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Highlights

• A macroscopic model for enzymatic porous electrode operating in DET mode is derived

• The upscaled model is validated with pore-scale direct numerical simulations

• Macroscopic model predictions are validated by comparisons with experimental data
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Abstract
This work is dedicated to a multi-scale modelling of coupled diffusion and reaction in

a porous micro-electrode operating in the Direct Electron Transfer mode. The pore-scale
physico-electrochemical unsteady model is developed considering the oxygen reduction, cat-
alyzed by an enzyme coating the pores of the electrode, coupled to the diffusion of oxygen
and mass balance of enzymes. This model is formally upscaled to obtain an original closed
unsteady macroscopic model operating at the electrode scale, together with the associated
closure providing the effective diffusivity tensor. A validation of this model is carried out from
a comparison with the solution of the initial 3D pore-scale governing equations considering
the bilirubin oxydase as the catalyst. The relevance and accuracy of the macroscale model
are proved allowing a considerable simulation speedup. It is further employed to successfully
predict experimental voltammetry results obtained with porous gold electrodes functionnal-
ized with a bilirubin oxidase mutant (BOD S362C). This model represents a breakthrough
by providing an operational simple way of understanding and further optimizing porous
electrodes functioning in DET mode.

Key words: Porous electrode, Direct Electron Transfer, Bilirubin Oxidase, Diffusion
reaction, Volume averaging method

1. Introduction1

Over the past two decades, porous electrodes, featuring a high specific surface area (i.e. a2

large internal solid-fluid interface per unit volume), have been efficiently developed to make3

miniaturized electro-devices such as bio-batteries, bio-actuators and bio-sensors [1–4]. Such4

electrodes can provide electrical current several orders of magnitude larger than simple flat5

electrodes of the same size [5, 6]. A classical way to synthesize porous electrodes is to form an6

ordered assembly of beads, for example by employing the Langmuir-Blodgett technique [7]7

and use it as a template as proposed by Bartlett et al. [8]. Electrodeposition of a conducting8

material is then performed through the layered bead assembly, followed by beads dissolution,9

yielding an inverse opale structure constitutive of the electrode [9]. Due to its versatility,10

this technique may be employed to obtain porous microstructures with tunable porosity and11

controllable architecture [2].12

For applications in biofuel cells [10–17], redox reactions can be catalyzed by enzymes13

which, in order to enhance their lifetime and stability, may be immobilized by entrapping14
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the proteins [18, 19]. This can be achieved using different techniques, like entrapment in15

a conducting polymer matrix occupying a more or less significant fraction of the pores, or16

adsorption at the pore surfaces [20–22], eventually combined with nano-structuration of the17

surfaces [23, 24]. In the former case, a mediator is employed to shuttle the electrons to and18

from the electrode’s internal surfaces, giving rise to a so-called Mediated Electron Transfer19

(MET) process. In contrast, in the latter case, when enzymes are adsorbed on the reactive20

surfaces so that their active centers are positioned within the electron tunnelling distance21

of the current collector surfaces, the process is referred to as a Direct Electron Transfer22

(DET). In that case, no mediator is involved. A typical configuration for such a biofuel23

cell is such that the two electrodes are modified by bioelectrocatalysts. For example at the24

cathode, the multicopper oxidases (MCOs) such as bilirubin oxidase (BOD) are adsorbed25

on the electrode surface. They consist of a type 1 copper (T1) site which directly accepts26

electrons from the electrode, and type 2 and type 3 copper, so-called trinuclear center (TNC27

site), receiving electrons from T1. The oxygen is then reduced to water at TNC sites [15, 25].28

The process will be further detailed in section 2.1. In this example, chemical energy is drawn29

from the oxygen-glucose couple, which naturally exists in physiological fluids for instance,30

and is converted into electrical energy resulting from oxygen reduction at the cathode and31

glucose oxidation at the anode.32

Modelling of transport and reactions in porous electrodes has often been treated with33

empirical macroscopic models even in the case without enzymes (see for instance [26–30]).34

As a consequence, all the features of the physico-electrochemical mechanisms (coupling dif-35

fusion and reaction in the unsteady regime for example) and of the geometrical structure, in36

particular for porous electrodes, are not elucidated. More formal approaches were proposed37

[31–33] without however any explicit closure to relate the pore-scale microstructure to the38

effective macroscale parameters, in particular, the effective diffusivity. In a recent work, a39

thorough multiscale model for direct oxygen reduction reaction in a porous electrode was40

developed by upscaling the pore-scale model and formally obtain a closed macroscale de-41

scription using the volume averaging method [34]. It was employed to determine the optimal42

macroscopic thickness of a porous electrode [35, 36] and it has been extended to the case of43

two serial reactions for oxygen reduction [37].44

In the case of reactions catalyzed by enzymes in the DET (or MET) mode, modelling is45

more complex, and this has motivated empirical analytic expressions of the current density46

to fit experimental data curves [38, 39]. Moreover, in these works, steady-state conditions47

were assumed for which surface concentrations of enzymes are supposed to be constant and48

oxygen supply is continuous. Some other studies were carried for a simple shape non-porous49

electrode, assuming steady-state [40] or non steady-state conditions [41]. In an interesting50

work by Do et al. [42], a non-steady macroscopic model was proposed. The reported model51

is 1D and electrode scale equations are not explicitly derived, remaining unclosed since the52

effective diffusion coefficient is empirically correlated to the porosity of the material. The53

model was successfully tested to predict experimental observations in steady-state conditions.54

For practical use, a general 3D unsteady and closed macroscopic model operating at the55

electrode scale is highly desirable, including all the available information of the physico-56
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electrochemical processes at the underlying pore-scale.57

In this context, the present work aims at a detailed multiscale modelling of a porous58

electrode operating in the DET mode, following an upscaling approach. The development59

represents a complex task due to the coupling of reactions, unsteadiness and non linearity60

of the overall problem. The purpose is first to provide the set of balance equations, initial61

and boundary conditions governing the transient coupled process for oxygen diffusion and62

catalyzed enzymatic reactions in the DET regime within the pores. In this configuration, the63

pore-scale mass transfer of oxygen is essentially diffusive, while a cathodic oxygen reduction64

reaction with enzymatic catalysis is considered partially using the framework proposed by65

Hexter and co-workers [43, 44] for the reaction scheme. Upscaling is performed with the vol-66

ume averaging method [45] to obtain a new and original macroscopic model at the electrode67

scale that is further validated both numerically and with experimental data. This model is68

fully unsteady, yielding the evolution of both the enzyme and oxygen concentrations. It is69

formally derived from the pore-scale equations with a closure providing the effective param-70

eters. This approach has not been reported in the literature so far although this is of prime71

importance as was raised as a conclusion in a recent review by Rajendran et al. [46].72

The remainder of the article is organized as follows. In Section 2, the pore-scale diffu-73

sion/reaction model at the microscale is developed for the enzymatic Direct Electron Transfer74

regime. In this context, an electrochemical model for the reduction reaction of oxygen cat-75

alyzed by BOD is proposed. It is coupled to mass transfer by diffusion of oxygen and mass76

balance of enzyme under non steady-state conditions. To derive a macroscopic model that77

is much more effective in terms of computational resources, an upscaling procedure of the78

pore-scale model is applied, the main steps of which are summarized in Section 3 for the79

sake of conciseness. More details for this derivation are reported in Appendix A. In Section80

4 , 3D direct numerical simulations of the pore-scale model are carried out and their results81

are compared to those obtained from simulations of the 1D macroscopic model to validate82

the upscaling approach. Experimental details, describing the materials and methods for the83

electrocatalytic characterization of macroporous gold electrodes are provided in Section 5.84

