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1. Introduction

This paper deals with the equation

− ∆p u = f (|x|, u) (1.1)

where ∆p denotes the p-Laplace operator ∆p u = div(|Du|p−2 Du) with p ∈ (1,+∞). The function f (r, y)
is defined for all (r, y) ∈ (0,+∞) × [0,+∞), it is positive whenever y > 0, and satisfies the following
conditions (labels correspond to [4]).

(H1) For almost every r ∈ (0,+∞), the function y 7→ f (r, y) is continuous with respect to y ∈ [0,+∞).
Furthermore, for every y ∈ [0,+∞) and r0 > 0, the function r 7→ f (r, y) belongs to L∞((0, r0)).

(H2) For a.e. r ∈ (0,+∞) the function y 7→ f (r, y)/yp−1 is strictly decreasing with respect to y ∈ (0,
+∞).
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(H3) For every bounded interval (0, r0) there exists a constant C(r0) such that f (r, y) ≤ C(r0) (yp−1 + 1)
for a.e. r ∈ (0, r0) and for all y ∈ [0,+∞).

Under assumptions (H1), (H2) and (H3), J. I. Dı́az and J. E. Saa in the fundamental paper [4] proved
uniqueness of the bounded, weak solution u ∈ W1,p

0 (Ω) to the Dirichlet problem−∆p u = f (|x|, u), u ≥ 0, u . 0 in Ω;

u(x) = 0 for x ∈ ∂Ω,
(1.2)

where Ω is a bounded, smooth, open subset of RN , N ≥ 2. To be precise, the function f in [4] is
allowed to depend on (x, u), and the assumptions stated there are less demanding because they are
tailored on the specific set Ω. In the present paper, instead, the set Ω is an unknown of the problem:
thus, conditions (H1) and (H3) above correspond to the requirement that [4, (H1) and (H3)] hold in
every bounded Ω. For the same reason we require

lim
y→0+

f (r, y)
yp−1 = +∞ and lim

y→+∞

f (r, y)
yp−1 = 0 for a.e. r ∈ (0,+∞). (1.3)

The last assumptions, together with (H1), (H2) and (H3), ensure the existence of a bounded weak
solution u ∈ W1,p

0 (Ω) of problem (1.2) by [4, Théorème 2] (see also [1]). Such a solution is in fact
positive in Ω and (if the domain is sufficiently smooth) belongs to the Hölder class C1,α(Ω) ( [4],
p. 522, last paragraph). Here, however, we start from the assumption that problem (1.6) is solvable in
the class C1(Ω), so that the boundary conditions are intended in the classical sense: this implies that Ω

is a domain of class C1 (see Lemma A.2). Concerning the regularity of f , we need two assumptions.
First we require that

f is locally uniformly Hölder continuous (1.4)

i.e., f (r, y) is uniformly Hölder continuous in every compact subset of (0,+∞) × [0,+∞). Clearly, the
first part of condition (H1) is an immediate consequence of (1.4). If the weak solution u of problem (1.2)
has a non-vanishing gradient at some point x ∈ Ω, then the operator ∆p u is non-degenerate, and if,
furthermore, x , 0, then by (1.4) u belongs to the Hölder class C2,α in a neighborhood of x (see, for
instance, [5, Theorem 15.9]). The interior smoothness of u is required by Lemma 2.2 (a boundary-point
lemma). In order to apply the lemma, we also need that for every R1 > 0 there exist δ ∈ (0,R1) and
L ∈ R such that

f (r, y1) − f (r, y2)
y1 − y2

≥ L (1.5)

for every r ∈ (R1 − δ, R1) and 0 < y1 < y2 < δ. Assuming that Ω contains the origin, and denoting by
q : (0,+∞)→ (0,+∞) a prescribed function, we consider the overdetermined problem−∆p u = f (|x|, u), u > 0 in Ω;

u(x) = 0, |Du(x)| = q(|x|) for x ∈ ∂Ω.
(1.6)

Contrary to what one may expect, counterexamples show that problem (1.6) may well be solvable even
though the domain Ω is not radially symmetric: see, for instance, [6, pp. 488–489] and [8, Section 5].
The purpose of the present paper is to find conditions on f , q such that (1.6) is solvable only if Ω is
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a ball centered at the origin. More precisely, we remove the restrictions that f (r, y) is monotone non-
increasing with respect to r or y, which were imposed in [6] and [7], respectively. In general, given f
and q, we introduce the function F(r, ρ, λ) by letting

F(r, ρ, λ) =
(q(r))p−1

r
f
( ρ

r
,

λ

r q(r)

)
for r, ρ, λ > 0, and we assume that for every ρ, λ

F(r, ρ, λ) is monotone non-decreasing with respect to r. (1.7)

In Section 4 we demonstrate some special cases when condition (1.7) holds true. Our main result is
the following:

Theorem 1.1. Let Ω be a bounded, connected open set in RN , N ≥ 2, containing the origin. Suppose
that the functions f and q are such that (H1), (H2) and (H3) hold, together with (1.3), (1.4), (1.5) and
(1.7). If there exists a weak solution u ∈ C1(Ω) of the overdetermined problem (1.6), then Ω is a ball
centered at the origin.

