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ABSTRACT: Molecular docking excels at creating a plethora of
potential models of protein−protein complexes. To correctly
distinguish the favorable, native-like models from the remaining
ones remains, however, a challenge. We assessed here if a protocol
based on molecular dynamics (MD) simulations would allow
distinguishing native from non-native models to complement
scoring functions used in docking. To this end, the first models for
25 protein−protein complexes were generated using HADDOCK.
Next, MD simulations complemented with machine learning were
used to discriminate between native and non-native complexes
based on a combination of metrics reporting on the stability of the
initial models. Native models showed higher stability in almost all
measured properties, including the key ones used for scoring in the Critical Assessment of PRedicted Interaction (CAPRI)
competition, namely the positional root mean square deviations and fraction of native contacts from the initial docked model. A
random forest classifier was trained, reaching a 0.85 accuracy in correctly distinguishing native from non-native complexes.
Reasonably modest simulation lengths of the order of 50−100 ns are sufficient to reach this accuracy, which makes this approach
applicable in practice.

■ INTRODUCTION
Modeling molecular processes in living organisms is a
challenging endeavor in every aspect. Ideally, one would
have to capture every component of the molecular machinery
throughout all states of their biological journey. It is however
already computationally highly demanding to process only a
fraction of those interacting pathways in full detail; thus, one
has to compromise on the level of details and/or the size of the
simulated system. Docking is a molecular modeling approach
commonly used to target large-scale interactions of two or
more binding partners of any nature. It proficiently explores
the possible binding modes throughout the conformational/
interaction space, what is referred to as sampling. A number of
software packages like HADDOCK,1,2 LightDock,3,4 AT-
TRACT,5,6 IMP,7,8 or ROSETTA9,10 allow to efficiently utilize
the available experimental and/or bioinformatics information
to eliminate sampling of irrelevant binding modes and guide
protein−protein docking to meaningful outcomes. The next
step is to detect the most favorable poses among the plethora
of possible solutions, for which a scoring function is used.
Another persisting challenge, which is to different extents

addressed by protein−protein docking programs, is protein
flexibility.11−14 Molecular dynamics (MD) can account for
conformational changes needed for binding at different levels.
On a smaller scale, i.e., at the level of atoms, sidechains, loops,
small molecules, or interfaces, MD is commonly applied to
refine docked complexes with the aim of improving their

quality.15−21 MD can be used at a more extensive level, where
the docking process is simulated; however, modeling
spontaneous association and dissociation of proteins is very
rare unless coarse-grained models or enhanced sampling
methods are used.22−25 With regard to all-atom MD
simulations, enhanced sampling techniques like Markov states
models,26−29 umbrella sampling combined with replica
exchange MD,30−35 elastic-network approaches,35 string
method,36 metadynamics,37,38 and other methods have been
used to sample conformational change prior to or during
binding and to facilitate such binding events under the
condition that the binding interface is known.39 Such
simulations also present a great opportunity to evaluate
binding affinities of known protein−protein complexes.
Perthold and Oostenbrink developed GroScore40 using
nonequilibrium free-energy calculations in an explicit solvent
to score 22 000 protein complexes from several Critical
Assessment of PRedicted Interaction (CAPRI)41 sets.42,43

Kingsley et al.44 used steered MD and potentials of mean force
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(PMF) to distinguish between native and non-native poses in
10 docked complexes from ZDOCK.45 Thirty-nine docked

complexes generated by HADDOCK2.2 webserver2 were
ranked by Simões et al.46 with molecular mechanics-Poisson

Table 1. Average Properties of Top Four Models of the Native and Non-Native Clusters Selected for Further Characterization
by MDa

system DockQ Fnat iRMSD (Å) LRMSD (Å) BSA (Å2) HADDOCK score

1E6J nat 0.70 ± 0.07 0.76 ± 0.04 1.52 ± 0.30 3.83 ± 0.30 1395 ± 36 −73.9 ± 1.4
non-nat 0.11 ± 0.01 0.44 ± 0.33 5.63 ± 4.13 10.95 ± 4.13 1374 ± 34 −59.0 ± 1.0

1GPW nat 0.72 ± 0.02 0.68 ± 0.04 1.43 ± 0.08 2.08 ± 0.08 2322 ± 84 −128.0 ± 3.8
non-nat 0.06 ± 0.01 0.38 ± 0.30 8.73 ± 7.31 15.29 ± 7.31 2253 ± 96 −96.5 ± 0.7

1HCF nat 0.63 ± 0.03 0.75 ± 0.02 1.62 ± 0.10 5.79 ± 0.10 1899 ± 45 −95.8 ± 2.1
non-nat 0.21 ± 0.23 0.52 ± 0.30 5.17 ± 4.55 14.07 ± 4.55 1885 ± 46 −73.2 ± 2.9

1JPS nat 0.72 ± 0.03 0.77 ± 0.03 1.16 ± 0.13 4.72 ± 0.13 2076 ± 62 −99.8 ± 1.7
non-nat 0.02 ± 0.00 0.40 ± 0.38 8.14 ± 6.99 26.95 ± 6.99 2117 ± 84 −110.0 ± 4.7

1KAC nat 0.48 ± 0.03 0.43 ± 0.04 2.36 ± 0.13 5.30 ± 0.13 1598 ± 41 −69.6 ± 3.7
non-nat 0.05 ± 0.00 0.24 ± 0.19 8.28 ± 5.93 17.91 ± 5.93 1639 ± 56 −55.8 ± 3.7