The ability of the macroscopic model to predict experimental voltammetry results, obtained85

from these electrodes modified by BOD adsorption and immersed in a buffer solution, is86

presented in this section. Conclusions are proposed in Section 6.87

2. Pore-scale diffusion/reaction coupled model88

In this section, the unsteady pore-scale model for diffusion and reaction in a porous89

electrode, whose internal surface has been modified by the adsorption of BOD enzyme, is90

developed. The oxygen reduction reaction scheme within the layer containing the enzyme91

at the electrode surface is assumed to take place in the DET mode. Without any restriction92

in the physical description of the electrochemical process, the analysis is carried out at the93

cathode.94

The porous electrode, immersed in a reactive solution, occupies the spatial domain Ω95

composed of the solid phase Ωs and the fluid phase Ωf with the interface denoted by Γsf =96

Ωf ∩Ωs nearby which the oxygen reduction reaction takes place. The electrode is supplied by97
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diffusion of oxygen from the bulk fluid, occupying the domain Ωe, surrounding the electrode.98

Electron exchange during the reduction of oxygen results from a double electron transfer99

which may be described by a pair of reactions as proposed in section 2.1.100

2.1. Electrochemical process101

The BOD enzyme is supposed to be immobilized at the surface Γsf of the cathodic102

electrode to catalyze the oxygen reduction. It contains type 1 copper, forming T1 sites,103

while TNC sites are composed of type 2 and type 3 copper [14]. In the DET mode, electrons104

from the electrode’s internal surface are accepted by type 1 copper (T1 sites) where the105

enzyme reduction occurs. They are transferred from T1 to the TNC (T2 and T3) sites106

which remain at a tunneling distance from the pore surfaces and where reduction of oxygen107

takes place [25, 38] (see Fig. 1). The reaction scheme at an electrode surface modified with108

BOD may hence be described following the approach proposed by Hexter and co-workers109

[43, 44] for the reaction of hydrogenases during the reduction of H+ to H2. In these works,110

the electrode is supposed to be continuously supplied with H+ so that the mass transfer111

problem is neglected yielding a description under steady-state conditions. On the contrary,112

a fully unsteady description is considered here.113

O2

e-

H2O

T1

3

3

2
e-

Enzyme layer

T

T
T

TNC site

Ca
th

od
e

O2

T1 site

Figure 1: Schematic representation of electron transfer from the electrode surface to the T1 site and further
to a TNC site where oxygen reduction occurs

In the case of oxygen reduction of interest here, the catalytic reaction in the DET mode114

may be written in the following form115

Ox + n1e
− k1c⇌

k1a

Re at T1 site (1a)

4
n1

Re + O2 + 4H+ k2c⇌
k2a

4
n1

Ox + 2H2O at TNC site (1b)

where n1 is the number of transferred electrons involved in the reduction of the enzyme
which oxidized and reduced forms are denoted by Ox and Re respectively. In the case of
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BOD, which is further considered for validation and comparison with experiments in sections
4 and 5, n1 = 1 [38]. Note that the direct reaction pathway for oxygen reduction has been
assumed in (1b) as this was confirmed to be the preferential one in experimental observations
with the BOD enzyme [47]. The electron transfer rate constants k1a and k1c are given by
the Butler-Volmer relationships

k1c = k0 exp
[
−

n1α1F (E − E0
Ox/Re)

RT

]
(2a)

k1a = k0 exp
[

n1(1 − α1)F (E − E0
Ox/Re)

RT

]
(2b)

where k0 and α1 are the standard rate constant and electron transfer coefficient, E and
E0

Ox/Re the electrode potential and the potential of the redox center, F , R and T the Faraday’s
constant, gas constant and temperature respectively. Similarly, for the oxygen reduction, the
catalytic rate constants k2c and k2a, representative of the internal driving energy within the
enzyme, take the following expressions

k2c = k′
2 exp

[−n2α2F (E0
Ox/Re − EO2/H2O)

RT

]
(3a)

k2a = k2 exp
[

n2(1 − α2)F (E0
Ox/Re − EO2/H2O)
RT

]
(3b)

where EO2/H2O is the thermodynamic equilibrium potential of the couple O2/H2O, α2 the116

electron transfer coefficient associated with this reaction and n2 the number of electrons117

involved. It should be noted that the oxygen reduction in reaction (1b) can be considered118

as irreversible. For both the validation of the macroscopic model and the comparison with119

experiments presented in the following sections, the backward reaction in (1b) is ignored and120

k2a was hence taken equal to zero for consistency, even if this parameter is formally kept for121

completeness in the theoretical development reported below, which may straightforwardly122

be used for an other type of system.123

Although four electrons are required for the reduction of O2 in (1b), a different value
might be relevant for n2 depending on the limiting step governing the electron transfer for
this reaction. A further detailed discussion of this feature is beyond the scope of the present
work and, as will be seen later, the use of the models derived in the following sections does
not explicitly require the value of n2 to be specified. In addition, it is worth noticing that
the unit of the rate constants k1c, k1a and k2a is 1/s whereas that of k2c is m3/mol/s. The
latter is in contrast with that of the corresponding constant used in the work by Hexter et
al. [43] which was restricted to steady conditions that are not retained here as this might
be insufficient in practical situations. From the oxygen reduction reaction at TNC sites
(see (1b)), the associated reaction rate, RO2 , can be expressed according to the following
Butler-Volmer relationship [48]

RO2 = −k2ccRecO2 + k2acOx (4)

6



In the following, a fully coupled diffusion-reaction model is developed, in which concentra-124

tions of all species (enzyme and oxygen) are time-dependent to describe the entire unsteady125

process.126

2.2. Physical model at the pore-scale127

Modelling starts with the initial and boundary value problem governing diffusion of128

oxygen, which is assumed to be a Fickian process, coupled to oxido-reduction mechanisms129

inside the pores. Since the enzyme is immobilized at the pore surfaces, no diffusion is taken130

into account for this species. The pore-scale model can hence be written as follows131

∂cRe

∂t
= k1ccOx − k1acRe − k2ccRecO2 + k2acOx at Γsf (5a)

cOx + cRe = ct
E at Γsf (5b)

I.C.1 cRe = FRe (r) r ∈ Γsf , t = 0 (5c)
∂cO2

∂t
= ∇ · (DO2∇cO2) in Ωf (5d)

B.C.1 −n · DO2∇cO2 = −RO2 at Γsf (5e)
I.C.2 cO2 = FO2 (r) r ∈ Ωf , t = 0 (5f)

B.C.2 cO2 = GO2(r, t) r ∈ Afe, ∀ t (5g)

where cRe, cOx and cO2 are the surface concentrations of Re and Ox and the bulk oxygen
concentration respectively. The total enzyme concentration ct

E (see Eq. (5b)) is considered
to remain constant at any time whereas mass conservation of Re in Eq. (5a) results from
reactions (1). In the oxygen mass conservation equation (5d) and in the boundary condition
in Eq. (5e), DO2 is the molecular diffusion coefficient of O2 in the fluid saturating the pores
while n is the unit normal vector to Γsf pointing out of Ωf . The reaction rate, RO2 , is given
by Eq. (4). In the expression of the external boundary condition B.C.2, Afe = Ωf ∩ Ωe

is the entrance and/or exit boundaries of the fluid phase, Ωf , from/into the external bulk
fluid, Ωe, in which the electrode is immersed. The solution of Eqs. (5) yields the oxygen
and enzymes concentration fields from which the current density, j, can be obtained from
the reaction rate at T1 sites (1a). It is given by

j = n1F (k1acRe − k1ccOx) (6)

that can be further used to compute the total current, I, available at the electrode according
to

I =
∫

Γsf

jdS (7)

Although the solution of Eqs. (5) can be sought using a Direct Numerical Simulation (DNS)132

as will be reported for validation purposes in section 4.1, a macroscopic model is necessary133

for the characterization and prediction of the behavior of an electrode. Moreover, as in-134

dicated in a previous work dedicated to modelling of electrodes in the absence of enzyme135

[34], computational resources required by DNS are substantial and a macroscopic model is136
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much more efficient for practical use. With these objectives in mind, the pore-scale model is137

upscaled, carrying coupling and non linearities, in order to obtain a macroscopic description138

that is provided in the next section.139

3. Macroscopic model140

The macroscopic model, operating at the electrode scale, is derived from the initial and141

boundary value pore-scale problem using the volume averaging method [45]. For the sake142

of brevity, only the main result of this procedure is reported below while the details of the143

formal derivation are provided in Appendix A.144

Let V, of measure V and size r0, be the averaging volume including the solid and fluid
domains Vs and Vf (of volumes Vs and Vf , respectively) sharing the solid/fluid interface Asf

of measure Asf . The porosity, εf , and specific area, av, of the porous material are respectively
defined by

εf = Vf/V (8a)
av = Asf/V (8b)

x

V

A V

O

y

r

f Vs

Asf
x

V
r0

Figure 2: Averaging volume for a two-phase system.

