: it is included in TA approaches that
need to ensure that the available resources are not used un-
fairly, causing their early depletion in the overloaded devices
while others are barely used. The necessity of considering
resource management depends on the amount of resources
required to execute an application in relation to their avail-
ability: high-demanding applications in scenarios with limited
resources require including their management into TA. As
indicated in Table II, IoT, SAN, and MCS are the domains
where this challenge is more frequently addressed. Whereas
in SAN the main issue is represented by very low resource
availability, IoT and MCS are characterized by very high to
high application complexity. Since communication ranges in
SAN are low, nodes that are close to one another often form
a cluster to cooperate and share their resources [3][10][54].
As opposed to SAN, in the case of MCS, the resource avail-
ability is high, therefore the resource management problem
is typically solved by just assigning the tasks to the most
capable devices that participate in the task execution [17][55].
On the other hand, thanks to its very high heterogeneity, the
IoT can make use of the concepts of Edge Computing and Fog

Computing, also under the form of Mobile Edge Computing
(MEC). In such architectures, complex tasks that cannot be
performed by resource-constrained end nodes are offloaded
to more capable devices that are located close to the end
nodes [21][24][56]. This enables not only a more efficient use
of local resources but also a lower overload of the network
as compared to the case where complex tasks are offloaded
remotely to the cloud.

Quality requirements: they are included in TA approaches
that need to ensure that QoS, QoI, and QoE requirements
are fulfilled. As demonstrated by Table II, QoS requirements
are more predominant in the IoT [18][57] and SAN [58][59]
domains, which encompass delay-sensitive applications such
as smart healthcare and security systems (refer to Fig. 3).
Besides being beneficial for resource management, Edge and
Fog computing are proved to be advantageous also for QoS-
constrained applications, as opposed to Cloud Computing
solutions [13][60]. Indeed, they not only keep the data closer
to the sources, i.e. the place where they are most likely to
be needed, but also reduce the network overhead towards the
Cloud.

With reference to QoI requirements, they are most fre-
quently included in TAs where data reliability and infor-
mation quality are paramount, i.e. those that are applied to
applications where data are massively collected by potentially
unknown devices. This is the case of the MCS domain,
where tasks need to be assigned to reliable and trustworthy
users [61][62].

Finally, QoE is only considered in applications that have an
impact on users’ satisfaction such as infotainment applications.
For this reason, it is rarely considered into TA, with IoT being
the domain where it is more frequently included [24][63].

It is important to note that, even though MRS is charac-
terized by very stringent requirements, especially in terms of
robustness and resilience to errors, quality requirements are not
frequently included in MRS TA strategies. The reason for this
is that such requirements are typically intrinsically satisfied
by the infrastructure, which is appropriately designed for this
purpose.

Coverage: it characterizes TAs of location-based tasks that
have to be assigned to mobile devices, whose position changes
with time. Hence, as it is reported in Table II, coverage is
a crucial challenge of MCS, UAV, and, albeit to a lower
extent, MRS. The main difference in the type of mobility of
these three domains is that in MCS it depends on the user’s
will or likelihood to move to a specific location, whereas in
MRS and UAV the mobile devices are controlled to satisfy
the application requirements. Accordingly, MRS and UAV TA
strategies to optimize coverage are characterized by coalition
formation [64][65] and path planning [66][67]: task target
locations are assigned to robots or vehicles according to their
capability to perform the task and to the resources needed to
do it efficiently. As far as MCS is concerned, spatio-temporal
coverage is optimized by assigning the tasks to the devices that
are more likely to collectively cover the requested area, either
because they’re already there or because they are predicted to
be there at the right moment. For this reason, TA in MCS often
incorporates mobility prediction algorithms [17][68][69].
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TABLE III: Task allocation approaches in the different do-
mains

