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Abstract. Let (g,X) be a Kähler–Ricci soliton (KRS) on a complex manifold
M . We prove that if the Kähler manifold (M,g) can be Kähler immersed into

a definite or indefinite complex space form then g is Einstein. Notice that there
is no topological assumptions on the manifold M and the Kähler immersion is
not required to be injective. Our result extends the result obtained in Bedulli
and Gori [Proc. Amer. Math. Soc. 142 (2014), pp. 1777–1781] asserting
that a KRS on a compact Kähler submanifold M ⊂ CPN which is a complete
intersection is Kähler-Einstein (KE).
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1. Introduction

A Kahler–Ricci soliton (KRS) on a complex manifold M is a pair (g,X) con-
sisting of a Kähler metric g and a holomorphic vector field X, called the solitonic
vector field, such that

(1) Ricg = λg + LXg

for some λ ∈ R, where Ricg is the Ricci tensor of the metric g and LXg denotes
the Lie derivative of g with respect to X, i.e.

(LXg)(Y, Z) = X (g(Y, Z))− g([X,Y ], Z)− g(Y, [X,Z]),

for Y and Z vector fields on M . A Kähler metric g satisfying (1) gives rise to
special solutions of the Kähler–Ricci flow (see e.g. [9]), namely they evolve under
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biholomorphisms. KRS generalize Kähler–Einstein (KE) metrics. Indeed any KE
metric g on a complex manifold M gives rise to a trivial KRS by choosing X = 0 or
X Killing with respect to g. Obviously if the automorphism group of M is discrete
then a Kähler–Ricci soliton (g,X) is nothing but a KE metric g.

The first examples of non-Einstein compact KRS go back to the constructions of
N. Koiso [17] and independently H.-D. Cao [6] of Kähler metrics on certain CP 1-
bundles over CPn. After that, X.-J. Wang and X. Zhu [29] proved the existence of
a KRS on any compact toric Fano manifold, and this result was later generalized by
F. Podestà and A. Spiro [20] to toric bundles over generalized flag manifolds. The
reader is referred to [7], [23], [24] for the existence and uniqueness of Kähler–Ricci
solitons on compact manifolds and to [11] for the noncompact case.

In this paper we address the problem of studying KRS which can be Kähler
immersed into a definite or indefinite (finite dimensional) complex space form (S, gc)
of constant holomorphic sectional curvature 2c. The main result of the paper is
Theorem 1.1 which asserts that such a KRS is trivial.

Theorem 1.1. Let (g,X) be a KRS on complex manifold M . If (M, g) can be
Kähler immersed into a definite or indefinite complex space form (S, gc) then g is
KE. Moreover, its Einstein constant is a rational multiple of c.

It is worth pointing out that in our theorem there are no topological assump-
tions on the manifold M and the Kähler immersion is not required to be injective.
Notice also that our result is new even if we are in the realm of algebraic geometry,
namely when one assumes that M is compact, the ambient complex space form is
the complex projective space (equipped with the Fubini–Study metric of constant
holomorphic sectional curvature 4) and that the immersion is an embedding. In-
deed our result thereby extends the result obtained by A. Gori and L. Bedulli [3]
asserting that a KRS on a compact Kähler submanifold M ⊂ CPN which is a com-
plete intersection is KE (and hence by a deep result of Hano [12] M turns out to be
the quadric or a complex projective space totally geodesically embedded in CPN ).
The reader is also referred to [4] where the condition on complete intersection is
replaced by the more general assumption that the Kähler embedding has rational
Gauss map.

By combining well-known results on KE immersions into the complex projective
space in codimension one and two due to S.-S. Chern [9] and K. Tsukada [25]
respectively, we obtain the following corollary of Theorem 1.1.

Corollary 1.2. Let (g,X) be a KRS on a n-dimensional complex manifold M .
If (M, g) can be Kähler immersed into CPn+k with k ≤ 2, then M is either an
open subset of the complex quadric or an open subset of CPn totally geodesically
embedded in CPn+k.