The upscaling process makes use of the superficial, intrinsic and area averages of the
concentration fields for oxygen and reduced enzyme that are respectively defined by

⟨cO2⟩ |x = 1
V

∫
Vf (x)

cO2|x+ydV (9a)

⟨cO2⟩f |x = 1
Vf

∫
Vf (x)

cO2|x+ydV (9b)

⟨cX⟩sf |x = 1
Asf

∫
Asf (x)

cX |x+ydA, X = O2, Re (9c)
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with the straightforward relationship ⟨cO2⟩ = εf ⟨cO2⟩f and where x locates the centroid of
the averaging volume while y = r − x locates any point within Vf relative to x (see Fig.
2). For the sake of simplicity, the subscript referring to the location may be dropped, unless
necessary. The derivation of the upscaled model is subject to a scale hierarchy defined by
ℓp ≪ r0 ≪ L, ℓp being the characteristic pore size and L the macroscopic size of the electrode.
The upscaling procedure is carried out according to the four main steps reported in Appendix
A and under the constraints on the kinetic number, Ki, and time scale respectively given by

Ki = k2cℓpct
E

DO2

≪ 1 (10a)

t ≫ O
[

ℓ2
p

DO2

,
1

k1c + k1a + k2a + k2c ⟨cO2⟩f

]
(10b)

145

Under these circumstances, the macroscopic model, including the enzyme and oxygen
effective mass conservation equations operating at the electrode scale, can be written as

∂ ⟨cRe⟩sf

∂t
= − (k1c + k1a + k2a) ⟨cRe⟩sf − k2c ⟨cRe⟩sf ⟨cO2⟩f

+ (k1c + k2a)ct
E (11a)

⟨cOx⟩sf =ct
E − ⟨cRe⟩sf (11b)

εf
∂ ⟨cO2⟩f

∂t
=∇ ·

(
εfDeff · ∇ ⟨cO2⟩f

)
− k2cav ⟨cO2⟩f ⟨cRe⟩sf − k2aav

(
⟨cRe⟩sf − ct

E

)
(11c)

146

The constraints expressed in (10) indicate that, strictly speaking, the averaged model147

can provide accurate predictions of the oxygen and enzyme average concentrations in the148

mass transfer limited regime (10a) and for times larger than the overall reaction kinetics149

characteristic time (10b). First, it must be noted that, despite the closure can be treated150

as a steady problem with these assumptions, the macroscale model remains unsteady, and151

this is because the time scales of variation of the average and pore-scale concentrations are152

different. Secondly, it must be emphasized that these constraints are usually overly severe153

and, most of the time, the range of applicability of the model can be extended beyond these154

constraints, i.e., for Ki ∼ 1 and t ∼ O
[

ℓ2
p

DO2
, 1

k1c+k1a+k2a+k2c⟨cO2⟩f

]
(see for instance [49, 50]155

for similar but somewhat different problems). Nevertheless, this deserves a careful analysis156

that is beyond the scope of this work.157

In the macroscopic diffusion-reaction equation (11c), Deff is the effective diffusion tensor
(that is symmetric [51]), given by

Deff = DO2

(
I + 1

Vf

∫
Asf

nbdA

)
(12)

9



in which I is the identity tensor and nb denotes the outer product between the two vectors
n and b, b, the latter being solution of the following closure problem (see also Eqs. (A.33)
in Appendix A)

∇2b = 0 in Vf (13a)
n · ∇b = −n at Asf (13b)

⟨b⟩f = 0 (13c)
b (r) = b (r + ℓiei) i = 1, 2, 3 (13d)

This problem is intrinsic to the porous structure, which means that its solution only depends158

on the microgeometry of the pore space. To obtain this result, it must be noted that159

the averaging domain, V, was taken as a Representative Elementary Volume of the porous160

structure that was further considered as pseudo periodic so that the closure problem is solved161

on a unit cell whose periodic lattice vectors are ℓiei (i = 1, 2, 3).162

It should be noted that the closure performs the essential link between the micro- and163

macroscale models. Indeed, the closure problem given in Eqs. (13) contains the nonredun-164

dant information (in particular the microsctructure implied in Vf and Asf ) that is essential165

in the macroscopic model. As a result, Eqs. (11), together with the initial and bound-166

ary conditions on ⟨cRe⟩sf and ⟨cO2⟩f , form the new macroscopic effective model of coupled167

diffusion-reaction for a porous electrode operating in the DET mode.168

The expression of the current from the macroscopic surface average of the reduced enzyme
concentration can now be derived. The surface average of Eq. (6) yields

⟨j⟩sf = n1F
(
k1a ⟨cRe⟩sf − k1c

(
ct

E − ⟨cRe⟩sf

))
(14)

from which the current per unit volume of the unit cell representative of the medium, iv, can
be deduced as iv = ⟨j⟩sf Asf/V = av ⟨j⟩sf . The total current, I, delivered by the electrode
is hence given by I =

∫
Ω ivdV , i.e.

I = av

∫
Ω

⟨j⟩sf dV (15)

4. Numerical results and discussions169

The relevance of the prediction obtained with the new original macroscopic model is170

assessed by a comparison with DNS of the pore-scale problem. This is carried out on a model171

porous structure whose unit cell, of size ℓR, is a face-centered cubic (FCC) arrangement of172

spherical pores, of diameter ds ≡ ℓp, interconnected to each other through circular windows173

of diameter dc (see Fig. 3). The objective of this procedure is to validate the macroscopic174

model so that it can be used in place of the pore-scale model with an expected important175

gain in performance.176
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4.1. Direct numerical simulation of the pore-scale model177

The 3D numerical voltammetry experiments were performed on a computational domain178

represented in Fig. 3. The porous electrode is composed of periodic FCC unit cells in179

the z-direction, between z = −Le, where the electrically conducting electrode support is180

positioned, and z = 0, where the electrode is in contact with the bulk fluid saturating the181

pores. The fluid region, Ωe, between z = 0 and z = LN , corresponds to the diffusion layer182

where oxygen molecular diffusion takes place. Periodic boundary conditions are applied in183

the x and y directions. This is justified by the fact that the electrode length is supposed to184

be much larger than ℓR and that the same holds for its lateral extension, if the electrode is185

a plane one. If it is circular, Le is supposed to be much smaller than its mean radius. A186

zero flux condition is imposed at z = −Le while a constant oxygen concentration, cO2 = c0
O2 ,187

is considered at the interface of the diffusion layer with the rest of the bulk fluid, z = LN .188

The initial concentration of oxygen is supposed to be uniform equal to c0
O2 . In addition, only189

oxidized enzyme is assumed to be present at the initial state, leading to cRe = 0 at t = 0.190
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Figure 3: 3D domain for the direct numerical simulation.