Approach IoT SAN MCS MRS UAV

Heuristic/ Greedy/ Ge-
netic Algorithms

13% 28% 43% 13% 33%

Machine Learning 42% 8% 12% 28% 10%

Game Theory 5% 29% 8% 25% 23%

Integer Linear Program-
ming/ Branch & Bound

13% 11% 18% 20% 13%

Swarm Intelligence 10% 15% 8% 3% 12%

Markov Processes 10% 1% 6% 3% 4%

Others 7% 8% 5% 8% 5%

Incentives to task execution: reward-based TAs are char-
acteristic of location-based participatory tasks, where devices
move to specific places to complete the tasks [70][71]. Indeed,
rewards can be also provided when devices participate in tasks
opportunistically, i.e. unintentionally while they move to their
destination [72][73], without the need to change their route,
but in this case the outcome of the task does not depend on
the incentive, but rather on the already defined trajectory. On
the other hand, in participatory sensing, the reward is usually
proportional to the desired QoI, according to the assumption
that higher-quality data is worth more. This is the reason why
incentive-based TA approaches are mainly implemented into
MCS scenarios (see Table II), which are the only ones where
participatory tasks are envisaged. Nonetheless, it is important
to note that the user involvement in location-based tasks often
raises concerns on location privacy: indeed, the higher the
precision on device location, the higher the risk of location
privacy leaks. Techniques such as spatial cloaking, differential
geo-obfuscation, and blockchain are often included in MCS
TA to preserve location privacy [5][74][75][76]. Nevertheless,
such techniques tend to reduce the QoI. For this reason, some
MCS TA approaches are designed to provide rewards high
enough to compensate for potential privacy loss and stimulate
the production of reliable data [70][77].

B. Approaches Typically Included in Task Allocation Algo-
rithms

Table III identifies the most typical approaches used to solve
TA problems in the literature, subdivided by domain. Also
in this case the percentage values of the Table are computed
according to the ratio of papers for each domain with keywords
related to the specific approaches. The keywords associated
with each TA approach are:
• Heuristic/Greedy/Genetic Algorithms: Approximation

Algorithms, Genetic Algorithms, Greedy Algorithms,
Heuristic Algorithms, Heuristic Methods, Metaheuristic,
Meta-heuristic, Numerical Methods, Search Algorithms,
Simulated Annealing, Simulated Annealing Algorithms;

• Machine Learning: Clustering, Clustering Algorithms,
Deep Learning, K-means, Learning Algorithms, Learning
Systems, Machine Learning, Multi Armed Bandit, Neural
Networks, Reinforcement Learning;

• Game Theory: Auction, Dynamic Alliance, Game The-
ory;

• Integer Linear Programming/Branch & Bound: Branch &
Bound, Branch and Bound, Integer Programming, Linear
Programming, Mixed Integer Linear Program, Mixed
Integer Non-linear Programming Problems, Polynomial
Approximation;

• Swarm Intelligence: Ant Colony Algorithms, Ant Colony
Optimization, Binary Particle Swarm Optimization, Dis-
crete Particle Swarm Optimization, Particle Swarm Opti-
mization, PSO, Particle Swarm Optimization Algorithm,
Swarm Intelligence, Swarm Robotics;

• Markov Processes: Markov Processes, Monte Carlo
Methods;

• Others: all the remaining, including Contract Net Pro-
tocols, Convex Optimization, Evolutionary Algorithms,
Fuzzy Logic, Hungarian Algorithm, Nonlinear Program-
ming.

Heuristic, greedy and genetic algorithms are overall the
most commonly used approaches for TA. Even though they
are designed to converge to sub-optimal results, they are
characterized by very low computational complexity, which
makes them a satisfactory solution especially for resource-
constrained scenarios and/or mobile scenarios [17][64][78], or
time-constrained applications [60][79].

The second category of most common approaches for TA
is that of machine learning techniques. Although they are not
simple in terms of computational complexity, as opposed to
machine learning, they enable to include in the TA strategy
complex evolutions of the application scenarios to which
the TA is applied. In dynamic environments such as IoT,
adaptive TA is accomplished thanks to reinforcement learn-
ing [80][81][82][83]. Neural networks, and in particular Self-
Organizing Maps (SOM) are mostly used in MRS [67][84].