1OC0 nat 0.50 ± 0.03 0.54 ± 0.05 2.52 ± 0.10 5.48 ± 0.10 1336 ± 59 −81.3 ± 1.1
non-nat 0.15 ± 0.00 0.31 ± 0.23 4.63 ± 2.12 8.82 ± 2.12 1334 ± 54 −87.9 ± 5.2

1PXV nat 0.46 ± 0.02 0.45 ± 0.03 3.08 ± 0.03 5.26 ± 0.03 1913 ± 116 −56.1 ± 5.5
non-nat 0.07 ± 0.00 0.28 ± 0.17 8.54 ± 5.45 16.33 ± 5.45 2024 ± 144 −59.2 ± 3.7

2NZ8 nat 0.28 ± 0.01 0.33 ± 0.01 3.62 ± 0.09 10.91 ± 0.09 2083 ± 40 −72.3 ± 5.0
non-nat 0.10 ± 0.00 0.19 ± 0.13 5.92 ± 2.30 14.12 ± 2.30 2626 ± 559 −102.4 ± 14.9

2O8V nat 0.45 ± 0.04 0.49 ± 0.15 3.20 ± 0.23 5.78 ± 0.23 906 ± 59 −60.8 ± 1.3
non-nat 0.14 ± 0.03 0.36 ± 0.17 6.90 ± 3.76 12.49 ± 3.76 807 ± 110 −55.1 ± 1.9

3EO1 nat 0.46 ± 0.01 0.61 ± 0.01 2.47 ± 0.07 8.76 ± 0.07 1865 ± 78 −82.7 ± 7.7
non-nat 0.05 ± 0.00 0.36 ± 0.26 6.62 ± 4.14 28.90 ± 4.14 2014 ± 164 −86.7 ± 1.3

1BJ1 nat 0.84 ± 0.05 0.91 ± 0.01 0.75 ± 0.14 3.89 ± 0.14 1880 ± 37 −156.2 ± 1.3
non-nat 0.06 ± 0.00 0.51 ± 0.40 6.48 ± 5.73 21.61 ± 5.73 1967 ± 99 −109.9 ± 5.4

1EAW nat 0.64 ± 0.12 0.70 ± 0.10 1.76 ± 0.55 4.54 ± 0.55 1735 ± 71 −97.4 ± 13.9
non-nat 0.19 ± 0.03 0.49 ± 0.22 3.65 ± 1.99 10.82 ± 1.99 1788 ± 118 −104.9 ± 14.0

1KTZ nat 0.81 ± 0.02 0.86 ± 0.03 0.90 ± 0.04 3.83 ± 0.04 1057 ± 19 −65.4 ± 1.0
non-nat 0.07 ± 0.01 0.50 ± 0.36 5.26 ± 4.36 25.06 ± 4.36 1084 ± 31 −75.2 ± 1.5

1NSN nat 0.62 ± 0.01 0.66 ± 0.01 2.02 ± 0.12 3.60 ± 0.12 2222 ± 92 −110.8 ± 2.4
non-nat 0.04 ± 0.00 0.33 ± 0.33 9.48 ± 7.46 13.97 ± 7.46 2299 ± 114 −116.4 ± 4.1

1RV6 nat 0.67 ± 0.05 0.72 ± 0.02 1.68 ± 0.25 3.75 ± 0.25 1747 ± 66 −89.3 ± 1.6
non-nat 0.07 ± 0.00 0.39 ± 0.33 6.60 ± 4.92 13.28 ± 4.92 1860 ± 125 −110.2 ± 1.8

1VFB nat 0.74 ± 0.04 0.74 ± 0.02 1.26 ± 0.12 3.23 ± 0.12 1439 ± 36 −77.2 ± 1.1
non-nat 0.06 ± 0.00 0.40 ± 0.34 6.94 ± 5.68 13.74 ± 5.68 1511 ± 76 −82.6 ± 2.1

2A5T nat 0.46 ± 0.02 0.56 ± 0.03 2.88 ± 0.13 7.10 ± 0.13 2272 ± 73 −129.3 ± 2.6
non-nat 0.19 ± 0.01 0.44 ± 0.13 4.63 ± 1.76 11.50 ± 1.76 2640 ± 381 −107.9 ± 1.9

2OOB nat 0.70 ± 0.08 0.91 ± 0.05 1.60 ± 0.30 5.35 ± 0.30 995 ± 28 −56.0 ± 0.6
non-nat 0.11 ± 0.00 0.52 ± 0.39 4.90 ± 3.31 12.04 ± 3.31 1043 ± 56 −75.1 ± 2.1

3S9D nat 0.50 ± 0.03 0.49 ± 0.04 2.06 ± 0.05 5.95 ± 0.05 2205 ± 153 −81.5 ± 10.5
non-nat 0.05 ± 0.00 0.27 ± 0.22 8.07 ± 6.01 17.28 ± 6.01 2408 ± 232 −120.5 ± 1.5

4G6M nat 0.86 ± 0.01 0.92 ± 0.01 0.96 ± 0.04 1.86 ± 0.04 1912 ± 68 −123.8 ± 0.9
non-nat 0.06 ± 0.00 0.50 ± 0.43 7.99 ± 7.03 12.94 ± 7.03 1951 ± 73 −91.8 ± 12.6