Since a rotation invariant KE metric on a complex manifold of dimension ≥ 3,
which admits a Kähler immersion into a complex projective space in such a way that
the codimension is ≤ 3, is forced to be the Fubini–Study metric (see [22, Theorem
1.2] for a proof) we also get:

Corollary 1.3. Let (g,X) be a KRS on a n-dimensional complex manifold M with
n ≥ 3. Assume that g is rotation invariant and that (M, g) can be Kähler immersed
into CPn+k with k ≤ 3. Then (M, g) is an open subset of CPn totally geodesically
embedded in CPn+k.
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Theorem 1.1 also yields the following result which can be deduced by D. Hulin’s
theorem [15, Prop. 4.5] on the extension of germs of KE projectively induced
metrics.

Corollary 1.4. Let (g,X) be a projectively induced shrinking KRS (i.e. λ > 0 in
(1)) on a complex manifold M . Then g extends to a projectively induced KE metric
ĝ, with positive and rational Einstein constant λ, on a compact complex manifold
M̂ .

Notice that D. Hulin [16] shows that all the compact KE submanifolds of the
complex projective space have necessary positive (rational) Einstein constant and
it is conjecturally true (see e.g. [18]) that all such manifolds are flag manifolds.

By combining Theorem 1.1 with M. Umehara [27] results on KE manifolds im-
mersed into the flat or complex hyperbolic space we get:

Corollary 1.5. Let (g,X) be a KRS on a complex manifold M . A Kähler im-
mersion of (M, g) into a definite complex space form of nonpositive holomorphic
sectional curvature is totally geodesic.

As a special case of the last part of Theorem 1.1 in the indefinite case we get:

Corollary 1.6. The Einstein constant of a KE submanifold of an indefinite com-
plex space form (S, gc) is a rational multiple of c.

When the ambient space is the indefinite complex projective space this corollary
can be considered an extension of D. Hulin result [15, Prop. 5.1] on the rationality
of the Einstein constant of a projectively induced KE metric. Moreover, to the best
of authors’ knowledge, the classification of the KE submanifolds of the indefinite
complex hyperbolic space is missing. Even in the codimension one case (where
such classification is known ([21, Theorem 3.2.4]) Umehara’s theorem does not
hold (there exists non totally geodesic KE submanifolds of the indefinite complex
hyperbolic space). Thus, Corollary 1.6 seems to be a novelty also in the case of KE
submanifolds of the indefinite complex hyperbolic space.

The proof of Theorem 1.1 is based on Theorem 2.1 (see next section) which
describes some properties of Umehara algebra and its field of fractions. Section 3
is dedicated to the proof of Theorem 1.1.

2. Umehara algebra and its field of fractions

Let M be a complex manifold. Fix a point p ∈ M and let Op be the algebra of
germs of holomorphic functions around p. Denote by Rp the germs of real numbers.
The Umehara algebra (see [28]) is defined to be the R-algebra Λp generated by the
elements of the form hk̄+h̄k, for h, k ∈ Op. Umehara algebra has been an important
tool in the study of relatives Kähler manifolds (see [8, 10, 26–28]).

Let

Ôp = {α = (α1, . . . , αm) | αj ∈ Op, αj(p) = 0, ∀j = 1, . . . ,m,m ≥ 1} .

For α = (α1, . . . , αm) ∈ Ôp and � ∈ N such that � ≤ |α| := m we set

〈α, α〉�(z) =
�∑

j=1

|αj(z)|2 −
|α|∑

k=�+1

|αk(z)|2.
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Since hk̄+ h̄k = |h+ k|2 − |h|2 − |k|2 it is not hard to see (see [28] for details) that
each f ∈ Λp can be written as

f = h+ h̄+ 〈α, α〉�
for some h ∈ Op, α = (α1, . . . , αm) ∈ Ôp, � ≤ |α| and such that α1, . . . , αm are
linearly independent over C.

Consider the R-algebra Λ̃p ⊂ Λp given by

(2) Λ̃p =
{
a+ 〈α, α〉� | a ∈ Rp, α ∈ Ôp, � ≤ |α|

}
.

Notice that the germ of the real part of a nonconstant holomorphic function h ∈ Op

belongs to Λp but not to Λ̃p.
The key element in the proof of Theorem 1.1 is the following Theorem 2.1 whose

proof is inspired by the work X. Huang and Y. Yuan [13] (see also [30]).

