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Abstract
Background: Patients at risk of breast cancer are submitted to

mammography, resulting in a classification of the lesions follow-
ing the Breast Imaging Reporting and Data System (BI-RADS®).
Due to BI-RADS 3 classification problems and the great uncer-
tainty of the possible evolution of this kind of tumours, the inte-
gration of mammographic imaging with other techniques and
markers of pathology, as metabolic information, may be advisable.

Design and Methods: Our study aims to evaluate the possibil-
ity to quantify by gas chromatography-mass spectrometry (GC-
MS) specific metabolites in the plasma of patients with mammo-
grams classified from BI-RADS 3 to BI-RADS 5, to find similar-
ities or differences in their metabolome. Samples from BI-RADS
3 to 5 patients were compared with samples from a healthy control
group. This pilot project aimed at establishing the sensitivity of
the metabolomic classification of blood samples of patients under-
going breast radiological analysis and to support a better classifi-
cation of mammographic cases.

Results: Metabolomic analysis revealed a panel of metabolites
more abundant in healthy controls, as 3-aminoisobutyric acid,
cholesterol, cysteine, stearic, linoleic and palmitic fatty acids. The
comparison between samples from BI-RADS 3 and BI-RADS 5
patients, revealed the importance of 4-hydroxyproline, found in
higher amount in BI-RADS 3 subjects.

Conclusion: Although the low sample number did not allow
the attainment of high validated statistical models, some interest-
ing data were obtained, revealing the potential of metabolomics
for an improvement in the classification of different mammo-
graphic lesions.

Introduction
Breast cancer is considered a major Public Health concern for

its high morbidity and mortality rates: EUROSTAT reports that
breast cancer accounted for 1.8% of all deaths in the EU-28 in
2015 and 3.6% of deaths in women.1 The breast cancer risk is
evaluated worldwide by the Breast Imaging Reporting and Data

System (BI-RADS®) since its introduction in 1992 by the
American College of Radiology. The BI-RADS System was
designed to serve as a guide to provide standardized terminology
in breast XR imaging.2,3 This recommended reporting structure
includes final assessment categories with management recommen-
dations and a framework for data collection and auditing. The BI-
RADS® for mammography was designed to standardize breast
image reports and to reduce confusion in breast image interpreta-
tions. It also facilitates the monitoring of results and quality
assessment. But, despite the initial wide diffusion of the System,
and considering the effort to produce free-access tool available on
the web for the BI-RADS reporting numerous reports about the
not univocal tumour classification by this system, as it is used, are
reported with challenging to reproduce classification, especially
for the categories associated with BI-RADS 3 classes.

Indeed, BI-RADS provides a highly questionable positive pre-
dictive reference (PPV) ranges for 3 (<2%), for 4 (2-95%), and in
some cases provides subclassification (4a, b, c) considered as
unnecessary by several authors. Due to this uncertainty, radiolo-
gists continue to have different PPVs for identical lesions evaluat-
ed by the Radiological Mammography.

The increasing participation of the population to breast screen-
ing programs has led to an increase in the diagnosis of the mam-
mographic lesions, particularly for the lesions classified with a
degree of malignancy (BI-RADS 3) in the BI-RADS classification
system. According to the most recent literature data, the risk of
malignancy of these kinds of lesions varies in the range 9.9-
35.1%. The benign lesions group includes atypical lobular hyper-
plasia (LIN 1), classic lobular carcinoma in situ (LIN 2) and pleo-
morphic lobular carcinoma in situ (LIN 3).4 Further, there are the
ductal carcinoma in situ (DCIS), with different grading, DCIS of
low nuclear grade, DCIS of intermediate nuclear grade and DCIS
of high nuclear grade.4

To complete the classification of the benign lesion, sclerosing
lesions (sclerosing adenosis, radial scar), benign phyllodes tumour
lesions (the most phyllodes tumors are benign, but in rare cases,
they can be malignant), breast micro glandular adenosis, muco-
cele-like lesions and adenomyoepithelioma, must be included.5,6
Some of these kinds of lesions are usually classified in the BI-
RADS 3 group.