Similarly to [6–8], the result is achieved by means of a comparison with two radial functions.
However, the supersolution is chosen following an idea in [9]: see Section 5 for the proof of the
theorem. The result is new even in the case when p = 2, i.e., ∆ p = ∆: an example is given by the
sublinear Hénon problem −∆u = |x|Mr uMy , u > 0 in Ω;

u = 0, |Du(x)| = |x|1+µ on ∂Ω;
(1.8)

with constants µ,Mr,My ≥ 0 satisfying

µ − Mr

2 + µ
≥ My. (1.9)

See Theorem 4.3 for details. A further advancement lies in the fact that the strict monotonicity of
F(r, ρ, λ) in r is not required. For instance, we have:

Corollary 1.2. Let Ω be a bounded, connected open set in RN , N ≥ 2, containing the origin. Suppose
that (H1) and (H3) hold, together with (1.3), (1.4) and (1.5). Suppose, further, that f (r, y) is non-
increasing in r > 0, and there exists a constant ε0 ∈ (0, p − 1] such that for every r ∈ (0,+∞) the
function y 7→ f (r, y)/yp−1−ε0 is monotone non-increasing with respect to y ∈ (0,+∞). Let q be such that

the ratio
q(r)

r
p
ε0
−1

is non-decreasing in r. (1.10)

If there exists a weak solution u ∈ C1(Ω) of the overdetermined problem (1.6), then Ω is a ball centered
at the origin.

Corollary 1.2 improves [6, Theorem 1.2] because the monotonicity in (1.10) is intended in the
broad sense. To achieve this, we develop in the next section a convenient boundary-point lemma. The
lemma yields a sharper comparison between the solution u and the radial solution used in the proof of
Theorem 1.1, which are regular enough by virtue of assumption (1.4).
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2. Comparison principle and Hopf’s lemma

Roughly speaking, the (weak) comparison principle asserts that if a subsolution u and a
supersolution v of (1.1) satisfy u ≤ v on ∂Ω, then the same inequality holds a.e. in Ω. The strong
comparison principle, instead, under the same assumption asserts that either u < v a.e. in Ω, or u and v
are the same function. Note that the term strong comparison principle is sometimes used to refer to a
class of theorems ensuring that u < v in Ω provided that the weaker inequality u ≤ v holds in the
whole domain Ω (and u . v): see for instance [3, Theorem 1.4] and the results in [16, 17].

Due to the nonlinearity of the p-Laplacian, the difference u − v is not a subsolution, in general
(unless p = 2), and therefore the comparison principle, far from being a straightforward consequence
of the maximum principle, is a self-standing and interesting task.

Several comparison principles for the p-Laplacian are found in the literature: for instance, the case
when f vanishes identically is considered in [10, 11]. For f = f (x) see [12]. For f depending on
(x, y) and monotone in y let us mention [2, Proposition 2.3 (b)], as well as [15, Proposition 2.1], where
f (x, y) is required to be non-increasing in y. The case when f (x, y) = a(x) yp−1 is considered in [8,
Theorem 7.1]. More general nonlinearities (still non-decreasing in y) are admitted in [2, Theorem 2.1
and Proposition 2.3 (a)] provided that u = v = 0 on the boundary.

We make use of a comparison principle that holds regardless of the monotonicity of f in y, and does
not require that u = v = 0 on ∂Ω.

Theorem 2.1 (Comparison principle). Let Ω be an open set in RN , N ≥ 2, possibly non-smooth and
unbounded. Let u, v ∈ W1,p(Ω) be a weak subsolution and a weak supersolution, respectively, of
equation (1.1) in Ω, where f satisfies (H1), (H2) and (H3). Assume that u, v > 0 a.e. in Ω, the ratio u/v
belongs to L∞(Ω), and (u − v)+ ∈ W1,p

0 (Ω). Then u ≤ v a.e. in Ω.