Theorem 2.1. Let K̃p be the field of fractions of Λ̃p. Let μ be a real number and

g =
b+〈β,β〉q
c+〈γ,γ〉r ∈ K̃p, then

(3) eg 	∈ Λ̃μ
pK̃p \Rp

where Λ̃μ
p K̃p =

{
fμh | f ∈ Λ̃p, h ∈ K̃p

}
.

Remark 1. Theorem 2.1 extends [8, Theorem 2.1, part (ii)] which asserts that

eg 	∈ K̃p \ Rp, for g ∈ Λ̃p. Moreover [8, Theorem 2.1, part (iii)] shows that if fα

belongs to K̃p \ Rp for some real number α and f ∈ Λ̃p, then α is rational. This
result will be used to prove the rationality of the Einstein constant in Theorem 1.1.

Lemma 2.2 is a key ingredient in the proof of Theorem 2.1.

Lemma 2.2 ([14, Lemma 2.2]). Let V ⊂ Cκ be a connected open set. Let H1

(ξ1, . . . , ξκ), . . . , HK (ξ1, . . . , ξκ) and H (ξ1, . . . , ξκ) be holomorphic Nash algebraic
functions on V . Assume that

expH(ξ1,...,ξκ) =

K∏
α=1

(Hk (ξ1, . . . , ξκ))
μα , ξ ∈ V

for certain real numbers μ1, . . . , μK . Then H (ξ1, . . . , ξκ) is constant.

Proof of Theorem 2.1. Assume that there exists f = a + 〈α, α〉� ∈ Λ̃p and h =
d+〈δ,δ〉u
e+〈ε,ε〉v ∈ K̃p such that

(4) eg(z) = e
b+〈β(z),β(z)〉q
c+〈γ(z)),γ(z)〉r = fμ(z)h(z) = [a+ 〈α(z), α(z)〉p]μ

d+ 〈δ(z), δ(z)〉u
e+ 〈ε(z), ε(z)〉v

.

By renaming the functions involved in (4) we can write

S = {ϕ1, . . . , ϕs} =
{
α1, . . . , α|α|, β1, . . . , β|β|, . . . , ε1, . . . , ε|ε|

}
.

Let D be an open neighborhood of the origin of Cn on which each ϕj is defined.
Consider the field R of rational function on D and its field extension F = R (S) ,
namely, the smallest subfield of the field of the meromorphic functions on D, con-
taining rational functions and the elements of S. Let l be the transcendence degree
of the field extension F/R. If l = 0, then each element in S is holomorphic Nash
algebraic and hence g is forced to be constant by Lemma 2.2. Assume then that
l > 0. Without loss of generality we can assume that G = {ϕ1, . . . , ϕl} ⊂ S is a
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maximal algebraic independent subset over R. Then there exist minimal polyno-
mials Pj (z,X, Y ), X = (X1, . . . , Xl), such that

Pj (z,Φ(z), ϕj(z)) ≡ 0, ∀j = 1, . . . , s,

where Φ(z) = (ϕ1(z), . . . , ϕl(z)).
Moreover, by the definition of minimal polynomial

∂Pj (z,X, Y )

∂Y
(z,Φ(z), ϕj(z)) 	≡ 0, ∀j = 1, . . . , s.

on D. Thus, by the algebraic version of the existence and uniqueness part of
the implicit function theorem, there exist a connected open subset U ⊂ D with
p ∈ U and Nash algebraic functions ϕ̂j(z,X), defined in a neighborhood Û of
{(z,Φ(z)) | z ∈ U} ⊂ Cn × Cl, such that

ϕj(z) = ϕ̂j (z,Φ(z)) , ∀j = 1, . . . , s,

for any z ∈ U . Denoting ϕ̂(z,X) = (ϕ̂1(z,X), . . . , ϕ̂s(z,X)) we can write

(5) ϕ(z) = ϕ̂ (z,Φ(z)) = (α̂ (z,Φ(z)) , . . . , ε̂ (z,Φ(z))) ,

where ϕ = (ϕ1, . . . , ϕs) and α̂(z,X), . . . , ε̂(z,X) are vector-valued holomorphic

Nash algebraic functions on Û such that α(z) = α̂ (z,Φ(z)) , . . . , ε(z) = ε̂ (z,Φ(z)).
Consider the function