The pore-scale problem in Eqs. (5), coupled to the diffusion of O2 in the diffusion layer,
can be rewritten in a dimensionless form using ℓR, ℓ2

R

DO2
, c0

O2 and ct
E as the reference length,

time, oxygen and enzyme surface concentrations. Denoting dimensionless quantities with
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the superscript ∗, this coupled non-linear problem is given by

∂c∗
O2

∂t∗ = ∇∗2c∗
O2 in Ωf ∪ Ωe (16a)

B.C.1 − n · ∇∗c∗
O2 = 0 at z∗ = −L∗

e (16b)
B.C.2 c∗

O2 = 1 at z∗ = L∗
N (16c)

B.C.3 − n · ∇∗c∗
O2 = ℓRct

E

DO2

(
k2cc

∗
Rec

∗
O2 − k2a

c0
O2

(1 − c∗
Re)
)

at Γsf (16d)

∂c∗
Re

∂t∗ = ℓ2
R

DO2

(
−
(
k1c + k1a + k2a + k2cc

0
O2c∗

O2

)
c∗

Re

+ k1c + k2a

)
at Γsf (16e)

I.C.1 c∗
O2 = 1 in Ωf ∪ Ωe at t∗ = 0 (16f)

I.C.2 c∗
Re = 0 at Γsf at t∗ = 0 (16g)

c∗
O2(x∗, y∗, z∗) = c∗

O2(x∗ + 1, y∗ + 1, z∗), in Ωf (16h)
n · ∇∗c∗

O2(x∗, y∗, z∗) = n · ∇∗c∗
O2(x∗ + 1, y∗ + 1, z∗), in Ωf (16i)

c∗
Re(x∗, y∗, z∗) = c∗

Re(x∗ + 1, y∗ + 1, z∗), at Γsf (16j)

191

Voltammetry simulation, with a scan-rate rE = 5 mV/s and an initial potential value of192

0.6 V , was carried out with L∗
e = 10 and LN = 20 µm (i.e. L∗

N ≃ 12). Values of the other193

physical parameters are reported in Table. 1. It should be noted that k2a is taken equal to194

zero since the reduction of O2 is considered as irreversible. Since BOD is the enzyme for the195

catalytic reaction, n1 = 1 [38].196

12



Parameter Symbol Value Unit

Ideal gas constant R 8.314 Jmol−1K−1

Faraday’s constant F 96485.33 Cmol−1

Number of transferred electron n1 1 −
Electron transfer coefficient α1 0.5 −

Standard potential vs. E0
Ag/AgCl E0

Ox/Re 0.41 V

Equilibrium potential vs. E0
Ag/AgCl EO2/H20 0.619 V

Scan rate rE 5 mV s−1

Temperature T 298 K
Bulk concentration c0

O2 1.2 mol m−3

Total surface concentration of enzymes ct
E 10−8 mol m−2

Diffusion coefficient DO2 2. 10−9 m2s−1

Standard rate constant k0 10 s−1

Electron transfer rate constant k2c 485.83 m3mol−1s−1

Spherical pore diameter ds 1.17 µm
Relative pore connection window size dc/ds 15% −

Size of the periodic unit cell ℓR 1.678 µm

Table 1: Parameters used for the simulations

The software COMSOL Multiphysics (ver. 5.4), with physics-controlled mesh including197

extremely fine grid blocks composed of 107 tetrahedral elements in the overall domain, was198

used to solve this problem. The typical computational time is about 12 hours on a Dell199

PowerEdge 430 - 2 processors Intel Xeon E5-2630v3.200

Dimensionless oxygen concentration fields obtained from DNS in Ωf and Ωe are repre-201

sented in Fig. 4 at t = 10 s, 55 s and 70 s, highlighting the coupled diffusion-reaction process202

inside the porous electrode and showing the oxygen concentration decrease with time. In203

this configuration, Ki = 10−3, a value that satisfies the constraint in (10a).204

| | |
−L∗

e = −10 0 L∗
N ' 12

| | |
−L∗

e = −10 0 L∗
N ' 12

| | |
−L∗

e = −10 0 L∗
N ' 12

t = 10s, E = 0.55V

t = 55s, E = 0.325V

t = 70s, E = 0.25V

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

1

Figure 4: Normalized O2 concentration fields, c∗
O2

, at t = 10 s, 55 s and 70 s, the corresponding potential
values being E = 0.55 V , 0.325 V and E = 0.25 V , respectively.
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These results can now be directly compared to simulations of the macroscopic model and205

this is the object of the following section.206

4.2. Solution of the macroscopic model and comparisons with DNS207

Our aim now is to explore the relevance of the macroscopic model, its performance to208

predict the average concentrations and the current delivered by the electrode. Since the FCC209

structure under consideration here is isotropic, Deff = Deff I (I being the identity tensor) and210

the macroscopic model reduces to 1D. The macroscopic computational domain constituted211

by the 1D effective medium for the electrode and the diffusion layer is represented in Fig. 5.212

−L∗
e

∂
⟨
c∗

O2

⟩f

∂z∗ = 0
Ω Ωe

0

Concentration and
flux continuity

L∗
N

c∗
O2

= 1

Figure 5: 1D configuration for the macroscopic numerical simulation.

213

Using the same reference quantities, the dimensionless macroscopic problem can be writ-
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ten as

εf

∂
⟨
c∗

O2

⟩f

∂t∗ = εfD∗
eff

∂2
⟨
c∗

O2

⟩f

∂z∗2

− avℓ2
Rct

E

DO2c0
O2

(
k2cc

0
O2

⟨
c∗

O2

⟩f
⟨c∗

Re⟩sf

+ k2a

(
⟨c∗

Re⟩sf − 1
))

in Ω (17a)

∂ ⟨c∗
Re⟩sf

∂t∗ = ℓ2
R

DO2

(
−(k1c + k1a + k2a) ⟨c∗

Re⟩sf

− k2cc
0
O2

⟨
c∗

O2

⟩f
⟨c∗

Re⟩sf + k1c + k2a

)
in Ω (17b)

B.C.1
⟨
c∗

O2

⟩f
= c∗

O2 at z∗ = 0 (17c)

B.C.2 εfD∗
eff

∂
⟨
c∗

O2

⟩f

∂z∗ =
∂c∗

O2

∂z∗ at z∗ = 0 (17d)

∂c∗
O2

∂t∗ =
∂2c∗

O2

∂z∗2 in Ωe (17e)

B.C.3
∂
⟨
c∗

O2

⟩f

∂z∗ = 0 at z∗ = −L∗
e (17f)

B.C.4 c∗
O2 = 1 at z∗ = L∗

N (17g)

I.C. 1
⟨
c∗

O2

⟩f
= 1 in Ω at t∗ = 0 (17h)

I.C. 2 ⟨c∗
Re⟩sf = 0 in Ω at t∗ = 0 (17i)

I.C. 3 c∗
O2 = 1 in Ωe at t∗ = 0 (17j)

In Eq. (17a), D∗
eff represents the dimensionless effective diffusion coefficient, D∗

eff =214

Deff/DO2 . Prior to the solution of the above model, the closure problem in Eqs. (13)215

was solved over a periodic FCC unit cell. Both the closure and macroscopic problems were216

solved with COMSOL Multiphysics (ver. 5.4).217

Voltammetry simulation using the 1D-macroscopic effective model in Eqs (17) was car-218

ried out in the same conditions as for the 3D DNS at the microscale presented in Section219

4.1, i.e. using the parameters indicated in Table 1 with L∗
e = 10 and L∗

N ≃ 12. For this mi-220

crostructure, εf = 0.763, a∗
v = 5.985 and εfD∗

eff = 0.364. The mesh used for this simulation221

is made of ∼ 800 elements. The pore-scale fields of c∗
O2 and c∗

Re were averaged in each unit222

cell over Vf and Asf respectively and then compared to
⟨
c∗

O2

⟩f
and ⟨c∗

Re⟩sf obtained from223

the solution of the macroscopic model.224

The dimensionless oxygen concentration profiles inside the porous electrode, obtained225

from the 3D-DNS and 1D simulation, are represented at the three times t = 10 s, 55 s and226

70 s in Fig. 6. This concentration decreases with time as a result of the reduction reaction227

while its gradient increases at the electrode-diffusion layer interface (z∗ = 0) and hence228
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inside the electrode. As shown on this figure, the agreement between the two approaches is229

excellent.230

−10 −8 −6 −4 −2 0
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1D t = 10 s E = 0.55V
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Figure 6: Comparison of the concentration profiles of oxygen obtained from the 3D DNS (micromodel)
and 1D (macromodel) simulation. All the data employed to carry out both the pore-scale DNS and the
macroscale simulation are mentioned in the text above and in Table 1.