1YVB nat 0.68 ± 0.05 0.74 ± 0.04 1.29 ± 0.14 5.13 ± 0.14 1619 ± 32 −108.8 ± 1.8
non-nat 0.12 ± 0.00 0.46 ± 0.29 5.63 ± 4.34 12.45 ± 4.34 1636 ± 72 −99.6 ± 3.1

2HRK nat 0.57 ± 0.02 0.77 ± 0.03 2.73 ± 0.11 5.33 ± 0.11 1747 ± 34 −90.1 ± 2.1
non-nat 0.06 ± 0.00 0.42 ± 0.35 8.38 ± 5.66 14.99 ± 5.66 1701 ± 56 −93.1 ± 1.5

2O8V nat 0.42 ± 0.03 0.48 ± 0.08 3.37 ± 0.19 6.84 ± 0.19 845 ± 44 −73.5 ± 6.8
non-nat 0.14 ± 0.01 0.36 ± 0.13 8.03 ± 4.66 13.44 ± 4.66 833 ± 35 −62.8 ± 1.6

2Z0E nat 0.47 ± 0.03 0.45 ± 0.03 2.60 ± 0.16 5.33 ± 0.16 2365 ± 31 −95.5 ± 2.0
non-nat 0.07 ± 0.00 0.28 ± 0.18 6.53 ± 3.93 15.82 ± 3.93 2237 ± 136 −67.7 ± 12.6

3F1P nat 0.53 ± 0.01 0.60 ± 0.02 3.23 ± 0.17 4.22 ± 0.17 2265 ± 50 −129.3 ± 2.6
non-nat 0.05 ± 0.00 0.31 ± 0.29 9.30 ± 6.07 13.86 ± 6.07 2184 ± 90 −107.9 ± 1.9

aThe DockQ score (101) was calculated as in ref 101. Fnat is the fraction of native contacts that takes into account any atom pair-forming contacts
between proteins within a 5 Å distance cutoff (Fnat = 1 = 100% for the reference). The interface root mean square deviations (i-RMSD) were
calculated on the backbone of residues within 10 Å of the other protein. The ligand RMSD (l-RMSD) was calculated by fitting on the backbone of
the first molecule and calculating the RMSD of the backbone atoms of the second molecule. The buried surface area (BSA) represents the
difference between the solvent-accessible area of the separated components and the complex. The HADDOCK score is the score used in ranking of
HADDOCK models in the final refinement stage (1.0 Evdw (van der Waals intermolecular energy) + 0.2 Eelec (electrostatic intermolecular energy) +
1.0 Edesol (desolvation energy) + 0.1 Eair (distance restraints energy)).
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Boltzmann surface area (MM-PBSA)47 calculations. Takemura
et al.48 developed evERdock, which uses the energy
representation (ER) method49 to approximate free-energies
of binding and distinguish native from non-native docking
models after only 2 ns of MD in an explicit solvent.
Recently, alternative and computationally cheap approaches

using machine learning (ML) algorithms have been developed
to score protein−ligand50−54 and protein−protein55−58 com-
plexes, as well as to detect binding interfaces.59−63 Geng et
al.64,65 developed a scoring function (iScore) that combines
random walk graph kernel (GraphRank) score with HAD-
DOCK energetic terms. The DOcking decoy selection with
Voxel-based deep neural nEtwork (DOVE) approach was
created by Wang et al., which uses a convolutional deep neural
network for evaluating protein docking models and is also
available as a webserver.66 Ballester et al. used a random forest
algorithm with 36 features to predict the binding affinities of
protein−ligand complexes.67,68 Yet, another popular method
that assesses the quality of protein models is Voronoi
tessellation-based method.69−71 Olechnovic ̌ and Venclovas
developed VoroMQA,72 also available as a webserver, which
uses contact areas derived from Voronoi tessellation of the
protein structure and tested their approach on critical
assessment of structure prediction (CASP)73 data set. In
supervised machine learning, algorithms first learn from labeled
data so that they can apply the learned correlation to new data
and predict their labels. There are various classifiers, for
example, K-nearest neighbors, support vector machine and its
variations, naive Bayes, or decision trees, which can be merged
into the random forest. However, despite all these efforts,
correct and consistent identification of near-native docked
models of biomolecular complexes remains a challenge.74,75

In this work, we address the scoring problem by combining
standard MD simulations and machine learning to differentiate
native from non-native models of protein−protein complexes.
We selected 25 complexes from the Docking Benchmark
Version 576 docked using a local version of HADDOCK2.4 for
which the default HADDOCK score was not consistently able
to correctly identify on top of the models closest to the
reference structure. For each complex, we selected four models
from two top-scoring clusters corresponding to near-native and
wrong solutions. These, together with the reference crystal
structure of the complex, were simulated in explicit solvent for
100 ns each (combined total of 48 μs for all models, references,
and their replicate simulations). The resulting trajectories were
analyzed, and eight features, including CAPRI criteria
calculated with respect to the starting model, were extracted
to build the machine learning model afterward.
These properties are studied by comparison to both the

known reference crystal structure and the starting conforma-
tion using MD. Properties from multiple trajectory stretches of
10 and 20 ns were extracted, normalized, and fed into a
random forest (RF) classifier created with the scikit-learn
library.77 The RF classifier was trained on sets of 20 protein−
protein complexes and subsequently tested and validated on
independent sets of five complexes.