Ψ(z,X,w) :=
b+ 〈β̂(z,X), β(w)〉q
c+ 〈γ̂(z,X), γ(w)〉r

−μ log [a+ 〈α̂(z,X), α(w)〉�]−log

[
d+ 〈δ̂(z,X), δ(w)〉u
e+ 〈ε̂(z,X), ε(w)〉v

]
,

where, for α(z) = (α1(z), . . . , αm(z)) and corresponding α̂(z,X) = (α̂1(z,X), . . . ,
α̂m(z,X)) we mean

〈α̂(z,X), α(w)〉� =
�∑

j=1

α̂j(z,X)αj(w)−
|α|∑

k=�+1

α̂k(z,X)αk(w)

(and similarly with the other terms). By shrinking U if necessary we can assume

Ψ(z,X,w) is defined on Û × U . We claim that Ψ(z,X,w) vanishes identically on
this set. Since ϕj(p) = 0 for all j = 1, . . . , s and p ∈ U , it follows by (4) that
Ψ(z,X, 0) ≡ 0. Hence, in order to prove the claim, it is enough to show that
(∂wΨ)(z,X,w) ≡ 0 for all w ∈ U . Assume, by contradiction, that there exists w0 ∈
U such that (∂wΨ)(z,X,w0) 	≡ 0. Since (∂wΨ)(z,X,w0) is Nash algebraic in (z,X)
there exists a holomorphic polynomial P (z,X, t) = Ad(z,X)td + · · · + A0(z,X)
with A0(z,X) 	≡ 0 such that P (z,X, (∂wΨ)(z,X,w0)) = 0. Since, by (4) and (5)
we have Ψ(z,Φ(z), w) ≡ 0 we get (∂wΨ)(z,Φ(z), w) ≡ 0. Thus A0(z,Φ(z)) ≡ 0
which contradicts the fact that ϕ1(z), . . . , ϕl(z) are algebraic independent over R.
Hence (∂wΨ)(z,X,w0) ≡ 0 and the claim is proved.

Therefore

e
b+〈β̂(z,X),β(w)〉q
c+〈γ̂(z,X),γ(w)〉r = [a+ 〈α̂(z,X), α(w)〉�]μ

[
d+ 〈δ̂(z,X), δ(w)〉u
e+ 〈ε̂(z,X), ε(w)〉v

]
,

for every (z,X,w) ∈ Û × U . By fixing w ∈ U and applying Lemma 2.2 we deduce

that
b+〈β̂(z,X),β(w)〉q
c+〈γ̂(z,X),γ(w)〉r is constant in (z,X). Thus, by evaluating at X = Φ(z) one

obtains that
b+〈β(z),β(w)〉q
c+〈γ(z),γ(w)〉r is constant for fixed w forcing g(z) =

b+〈β(z),β(z)〉q
c+〈γ(z),γ(z)〉r to be

constant for all z. The proof of the theorem is complete. �
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3. Proof of Theorem 1.1

In the proof of Theorem 1.1 we also need the concept of diastasis function and
Bochner’s coordinates briefly recalled below. The reader is referred either to the
celebrated work of Calabi [5] or to [19] for details.

Given a complex manifold M endowed with a real analytic Kähler metric g (no-
tice that a Kähler metric induced by a complex space form is real analytic), Calabi
introduced, in a neighborhood of a point p ∈ M , a very special Kähler potential
Dg

p for the metric g, which he christened diastasis. Among all the potentials the
diastasis is characterized by the fact that in every coordinate system {z1, . . . , zn}
centered in p

Dg
p(z, z̄) =

∑
|j|,|k|≥0

ajkz
j z̄k,

with aj0 = a0j = 0 for all multi-indices j. One of the main feature of Calabi’s
diastasis function is its hereditary property: if ϕ : M → S is a Kähler immersion
from a Kähler manifolds (M, g) into a definite or indefinite complex space form
(S, gc) of constant holomorphic sectional curvature 2c, then Dg

p = ϕ∗(Dgc
ϕ(p)) for all

p ∈ M .
More generally, in the rest of the paper we say that a real analytic function

defined on a neighborhood U of a point p of a complex manifold M is of diastasis-
type if in one (and hence any) coordinate system {z1, . . . , zn} centered at p its
expansion in z and z̄ does not contains nonconstant purely holomorphic or anti-
holomorphic terms (i.e. of the form zj or z̄j with j > 0). The following simple
remarks will be used in the proof of Theorem 1.1.