Game theory-based TA mechanisms are distributed ap-
proaches where the devices negotiate to maximize their own
utility, either cooperatively or non-cooperatively. With specific
reference to TA, a device utility expresses its degree of
benefit associated with the execution of a task, i.e. a task is
assigned to a device only if its related utility is sufficiently
high. Given its distributed nature, game theory is mainly
applied in application scenarios where devices coordinate
autonomously [54][85][86].

Another approach that is very frequently used in TA is In-
teger Linear Programming, along with the related sub-optimal
solutions such as Branch & Bound. Indeed, such approaches
are particularly suitable to model TA problems where a specific
cost can be associated with each involved device. This is
the case, for instance, of trajectory planning problems, which
are typical of MCS [87][88], MRS [16], and UAV [89], and
are often solved using graph-based approaches (e.g. Traveling
Salesman Problem, Traveling Repairman Problem) [90][91].

As it is evident in Table III, the other approaches are more
related to one or two specific scenarios, and only marginally
used in the other ones. This is the case of Swarm Intelligence
(e.g. Ant Colony Optimization, Particle Swarm Optimization),
which is typical of SAN [92] and UAV [93], in particular in
monitoring applications where sensing devices move and co-
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ordinate similar to a swarm. Markov processes are used when
the application scenario can be modeled as a set of possible
states with a probability of transition between states. As for
Table III, they are mainly used in IoT and MCS [18][94].

Other less common TA approaches, reported in Table III
under the heading “Others”, are present in the literature. It en-
compasses some well-known approaches, which however are
applied in less than 5% cases, among which fuzzy logic [95],
nonlinear programming [96], evolutionary algorithms [97], and
Hungarian algorithms [98].

VI. DISCUSSION ABOUT CHALLENGES FOR FUTURE
RESEARCH EFFORTS

The current solutions of TA suffer from key shortcomings
that need to be addressed by future research activities. These
are related to the interoperability of platforms, inclusion of
trust evaluation, support from the network service providers,
and extension of the list of considered tasks, which are
discussed in the following. Fig. 9 illustrates the discussed
challenges.

A. Platform interoperability

Platform interoperability has been the subject of research
and development in the last years, especially in the IoT
domain. Standards have also been defined in this area by
proper standard development organizations (SDOs), such as
ETSI, oneM2M, W3C, IETF. A major platform (FIWARE3)
has also been defined to create a large ecosystem with open-
source implementation of generic enablers based on open
specifications to realize smart environments in several ap-
plication domains. These organizations have also addressed
the interoperability issue, especially in terms of APIs which
allow for connecting devices and services belonging to differ-
ent platforms. However, this interconnection is possible only
between platforms that follow the architectural specification
of the reference SDO. For instance, in [99] the authors have
explained how two platforms that followed the FIWARE and
oneM2M architectural solutions may be interconnected. It
results that specific modules had to be defined and deployed
in the two platforms so that services of one platform could be
used by the other. This required a significant amount of time;
additionally, replicability is quite limited as the developed
components apply only to this specifically considered scenario.
Other works have brought to the same conclusions [100],
[101]. Such an issue is discussed in the oneM2M standard,
where discovery is considered a common service function
(CSF) which should foster interoperability, but then detailed
discussions on how this inter-platform procedure outside of the
oneM2M world should function has not been analyzed further.

Indeed, the following aspects need to be addressed:
• A shared format or syntax to describe the available

resources in terms of types of tasks that can be performed
and characterizing parameters, such as: energy consump-
tion; computational, processing, and storage capacity;
communication capabilities; assured level of QoS.