Significance for public health

The breast cancer risk is evaluated after mammographic exam by the BI-RADS classification of lesion. The BI-RADS 3 classified cases comprise a wide class of
lesions and their treatment must be subjected to multidisciplinary discussion and consideration. Metabolomic analysis of plasma from subjects undergoing
mammography may give new information on metabolite content and allow a better classification for BI-RADS 3 cases.
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Due to BI-RADS 3 classification problems, the great uncer-
tainty of the possible evolution of these kinds of tumours and the
need of integration of mammographic imaging with other tech-
niques and markers of pathology, as metabolic information, must
be recommended.

This study aims to quantify plasma metabolites in patients with
mammograms classified from BI- RADS 3 to BI-RADS 5 and
assessing if there may be a similarity between the metabolome of
patients with BI-RADS 5 lesions (certainly malignant after VAB
Vacuum Assisted Biopsy) and patients with BI-RADS 3 lesions
(with uncertain potential for malignancy after VAB). Such a broad
classification uncertainty should be corrected by a multidiscipli-
nary approach to the pathology classification. In the last years
many metabolomic studies on breast cancer tried to identify useful
biomarkers for early diagnosis and pathology degree classification:
different bio-samples were analysed (plasma, serum, urine, saliva,
bioptic tissue) employing different analytical platforms (LC- or
GC-MS, NMR) but, despite the large number of data and useful
suggestions, no definitive and univocal molecular biomarker has
been identified.7 In this paper, the Metabolomic support to the
breast cancer diagnosis and classification is presented. This pilot
project aimed at establishing the sensitivity of the metabolomic
classification of blood samples of patients undergoing breast radi-
ological analysis, to improve the tumour classification and follow
up of these subjects.

Design and Methods

Study population
The study was conducted at the AOU Cagliari University

Hospital-Italy, from June 2016 to October 2017. The written
informed consent was obtained from subjects before inclusion in
the study. All procedures were in accordance with the Helsinki
Declaration of 1975, as revised in 2008. Clinical data of the study
population are reported in Table 1.

Blood samples were collected from 38 patients submitted to
radiological mammography (Amulet Innovality, Fujifilm) in the
clinical laboratories of the Radio diagnostic Complex Structure of
AOU Cagliari University Hospital (Italy): 32 subjects were diag-
nosed with BI-RADS 3 to 5 classification. Control samples were
collected from 10 healthy subjects. All blood samples were cen-
trifuged at 2000 rpm for 10 minutes; the surnatant plasma was
transferred in Eppendorf safe-lock tubes and immediately frozen
and stored at -80°C until analysis.

Sample preparation
Plasma samples were analysed as reported.8 In brief, samples

were thawed at 4°C, and 400 µl were treated with methanol, mixed
with a vortex mixer and then centrifuged. The upper phase was
transferred in glass vials and evaporated to dryness in an
Eppendorf vacuum centrifuge. Fifty µl of methoxylamine
hydrochloride (0.24 M in pyridine) were added to each sample and
left to react for 17 h at room temperature. Then 50 µl of MSTFA
(N-Methyl-N-trimethylsilyltrifluoroacetamide) were added and
left to react for one h at room temperature. Samples were diluted
with 100 µl of hexane containing the tetracosane (0.015 mg/ml)
internal standard and analysed on an Agilent 5977B Mass
Spectrometer interfaced to the GC 7890B equipped with a DB-5ms
column (J & W). Each acquired chromatogram was analysed using
the free software AMDIS (Automated Mass Spectral
Deconvolution and Identification System; http://chemdata.nist.

gov/mass-spc/amdis) supported by an in-house made library,
including 300 metabolites. This strategy allowed for the detection
of 81 compounds: following the identification levels defined by
the Metabolomics Standards Initiative (MSI),9 60 were “confident-
ly identified compounds” (level 1), 8 “putatively annotated com-
pounds” (level 2), 5 “putatively annotated compound class” (level
3), and eight unknown compounds. AMDIS analysis produced an
electronic sheet data matrix (Microsoft® Excel®, Microsoft Co.,
Washington DC, USA) that was submitted to statistical analysis as
previously described.10