Proof. The claim is an application of [6, Theorem 1.1 (2)], which holds for f = f (x, y), to the special
case when f = f (|x|, y). �

Note that if Ω is bounded, and if u, v are smooth up to the boundary, positive in Ω, satisfy u ≤ v
on ∂Ω, and have non-vanishing gradients Du,Dv on ∂Ω, then the ratio u/v is bounded as required in
Theorem 2.1: see Lemma A.1 for details. In order to prove Theorem 1.1 we also need a boundary-point
lemma involving the outward derivatives of a smooth subsolution u and a smooth supersolution v with
non-vanishing gradients:

Lemma 2.2 (Boundary-point lemma). Let G be a connected, bounded open set in RN , N ≥ 2, satisfying
the interior sphere condition at z1 ∈ ∂G, i.e., there exists a ball B ⊂ G such that z1 ∈ ∂B. Let
u, v ∈ C2(G) ∩ C1(G) be such that u ≤ v in G and Du(x),Dv(x) , 0 in G, as well as u(z1) = v(z1).
Assume

∆p v + f (x, v(x)) ≤ ∆p u + f (x, u(x)) pointwise in G, (2.1)

where f : G × (a, b) → R satisfies a Lipschitz condition in y from below, i.e. there exists a constant L
such that

f (x, y1) − f (x, y2)
y1 − y2

≥ L (2.2)
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for all x ∈ G and a < y1 < y2 < b. Here (a, b) is an interval such that u(x), u(y) ∈ (a, b) for all x ∈ G.
Suppose, further, that either u or v belongs to the class C2(G). Then either u = v in G or

∂u
∂ν

(z1) >
∂v
∂ν

(z1),

where ν denotes the outward derivative to the ball B at z1.

Proof. Following [5, Theorem 10.1], we derive an inequality satisfied by the difference w = u − v ∈
C2(G) ∩ C1(G). However, in the present case assumption (iii) of [5] (monotonicity of f with respect
to y) is not in effect: this difficulty is overcome because w ≤ 0 in the whole of G by assumption. To be
more specific, for ξ = (ξ1, . . . , ξN) ∈ RN \ {0} and for i, j = 1, . . . ,N define

ai j(ξ) = |ξ|p−2 δi j + (p − 2) |ξ|p−4 ξi ξ j,

where δi j is Kronecker’s delta, and notice that ai j(ξ) is continuously differentiable in the punctured
space RN \ {0}. Since u, v ∈ C2(G) and Du,Dv , 0, the p-Laplacian may be rewritten as ∆p u =

ai j(Du(x)) ui j(x), where ui j denotes the second derivative of u with respect to xi x j and the summation
over repeated indices is understood. Similarly, we may write ∆p v = ai j(Dv(x)) vi j(x), and by (2.1) we
obtain

ai j(Dv(x)) wi j(x) +
(
ahk(Du(x)) − ahk(Dv(x))

)
uhk(x)

+ f (x, u(x)) − f (x, v(x)) ≥ 0,

where the summation over i, j and h, k = 1, . . . ,N is understood. Letting wi = ∂w/∂xi, we have
(ui(x) − vi(x)) wi(x) = |Du(x) − Dv(x)|2, and therefore the inequality above may be rewritten as

ai j(Dv(x)) wi j(x) + bi(x) wi(x) + c(x) w(x) ≥ 0 in G, (2.3)

where the coefficients bi and c are defined as follows:

bi(x) =


ahk(Du(x)) − ahk(Dv(x))
|Du(x) − Dv(x)|

ui(x) − vi(x)
|Du(x) − Dv(x)|

uhk(x), Du(x) , Dv(x);

0, Du(x) = Dv(x),

c(x) =


f (x, u(x)) − f (x, v(x))

u(x) − v(x)
, u(x) , v(x);

0, u(x) = v(x).

The coefficients ai j(Dv(x)) in (2.3) are bounded in G because Dv(x) is continuous in G by assumption,
and keeps away from zero. Assuming that u ∈ C2(G), let us check that the coefficients bi are also
bounded in G. Since the derivatives wi = ui − vi satisfy |wi(x)| ≤ |Dw(x)|, the ratio

ui(x) − vi(x)
|Du(x) − Dv(x)|
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is clearly bounded. Hence suppose, contrary to the claim, that there exists a sequence of points xn ∈ G
converging to some z1 ∈ G and such that Du(xn) , Dv(xn) for every n ≥ 1 and

lim
n→+∞

|ahk(Du(xn)) − ahk(Dv(xn))|
|Du(xn) − Dv(xn)|

= +∞. (2.4)

Since Du(x),Dv(x) are bounded in G and keep away from zero, the numerator keeps bounded, and
therefore we must have Du(z1) = Dv(z1) = ξ0 , 0. Letting R = 1

2 |ξ0|, we have Du(xn),Dv(xn) ∈ BR(ξ0)
for n large, and therefore the whole segment joining Du(xn) and Dv(xn) is included in BR(ξ0): hence it
does not intersect the origin. We note in passing that the last assertion does not follow from the only
fact that Du(x),Dv(x) keep far from zero (think to the case when Du = −Dv). Letting