■ MATERIALS AND METHODS
Dataset. Two hundred and thirty complexes were chosen

from the Docking Benchmark Version 5 (BM5)76 and docked
with HADDOCK version 2.4,1 applying restraints derived from
the true interface (ambiguous restraints based on residues
making contacts within a 3.9 Å cutoff). These ambiguous

restraints have the property to bring the interfaces together
without predefining their exact orientation. From these
complexes, 25 (13 of which have the top-ranked cluster as a
non-native model) were selected for our MD approach. Two
training and validation sets were defined. Both have as
common complexes in the training set the following 15
systems: 1BJ1, 1BUH, 1E4K, 1E6J, 1EAW, 1JPS, 1KAC,
1NSN, 1OC0, 1PXV, 1RV6, 1VFB, 2A5T, 2NZ8, and 3EO1.
Training set 1 has, in addition, five proteins: 1GPW, 1KTZ,
2OOB, 3S9D, and 4G6M. Complexes 1YVB, 2HRK, 2O8V,
2Z0E, and 3F1P form the independent test set. To assess the
impact of the exact composition of the training set on the
performance of the RF classifier, in the second set, the training
set 2, those two sets of five complexes were swapped (from
training to test and vice versa). Complexes with two best
scoring clusters were selected where one yielded models of
high quality (native), while the other contained mostly
incorrect models (non-native). From these clusters, the four
best models per cluster were selected for MD simulations. In
addition, four replicas of the reference (experimental) structure
were run for all systems, but 1YVB, 2HRK, 2O8V, 2Z0E, and
3F1P were added at a later stage. Complexes were selected
based on criteria such as complete loops at the protein−
protein interface and no ions or cofactors present to avoid any
issue with those during MD simulations. Missing side-chains
and loops outside the interface were built using MODELLER
version 9.12.78,79 Various quality measures and scores are
shown for the native and non-native complexes in Table 1 (see
also Figure S1).

Molecular Dynamics Simulations. The selected com-
plexes were simulated and subsequently analyzed using the
GROMACS simulation package80 version 2019 and the
CHARMM36m81 forcefield. Protein structures were first
optimized in a vacuum using the steepest-descent algorithm
(up to 5000 steps), and subsequently, solvated in a rhombic
dodecahedral box of TIP3P82 water. The minimal solute to box
distances was set to 1.4 nm, and sodium and chloride ions were
added to neutralize the box and reach a concentration of 150
mM. A second optimization stage was performed (up to
25 000 steps if convergence, standard settings, was not reached
before). A first MD run of 50 ps was then performed at 50 K in
the NVT ensemble using a velocity-rescaling thermostat83,84

with a 0.1 ps time constant. Initial velocities were randomly
assigned according to a Maxwell−Boltzmann distribution at 50
K and the system was subsequently heated up to 150 and 300
K. During this equilibration phase, all heavy atoms of the
proteins were positionally restrained using a decreasing force
constants of 1000 (50 K), 100 (150 K), and 10 (300 K) kJ
mol−1 nm−2 in x-, y-, and z-coordinates. Production runs of
100 ns in length were performed in an NPT ensemble using
the Berendsen barostat84 with isotropic pressure scaling, a time
constant of 1 ps, and an isothermal compressibility of 4.5 ×
10−5 bar−1. For all of MD simulations, the leapfrog integration
scheme85 with a timestep of 2 fs was used and covalent bonds
were restrained using the LINCS algorithm.86 Neighbor
searching was performed using a Verlet-based cut-off scheme
updated every 10 steps with a cut-off of 1 nm. For the van der
Waals interactions, a twin range cut-off with a smooth switch
to zero between 1 and 1.2 nm was used. The Particle Mesh
Ewald method87 was used to calculate the long-range
electrostatics. The total simulation time for all complexes
sums up to 48 μs. Trajectory frames were written to disk every
500 ps for further analysis.
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Analysis. The definition of the fraction of common
contacts, interface residues, and ligands followed the CAPRI
classification.88 Intermolecular contacts were considered as any
atom pair between proteins within 5 Å, and the contact
evolution as a function of simulation time was calculated using
the gmx hbond-contact analysis tool. Interface residues are
defined as residues, with at least one atom within 10 Å of the
other molecule, and interface RMSD (i-RMSD) was calculated
on the backbone of these residues. Ligand RMSD was
calculated by fitting on the backbone of the first molecule
and calculating the RMSD of the backbone atoms of the
second molecule. The DockQ values reported in Table 1 are
based on a combination of all of these properties (Fnat, i-
RMSD, l-RMSD) as described in ref 89. The distances
between centers of mass of proteins, hydrogen bonds, and
buried surface area were calculated using the standard
GROMACS analysis tools (gmx distance, gmx hbond, and
gmx sasa). The interaction energy terms were calculated as the
sum of short-range Coulombic and Lennard-Jones interactions
between the two proteins or between the proteins and water.
To compensate for the varying size of the systems and
interfaces for further machine learning analysis, all properties
were evaluated relative to their values at the beginning of the
trajectory. Hence, only changes of the properties over time are
observed and not their absolute numbers. These time series
were extracted for all trajectories and were used to feed the
random forest classifier.
Random Forest Model for Native vs Non-Native

