
INTRODUCTION

The term diadromy describes migrations between
freshwater and marine environments (Myers, 1949; Mc-
Dowall, 1988; McDowall, 1992). Diadromous species in-
clude less than 3% of the world fish fauna (Eschmeyer
and Fong, 2016), among which several ones are econom-
ically and culturally important, such as freshwater anguil-
lid eels and salmons (Chapman et al., 2012).

Catadromous fish are characterized by a complex life
cycle where fish breed in the ocean and growth in conti-
nental coastal and/or inland waters (McCleave, 2001), as
seen in anguillids (Tesch, 2003; Elliot et al., 2007). Main
ecological services provided by catadromous fish consist
for example in the provision of food, and in the regulation
of ecosystem functions by transporting nutrients and link-
ing different biomes (Druineau et al., 2018a). Globally,
these animals have been appreciated for human consump-
tion showing a relevant economic interest (Costa-Dias et
al., 2009; Feunteun and Laffaille, 2011). Catadromous fish
can be also used as indicators of environmental quality and
functionality (Smith et al., 2016). For instance, they are also
commonly used as a metric in the assessment of water bod-
ies ecological status in the European Water Framework Di-
rective (Delpech et al., 2010) or as bio-indicators of water
quality (Amara et al., 2009), reflecting both habitat longi-
tudinal connectivity and habitat quality. In this context, an
exiguous number of catadromous fish species are identified
as ‘umbrella species’ in order to ensure the protection of
these species and their habitats (Rochard et al., 2009). They
are also magnified by many cultures, foster a belonging
sense, and support million-dollar fishing (Garman, 1992;
Close et al., 2002; Montgomery, 2003; Chasco et al. 2017;
NOAA, 2017). Because of this general interest, catadro-
mous fish are object of studies in all their dimensions
(Drouineau et al., 2018b) and strongly linked to research
questions associated with animal migration (Secor, 2015;
Morais and Daverat, 2016).

Catadromous fish use along their migration pathways
a variety of habitats and face many diverse environmental
threats (McIntyre et al., 2016). In Europe, as observed for
most migratory animals (Sanderson et al., 2006; Wilcove
and Wikelski, 2008), a worldwide decline of migratory
fish has been recorded at least since the beginning of the
20th century (Béguer et al., 2007; Wolter, 2015; Lambert
et al., 2019). The causes are numerous and likely cumu-
lative (e.g., obstacles to migration, deterioration in essen-
tial habitat and water quality, unsustainable fisheries,
parasite introductions), although quantitative evidence has
been rarely demonstrated (Dekker and Casselman, 2014).
As a result, many catadromous species are now classified
as rare, endangered, or extinct, in the IUCN Red List
(IUCN, 2019). There is, therefore, an urgent need to de-
velop approaches that provide reliable quantification of
the specific impacts of the different anthropogenic pres-
sures acting on catadromous species. This would help sup-
port the implementation of effective mitigation measures
and provide adequate tools for national and international
regulation around the world. Among the most iconic
catadromous species, the European eel Anguilla anguilla
(Linnaeus, 1758) has been the focus of many studies (e.g.,
Dekker, 2003a; Bonhommeau et al., 2008; Kettle et al.,
2011; Baltazar-Soares et al., 2014; Schiavina et al., 2015;
Aalto et al., 2016; Righton et al., 2016; Bornarel et al.,
2018; Bevacqua et al., 2019; Dekker, 2019). The life cycle
of the European eel A. anguilla has stimulated great cu-
riosity and interest since at least the 4th century BC,
where already some important Greek philosophers like
Aristotle hypothesized on the origin of this species, which
remained enshrouded in mystery for millennia. The recent
interest increase in eel biology is primarily linked to con-
servation issues. Therefore, to implement our knowledge
about the main natural and anthropogenic threats to its
survivorship and identify possible solutions to preserve
it, there is an urgent need to gain further insights into A.
anguilla life-history.
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In this narrative review, we present the state of the
knowledge about the life cycle, habitat occupancy, recruit-
ment, and migration patterns of the European eel and
about the major threats most likely have contributed to
the decline of eels.