Mhk = max
ξ∈BR(ξ0)

|Dahk(ξ)|,

by the mean value theorem we have

|ahk(Du(xn)) − ahk(Dv(xn))| ≤ Mhk |Du(xn) − Dv(xn)|,

contradicting (2.4). Thus, in order to conclude that the coefficients bi(x) are bounded in G, it suffices
to recall that uhk(x) is continuous in G by assumption. In the case when v ∈ C2(G), instead, a similar
argument leads to the linear inequality

ai j(Du(x)) wi j(x) + b̃i(x) wi(x) + c(x) w(x) ≥ 0 in G,

with bounded coefficients b̃i. In both cases, the boundedness of c(x) from below in G follows
from (2.2). The sign of c(x) is not prescribed by assumption. However, since w(x) ≤ 0, we have
−c−(x) w(x) ≥ c(x) w(x), where −c−(x) = min{ c(x), 0 } ≤ 0. Hence, from (2.3) we deduce

ai j(Dv(x)) wi j(x) + bi(x) wi(x) − c−(x) w(x) ≥ 0 in G

and the conclusion follows from the Hopf boundary-point lemma: see, for instance, [14, Corollary
2.8.5] (the Hopf lemma is also found in [13, Theorem 8, p. 67], but the assumptions on the boundedness
of the coefficients need to be recovered from Theorem 6 and the subsequent remarks). �

3. Radial solutions

In the following lemma we summarize the properties of the radial solutions of problem (1.2) that
are needed in the proof of Theorem 1.1.

Lemma 3.1. Let Ω = BR(0) for some R > 0, and let f satisfy (H1), (H2), (H3), (1.3) and (1.4). Then
the unique solution u = uR of problem (1.2) possesses the following properties:

1) uR is radially symmetric;
2) for every ε ∈ (0,R) there exists α ∈ (0, 1) such that uR belongs to the Hölder class C1,α(BR(0)

)
∩

C2,α(BR(0) \ Bε(0)
)
;

3) DuR , 0 on ∂BR(0).
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Proof. As mentioned in the Introduction, uniqueness follows from (H1), (H2) and (H3). Using (1.3),
we also have the existence of a (positive) weak solution u = uR ∈ C1,α(BR(0)) for each R > 0. Since
problem (1.2) is invariant under rotations about the origin, uniqueness implies that uR is a radial
function (Claim 1), and we may write uR(x) = vR(|x|) for a convenient function vR(r). Using the
divergence theorem in the ball Br(0) for any r ∈ (0,R], we obtain

− |v′R(r)|p−2 v′R(r) =

∫ r

0
f (ρ, vR(ρ)) dρ, (3.1)

which immediately implies the last claim: in fact, it turns out that DuR(x) = 0 if and only if x = 0.
Claim 2 follows from (1.4) and (3.1). �

4. Sufficient conditions

Before proving Theorem 1.1 in the next section, we show some special cases satisfying (1.7). In
order to compare Theorem 1.1 with Theorem 1.2 of [6], we prove

Proposition 4.1. Assume that f (r, y) is non-negative and non-increasing in r > 0. Suppose, further,
that there exists ε0 ∈ (0, p − 1] such that (1.10) holds, and the ratio f (r, y)/yp−1−ε0 is non-increasing
in y. Then (1.7) is satisfied.

Proof. Fix ρ, λ > 0 and denote by ζ(r) the function ζ(r) = q(r) r1−p/ε0 , which is non-decreasing
by (1.10). Since r q(r) = ζ(r) rp/ε0 , the variables t = ρ/r and y = λ/(r q(r)) decrease as r increases.
Keeping this in mind, we write

f
( ρ

r
,

λ

r q(r)

)
=

λp−1−ε0

(r q(r))p−1−ε0

1
yp−1−ε0

f (t, y)

and we observe that (q(r))p−1/r = (ζ(r))ε0 (r q(r))p−1−ε0 . Hence

(q(r))p−1

r
f
( ρ

r
,

λ

r q(r)

)
= λp−1−ε0 (ζ(r))ε0 f (t, y)/yp−1−ε0

and (1.7) follows. �

Now let us take [7, Theorem 1.1] into consideration. To this purpose we consider f (r, y) non-
negative and non-increasing in y > 0, and we assume that there exists µ ∈ [−p,+∞) such that both

(q(r))p−1

r1+µ
and rµ f

( 1
r
, y

)
are non-decreasing with respect to r > 0. (4.1)