Classification. To select the most accurate classifier for our
task, we evaluated the performance of the following set of
binary classifiers available in the Scikit-learn library:77 gnb =
Gaussian naive Bayes, KNN = K neighbors classifier
(n_neighbors = 1), MNB = multinomial naive Bayes, BNB =
Bernoulli naive Bayes, LR = logistic regression, SDG =
stochastic gradient descent classifier, SVC = support vector
classification, LSVC = linear SVC, NSVC = Nu SVC, RF =
random forest classifier (see Figure S7). These classifiers were
tested on the training set every 10 ns, using repeated K-fold
cross-validation with 10 splits and 10 repeats with a test size of
25% (i.e., five complexes). Since random forest showed the
highest accuracy throughout the entire trajectory, it was
selected for our approach. Random forest combines multiple
components of randomness. First, the training set is divided
into multiple bootstrapped copies and predictions from these
are aggregated, which reduces the variance, or overfitting
compared to individual decision trees. Moreover, to further
decrease the correlation among trees, a random subset of
features is selected at each tree split. In this work, the Scikit-
learn library77 0.23.1 was used again to create the random
forest classifier. The Grid Search algorithm was used to search
for the optimal parameters based on the last 20 ns of
trajectories of training set 1, as described in the dataset part of
the Materials and Methods section. The following parameters
were used to create the random forest classifier: the number of
trees in the forest was set to 1000, bootstrap samples were used
when building trees, square root of features were selected at
each split, the maximum depth of the tree was set to 50, the
minimum number of samples required to split an internal node
was set to 2, and the minimum number of samples required to
be at a leaf node was set to 1. The model was subsequently
trained on different 20 ns patches of the trajectory. The
average receiver operating characteristic (ROC) curve,
accuracy, and f1-score were calculated from 10 times 10-fold

cross-validation optimization. Accuracy is calculated as the
fraction of correct predictions (true-positive (TP) + true-
negative (TN)) out of the total number of predictions (TP +
TN + false-positive (FP) + false-negative (FN)). F1-score is
calculated as TP/(TP + 1/2 (FP + FN)). The true-positive
rate (TPR), also known as sensitivity, is the fraction of TP out
of the positives and true-negative rate (TNR) and the fraction
of TN out of the negatives. The relationship between these two
metrics is reflected in the ROC curve.

■ RESULTS
Twenty-five protein−protein complexes from BM576 modeled
with HADDOCK using true interface information (but no
specific contacts) were selected on the basis that their two
best-scoring clusters showed models of utterly different quality
(near-native and non-native). For about half of those
complexes (13 out of 25), HADDOCK ranks on top of a
non-native model. Our aim was to use MD simulations
complemented by machine learning to distinguish native from
non-native models. The quality of all models, together with the
buried surface area and HADDOCK score, are listed in Table
1 (see also Figure S1).

Standard MD. For each complex, the four best-scoring
models per native and non-native clusters were selected and
simulated, each with two replicas per model, for 100 ns using
GROMACS. Additionally, for the 20 complexes of training set
1, simulations of the reference structure (crystal structure; four
MD replicas per reference structure) were performed and
analyzed. Properties of all complexes and models were
measured with respect to both the reference crystal structure
of the complex and the docking model used as starting
conformation for MD simulations. For training the machine
learning model, relative values with respect to the start of the
production run (ref-orig) were used as input, which partly
normalizes the differences due to the varying size of the
complexes.

Can MD Improve the Quality of the Models? The
quality of protein−protein complexes is commonly assessed by
comparing a number of properties to their reference (usually,
experimental) structure. In CAPRI, those properties are ligand-
RMSD, interface-RMSD, and fraction of native contacts.
In the first part of our work, we looked at these properties

during the course of the MD trajectories of both the
HADDOCK models and the reference crystal structures and
compared them with the experimental crystal structure of the
complex. Figure 1 shows the distributions of l-RMSD, i-RMSD,
and Fnat with respect to the respective reference crystal
structures for all of the 20 complexes of the training set 1 and
their evolution over different stretches along the simulation.
This analysis is based on a total of 160 simulations of both
native and non-native clusters, and 80 simulations of the
reference crystal structures, each of 100 ns in length.
As expected, all systems including those started from the

reference crystal structures undergo changes along the course
of the simulation. The magnitude of these changes is, however,
somewhat surprising: in the first 5 ns of the production runs,
even the reference structures lose on average up to 80% of
their original contacts (Figure 1C). This might be due to the
initial rearrangement of the residues during the heating up
phases of the simulation and the relatively tight definition of
intermolecular contacts (5 Å). Indeed, with regard to the
simulation of the reference structures, we noticed in all cases
only small changes in the conformation of the backbone at the
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partner’s interface (Figure S2). All three groups of complexes
deviate further from the crystal structure over time, which
results in poorer model quality toward the end of the
simulation. In particular, while the reference simulations
remain within the acceptable quality CAPRI category during
the entire trajectory, near-native docked models reach the
incorrect area by the end of the simulation, while non-native
models never reach the correct category. Despite this, a clear
and consistent separation of native and non-native models is
evident throughout the entire course of the simulation for all
three properties reported in Figure 1. While 100 ns of MD
simulation is not able to improve the quality of the initial

models, it clearly allows differentiating between near-native
and non-native models based on a comparison to the known
crystal structure.