3https://www.fiware.org/

• Common APIs to be used to involve devices belonging
to external platforms, which should provide access to
the following services (among others): list of available
devices, tasks that can be performed with given QoS
requirements, description of the interface for the provi-
sioning of tasks results, authorization and authentication
functions. Additionally, these should allow for the man-
agement of the rewards when used.

• The device discovery results should be described with
accepted metadata, which can be used internally by the
platforms running the requesting application(s).

• Authorization and authentication standards are not de-
fined yet in this context. This should allow for setting
the access parameters for different categories of users,
services, and objects.

B. Inclusion of trust evaluation

When TA is applied to a multi-platform scenario (each
platform belonging to a different organization), the resulting
application relies on resources owned by different administra-
tions. For this reason, the evaluation of trust is of paramount
importance. However, when selecting the devices to which
allocate the execution of a given task, the evaluation of the
device trust level is rarely performed, except from a few works
[102] [103]. The reason is due to the fact that most of the time
the proposed solutions apply to an intra-platform scenario.
However, as we mentioned before, the inter-platform scenario
is the most powerful, and in this case trust evaluation becomes
of vital importance.

To achieve this objective, past works proposed in other
settings can be considered [104]. These are typically aimed
at collecting the feedback by systems that in the past received
services by the devices under evaluation. Such feedback is
related to the quality of service level (measured in terms of
latency in the provisioning of the service) and the quality of
information (measured in terms of accuracy of the provided
results and the relevant correctness). Feedbacks are collected
from a community of peers, which in turn have been al-
ready selected as being of high reliability. With the diffusion
of TA in inter-platform settings, specific malicious attacks
may happen to be performed (e.g., discrimination attack, on-
off attack, bad-mouthing attack, just to cite a few) [105].
The trust evaluation algorithms should be able to detect the
potential types of attacks and isolate the relevant group of
entities involved. Then, the TA algorithm may decide either
to exclude the nodes with a trust level lower than a given
threshold or to combine the estimated trust level with other
factors characterizing the considered approach (e.g,, required
amount of resources, expected level of QoS, communication
overhead). When integrating the trust evaluation in the TA
logic, an important aspect to be considered is to assign it with
the appropriate weight when compared to the other considered
factors; to this, the possible damage caused by a malicious
behavior of the selected task provider should be estimated
by considering the characteristics of the deployed application
(number of involved nodes, type of shared data, type of service
requested).
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Fig. 9: List of challenges for future research activities

C. Extended list of tasks

The types of tasks that have been considered in most pro-
posals so far are restricted to the five categories we mentioned
in Section II. However, with the increasing processing and
storage power of the edge devices and the need for reducing
the latency (and then the distances) between the users and
the provider in distributed applications, there is a strong
need for the deployment of more complex data processing
tasks in the edge connected devices. Additionally, more and
more application tasks are driven by ML (Machine Learning)
operations to exploit the power of available huge amounts of
data. These more complex processing tasks are mostly related
to ML model training (federated learning, model aggregation,
distributed learning coordination), inference, and merging of
datasets. Accordingly, tasks allocation strategies cannot focus
only on the collection of data from sensing devices so that
central units can process and analyze the data; indeed, it
should also consider the allocation of inference-related tasks
that can be allocated dynamically so as to improve the overall
application QoS. A representative scenario is that of a group of
UAV with the mission to detect threads in a given area where
a public event is held. The video cameras and audio sensors
have to be activated in the UAV to maximize the detection
performance while considering also the consumed energy; the
acquired data is processed with pre-trained models to detect
dangerous events. However, some data pre-processing modules
have to be trained with the local data for calibration of the
system. Finding the right node that can perform the analysis
of the acquired data should be included in the TA objectives.

The above considerations call for future research activities
focused on the identification of the additional ML-related tasks
and the definition of proper models that can characterize the

additional tasks in terms of: computation complexity and con-
sequent every consumption, generated data, and contribution
to the overall quality of service. The latter is the one that
requires significant efforts as the relationship of the relevant
contribution to the overall benefit in terms of better inference
performance or improvement in the model training is not
straightforward. Additionally, this calls for a more complex
description of the relationships among a different and more
heterogeneous set of tasks that need to be combined for the
deployment of the final application.