LIFE CYCLE, HABITAT OCCUPANCY
AND MIGRATION PATTERNS OF 

The life cycle of the genus Anguilla: common features

Eels of the genus Anguilla (Schrank, 1798) are the
only genus of Anguilliformes with a catadromous life
cycle (McDowall, 1988). The life cycle of anguillid eels
involves five developmental stages: leptocephalus (lar-
vae), glass eel (transparent juvenile stage), elver (pig-
mented juvenile stage), yellow eel (immature adult) and
silver eel (partially mature adult) (Bertin, 1956; Tesch,
1977; Cresci, 2020). The larval stage duration varies in
different regions worldwide and can last from several
months to some years, according to the species and bio-
geographic region (Tsukamoto, 1990; Lecomte-Finiger,
1992; Cheng and Tzeng, 1996; Arai et al., 1999; 2001;
2003; Wang and Tzeng, 2000; Marui et al., 2001; Robi-
net et al., 2003; Robinet et al., 2008; Reveillac et al.,
2008; 2009; Bonhommeau et al., 2010; Han et al., 2016;
2019; Hewavitharane et al., 2020). The larval phase suf-
fers high mortality thereby influencing recruitment suc-
cess (Cushing, 1990; Durant et al., 2007). After
metamorphosis into glass eels, juveniles leave oceanic
waters, starting the upstream migration crossing coastal
waters (Tesch, 2003; Cresci, 2020). Glass eels represent
the recruitment phase to continental waters (ICES, 2011)
and constitute the natural source of supply of the species
because its artificial reproduction is not yet possible
(Pedersen and Ramussen, 2016). Glass eels develop into
elvers and settle as yellow eels for many years (about 5-
25 years) in coastal and inland water habitats (e.g., es-
tuaries, rivers, streams, ponds, and lakes) (Tesch, 2003;
Cresci, 2020). After this trophic phase, eels start the
downstream migration during the silver eel stage (Tesch,
2003) that is initiated by endogenous and exogenous sig-
nals that coincide with optimal conditions for successful
migration (Sandlund et al., 2017). The migration peaks
in rivers properly occur during rainfall events associated
with flow pulses, affecting water velocity, turbidity, and
conductivity (Cullen and McCarthy, 2003; Durif et al.,
2008; Drouineau et al., 2017). Once gonad maturation
starts, eels run downstream mainly at night, during rising
river flow phases (Behrmann-Godel and Eckmann,
2003), which also provide protection against predation
and reduce the swimming energy cost to return to the
offshore spawning area (Tesch, 2003; Sandlund et al.,
2017; Cresci, 2020).

Habitat occupancy

The European eel A. anguilla is a panmictic species
(Palm et al., 2009; Enbody et al., 2021) distributed
across most of the coastal countries in Europe and North
Africa and spanning the entire Mediterranean basin
(ICES, 2018). Because the complex life cycle, the cryp-
tic behavior, and body shape features of eels, results hard
to find appropriate and standardized sampling technique
for the monitoring of the European eel in several aquatic
environments (Naismith and Knight, 1990; Lasne and
Laffaille, 2009). Furthermore, many aspects of the resi-
dent stage of eels in freshwaters during their growth
phase are still insufficiently understood such as ecology
in terms of space and time use (Feunteun et al., 2003;
Imbert et al., 2010). 

The habitats occupancy can be investigated through
the otolith microchemistry used to determine the type of
habitat of individuals throughout their life, primarily using
the strontium (Sr) to calcium (Ca) ratio to distinguish
freshwater phases from brackish and seawater phases
(Tsukamoto and Aoyama, 1998; Arai et al., 2006; Shiao
et al., 2006; Lin et al., 2011 Arai et al., 2019). More re-
cently, other elements, such as barium (Ba) and man-
ganese (Mn), have been used to assess finer-scale
movement patterns (Benchetrit et al., 2017). This tech-
nique constitutes a reliable tool for the assessment of habi-
tat use and growth throughout the entire life span between
freshwater and saline waters (Clément et al., 2014).

Experimental electrofishing has been recognized an
efficient sampling method to catch eel in freshwaters de-
spite some limits (e.g., deep waters) (Laffaille and Rigaud,
2008), while fishery-based time-series are usually utilized
to assess eels’ temporal trends (ICES, 2020). Glass eel
fisheries are carried out in the estuaries, or under dams,
to study the natural abundance of glass eels in time and
space (Dekker et al., 2003b). Several dipnet types are ap-
plied, on foot or using boats (Aubrun, 1986), trawls
(Aubrun, 1987), stow nets (Weber, 1986), and fyke nets
(Ciccotti et al., 2000). Fisheries for yellow and silver eels
foresee a wide range of gears that include nets, spears,
pots, hooks, in coastal areas, lagoons, rivers, lakes, and
streams (Dekker et al., 2003b).