Can MD Distinguish between Native and Non-Native
Complexes Based on CAPRI Measures? The second
question we wanted to address in our work is if standard
MD is able to capture any different behavior of native and non-
native models. This is particularly important because in a
realistic scenario there will be no reference structure available.
To assess this, we selected for each simulation the model at the
starting point of the production run as a reference (hereafter
ref-orig). Figure 2 depicts the same properties as Figure 1,
which we denote by an additional “-orig” label to distinguish

Figure 1. (A) Interface-RMSD, (B) ligand-RMSD, and (C) fraction
of native contacts for native, non-native, and reference structures from
the complex crystal structure for all 20 complexes. The boxplot shows
the interquartile range with its median as black lines, mean as stars,
whiskers in error bars, and outliers in circles. Reference in green,
native clusters in burgundy, and non-native in blue.

Figure 2. (A) Interface-RMSDorig, (B) ligand-RMSDorig, and (C)
fraction of native contacts (Fnatorig) for native, non-native, and
reference crystal structures with respect to the beginning of the
trajectory for all 20 complexes. The boxplot shows the interquartile
range with its median as black lines, mean as stars, and whiskers and
outliers in circles. Reference in teal, native clusters in burgundy, and
non-native in blue.
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from the same values with respect to the reference crystal
structure (l-RMSDorig, i-RMSDorig, and Fnatorig), so as to
highlight their behavior relative to the initial binding mode
(ref-orig). For both ligand and interface RMSDorig, the
reference crystal structures show the lowest values, pointing
to the (expected) higher stability of the experimental
complexes compared to their docked models. More interest-
ingly, the near-native complexes show overall higher stability
(less deviations from the initial values) than the non-native
ones. Even though the distributions of both RMSDorigs are
largely overlapping, their means are clearly distinguishable at
the end of the simulation (the difference from ref-orig amounts
to ∼0.5 nm for i-RMSDorig and ∼1 nm for l-RMSDorig,
respectively; Figure 2A,B). Importantly, these differences
increase over the simulation time most often due to the
increasing instability of non-native complex configurations in
the second half of the simulations (Figures S2 and S3). A
similar trend is seen in the decrease of Fnatorig over time
(Figures 2C and S4). While the reference and native structures
lose up to 70 and 80% of initial contacts, respectively, the non-
native models lose almost all of them toward the end of the
simulation.
Interestingly, the trends are evident within the first 5 ns of

the simulation, where even the reference simulations lose up to
50% of original contacts. This implies that even such a short
stretch of plain MD causes significant changes in the protein
interfaces, as already highlighted by Figure 1. We speculate that
such a sudden loss of contacts, occurring during the first part of
the simulation, is a consequence of the optimization of the
interactions among the packed sidechains (deriving from both
modeling or experiments). Consistent with this hypothesis,
previous work exploiting extremely long MD simulations to
study protein−protein association events showed that
successful events (measured by l-RMSD values lower than 3
Å) led to complexes featuring a fraction of native contacts
largely variable but generally lower than 0.5.22 Moreover, such
a relatively low fraction was associated to a retained hydration
of the interacting surfaces, which remained more than 50%
solvated compared to their unbound state. Further, it has been
shown experimentally that typical crystallization conditions as
low (cryogenic) temperature and low hydration tend to
contort protein interfaces compared to physiological con-
ditions.91 By comparing crystal structures obtained at
cryogenic and room temperatures, Fraser et al.90 observed
that more than 35% of sidechains are remodeled during
cryocooling, which can impair their functional motion. Low
temperatures and hydration lead to more compact protein
packing, smaller protein volume, and thus, increased buried
surface area, i.e., increased number of contacts between
molecules.91 This tighter packing could therefore be quickly
resolved during the MD simulation, where, besides the loss of
native contacts, we also observed a slight decrease in the buried
surface.

For a comparison, CAPRI criteria are also indicated in
Figure 2. These should help to illustrate the order of structural
changes occurring at the interface and the rearrangement of
the complex during MD. In all three properties non-native
models enter the incorrect category in the second half of the
simulation (e.g., after 50 ns), while reference and native
models remain in the acceptable to the medium quality area
(Figures S2−S4).
A number of additional properties were measured for

selected complexes. Figure S5A,B shows the evolution of the
buried surface area and of the distance between the COMs of
the two binding partners. While for reference structures both
properties are relatively stable throughout the simulation, for
non-native models, the BSA is consistently decreasing while
the distance between the center of masses increases. By the
end of the trajectory, the variations amount, on average, to 5
nm2 and 0.3 nm, respectively. The number of hydrogen bonds
is as well slightly decreasing (Figure S5C) for the non-native
complexes. An identical behavior can be seen in the
nonbonded interaction energies between proteins and proteins
and water, as depicted in Figure S5D,E. As expected, due to the
initial (generally unfavorable) conformation of non-native
complexes, the interaction between protein partners becomes
weaker with increasing simulation time for these models. This
is compensated by more favorable interactions with water,
which can be seen in the decrease of the nonbonded
interaction energy. The native complexes do not deviate
considerably from their reference complexes, which is
consistent with the previous findings and CAPRI properties.
Such a clear distinction in the behavior of native and non-
native complexes during standard MD of 100 ns or less is
rather remarkable. We, therefore, decided to exploit the
measured properties to develop a machine learning model that
could help us in classifying models as native or non-native
based on their simulation properties.