D. NP-supported distributed approach deployment

The widespread adoption of Mobile-Edge Computing
(MEC) facilities by the network providers (NP), also as key
components of the currently deployed 5G network solutions,
can help the deployment of TA solutions. Indeed, the MEC
infrastructure facilitates the provisioning of the following
services: hosting the device virtualization, assigning and man-
aging unique IDs for the devices, implementing the device
discovery, and fostering inter-NP TA procedures.

Device virtualization is important to augment the capabili-
ties of the physical entities with the power of the edge cloud in
terms of computing, storage, and intelligence resources. With
these additional resources, the devices become virtually always
reachable, even if the physical entity is not reachable at the
moment (but as far as cached data is enough). Additionally, it
can take part in TA processes and provide the relevant services
when alive. The assignment of the IDs to the devices has
been a subject of long research activities in the last years
which did not allow for reaching effective solutions. The
discovery solutions are strictly connected with the TA and are
aimed at finding the devices which can provide the required
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services based on the service description. The discovery can
be performed by relying on the device virtualization as the
physical device is not needed at this point. The NPs can
provide an important contribution in this respect as they can
support the deployment of interoperable services by addressing
the issues discussed in the previous Section VI-A. Once the
devices that may fulfill a given task have been found, then
the allocation can take place in an inter-NP setting with the
involvement of different MEC platforms.

E. Highlights on the future research directions

To address the mentioned issues there is the need to pursue
the following research activities:
• Contribute to SDOs’ standardization processes in the

fields where distributed sensing and actuating have an
impact, such as: ITU-T SG20 (on IoT, smart cities &
communities) and IEEE Standards Activities for Smart
Cities.

• Design appropriate trust evaluation methodologies that
should exploit the ML/AI technologies and rely on exten-
sive datasets generated from real IoT-based deployments.

• Analyze ML-based applications in different domains
(smart cities, sustainable mobility, smart building, and
others) to define the requirements in terms of ML-related
tasks that should be assigned to single objects. This
should then be used to define the list of additional tasks
to be considered in TA frameworks.

• Leverage 5G infrastructures to deploy NP-supported
strategies to make TA available to over-the-top service
providers.

VII. CONCLUSIONS

The conducted extensive analysis of strategies of TA among
connected devices has highlighted that different factors and
design principles have characterized the different domains.
The strategies proposed so far in the SAN domain have
mostly focused on the efficiency in energy management, due
to the low robustness of the relevant infrastructure and the
task repetitiveness in the deployed applications. In the MRS
domain, the fulfillment of QoS requirements is the one that has
driven the definition of solutions as the relevant applications
often pose stringent conditions. In the MCS domain, the
QoI is instead the most important design principle. In the
IoT domain, the heterogeneity of devices and the complexity
of deployed applications have mostly driven the research
and design efforts, so that multi-objective approaches that
target efficient energy management and the fulfillment of QoS
requirements have been mostly followed. As expected, in the
UAV domain the level of coverage of the area of interest has
been the most important challenge considered.

Whereas effective solutions are now available for TA, these
do not cover all the scenarios of interest. Accordingly, sev-
eral challenges that need to be addressed by future works
have been identified. It results that the current solutions do
not cover the multi-platform scenario, so that appropriate
interoperability TA-related functionalities need to be devised.
Strictly related to this aspect, there is the need to introduce the

evaluation of trust in the allocation of tasks, especially when
objects with allocated tasks and the application that requests
these belong to different platforms. Additionally, the types of
tasks considered so far should be extended to include some
ML-related operations, such as: inference, training, dataset
merging. Finally, the devised strategies should consider the
deployment in the scenarios where the network operator can
support the deployment of the TA algorithm by exploiting the
ever-increasing MEC infrastructures.
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