Note that (4.1) follows from (1.4) and (1.5) in [7]: more precisely, letting µ = −1− (p−1)σ, condition
(1.4) in [7] is equivalent to the strict monotonicity of (q(r))p−1/r1+µ. Note, further, that if (H1) is
in effect, then µ must belong to the interval [0,+∞) in order that the second expression in (4.1) is
non-trivial and non-decreasing in r: indeed, if we take µ < 0 and let r → +∞, then f (1/r, y) keeps
bounded by (H1) and therefore rµ f (1/r, y)→ 0. This and the monotonicity imply that the non-negative
function f must vanish identically, but then problem (1.6) is unsolvable. Thus, the only case compatible
with (H1) is when µ ≥ 0, which corresponds to σ ≤ −1/(p − 1): this was not mentioned in [7].
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Proposition 4.2. If f (r, y) is non-negative and non-increasing in y > 0, and if q(r) and f (r, y)
satisfy (4.1) for some µ ≥ −p, then condition (1.7) holds true.

Proof. Denoting by ψ(r) the monotone non-decreasing function given by ψ(r) = (q(r))p−1/r1+µ, we may
write

(q(r))p−1

r
= ψ(r) rµ. (4.2)

Hence, for every ρ > 0 we have

(q(r))p−1

r
f
( ρ

r
, y

)
= ψ(r) rµ f

( ρ
r
, y

)
= ψ(r) ρµ sµ f

( 1
s
, y

)
,

where s = r/ρ. Since the right-hand side is non-decreasing by (4.1), we deduce that

(q(r))p−1

r
f
( ρ

r
, y

)
is non-decreasing in r > 0. (4.3)

To conclude the proof, we rewrite (4.2) as (r q(r))p−1 = ψ(r) rµ+p, which implies that r q(r) is non-
decreasing (because µ + p ≥ 0): recalling that f (r, y) is non-increasing in y, this and (4.3) imply (1.7).

�

When the functions q(r) and f (r, y) are differentiable, a sufficient condition in order that (1.7) holds
is given by the next theorem, which is applicable to the example in (1.8) and (1.9). Before proceeding
further, recall that for every M ∈ R and for every positive, differentiable function g(r) the condition
(g(r)/rM)′ ≤ 0 for r > 0 is equivalent to

r g′(r)
g(r)

≤ M.

We will use several expressions like that in the sequel.

Theorem 4.3. Let q(r) be a positive, differentiable function of r > 0 and define φ(r) = (q(r))p−1/r.
Suppose there exists a constant µ such that

inf
r>0

r φ′(r)
φ(r)

≥ µ ∈ (−p,+∞). (4.4)

Furthermore, let f (r, y) be positive and differentiable for every r, y > 0, and denote fr = ∂ f /∂r and
fy = ∂ f /∂y, for shortness. Suppose there exist constants Mr,My such that

sup
r,y>0

r fr(r, y)
f (r, y)

≤ Mr ∈ (−p,+∞), (4.5)

sup
r,y>0

y fy(r, y)
f (r, y)

≤ My ∈ (−∞,+∞). (4.6)

If
µ − Mr

p + µ
≥

My

p − 1
(4.7)

then (1.7) holds true.

Mathematics in Engineering Volume 4, Issue 3, 1–14.



9

Proof. Let us check that
d
dr

{
φ(r) f

( ρ
r
,

λ

r q(r)

)}
≥ 0

for every ρ, λ > 0. Letting t = ρ/r and y = λ/(r q(r)), and since f is differentiable, the inequality above
may be rewritten as

r φ′(r)
φ(r)

≥
t fr(t, y)
f (t, y)

+
y fy(t, y)

f (t, y)

(
1 +

r q′(r)
q(r)

)
. (4.8)

Using the identity

1 +
r φ′(r)
φ(r)

= (p − 1)
r q′(r)
q(r)

(4.9)

together with assumption (4.4), we see

1 +
r q′(r)
q(r)

=
1

p − 1

(
p +

r φ′(r)
φ(r)

)
> 0.

Hence, in view of assumptions (4.5) and (4.6), it is enough to ensure

r φ′(r)
φ(r)

≥ Mr +
My

p − 1

(
p +

r φ′(r)
φ(r)

)
in order that (4.8) holds. Of course, the last inequality is equivalent to

r φ′(r)
φ(r) − Mr

p +
r φ′(r)
φ(r)

≥
My

p − 1
.

To complete the proof, observe that the rational function (x − Mr)/(p + x) is strictly increasing in the
variable x > −p (because Mr + p > 0), hence assumption (4.7) implies the claim. �

Remark 4.4. By virtue of (4.9), we may define ω = (1 + µ)/(p − 1) and rewrite assumptions (4.4)
and (4.7), respectively, as

inf
r>0

r q′(r)
q(r)

≥ ω ∈ (−1,+∞),

(p − 1)ω − 1 − Mr

ω + 1
≥ My.