Can Machine Learning Help in Identifying Native
Poses? Properties calculated from simulations of 20
HADDOCK models of the training set 1 were mixed and
labeled as native and non-native, based on the quality of the
initial model they were extracted from. They were divided into
trajectory stretches of 20 ns. An example of such distribution of
all properties and their scatter plots in the last 20 ns of the
trajectory is shown in Figure S6. To choose the most fitting
classifier for our purposes, the trajectory was divided into
stretches of 10 ns and, for each of these time frames, a number
of classifiers from the Scikit library were trained. Ten
nanoseconds was used to obtain a more detailed overview of
ML classifying accuracy along the trajectory. The accuracy
scores for all of them are summarized in Figure S7. The
random forest classifier reached clearly higher accuracy than
the other ones and was chosen for further classification of the
complexes. Random forest combines bootstrapping of the
training set with random feature selection at each tree split.
First, the search for optimal parameters was performed using

Table 2. Scoring Performance of the RF Classifier Based on the Cross-Validated Training Set 1 and Both Validation Sets

trajectory stretch 0−20 ns 20−40 ns 40−60 ns 60−80 ns 80−100 ns validation set 1 validation set 2

accuracy 0.77 0.83 0.85 0.85 0.86 0.60 0.75
precision 0.79 0.86 0.87 0.86 0.88 0.61 0.71
recall 0.76 0.81 0.84 0.84 0.85 0.61 0.84
f1 0.76 0.82 0.85 0.84 0.85 0.59 0.77
roc_auc 0.86 0.92 0.93 0.93 0.94 0.60 0.83
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the grid search algorithm based on the last 20 ns of trajectories
from the training set. The best parameters were selected, which
are listed in the Materials and Methods section. Subsequently,
the model was trained considering different trajectory
stretches. Its accuracy was calculated within its own cross-
validated training set 1. On top of the inherent randomness
that random forest involves, stratified K-fold cross-validation
with 100 splits was used. Accuracy, precision, recall, f1-score,
and area under curve (AUC) of the receiver operating
characteristic (ROC), calculated for 5 trajectory stretches of
20 ns are summarized in Table 2. The accuracy of the RF
classifier starts at 0.77 and reaches 0.86 in the last 20 ns of the
simulation. Similar trends can be seen in all performance
metrics. Interestingly, after 40−60 ns, all metrics start
converging.
RF classifiers allow the evaluation of the importance of the

various features used in training. Figure S9 summarizes feature
importance assessed on the last 20 ns of the trajectory of the
training set 1. Changes in i-RMSDorig, BSAorig, and Fnatorig are
the most important in distinguishing native from non-native
models, while the number of hydrogen bonds shows the
smallest importance. However, overall, the relative differences
between property importance were not very substantial.
While the RF classifier performed well on the cross-validated

training test alone, a fair comparison would be to test its
accuracy on an external validation test. To this end, five
additional complexes were selected (validation set 1), and their
native and non-native models were simulated for 100 ns as for
the training set 1 (see the Materials and Methods section).
CAPRI properties of the validation set throughout the
trajectory are shown in Figure S8. Surprisingly, here the
differences between native and non-native complexes were not
as high as in the training set. When the model was tested on
the independent validation set, its accuracy and f1-score
reached 0.60 and 0.59, respectively (Table 2). This is
significantly lower than for the original training set. The
same is observed for the AUC with 0.60 against 0.93 for the
training set (Figure 3B). Prompted by this finding, we
performed another round of training and validation of the
model using a different distribution of complexes between
training and test sets (training set 2 and validation set 2) (see
the Materials and Methods section). For this, five randomly
selected complexes from the original training set were swapped
with the validation set. After training on this second data set,
the RF classifier shows a better performance in distinguishing
native from non-native models for the validation set with
accuracy and AUC of 0.75 and 0.83, respectively (Table 2 and
Figure 3C). This implies that the model accuracy depends on

the nature of the initial complexes and their stability during
MD. But even in the unfavorable scenario where the behavior
of both classes of complexes was rather similar (validation set
1), our model was able to correctly identify native complexes
with an accuracy of 60%.

■ DISCUSSION
The flexible nature of proteins and their interfaces naturally
evolve into dynamic interactions among binding partners.92−94

Our work makes use of such dynamics to tackle the intricate
task of correctly scoring models of protein−protein complexes
obtained by docking. There are not many MD approaches
known to focus on this task without using enhanced sampling
or free-energy calculations. In this work, native and non-native
models of 25 complexes from the docking benchmark 5
docked with HADDOCK2.4, and their reference crystal
structures were simulated in multiple copies, each for 100 ns
in length (cumulative time: 48 μs). The trajectories were
analyzed and their properties were used to feed a random
forest classifier.
Running MD simulation on docked models could lead to a