Remark 2. The following facts holds true.

(a) A real-analytic function g is of diastasis-type if and only if eg is of diastasis-
type.

(b) A function f ∈ Λp (resp. Kp) belong to Λ̃p (resp. K̃p) if and only if f is of

diastasis-type, where K̃p is the field of fractions of the algebra Λ̃p defined
by (2).

In a neighborhood of p ∈ M one can find local (complex) coordinates such that

Dg
p(z, z̄) = |z|2 +

∑
|j|,|k|≥2

bjkz
j z̄k,

where Dg
p is the diastasis relative to p. These coordinates, uniquely defined up to a

unitary transformation, are called the Bochner or normal coordinates with respect
to the point p (cfr. [1, 2, 5]).

Proposition 3.1, interesting on its own sake, will be used in the proof of Theorem
1.1.

Proposition 3.1. Let (M, g) be a Kähler manifold which can be Kähler immersed
into an N-dimensional definite or indefinite complex space form (S, gc) of constant
holomorphic sectional curvature 2c. Let p ∈ M and {z1, . . . , zn} Bochner’s coor-
dinates in a neighborhood U of a point p ∈ M where the diastasis Dg

p is defined.
Then

(6) det

[
∂2Dg

p

∂za∂z̄β

]
∈ K̃p,
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KÄHLER IMMERSIONS OF KRS 4937

(7) Dg
p ∈ Λ̃p, if c = 0

and

(8) e
c
2D

g
p ∈ Λ̃p, if c 	= 0.

In the proof of the proposition we need the following result.

Lemma 3.2 ([27, Lemma 2.2]). Let M be an n-dimensional complex manifold and
p ∈ M . For any f in the Umehara algebra Λp and for any system of complex
coordinates {z1, . . . zn} around p one has:

fn+1 ∂
2 log f

∂zα∂z̄β
∈ Λp. ∀α, β = 1, . . . , n.

Proof of Proposition 3.1. Let ϕ : M → S be a Kähler immersion into (S, gc), i.e. ϕ
is holomorphic and ϕ∗gc = g. If one assumes that (S, gc) is complete and simply-
connected one has the corresponding three cases, depending on the sign of c:

- for c = 0, S = CN and g0 is the flat metric with associated Kähler form

(9) ω0 =
i

2
∂∂̄|z|2s,

where we set

|z|2s = |z1|2 + · · ·+ |zs|2 − |zs+1|2 − · · · − |zN |2, 0 ≤ s ≤ N ;

- for c > 0, S = CPN
s is the open submanifold{

[Z0, . . . , Zs, Zs+1, . . . , ZN ] ∈ CPN | |Z0|2 + · · ·+ |Zs|2 − |Zs=1|2 − · · · − |ZN |2 > 0
}

of CPN and gc is the metric with associated Kähler form ωc given in the affine

chart U0 = {[Z0, . . . , ZN ] | Z0 	= 0} with coordinates zj =
Zj

Z0
as:

(10) ωc =
i

c
∂∂̄ log(1 + |z|2s);

- for c < 0, S = CHN
s is open subset of CN given by {z ∈ CN | |z|s < 1} with

the metric gc with associated Kähler form

(11) ωc =
i

c
∂∂̄ log(1− |z|2s).

Let

ϕ|U : U → CN , z = (z1, . . . zn) �→ (ϕ1(z), . . . , ϕN (z)),

where ϕj ∈ Op and ϕj(p) = 0, j = 1, . . . , N , be the local expression of ϕ in
Bochner’s coordinates {z1, . . . , zn}.

In order to prove (6) we first consider the case c = 0. By the hereditary property
of the diastasis function and (9) we have

(12) Dg
p =

N∑
i=1

|ϕi|2s .

Thus the function det
[

∂2Dg
p

∂za∂z̄β

]
is finitely generated by holomorphic or anti-

holomorphic functions around 0. Furthermore it is real valued, since the matrix
∂2Dp

∂za∂̄zβ
is Hermitian. We conclude that det

[
∂2Dg

p

∂za∂z̄β

]
∈ Λp. It is easy to check
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that in Bochner’s coordinates the function det
[

∂2Dg
p

∂za∂z̄β

]
is of diastasis-type. Thus

det
[

∂2Dg
p

∂za∂z̄β

]
∈ Λ̃p ⊂ K̃p.