Remark 4.5. Assumption (H1) implies Mr,My ≥ 0. Indeed, if Mr < 0 then the ratio ϑ(r, y) =

f (r, y)/rMr is strictly decreasing in r, and therefore

lim
r→0+

f (r, y) = lim
r→0+

rMr ϑ(r, y) = +∞,

which is in contrast with (H1). A similar argument shows that My ≥ 0. Assumption (H2) immediately
implies My ≤ p − 1. Finally, if Mr,My ≥ 0 and (4.7) is in effect, then obviously µ ≥ 0.

Example 4.6. Theorem 4.3 is applicable, for instance, to the case when p = 2, q(r) = r1+µ, and
f (r, y) = rMr yMy , with constants µ,Mr,My ≥ 0 satisfying (1.9). In this case, the assumptions in [6] are
not satisfied (when Mr > 0), nor hold the assumptions in [7] (if My > 0).
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5. Proofs of the main results

Proof of Theorem 1.1. Part I. Assume that there exists a weak solution u ∈ C1(Ω) of the overdetermined
problem (1.6). Then Ω is a domain of class C1 by Lemma A.2. Define

R1 = min
x∈∂Ω
|x|, R2 = max

x∈∂Ω
|x|,

and let u1 be the positive solution of problem (1.2) in the ball B1 = BR1(0). Since u ≥ 0 in Ω, we have
0 = u1 ≤ u on ∂B1. In order to apply the comparison principle (Theorem 2.1) in the ball B1 we need
to check that u1/u ∈ L∞(B1): this follows from Lemma A.1 because u vanishes at a boundary point
z1 ∈ ∂B1 if and only if z1 ∈ ∂Ω: but then |Du(z1)| = q(|z1|) > 0, hence the assumptions of the lemma
are satisfied. By the comparison principle we have u1 ≤ u in B1, and therefore for each z1 ∈ ∂B1 ∩ ∂Ω

we may write
|Du1(z1)| ≤ |Du(z1)|. (5.1)

Part II. We claim that the equality holds in (5.1) if and only if Ω = B1. To prove this, suppose that
|Du1(z1)| = |Du(z1)| > 0 at some z1 ∈ ∂B1 ∩ ∂Ω. By continuity, there exists ε ∈ (0,R1) such that if we
define G = B1∩Bε(z1) then we have Du1,Du , 0 in G. By (1.5), and by reducing ε if necessary, we may
assume that for every x ∈ G the pairs (|x|, u1(x)) and (|x|, u(x)) belong to the set (R1−δ, R1)×(0, δ) where
f satisfies a Lipschitz condition w.r.t. y from below. Hence by the boundary-point lemma (Lemma 2.2)
we have u1 = u in G, which implies u = 0 on G ∩ ∂B1. This shows that the set of all z ∈ ∂B1 such that
u(z) = 0 is a relatively open subset of ∂B1. Since such a set is obviously closed, it follows that u = 0
on ∂B1, hence ∂B1 ⊂ ∂Ω. Finally, since Ω is connected, we must have Ω = B1. Thus, the equality
holds in (5.1) if and only if Ω = B1. To complete the proof of the theorem, it is enough to verify that
|Du1(z1)| = |Du(z1)|.
Part III. Let B2 = BR2(0), for shortness, and define

a =
R2 q(R2)
R1 q(R1)

.

With such a value of the parameter a, the function v : B2 → R given by v(x) = a u1(R1 x/R2) satisfies

|Dv|∂B2

q(R2)
=
|Du1|∂B1

q(R1)
≤ 1, (5.2)

where the last inequality is a consequence of (5.1). Let us check that v is a supersolution of (1.1). By
a straightforward computation we obtain

−∆p v(x) = −
( q(R2)

q(R2)

)p−1 R1

R2
∆p u1(R1 x/R2)

=
( q(R2)

q(R2)

)p−1 R1

R2
f
( ρ

R2
,

λ

R2 q(R2)

)
,

where we have put ρ = R1 x and λ = R1 q(R1) v(x). Now, using assumption (1.7), it follows that
−∆p v(x) ≥ f (|x|, v(x)), hence v is a supersolution of (1.1), as claimed.
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Conclusion. Since v ≥ 0 in B2 ⊃ ∂Ω, and u = 0 on ∂Ω, using Theorem 2.1 we find u ≤ v in Ω.
Therefore at each z2 ∈ ∂B2 ∩ ∂Ω we have |Du(z2)| ≤ |Dv(z2)|, hence

1 ≤
|Dv|∂B2

q(R2)
.