spontaneous complex rearrangement to a more favorable
position (aka induced fit) provided sufficient sampling. Here,
by comparing simulated HADDOCK models and their
structures at the beginning of the production run (ref-orig)
to the original reference crystal structure, we first assessed if
MD simulations would allow improving the quality of the
models. Significant changes were observed at the interface of
all simulated structures, even the crystal structure. However,
little to no improvement was observed for the near-native
models. Perhaps, much longer time scales would be necessary
to capture spontaneous rearrangements of protein complexes,
similar to long plain MD simulations that have been used to
observe domain rearrangement in single proteins.95−97 Pan et
al.22 observed reversible binding and unbinding of multiple
protein complexes in the time scale of hundreds of micro-
seconds using the tempered binding approach and dedicated
hardware built in-house. In that work, the native binding was
not reached by the sampling of the entire protein surface while
proteins stayed in close contact, but rather after a repeated
dissociation and reassociation of the complex (mimicked by
docking here). This observation was analogous to ours since
we also did not observe any rearrangement from non-native to
native binding pose while the proteins stayed in contact. One
can assume that protein−protein reassociation would be
needed in our case too; however, this can hardly be achieved
in the 100 ns time scale of our simulations. Nonetheless, the
simulations revealed a clear difference in the behavior of non-

Figure 3. Receiver operating characteristic (ROC) curves showing (A) training set 1 using stratified K-fold cross-validation split 100 times.
Individual splits are shown in thin lines and their mean and shown in blue bold line. (B) Validation set 1 and (C) validation set 2.
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native and native models or the reference during that time
scale.
In the second part of our work, we examined in a realistic

scenario, i.e., in the absence of a reference structure, if MD
simulations could be used as a scoring tool to distinguish
native from non-native models. For this, properties of the
simulations were compared to their values at the beginning of
the trajectory, measuring thus changes with respect to the
original starting model. Here, clearly, the crystal structures
followed by the native models exhibited the highest stability in
contrast to the non-native models. This is a promising
observation, where, without any prior knowledge of model
quality, one can see differences in their stability during
simulation which allows pointing out the less stable/non-native
models.
Previous studies have also addressed the problem of

identifying native solutions using postdocking simulations.
Radom et al.98 could similarly distinguish decoys from native
structures based on their stability during MD and noticed a few
exceptions, where the wrong binding pose would find the
correct conformation throughout the simulation. Akin cases
were seen in our study as well; nonetheless, they were
statistically not significant enough to influence the overall
trend.
Kozakov et al.,99 on the other hand, used a combination of

docking and Monte Carlo (MC) minimization to assess the
stability of near-native and non-native enzyme−inhibitor and
antibody−antigen complexes. They observed that all near-
native clusters were stable, i.e., multiple trajectories converged
into a particular region within the cluster. Moreover, they
could identify half of false-positive (non-native) clusters, which
showed lower stability. MC minimization offers another
relatively fast alternative to MD in terms of identifying native
poses.
Prev́ost et al.39 used a similar MD ranking approach for

docked complexes. They suggested altering the CAPRI scoring
criteria and take the dynamic properties (l-RMSD, i-RMSD,
and Fnat) into account by comparing simulations of the
reference crystal structures of the complexes. To correlate
system properties to the simulated reference, instead of its
crystal structure, could be advantageous, yet in our case,
somewhat redundant since they were already able to observe
stability differences even without the reference present.
Based on these findings, a machine learning model was

developed to classify complexes as native or non-native in an
automated manner rather than by visual inspection of the
properties as a function of simulation time. The performance
of the model was assessed on cross-validated training sets as
well as two independent validation sets. The accuracy on the
training set reached 0.85 and ranged between 0.60 and 0.75 for
validation sets. While the accuracy on the training set was
increasing as a function of the simulation time window
considered, it seems to converge after 50 ns. This would
indicate that shorter simulations of 50 ns might already be
sufficient for this kind of classification in the future. However,
despite the promising indications arising from our study, a
larger and more diverse dataset is certainly desirable to reduce
possible overfitting and generalize the methodology.
Such a combination of docking, molecular dynamics

simulation, and machine learning, as used in this work, are
becoming more common.100,101 Still their application to
protein−protein interactions remains limited. Several studies
have focused on scoring docked protein−protein models

neglecting their dynamic nature. Pfeiffenberger et al.56 applied
an extremely randomized tree classifier to rank poses generated
by SwarmDock102,103 for 11 CAPRI targets classified by their
ligand RMSD. Using 109 molecular descriptors, they obtained
accuracy between 0.6 and 0.7 in distinguishing native from
non-native complexes with residue−residue contact descrip-
tors, which is comparable to our results. Das and
Chakrabarti104 employed a support vector machine to
differentiate between native and non-native interfaces using
features like accessible, buried surface area, and frequency of
salt bridges or hydrogen bonds. An F1-score of 0.8 was
achieved on an external dataset in distinguishing between
native and non-native models. Both studies found that the key
features for protein−protein interactions are intermolecular
contacts and accessible/buried surface area. Comparable
accuracies (0.7−0.9) were obtained by the DOVE approach66

on validation and training sets. iScore64 as a graph-kernel-based
scoring method ranked among the top-scoring approaches on
the CAPRI scoring set. Our MD-based scoring method not
only reaches a state-of-the-art technique level of accuracy but
also introduces a novel way to incorporate information about
the dynamics of protein complexes into scoring. The
encouraging results obtained show that, even if the behavior
of the complexes remains similar for both native and non-
native models, the RF classifier is able to distinguish them in
up to 75% of the cases. From the feature importance analysis,
the most important properties for classifying the quality of a
model are suggested to be the fraction of native contacts,
interface RMSD, and buried surface area with respect to the
starting model.
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