Similarly, the dimensionless reduced enzyme surface concentration profiles obtained with231

both the micro and macro-scale models are reported in Fig. 7. Again, the comparison232

between the two shows an excellent agreement, confirming the validity of the new macroscopic233

model derived in this work.234
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Figure 7: Comparison of reduced enzyme concentration profiles obtained from the 3D DNS (micromodel)
and 1D (macromodel) simulation.

As a final important check, the interest must now be focused on the current curves235

in voltamograms. The current was computed by making use of Eqs. (6) and (7) in the236

microscale approach and with Eqs. (14) and (15) involving the average reduced enzyme237

concentration obtained from the solution of the macroscopic model. In Fig. 8, the current238
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per unit cross-sectional area of the electrode is represented versus the scanning potential239

ranging from 0.6 V to 0.1 V . A special attention must be dedicated to the mesh refinement240

for the 3D DNS in COMSOL Multiphysics. A tetrahedral mesh made of ∼ 3.3×105 elements241

for the domain under consideration in Fig. 3 was used to obtain converged results. As can242

be seen in Fig. 8, the agreement between the two approaches is again excellent.243
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Figure 8: Comparison between the current per unit electrode cross-sectional area versus the scanning po-
tential during voltammetry obtained from the 3D DNS and 1D macroscopic model.

This again confirms the perfect agreement between the two approaches and completes244

the validation of the new macroscopic model which provides a powerful tool to predict the245

macroscopic behavior of a porous electrode operating in the DET mode. In addition it must246

be emphasized that this original macroscopic approach allows a considerable computational247

speedup. Indeed, in the case under consideration in this section, the macroscale solution248

requires only 4 seconds, which, compared to the corresponding 3D DNS with the above249

mentioned mesh (85 minutes), represents a speedup of about 1300.250

In the following section, the ability of the macroscopic model to predict the current-to-251

potential relationship characteristics of an electrode is reported through comparisons with252

experimental voltammetry results obtained with a porous gold electrode coated with BOD253

as the bioelectrocatalyst at the cathode.254

5. Comparison with experimental data255

In this section, the capability of the macroscopic model to predict voltammetry experi-256

mental data is investigated. To this purpose, experiments were carried out on porous gold257

electrodes.258

5.1. Experimental details259

The three main steps of the experimental protocol consist in the electrode synthesis, the260

enzyme immobilization and the electrocatalytic characterization.261
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Electrode Synthesis262

Cylindrical macroporous gold electrodes were prepared using a Langmuir-Blodgett tech-263

nique as shortly described in the introduction and detailed in [2, 8, 9]. In brief, silica beads264

with a diameter of 1170 nm (ds = 1.2 µm is taken as an accurate enough value) were265

spread from an ethanol/chloroform (20% v/v-80% v/v) suspension at the water-air inter-266

face of a Langmuir-Blodgett trough. An optimal monolayer of silica beads was obtained at267

the water-air interface after compression by closing the moveable barriers. Then, multiple268

silica particle layers were transferred onto gold wires of 250 µm in diameter and 4 cm in269

length. This was achieved by repeating the dipping and withdrawing process at a speed of270

1.2 mm/min. After the formation of the silica template layers on the surface, Elevate® Gold271

7990 was used for the gold electrodeposition over a length of 2 cm by applying a constant272

potential of -0.6 V . The number of macroporous layers is controlled by following the current273

oscillations. After dissolving the silica particles in 5% hydrofluoric acid for several minutes,274

the final macroporous gold electrode is obtained as an inverse opale gold structure. Four275

electrodes were prepared, having 3, 7, 11 and 19 half-layers (HL) of pores. At this stage, the276

internal pore surfaces were coated with a geneticically engineered variant of Bilirubin oxidase277

from M. oryzae whose serine in position 362 was replaced by a cysteine (BOD S362C) [52].278

This was peformed over the porous zone being 2 cm long, corresponding to a surface area of279

the initial wire of 15 mm2. The actual active surface area depends on the thickness of the280

porous layers of the electrode. There is a linear correspondence between the active area of281

the porous electrode and the number of porous half layers, as reported recently [53].282

Enzyme Immobilization283

A 0.1 mM BOD S362C (516 ±38 U/mg) solution was prepared in 50 mM phosphate284

buffer (pH 6.0). Since the cysteine residue on the outer surface of bilirubin oxidase is close285

to the T1 active center, the interaction between the thiol group on the cysteine residue and286

the gold surface allows the formation of a self-assembled monolayer of BOD S362Cs on the287

internal surface of the pores. This allows a proper orientation of the BOD on the electrode288

surface and favors the interfacial electron transfer. The macroporous gold electrode was289

dipped into the enzyme solution after being treated with plasma for 15 min. Vacuum was290

then applied for 3 min to ensure an efficient penetration of enzymes into the whole porous291

structure. The electrode was kept at 4 ◦C overnight. After rinsing with distilled water and292

with 0.1 M PBS pH 7.2 under stirring, the electroenzymatic O2 reduction was performed293

with the BOD modified electrodes.294

Electrocatalytic characterization295

All electrochemical measurements were performed with an Autolab PGSTAT101 poten-296

tiostat monitored by a PC running Nova 1.6. A Ag/AgCl (3 M KCl) was used as a reference297

electrode, and a cylindrical carbon sheet was employed as an auxiliary electrode. For the298

electrochemical reduction, the buffer solution was purged with O2 for 15 min. Then, the299

electrodes were dipped into the buffer solution maintained at ambient temperature while a300

slow flow of O2 was kept above it inside a sealed cell for the O2 concentration to remain301

constant in the buffer. Voltammetry experiments were carried out in the potential range302

from 0.6 V to 0.15 V with a scan rate of 5 mV/s. The temperature was 25 ◦C for these303
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experiments. Each experiments was at least performed in triplicate.304

5.2. Voltammetry interpretation305

The templating procedure leads to a rather compact bead arrangement so that an FCC306

periodic cell represents a reasonable model for the resulting structure. This was observed307

in the work reported in [9] and further confirmed in a recent in-depth analysis of the 3D308

microstructure extracted from FIB-SEM imaging [54]. The relative size of the pore connec-309

tion window, dc/ds was taken equal to 15%, which can be considered as the minimum value310

for this manufacturing process [55]. With these structural parameters, the effective diffusion311

coefficient was computed to be εfD∗
eff = 0.364.312

Interpretation of the experimental voltammetry data is carried out using a fitting pro-313

cedure on some of the parameters involved in the macroscale model in Eqs. (17) that are314

unknown a priori. To do so, k0, k2c, α1 and E0
Ox/re were estimated using a fitting procedure315

in the least square sense on data obtained with the 11HL electrode. It must be reminded316

that the individual values of n2 and α2 are not required and that k2a is taken equal to zero317

in agreement with the irreversibility of oxygen reduction1. The fitted resulting values are318

reported in Table 2 and were kept the same to predict the voltammetry results on the other319

electrodes.320

k0 (s−1) k2c (m3mol−1s−1) α1(−) E0
Ox/Re(V )

10.5 25.9 0.46 0.405

Table 2: Parameters fitted on the voltammetry results obtained with the 11HL electrode and used for all
the other predictions employing the macroscopic model.