Several studies used telemetry to investigate individ-
ual movement patterns, site fidelity, habitat use and home
range exploitation in relation to seasonal and environmen-
tal factors (e.g., Ovidio et al., 2013; Barry et al., 2015;
Piper et al., 2017; Trancart et al., 2018; Dorow et al.,
2019; Piper et al., 2019; Teichert et al., 2020).

Furthermore, diel, and seasonal phenology and the ef-
fect of environmental drivers on non-migrant eel move-
ments were investigated using acoustic camera to evaluate
the presence of eels swimming toward the inland waters
(Lagarde et al., 2021). Studies on the presence of eels’
population were conducted also with visual observation
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in inland waters (e.g., lakes and reservoirs) (Rossier,
1997; Schulze et al., 2004). 

Another tool that could support to understand the eels’
habitat occupancy is represented by the environmental
DNA (eDNA) analysis (Knudsen et al., 2019). eDNA as-
says for target species and eDNA metabarcoding are both
promising techniques for establishing species presence
from environmental samples (Taberlet et al., 2012; Evans
et al., 2016; Deiner et al., 2017). These indirect methods
are cheap to implement at a large scale and can be used to
quickly establish the spatial distribution of a target species
(Atkinson et al., 2018; Bracken et al., 2019). Instead, when
it is difficult to assess the presence of a species because
the species couldn’t simply be present, direct methods (fish
tagging) or physical survey assessments may be more ap-
propriate (Kemp and O’Hanley, 2010).

Juveniles’ migration and orientation 

Migration mechanisms, including orientation, behav-
ior and route architecture throughout the entire life of an-
guillid eels have been revealed by means of the recent
advanced technologies like agent-based model, ABM,
particle tracking model of upstream migrating juvenile
eels (Padgett et al., 2020; Benson et al., 2021), motion
analysis of glass eels (Eldrogi et al., 2018), tiny acoustic
transmitters (Fischer et al., 2019; Mueller et al., 2019;
Liss et al., 2021), satellite tracking for migrant adults
(e.g., Aarestrup et al., 2009; Westerberg et al., 2014;
Wysujack et al., 2015; Amilhat et al., 2016; Righton et
al., 2016 for the European eel; Manabe et al., 2011;
Higuchi et al., 2018 for the Japanese eel Anguilla japon-
ica; Schabetsberger et al., 2013; 2015; 2019 for Pacific
eels A. marmorata and A. megastoma; Beguer-Pon et al.,
2015 for the American eel Anguilla rostrata).

To reduce migration energy costs (Forward and
Tankersley, 2001; Bureau du Colombier et al., 2007; Ede-
line, 2007), juveniles catadromous species are transported
in continental waters by entering the water column during
floodtides and descending to the bottom during ebbtides
using flood tide transport (FTT) to migrate through estu-
aries and thus colonize catchments (Forward and Tanker-
sley, 2001). But in absence of this condition, an alternative
migratory tactic to undertake upstream migration reckon
on an active swimming running after salinity gradient
(Cresci, 2020), and using earthy and green odors as at-
tractant (Sola and Tongiorgi, 1996). For instance, several
authors showed that chemical cues (e.g., green odors,
amino acids, and bile salts) such as freshwater plumes and
salinity gradients transporting inland odors into estuaries
can guide estuarine juveniles’ migration (Tosi et al., 1988;
Tosi et al., 1989; Crnjar et al., 1992; Tosi and Sola, 1993;
Sola, 1995; Atta et al., 2013). Indeed, eels possess one of
the most sensitive olfactory systems among fish, and ol-
faction plays a central role in their life (Huertas et al.,

2008). Glass eels, for example, are attracted by inland
odors, derived from the decomposition of detritus associ-
ated with the flora and microfauna in freshwater
(Sorensen, 1986). Among inland odors, geosmin (trans-
1,10-dimethyltrans- 9-decalol) play a role in attracting
glass eels (Tosi and Sola, 1993; Sola, 1995). In addition,
it would seem that geosmin operates as an attractant in
freshwater and as a repellent in sea water (Tosi and Sola,
1993). Moreover, glass eels’ migratory behavior may be
also affected by physiological changes, alterations of lo-
comotor activity, and decreasing of body condition (Ede-
line et al., 2007). Social interactions represent a selective
element for the migration and timing of glass eels’ settle-
ment linked to specific habitat survival and growth (Ede-
line et al., 2009).