Let us now consider the case c 	= 0. Again by the hereditary property of the
diastasis and by (10) and (11) we can write

(13) Dg
p =

2

c
log

(
1 +

c

|c|

N∑
i=1

|ϕi|2s

)
.

It follows by Lemma 3.2 applied to

e
c
2D

g
p =

(
1 +

c

|c|

N∑
i=1

|ϕi|2s

)
∈ Λ̃p ⊂ Λp

that

e(n+1) c
2D

g
p det

[
∂2( c2D

g
p)

∂za∂z̄β

]
=

( c

2

)n

e(n+1) c
2D

g
p det

[
∂2Dg

p

∂za∂z̄β

]
∈ Λp,

and hence

det

[
∂2Dg

p

∂za∂z̄β

]
∈ Kp.

Also in this case it not hard to see that in Bochner’s coordinates det
[

∂2Dg
p

∂za∂z̄β

]
is of

diastasis-type and hence (6) readily follows.
Finally, the proofs of (7) and (8) follow by (12) and (13). �

Proof of Theorem 1.1. Let us start to write down equation (1) in local complex
coordinates {z1, . . . , zn} in a neighborhood U of a point p ∈ M where the diastasis
Dg

p for the metric g is defined. Since the solitonic vector field X can be assumed to
be the real part of a holomorphic vector field, we can write

X =

n∑
j=1

(
fj

∂

∂zj
+ f̄j

∂

∂z̄j

)

for some holomorphic functions fj , j = 1, . . . , n, on U .
Thus, by the definition of Lie derivative, after a straightforward computation we

can write on U

(14) LXω =
i

2
∂∂̄fX ,

where ω is the Kähler form associated to g and

(15) fX =
n∑

j=1

fj
∂Dg

p

∂zj
+ f̄j

∂Dg
p

∂z̄j
.

Notice that equation (1) is equivalent to

(16) ρω = λω + LXω,

where ρω the Ricci form of ω.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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Since, ω = i
2∂∂̄D

g
p and ρω = −i∂∂̄ log det

[
∂2Dg

p

∂za∂z̄β

]
on U , the local expression of

the KRS equation (16) is

−i∂∂̄ log det

[
∂2Dg

p

∂za∂z̄β

]
= λ

i

2
∂∂̄Dg

p +
i

2
∂∂̄fX ,

and by the ∂∂̄-Lemma one has

(17) det

[
∂2Dg

p

∂za∂z̄β

]
= e−

λ
2 D

g
p−

fX
2 +h+h̄,

for a holomorphic function h on U .
We treat the two cases c = 0 and c 	= 0 separately. If c = 0, combining (7), (12)

and (15) we get that

g1 := −λ

2
Dg

p − fX
2

+ h+ h̄ ∈ Λp.

By (6) in Proposition 3.1, det
[

∂2Dg
p

∂za∂z̄β

]
∈ K̃p and hence (17) gives eg1 ∈ K̃p. In

particular eg1 and so, by (a) of Remark 2, g1 is of diastasis-type. It follows then

by (b) of Remark 2 that g1 ∈ Λ̃p. Thus Theorem 2.1 (with μ = 0) forces g1 to be

a constant. Hence det
[

∂2Dg
p

∂za∂z̄β

]
is a constant and so g is Ricci flat.

If c 	= 0, by combining (13) and (15) one easily sees that

g2 := −fX
2

+ h+ h̄ ∈ Kp.

By (6), (8) and (17) one deduces that

(18) eg2 =
[
e

c
2D

g
p

]λ
c

det

[
∂2Dg

p

∂za∂z̄β

]
∈ Λ̃μ

pK̃p, μ =
λ

c
.

On the one hand (18) shows that eg2 and hence (by (a) of Remark 2) g2 is of

diastasis-type and so, by (b) of Remark 2, g2 ∈ K̃p. On the other hand (18)
together with Theorem 2.1 force g2 to be a constant and so fX is the real part of
a holomorphic function. Therefore, by (14) and (16) the metric g is KE. Moreover
λ
c is forced to be rational by the second part of Remark 1, completing the proof of
Theorem 1.1. �
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