Moreover, the total concentration of enzyme, ct
E, and the diffusion layer thickness, LN ,321

that are subject to vary from one electrode to another, were fitted for each corresponding322

experimental data set. In fact, the diffusion layer thickness depends on the rate of oxygen323

depletion within the fluid in contact with the outer interface of the electrode, and this324

rate depends itself on the electrode thickness. Here, a simplified approach is adopted by325

considering LN as constant which means that this parameter should be understood as a mean326

value over the period of potential scanning for each experiment. The values are indicated in327

Table 3; those for the remaining parameters are given in Table 1. It should be noted that328

the total enzyme surface concentration slightly decreases with the electrode thickness and329

this can be explained by the fact that, the thicker the porous material, the more difficult is330

the penetration of enzyme during the coating process deeper in the pores far from the free331

surface of the electrode. This observation was also part of the conclusions in the work by332

Do et al. [42] on a somewhat different system.333

1The value of k2a was also identified in the fitting procedure and showed to be so small that it is insensitive
in the current response.
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Electrodes 3HL 7HL 11HL 19HL

ct
E (mol m−2) 8.9 × 10−8 8.07 × 10−8 5.7 × 10−8 4.06 × 10−8

LN (µm) 186 158 59 44

Table 3: Parameters used in the simulations for the fits.

To assess the validity of the identification procedure, a sensitivity analysis of the current334

to all the fitted parameters was performed. The reduced sensitivity to a parameter, u, is335

defined as u∂I/∂u, u being either k0, k2c, α1, E0
Ox/Re, LN or ct

E here. It was computed using336

the 1D macroscopic model at the nominal values of each parameter identified on the 11HL337

electrode. Sensitivities to all the parameters are represented versus the scanning potential338

in the interval of interest in Fig. 9. This figure clearly shows that all the sensitivities339

are significantly larger than the precision of the potentiostat used to measure the current340

which can be estimated to be less than 0.02 10−5 A over a very wide potential interval. In341

addition, the sensitivities are not proportional to each other, ensuring that parameters are342

uncorrelated. This analysis indicates that the identification procedure is robust and reliable.343
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Figure 9: Reduced sensitivities of the current to the parameters k0, k2c, α1, E0
Ox/Re, LN and ct

E at their
identified values on the 11HL electrode versus the scanning potential.

The current versus the scanning potential obtained from our numerical simulation is344

represented in Fig. 10 together with the experimental results. As can be seen from this345

figure, excellent agreement is obtained for all the electrodes tested in this work over the346

whole scanned potential interval. In this potential interval, oxygen reduction on unmodified347

gold electrodes is not observed, because this reaction starts to occur only for potentials more348

negative than 0.1 V vs Ag/AgCl. Therefore, the signals should not be disturbed by such an349

eventual interference.350
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The experimental measurements show a slight crossover of the current signals at large351

potentials for the thickest electrodes (11HL and 19HL). A possible explanation of this behav-352

ior might be that, at the very beginning of the bioelectrocatalytic reaction (onset potential353

of around +0.5V), not all the enzyme modified layers are contributing immediately to the354

catalytic current for these two electrodes. Preferentially the outermost layers (most likely 2-3355

half-layers, when looking at the relative positions of the plateau current for the 3 half-layer356

electrode (15µA) and the crossover current (10µA)) are involved. Therefore the measured357

current is smaller with respect to what it should be in the ideal case when all the porous358

layers are active immediately. Only at higher driving forces (E < +0.4V ), when the enzymes359

in the outer layers are already turning at their maximum speed, and thus cannot convert360

more oxygen per time unit, the inner layers start contributing as well because the oxygen361

diffusion layer now also reaches the inner part of the electrode. This leads to the observed362

crossover that is however not reproduced by the model which would require involving a363

concentrations-dependent catalytic rate constant. This effect is nevertheless of very weak364

importance.365

The absolute value of the relative error between the two, taking the experimental data as366

the reference, is less than 5% as shown in Fig. 11 and is distributed around 0. It remains even367

smaller than 3.5% when the potential is less than ∼0.37 V for all the electrodes. Moreover,368

the relative error when repeating several times the experiments is very small. For example,369

preparing three 7HL electrodes leads to electrocatalytic currents with a standard deviation370

of 0.08 10−5 A.371
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Figure 10: Current versus the scanning potential obtained from voltammetry numerical simulations using
the macroscopic model. Comparison with the experimental data.
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Figure 11: Absolute value of the relative error on the current estimated from the macroscopic model and
obtained from experimental voltammetry data, taking the latter as the reference.

This successful comparison represents a strong validation step of the new macroscopic372

model derived in this work, assessing its relevance and performance to reproduce the physico-373

electrochemical behavior of the porous electrodes operating in the DET mode.374

6. Conclusions375

In this work, a new multiscale modelling for diffusion and electrochemical enzymatic376

reaction involved in a porous electrode operating in the DET mode was developed. The377

unsteady pore-scale model was provided for oxygen reduction taking into account the electron378

transfer process at play. An upscaling procedure, in which coupling and non-linearities were379

handled, was applied to obtain a closed unsteady macroscopic model valid at the electrode380

scale. The associate closure problem yielding the effective diffusivity tensor was provided.381

This approach represents an original macroscopic model that has not been reported so far in382

the literature. In particular, unsteadiness, which has been disregarded in existing models for383

enzymatic porous electrodes, was explicitly taken into account. Moreover coupling between384

mass transport and enzymatic reaction in a non-linear way has been carried out through385

the upscaling procedure. This yields new terms induced by the enzymatic reaction in the386

macroscopic mass conservation equations (for enzyme and oxygen). Both the micro- and387

macroscale models were further used in the case of oxygen reduction in the presence of BOD388

as a catalyst. The successful comparison of numerical voltammetry simulations, carried389

out on a porous model structure with the 3D pore-scale model and the macroscale model390

which reduces to 1D, assessed the validity of the latter. This macroscopic model was further391

employed to predict experimental voltammetry results obtained with porous gold electrodes392

coated with BOD. The excellent prediction confirms the relevance of the approach and the393
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validity of this macroscopic model which provides an efficient tool operational at the electrode394

scale, allowing a considerable computational speedup. In particular, this model allows one to395

efficiently carry out a sensitivity analysis, which provides important indications on the most396

significant parameters involved in the physico-electrochemical process, a task that would be397

otherwise extremely cumbersome to perform with the pore-scale model. It also provides a398

mean to estimate parameters that are involved in the experiment (as for example the total399

enzyme concentration and standard rate constants). It could also be employed to interpret400

electrochemical impedance spectroscopy tests on electrodes for which dynamic effects are401

expected. More importantly, this model represents an essential tool for a rational optimal402

design of enzymatic porous electrodes. The multiscale approach developed here represents a403

breakthrough and could be widely used for other electrochemical processes in porous media.404
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Appendix A Volume averaging and derivation of the upscaled model413

In this Appendix, the upscaling procedure to derive the macroscopic diffusion/reaction414

equation by volume averaging the microscopic initial boundary value problem (IBVP) in415

Eqs. (5) is detailed. Volume averaging is applied according to the following four main steps416

(see Chap. 1 in [45] and [56]) and cO2 is used to denote cO2(r, t).417

Step 1: Application of the superficial averaging operator418

The superficial and area averages are defined as419

⟨f⟩ |x = 1
V

∫
Vf (x)

f |x+ydV

⟨f⟩sf |x = 1
Asf

∫
Asf (x)

f |x+ydA
(A.1)

The superficial average operator is applied to the microscale IBVP and, with the purpose of420

deriving a model involving averages only, time and spatial derivation must be interchanged421

with volume averaging. This is achieved by using the general transport theorem, which,422

since the averaging volume is fixed in time and the porous medium is rigid, reduces in the423

present case to424 ⟨
∂f

∂t

⟩
= ∂ ⟨f⟩

∂t
(A.2)
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and the spatial averaging theorem (or Leibnitz rule) given by [45, 57]425

⟨∇f⟩ = ∇ ⟨f⟩ + 1
V

∫
Asf

nfdA (A.3)

together with a straightforward similar form for the divergence operator.426

With this at hand, the superficial average can be applied to the mass balance equation427

(5d) for O2 and, employing the boundary condition at Asf , one arrives at the following428

average form429

εf
∂ ⟨cO2⟩f

∂t
=∇ ·

[
DO2

(
εf∇ ⟨cO2⟩f + ⟨cO2⟩f ∇εf + 1

V

∫
Asf

ncO2dA

)]
− k2cav ⟨cO2cRe⟩sf − k2aav ⟨cRe⟩sf + k2aavct

E (A.4)
where the intrinsic average concentration was used instead of the superficial average.430