By comparing the last inequality with (5.2) we see that |Du1|∂B1 = q(R1), hence the equality holds
in (5.1), and the theorem follows. �

Proof of Corollary 1.2. To prove the corollary it suffices to observe that its assumptions imply (1.7)
by virtue of Proposition 4.1. Note that assumption (H2), although not mentioned in the statement, is
silently in effect as a consequence of the monotonicity of the ratio f (r, y)/yp−1−ε0 . �
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A. Appendix

In order to apply Theorem 2.1 (comparison principle) we need to know that u/v ∈ L∞(Ω). It was
observed in [4, p. 522, last two lines] that the ratio u/v is bounded in a bounded domain Ω in the case
when u and v are positive in Ω, vanish along the boundary, and have a positive inward derivative ∂u/∂ν
on ∂Ω (which is equivalent to having a non-vanishing gradient there).

The assumption u = v = 0 on ∂Ω can be turned into 0 ≤ u ≤ v on ∂Ω and the conclusion continues
to hold: this is used in the proof of Theorem 1.1, and it was also used in [6] (see the three lines
following (17) on p. 405). Let us give a precise statement and proof.

Recall that a domain Ω ⊂ RN with nonempty boundary is of class C1 when ∂Ω is locally the graph of
a continuously differentiable function. Following [5, p. 10], we write u ∈ C1(Ω) if u ∈ C1(Ω) ∩ C0(Ω)
and each derivative ui : Ω → R is the restriction to Ω of a continuous function (still denoted by ui)
defined on Ω. In such a case, the gradient Du = (u1, . . . , uN) is defined in the closure Ω. In this section
we represent x ∈ RN as x = (x′, xN), where x′ = (x1, . . . , xN−1) ∈ RN−1, and we denote by eN the
N-th element of the canonical base of RN . Furthermore we let Dx′ u = (u1, . . . , uN−1). By a cylindrical
neighborhood of the origin we mean the setU r = { (x′, xN) : |x′|, |xN | < r } for some r > 0.

Lemma A.1. Let Ω be a bounded domain of class C1 in RN , N ≥ 2, and let u, v ∈ C1(Ω) be positive
in Ω and satisfy 0 ≤ u ≤ v on ∂Ω. Suppose that for any boundary point z ∈ ∂Ω where v(z) = 0, the
gradient Dv(z) does not vanish. Then the ratio u/v is bounded in Ω.

Proof. Suppose, contrary to the claim, that there exists a sequence of points xk ∈ Ω such that
u(xk)/v(xk) → +∞. Without loss of generality we may assume that xk converges to z ∈ Ω. Since the
ratio u(x)/v(x) is continuous (and finite) in Ω, we must have z ∈ ∂Ω, and u(z) = v(z) = 0. Since Ω is a
C1-domain, after a convenient translation and rotation of the coordinate frame we may further assume
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that z = 0, and there exists a cylindrical neighborhood U r of the origin such that the intersection
U r ∩ ∂Ω is the graph of a continuously differentiable function xN = f (x′) satisfying Dx′ f (0) = 0. We
may also assume that the intersectionUr ∩ Ω lies above the graph of f , i.e., if (x′, xN) ∈ Ur ∩ Ω then
xN > f (x). Since v(0) = 0 ≤ v(x) for all x ∈ Ω, the directional derivative vξ(0) = ξ · Dv(0) satisfies
vξ(0) ≥ 0 for every direction ξ such that ξ · eN ≥ 0: this implies Dx′ v(0) = 0 and therefore we may let
λ0 = vN(0) > 0 because Dv(0) , 0. By shrinking the neighborhood U r if necessary, we may achieve
that vN(x) > 1

2 λ0 in U r ∩ Ω. Furthermore we define C = sup
Ω

uN(x) < +∞. Finally, recall that u ≤ v

on ∂Ω. By the fundamental theorem of calculus, for every x = (x′, xN) ∈ Ur ∩Ω we have

u(x)
v(x)

≤
u(x′, f (x′)) + C (xN − f (x′))

v(x′, f (x′)) + 1
2 λ0 (xN − f (x′))

≤
v(x′, f (x′)) + C (xN − f (x′))

v(x′, f (x′)) + 1
2 λ0 (xN − f (x′))

=
ρ(x) + C
ρ(x) + 1

2 λ0
≤ max

{
1,

2C
λ0

}
where

ρ(x) =
v(x′, f (x′))
xN − f (x′)

≥ 0.

This contradicts the assumption that u/v is unbounded, and the lemma follows. �

The domain Ω is required to belong to the smoothness class C1 in order that the preceding lemma
holds: let us prove that the regularity of the domain, which is not mentioned explicitly in the statement
of Theorem 1.1, follows from the other assumptions.

Lemma A.2. Consider an open, proper subset Ω ⊂ RN , N ≥ 2. If there exists u ∈ C1(Ω), u > 0 in Ω,
such that u(z) = 0 and Du(z) , 0 for every z ∈ ∂Ω, then Ω is a domain of class C1. Furthermore Du(z)
has the direction of the inward normal to ∂Ω at z.