Statistical analysis
The AMDIS data matrix was processed with the integrated

web-based platform MetaboAnalyst (http://www.metaboanalyst.
ca/).11 Missing values were replaced with half of the minimum
positive value. After normalization by sum, data were log-trans-
formed and then categorized using the Pareto scaling procedure.
Statistical procedures include univariate analysis, partial least
square discriminant analysis (PLS-DA) and orthogonal partial
least square discriminant analysis (OPLS- DA). Variable impor-
tance in projection (VIP) score for each model was calculated.
PLS-DA models were tested with the leave-one-out cross-valida-
tion (LOOCV) method for the evaluation of statistical parameters
(correlation coefficient R2, cross-validation coefficient Q2), which
allowed us to determine the optimal number of components for the
model description.

Results
The first statistical analysis examined group P, pathologic sub-

jects, compared to group C, healthy controls. Univariate analysis
(t-test) revealed four metabolites as statistically different between
groups: 3-aminoisobutyric acid, fructose, 3-hydroxybutyric acid
and 2-hydroxybutyric acid. The first was found more abundant in
controls, while the others were more abundant in the pathological
group. The PLS-DA model reveals an overlapping between sam-
ples but reaches an acceptable level of statistical significance, as
reported in Figure 1A. The model reveals all metabolites as more
abundant in pathologic samples except for 3-aminoisobutyric acid,
cholesterol, stearic, linoleic and palmitic fatty acids, cysteine, and
phosphate.

The low level of Q2 (Q2=0.16) reveals that a simple model
with two classes for plasma samples from subjects marked by BI-
RADS score from 3 to 5, together with the great uncertainty for the
attribution of BI-RADS score in some cases, justify the low predic-
tive power of the model also indicating the need to stratify the sam-
ples by the BI-RADS score, providing the comparison of each BI-
RADS class with the control group.

The comparison between BI-RADS 3 subjects (10) and con-
trols (10) resulted in the PLS-DA model described in Figure 1B.

                                                                                                    Article

Table 1. Clinical characteristics of the study population. Group 1:
cases, women submitted to mammography; group 2: healthy con-
trols.

                                           Group 1 (n=38)           Group 2 (n=10)

Age (mean ± SD)                                   49±15                                      48±10
BI-RADS classification (32)         BI-RADS 3 (10)
                                                           BI-RADS 4 (10)
                                                           BI-RADS 5 (12)                                   
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The comparison between BI-RADS 4 subjects (10) and controls
(10) generated the PLS-DA model described in Figure 1C. The
comparison between BI-RADS 5 subjects (12) and controls (10)
generated the PLS-DA model described in Figure 1D.

Table 2 reports the most important metabolites (VIP score
>1.0) for the above reported PLS-DA models, with the correspon-
ding trend.

These data revealed some common features between the BI-
RADS groups, when compared with the control group. 2-hydroxy-
and 3-hydroxybutyric acids, ethanolamine and fructose were found
in higher amount in all pathological groups, while 3-aminoisobu-
tyric acid and cholesterol were less abundant.

Finally, we compared the BI-RADS 5 with the BI-RADS 3 in
order to establish the sensitivity of our approach towards differ-
ences between different malignity of tumours. The PLS-DA model
did not reach statistical significance, being characterized by accu-
racy=0.68182, R2=0.55635, Q2=- 0.040531. The removal of an
outlier (sample 16) did not improve the model predictivity, while
the corresponding OPLS-DA model was characterized by good
discriminatory power (Figure 2).

One metabolite, the 4-hydroxyproline, resulted as the most
important in the discrimination between classes BI-RADS 3 and
BI-RADS 5, being more abundant in the BI-RADS 3 group.

Article

Figure 1. PLS-DA score plot between the first two components of the model: A) Pathological subjects P (green) vs healthy subjects C
(red) (accuracy=0.79167; R2=0.41472; Q2=0.16346. B) BI-RADS 3 subjects (red) vs healthy subjects C (green) (accuracy=0.7;
R2=0.61611; Q2=0.29495). C) BI-RADS 4 subjects (red) vs healthy subjects C (green) (accuracy=0.7; R2=0.66387; Q2=0.33798). D)
BI-RADS 5 subjects (red) vs healthy subjects C (green) (accuracy=0.63636; R2=0.51355; Q2=0.0068).
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Figure 2. OPLS-DA model obtained from the comparison between BI-RADS 3 and BI-RADS 5. R2X=0.0607, R2Y=0.437, Q2=0.071.
Score plot (left) and most important metabolites (features) (right).