Step 2: Decomposition of cO2 and simplifications due to length-scale constraints431

The averaged equation (A.4) contains both average and point-wise concentrations. To
remove the latter, the spatial decomposition

cO2 = ⟨cO2⟩f + c̃O2 (A.5)
is introduced [58], where c̃O2 is the deviation of concentration which fluctuates at a typical
length-scale ℓp while ⟨cO2⟩f experiences significant variations at the scale L. It should be
noted that a consequence of this decomposition is ⟨c̃O2⟩f = 0, taking into account the scale
hierarchy ℓp ≪ L. When this decomposition is inserted into Eq. (A.4), one gets

εf
∂ ⟨cO2⟩f

∂t
=∇ ·

[
DO2

(
εf∇ ⟨cO2⟩f + ⟨cO2⟩f ∇εf + 1

V

∫
Asf

n ⟨cO2⟩f dA

+ 1
V

∫
Asf

nc̃O2dA

)]
− k2cav ⟨cO2cRe⟩sf − k2aav ⟨cRe⟩sf + k2aavct

E (A.6)

Attention must now be paid to the area integral term 1
V

∫
Asf

n ⟨cO2⟩f dA on the right

hand side of Eq. (A.6). This term must be evaluated at the centroid x of the averaging
volume V and requires first the evaluation of ⟨cO2⟩f at any point x + y on Asf contained in
V, making this term non-local. A Taylor expansion given by

⟨cO2⟩f |x+y = ⟨cO2⟩f |x + y · ∇ ⟨cO2⟩f |x + 1
2

yy : ∇∇ ⟨cO2⟩f |x + ... (A.7)

may be employed and, when introduced back into Eq. (A.6) together with the fact that
1
V

∫
Afs

ndA = −∇ ⟨1⟩ = −∇εf (A.8)

1
V

∫
Afs

nydA = −∇ ⟨y⟩ (A.9)

1
V

∫
Afs

nyydA = −∇ ⟨yy⟩ (A.10)
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the average form of the mass conservation equation of species A takes the form

εf
∂ ⟨cO2⟩f

∂t
=∇ ·

[
DO2

(
εf∇ ⟨cO2⟩f − ∇ ⟨y⟩ · ∇ ⟨cO2⟩f

−1
2

∇ ⟨yy⟩ : ∇∇ ⟨cO2⟩f − ... + 1
V

∫
Asf

nc̃O2dA

)]
− k2cav ⟨cO2cRe⟩sf − k2aav ⟨cRe⟩sf + k2aavct

E (A.11)

With the purpose of simplifying this last equation, orders of magnitude can be employed
to determine the important contributions among all the diffusive terms. Indeed, the following
estimates can be derived

εf∇ ⟨cO2⟩f = O
(

εf
⟨cO2⟩f

L

)
(A.12a)

∇ ⟨y⟩ · ∇ ⟨cO2⟩f = O
(

εfr0

L

⟨cO2⟩f

L

)
(A.12b)

∇ ⟨yy⟩ : ∇∇ ⟨cO2⟩f = O
((

εfr0

L

)2 ⟨cO2⟩f

L

)
(A.12c)

On the basis of the scale hierarchy, it is not hard to deduce that Eq. (A.11) can be simplified
to

εf
∂ ⟨cO2⟩f

∂t
=∇ ·

[
DO2

(
εf∇ ⟨cO2⟩f + 1

V

∫
Asf

nc̃O2dA

)]
− k2cav ⟨cO2cRe⟩sf − k2aav ⟨cRe⟩sf + k2aavct

E (A.13)

In order to progress to a form of this last expression involving ⟨cO2⟩f only, the order of
magnitude of c̃O2 shall be obtained in comparison to that of ⟨cO2⟩f . To do so, B.C. 1 in Eq;
(5e) can be rewritten as

−n · DO2∇c̃O2 − k2cc̃O2cRe = n · DO2∇ ⟨cO2⟩f + k2c ⟨cO2⟩f cRe + k2acRe − k2act
E (A.14)

Orders of magnitude of the deviation and average normal fluxes at Asf can be estimated as

n · DO2∇c̃O2 = O (DO2 c̃O2/ℓp) (A.15)
n · DO2∇ ⟨cO2⟩f = O

(
DO2 ⟨cO2⟩f /L

)
(A.16)

This can be used in Eq. (A.14) to obtain an order of magnitude estimate of c̃O2 given by

c̃O2 = O
(

(ℓp/L) ⟨cO2⟩f

1 + O (k2cℓpcRe/DO2)
,

(k2cℓpcRe/DO2) ⟨cO2⟩f

1 + O (k2cℓpcRe/DO2)
,

(k2aℓpct
E/DO2)

1 + O (k2cℓpcRe/DO2)

)
(A.17)
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Noticing that k2a ≪ k2c and from the above estimate, it can be clearly seen that if the kinetic
number, Ki is such that

Ki = k2cℓpct
E

DO2

≪ 1 (A.18)

then c̃O2 ≪ ⟨cO2⟩f at Asf . Under these circumstances, Eq. (A.13) can be simplified to the
following form

εf
∂ ⟨cO2⟩f

∂t
=∇ ·

[
DO2

(
εf∇ ⟨cO2⟩f + 1

V

∫
Asf

nc̃O2dA

)]
− k2cav

⟨
⟨cO2⟩f cRe

⟩
sf

− k2aav ⟨cRe⟩sf + k2aavct
E (A.19)

In this equation, a close attention needs to be dedicated to the first of the three reactions
terms which involves a non-local area integral. When the Taylor expansion of Eq. (A.7) is
introduced in this integral, it comes⟨

⟨cO2⟩f cRe

⟩
sf

= ⟨cRe⟩sf ⟨cO2⟩f |x + ⟨ycRe⟩sf · ∇ ⟨cO2⟩f |x + 1
2

⟨yycRe⟩sf : ∇∇ ⟨cO2⟩f |x + ...

(A.20)
For the second and third terms on the right hand side, the following estimates can be made432

⟨ycRe⟩sf ≪ r0 ⟨cRe⟩sf (A.21)
⟨yycRe⟩sf = r2

0 ⟨cRe⟩sf (A.22)

so that

⟨ycRe⟩sf · ∇ ⟨cO2⟩f ≪ O
(

r0

L
⟨cO2⟩f ⟨cRe⟩sf

)
≪ ⟨cO2⟩f ⟨cRe⟩sf (A.23a)

⟨yycRe⟩sf : ∇∇ ⟨cO2⟩f = O
((

r0

L

)2
)

⟨cO2⟩f ⟨cRe⟩sf ≪ ⟨cO2⟩f ⟨cRe⟩sf (A.23b)

This shows that the dominant term in the expansion in Eq. (A.20) is ⟨cO2⟩f ⟨cRe⟩sf . As a
consequence the average equation (A.19) can be simplified to the following form

εf
∂ ⟨cO2⟩f

∂t
=∇ ·

[
DO2

(
εf∇ ⟨cO2⟩f + 1

V

∫
Asf

nc̃O2dA

)]
− k2cav ⟨cO2⟩f ⟨cRe⟩sf − k2aav ⟨cRe⟩sf + k2aavct

E (A.24)

The boundary condition at the solid-fluid interface (Eq. (A.14)) can be written as

−n · DO2∇c̃O2 = n · DO2∇ ⟨cO2⟩f + k2c ⟨cO2⟩f cRe + k2acRe − k2act
E (A.25)

In addition, taking into account the above order of magnitude estimate, the averaged
mass conservation equation for the enzyme is given by