Proof. Part I: Definitions. Let us fix a boundary point z0 ∈ ∂Ω. Without loss of generality, we may
assume that z0 = 0 and Du(0) = λ0 eN with some λ0 > 0. By the continuity of Du at 0, for every positive
ε < λ0/2 there exists a cylindrical neighborhoodU r of the origin, with a convenient r = r(ε) > 0, such
that |Dx′ u|, |uN−λ0| < ε inU r∩Ω. In particular, uN > λ0−ε > 0 inU r∩Ω. Let ϑ be the unique solution
of the equation tanϑ = (λ0−ε)/ε in the interval (π4 ,

π
2 ). For every x ∈ RN we define the upper cone with

vertex in x and half-opening ϑ by V+
ϑ (x) = { (x′, xN) : |x′ − x′| < (xN − xN) tanϑ }. The corresponding

lower cone is V−ϑ (x) = { (x′, xN) : |x′−x′| < (xN−xN) tanϑ }. Clearly, x ∈ V+
ϑ (x) if and only if x ∈ V−ϑ (x).

Since ϑ > π
4 , for every x′ ∈ RN−1 satisfying |x′| < r the vertical line `x′ = { (x′, t) : t ∈ R } intersects

bothUr ∩ V+
ϑ (0) andUr ∩ V−ϑ (0), hence

`x′ ∩Ur ∩ V+
ϑ (0) , ∅, `x′ ∩Ur ∩ V−ϑ (0) , ∅. (A.1)

Part II. Take any point x = (x′, xN) ∈ U r ∩ Ω. We claim that U r ∩ V+
ϑ (x) ⊂ Ω. Indeed, since the

intersection U r ∩ Ω is an open, nonempty subset of RN , then the segment S described by (x′, xN),
when x′ is kept fixed and xN > xN is let vary, is included in U r ∩ Ω provided that xN − xN is small.
Furthermore the value of u(x′, xN) is easily estimated by means of the fundamental theorem of calculus,
and for xN > xN we may write

u(x′, xN) = u(x′, xN) +

∫ xN

xN

uN(x′, t) dt
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> u(x′, xN) + (λ0 − ε) (xN − xN).

Thus, u(x′, xN) stays positive along S and increases with xN , and therefore the segment S can be
extended by allowing xN to range in the whole interval (xN , r) without hitting the boundary ∂Ω, where
u vanishes.

Now, integrating along the orthogonal directions to eN , we find that U r ∩ V+
ϑ (x) ⊂ Ω, as claimed,

and for every x = (x′, xN) ∈ U r ∩ V+
ϑ (x) we can estimate u(x) in terms of u(x) as follows:

u(x) − u(x) = u(x) − u(x′, xN) + u(x′, xN) − u(x)

=

∫ 1

0
(x′ − x′) · Dx′ u

(
tx′ + (1 − t) x′

)
dt +

∫ xN

xN

uN(x′, t) dt

> −ε |x′ − x′| + (λ0 − ε) (xN − xN) > 0.

Part III. Observe that for every z ∈ Ur ∩ ∂Ω we haveU r ∩ V+
ϑ (z) ⊂ Ω because there exists a sequence

of points xk ∈ Ur ∩ Ω converging to z, and we may apply Part II to each xk. Furthermore, no point
x ∈ U r ∩ V−ϑ (z) can be in Ω, for otherwise we would have z ∈ U r ∩ V+

ϑ (x) ⊂ Ω, a contradiction.
Choosing z = 0, and by (A.1), we see that for every x′ satisfying |x′| < r there exists xN ∈ (−r, r) such
that the point (x′, xN) belongs toUr ∩ ∂Ω. Choosing z = (x′, xN) we see that the value of xN is unique:
in other terms, the intersection U r ∩ ∂Ω is the graph of a function xN = f (x′). The argument above
also shows that f satisfies a Lipschitz condition with constant L(ε) = cotϑ = ε/(λ0 − ε). Since ε is
arbitrary (and Ur shrinks to the origin, in general, when ε → 0), it follows that f (x′) is differentiable
at x′ = 0, and we have Dx′ f (0) = 0. This implies that ∂Ω has an inward normal ν at 0, which has the
same direction as Du(0). Since the choice of the boundary point z0 ∈ ∂Ω is arbitrary, f (x′) must be
differentiable at every x′ such that |x′| < r = r(ε), and the gradient Dx′ f (x′) satisfies |Dx′ f (x′)| ≤ L(ε).
Since L(ε)→ 0 when ε→ 0, we have that Dx′ f (x′) is continuous at x′ = 0, and the lemma follows. �
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