Table 2. PLS-DA most important metabolites (VIP = variable importance in the projection; VIP score > 1) and the relative abundance
differences: ↑ more abundant in pathological class (all pathological samples (P), BI-RADS 3 (3), BI-RADS 4 (4), BI-RADS 5 (5) com-
pared to controls C); ↓ less abundant in pathological compared to controls. Chemical class: AA (Amino acid), HA (Hydroxy acid), A
(Acid), FA (Fatty acid), PO (Polyol), Am (Amine), S (Sugar), St (Steroid), I (Inorganic).

Metabolite Chemical class Identification level9             P vs C   3 vs C   4 vs C   5 vs C

2-Hydroxybutyric acid      HA      1     ↑  ↑ ↑ ↑
3-Aminoisobutyric acid    AA      1     ↓  ↓ ↓ ↓
3-Hydroxybutyric acid      HA      2     ↑  ↑ ↑ ↑
4-Hydroxyproline     AA      1     ↑
Arabitol       PO     1     ↑  ↑
Cholesterol         St      1    ↓  ↓ ↓ ↓
Citric acid      HA      1 ↑
Cysteine     AA      1     ↓  ↓ ↓
Erythritol       PO     1     ↑  ↑ ↑
Ethanolamine        Am     1     ↑  ↑ ↑ ↑
Fructose    S    1  ↑  ↑ ↑ ↑
Glutamic acid     AA      1 ↑
Glyceric acid      HA      1     ↑  ↑ ↑
Iminodiacetic acid       A       1  ↓
Isoleucine      AA      1      ↑
Lactic acid     HA      1      ↑
Leucine       AA      1     ↑
Linoleic acid       FA      1     ↓  ↓ ↓
Mannose    S    1  ↑  ↑
Palmitic acid       FA      1     ↓  ↓
Palmitoleic acid     FA      1     ↑  ↑ ↑
Phenylalanine         AA      1     ↑  ↑
Phosphate        I        1     ↓  ↓
Proline+CO2      AA      1     ↑  ↑
Pyroglutamic acid       AA      1     ↑
Pyruvic acid          A       1   ↑  ↑ ↑
Serine     AA      1     ↑
Stearic acid         FA      1     ↓  ↓ ↓
Threonic acid         HA      1     ↑  ↑ ↑
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Discussion
This study reports a novel investigation approach for the breast

tumours analysis and classification. Usually the BI-RADS system
has a significant amount of failures in tumours classification espe-
cially for the BI-RADS 3 class, a class with borderline character-
istics and with difficult categorization of a broad typology of
tumours. Table 3 reported the most common benign lesions classi-
fied in BI-RADS 3.

In case of malignancy suspect after mammography, a biopsy is
required. The cells or tissue from biopsy are withdrawn by
VAB/Core-Biopsy CB or by Excisional Biopsy of the Breast.
These samples will be histologically classified by means of the
Anatomic Pathology techniques to verify the presence of tumor.12-
13 In all these cases, an upgrade toward malignant lesions diagnosis
of 5- 7% of cases is expected. For this reason, the surgical exten-
sions procedures after the VAB recently increased (and in some
case also by excisional surgery procedures, that is highly discussed
in the scientific community), even in case of benign lesions, with
a general increase of cost for the surgical procedures and patient’s
stress and overload. Recently, several guidelines have been pub-
lished by the most influential scientific associations about the man-
agement of lesions with the BI-RADS 3 uncertain malignancy
potential, but, to date, there is no univocal positive predictive diag-
nostic system able to indicate, a priori, which lesions, histological-
ly catalogued as BI-RADS 3, should evolve towards higher risk
classes also after extended surgery procedures. Since there is no
characteristic radiological pattern, it is not easy to define whether
the biopsy collection has wholly removed the lesion or there may
be neoplastic or pre-neoplastic alterations accompanying the sur-
rounding parenchyma, so it must be based on the positive predic-
tive value (PPV) of these injuries. Although the latest edition of the
NCCN guidelines always recommends surgical excision, many
studies do not justify this position.14 In fact, a European Consensus
has recently been published limiting the use of surgery to ade-
quately selected BI-RADS 3 lesions during the multidisciplinary
discussion.15 The need to proceed with surgical excision should be
based on clinical-radiological and histological data, taking into
particular consideration the patient’s family history,16 after ade-
quate informed consent. This is particularly true, especially after
VAB sampling, in cases where microcalcifications are entirely
removed by post-biopsy mammography.12