∂ ⟨cRe⟩sf

∂t
= − (k1c + k1a + k2a) ⟨cRe⟩sf − k2c ⟨cRe⟩sf ⟨cO2⟩f

+ (k1c + k2a)ct
E (A.26)
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At this stage, the model remains unclosed since c̃O2 is still present in the averaged mass433

balance equation (A.24).434

Step 3: Closure435

The idea is now to form an IBVP (i.e. a closure problem) on c̃O2 which solution can be
inserted into the averaged equation in order to get a closed macroscopic model. This can be
achieved by subtracting Eq. (A.24) divided by εf and Eq. (A.26) from their corresponding
pore-scale equivalents in Eqs. (5d) and (5a), respectively and by using the boundary con-
dition under the form of equation (A.25). Moreover, since the purpose is not to solve the
closure problem on the entire structure of characteristic length-scale L but, rather, on a rep-
resentative unit cell of the structure of characteristic length-scale ℓR, the external boundary
condition shall be replaced by a periodic boundary condition on c̃O2 (see Chap. 1 in [45]),
yielding

∂c̃R

∂t
= − (k1c + k1a + k2a + k2c ⟨cO2⟩f )c̃R − k2cc̃O2 ⟨cRe⟩sf (A.27a)

∂c̃O2

∂t
=∇ · (DO2∇c̃O2) − ε−1

f DO2∇εf · ∇ ⟨cO2⟩f − ε−1
f ∇ ·

(
DO2

V

∫
Asf

nc̃O2dA

)
+ ε−1

f k2cav ⟨cO2⟩f ⟨cRe⟩sf + ε−1
f k2aav(⟨cRe⟩sf − ct

E) in Vf (A.27b)

−n · DO2∇c̃O2 = n · DO2∇ ⟨cO2⟩f + k2c ⟨cO2⟩f cRe + k2acRe − k2act
E at Asf (A.27c)

c̃O2 (r, t) = c̃O2 (r + ℓRei, t) (A.27d)

to which an initial condition must be added. Here ei denotes one of the unit basis vectors.436

To obtain Eq. (A.27a), the decomposition cRe = ⟨cRe⟩sf + c̃R was employed in conjunction437

with the fact that c̃O2 ≪ ⟨cO2⟩f .438

To simplify this problem, the following orders of magnitude can be employed

∇ · (DO2∇c̃O2) = O
(

DO2 c̃O2

ℓ2
p

)
(A.28a)

ε−1
f ∇ ·

(
DO2

V

∫
Asf

nc̃O2dA

)
= O

(
DO2 c̃O2

εfLℓp

)
(A.28b)

which, based on the length-scale hierarchy, indicates that the latter term is negligible with
respect to the former. Moreover, the diffusive volume source ε−1

f DO2∇εf · ∇ ⟨cO2⟩f and of
the diffusive surface source n · DO2∇ ⟨cO2⟩f can be compared by analyzing their respective
contribution per unit volume of the porous medium. The corresponding order of magnitude
estimates are given by

1
V

∫
Vf

ε−1
f DO2∇εf · ∇ ⟨cO2⟩f dV = O

(
εfDO2

L2 ⟨cO2⟩f
)

(A.29a)

1
V

∫
Asf

n · DO2∇ ⟨cO2⟩f dA = O
(

DO2

ℓpL
⟨cO2⟩f

)
(A.29b)
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showing that the diffusive volume source has a negligible contribution. In addition, when
the process is considered at a time scale constrained by

t ≫ max

(
ℓ2

p

DO2

,
1

k1c + k1a + k2a + k2c ⟨cO2⟩f

)
(A.30)

it is not hard to deduce that both unsteady terms can be neglected in Eqs. (A.27a) and
(A.27b) so that the closure problem becomes steady. Finally, since c̃O2 ≪ ⟨cO2⟩f , it follows
that k2cc̃O2 ≪ k1c +k1a +k2a +k2c ⟨cO2⟩f . As a consequence, Eq. (A.27a) yields c̃R ≪ ⟨cRe⟩sf

and the closure problem takes the form

∇2c̃O2 = −
ε−1

f k2cav

DO2

⟨cO2⟩f ⟨cRe⟩sf −
ε−1

f k2aav

DO2

(⟨cRe⟩sf − ct
E) in Vf (A.31a)

−n · DO2∇c̃O2 = n · DO2∇ ⟨cO2⟩f + k2c ⟨cO2⟩f ⟨cRe⟩sf

+ k2a(⟨cRe⟩sf − ct
E) at Asf (A.31b)

c̃O2 (r) = c̃O2 (r + ℓrevei) (A.31c)

This problem has a linear structure, so the solution on c̃O2 can be sought in terms of a
linear combination of the sources under the form

c̃O2 = b · ∇ ⟨cO2⟩f + s ⟨cO2⟩f ⟨cRe⟩sf + h(⟨cRe⟩sf − ct
E) (A.32)

b, s and h being the closure variables (note that b is a vector whereas s and h are scalars)439

which can be chosen to obey the following boundary value problems440

Problem I

∇2b = 0 in Vf (A.33a)
n · ∇b = −n at Asf (A.33b)

⟨b⟩f = 0 (A.33c)
b (r) = b (r + ℓrevei) (A.33d)

441

Problem II

∇2s = −
ε−1

f k2cav

DO2

in Vf (A.34a)

n · ∇s = − k2c

DO2

at Asf (A.34b)

⟨s⟩f = 0 (A.34c)
s (r) = s (r + ℓrevei) (A.34d)

442
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Problem III

∇2h = −
ε−1

f k2aav

DO2

in Vf (A.35a)

n · ∇h = − k2a

DO2

at Asf (A.35b)

⟨h⟩f = 0 (A.35c)
h (r) = h (r + ℓrevei) (A.35d)

Note that the conditions in Eqs. (A.33c), (A.34c) and (A.35c) result from the fact that443

⟨c̃O2⟩f = 0 and are required for both closure problems to have a unique solution.444

Step 4: Macroscopic model445

When the representation of c̃O2 is reported back into the average equation (A.24), one446

finally obtains the following closed macroscopic equation for ⟨cO2⟩f
447

εf
∂ ⟨cO2⟩f

∂t
= ∇ ·

(
εfDeff · ∇ ⟨cO2⟩f

)
+ ∇ ·

(
s ⟨cO2⟩f ⟨cRe⟩sf

)
+∇ ·

(
h(⟨cRe⟩sf − ct

E)
)

−k2cav ⟨cO2⟩f ⟨cRe⟩sf − k2aav ⟨cRe⟩sf + k2aavct
E

(A.36)

with the effective parameters Deff and s and h given by

Deff = DO2

(
I + 1

Vf

∫
Asf

nbdA

)
(A.37)

s = DO2

V

(∫
Asf

nsdA

)
(A.38)

h = DO2

V

(∫
Asf

nhdA

)
(A.39)

where b, s and h are solution of the closure problems I, II and III in Eqs. (A.33), (A.34)448

and (A.35) respectively. Note that in Eq. (A.37), Deff is a second order tensor and I is the449

identity ; nb denotes the outer product between the two vectors n and b.450

From Eq. (A.34b), the order of magnitude of s can be estimated to be s = O (k2cℓp/DO2)
and from Eq. (A.38), one gets s = O (k2c). This leads to an order of magnitude estimate for
the second term on the right hand side of Eq. (A.36) given by ∇ ·

(
s ⟨cO2⟩f ⟨cRe⟩sf

)
=

O
(

k2c

L
⟨cO2⟩f ⟨cRe⟩sf

)
while the order of magnitude of the macroscopic reactive term is

k2cav ⟨cO2⟩f ⟨cRe⟩sf = O
(

k2c

ℓp
⟨cO2⟩f ⟨cRe⟩sf

)
with the idea that av = O

(
ℓ−1

p

)
. The same

estimate can be made for h. On the basis of the scale hierarchy, this indicates that the
macroscopic diffusion/reaction equation for ⟨cO2⟩f may finally be written as

εf
∂ ⟨cO2⟩f

∂t
= ∇ ·

(
εfDeff · ∇ ⟨cO2⟩f

)
− k2cav ⟨cO2⟩f ⟨cRe⟩sf − k2aav ⟨cRe⟩sf + k2aavct

E (A.40)

The average equation for ⟨cRe⟩sf is given by Eq. (A.26).451
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