In order to improve the sensibility and the specificity, we tested
the potential contribution of Metabolomics with a pilot study to
investigate if GC-MS analysis of plasma samples of patients could
give a better understanding of the difference between the cate-
gories of benign tumors usually classified in the BI-RADS 3 class.

The comparison between pathological samples (BI-RADS 3 to

5) with controls (all together or each single BI-RADS group)
revealed 2- and 3-hydroxybutyric acid, together with ethanolamine
and fructose more abundant in pathological samples, while 3-
aminoisobutyric acid and cholesterol were found in higher amount
in healthy subjects.

2- and 3-hydroxybutyric acid were detected and proposed as
diagnostic biomarkers in ovarian cancer patients17 and in breast
cancer.18 These molecules and their oxidation products are classi-
fied as ketone bodies: the higher amount found in cancer patients
when compared with healthy controls, may be ascribed to an
upregulated fatty acid oxidation due to the higher energy demand
of tumour cells.

Aminoisobutyric acid was found in higher amounts in healthy
controls: this molecule mainly derives from the breakdown of the
DNA pyrimidine base thymine (Figure 3).

Ethanolamine constitutes the polar head of phosphoglycerides,
being the second most abundant constituent of membranes of this
class of lipids. Upregulation in phospholipid metabolism was
reported in different studies employing a multiplatform
approach.18-19

4-Hydroxyproline resulted the most important metabolite in
the discrimination between classes BI- RADS 3 and BI-RADS 5,
being more abundant in the BI-RADS 3 group. This molecule is an
amino acid found almost exclusively in collagen, being responsible
of the correct folding of its helix polypeptide chains. The proline
4-hydroxylation is a post-translational process catalysed by Prolyl
4-hydroxylase (P4H). An increase of 4-hydroxyproline amount has
been connected to collagen degradation.20 Our study proofs the
ability of Metabolomics to distinguish between BI-RADS 3 e BI-
RADS 5 classes, also with limited sample numerosity. Although
the statistical models did not reach high predictivity values, never-
theless interesting information were obtained about the metabolic
profile of different BI-RADS classes.

                            Article

Figure 3. Biochemical reaction leading to 3-aminoisobutyric acid.
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Table 3. Common benign lesions classified in BI-RADS 3.

Typical pre surgery diagnosis [BI-RADS 3]

Atypical lobular hyperplasia LIN1
Classical lobular neoplasia LIN2
Flat epithelial atypia
Atypical intraductal proliferation
Intraductal papilloma
Elastic sclero/radial scar injury
Benign phyllodes tumour
Rare: microglandular adenosis, adenomyoepithelioma, mucocele like lesion.
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Conclusion
In this pilot study, we reported the potential contribution of

Metabolomics to the radiological classification of breast cancer
images. Metabolomics represents a powerful tool for the extraction
of features about the health status of patients with a suspect of
breast tumour. As reported in recent publications about
metabolomics and cancer,7,8,19,21 a fingerprint with the capability
to improve specificity and sensibility of the radiological classifica-
tion of tumours can be extracted from the peripherical plasma or
specific tissue. BI-RADS classification can be enhanced by the
quantification of the metabolites list from Metabolomics analysis.
We found a particular model for the differences between BI-3 and
BI-5 using peripherical plasma. To establish the correct fingerprint
and the proper features, the number of samples must be increased,
having the reasonable assurance that the metabolomic model can
work.

Finally, this study proves that Metabolomic analysis opens an
essential gate to the omic data use in the Radiological Diagnosis,
the Radiometabolomics.
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