Some studies provided evidence that thyroid hor-
mones are involved in glass eel migration (Edeline et al.,
2004; 2005). Decreasing levels of thyroid hormones in ju-
venile eels might explain the decreasing rate of develop-
ment and the decreasing propensity to migrate during the
transition from the leptocephalus larval to the elver stage
(Jegstrup and Rosenkilde 2003). This hypothesis is cor-
roborated in subadults of the American eel A. rostrata, in
which elevated T4 plasma levels are correlated with in-
creased locomotion activity (Castonguay et al., 1990).
Furthermore, European glass eels’ river colonizers exhibit
increased thyroid hormone concentrations when com-
pared to estuarine migrants (Castonguay et al. 1990; Ede-
line et al., 2004) suggesting a switch from a high
migrating to settling behavior strongly linked to thyroid
hormones production.

The migration of catadromous fish can also be ex-
plained with the ‘pheromone hypothesis’, according to
which fish can release particular odors into the water
(pheromones, likely amino acids; Crnjar et al., 1992)
functioning as attractants for conspecifics (Schmucker et
al., 2016). The attractive power of these cues is stage de-
pendent in the eels, it is more accentuated on glass eels
and gradually disappears in pigmented glass eels and
elvers likely due to physiological and behavioral changes,
alternative cues possibly become main attractants
(Schmucker et al., 2016; Galbraith et al., 2017). 

Mechanisms regulating glass eels’ orientation are most
likely innate and involve geomagnetic-based compass
mechanisms based on the inclination and intensity of the
magnetic field (Naisbett-Jones et al., 2017). However,
leptocephali stage present in the Sargasso Sea may not
possess that same magnetic sensing ability as the glass
eels because substantial body rearrangements and related
physiological changes (Tesch, 2003; Baltazar-Soares and
Eizaguirre, 2017). 

More recent studies confirmed that glass eels can orient
their migration using the Earth’s magnetic field (Cresci et
al., 2017, Cresci et al., 2019a) and lunar cues (Cresci et
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al., 2019b), as a reference to imprint a memory of tidal
currents in estuaries and to facilitate position holding and
upstream migration (Cresci et al., 2019b). However, al-
though many individual pieces of the complex puzzle of
glass eels’ orientation and migratory behavior have been
elucidated, a holistic mechanism to discriminate how they
migrate from the continental slope to estuaries and whether
this path is memorized until returning to the sea in the adult
stages is still far from being identified. 

Adult migration behavior

The spawning migration patterns of the European eel
in the Atlantic Ocean have been studied due to their long
distances (about 2000–8000 km) (Schmidt, 1922; Miller
et al., 2019). The long migration paths are notable because
the amplitude of their scale and the excellent ability to
trace the birth location using an unrevealed combination
of sensory cues (McCleave and Kleckner, 1985). 

Mark–recapture studies have been used to evaluate
eels’ home range, habitat preferences, diel and seasonal
movements (Jellyman et al. 1996; Oliveira, 1997; Laf-
faille et al., 2003).

Direct observations of the migratory behavior of yel-
low and silver eels were made using electronic tags (e.g.,
Amilhat et al., 2016; Righton et al., 2016; Béguer-Pon et
al., 2018; Dorow et al., 2019; Teichert et al., 2020; Tran-
cart et al., 2020). Telemetry represents a reliable method
to study the spatial ecology of eels, providing the oppor-
tunity to track fish in real time or from archived data to
remote receivers, enabling data to be retrieved without re-
capturing the tag (Torstad et al., 2013). The development
and miniaturization of pop-up satellite archival tags have
allowed the tracking of silver eels at sea, unravelling part
of the mystery surrounding the oceanic migration of an-
guillid eels (Jellyman and Tsukamoto 2002; Aarestrup et
al. 2009; Béguer-Pon et al. 2015, Amilhat et al., 2016).
Fundamental telemetry studies on silver eels investigated
their migration from freshwaters to oceanic spawning
areas, including survival, progression rate and behavioral
and external physical factors associated with migration.
To date, no telemetry studies on eels have been used with
other available physiologically oriented sensors, such as
electrocardiography or electromyography (Cooke et al.
2013), or any other environmental sensors, such as con-
ductivity or oxygen, while tracking eels in the wild. 

Recently, some studies have shed light on the possible
effects of global change in eels’ migration patterns: cli-
mate change and warming related thermal and hydrolog-
ical modifications of aquatic ecosystems could delay or
bring forward silver eels (Verreault et al.,2012) and alter
patterns of glass eels’ migration (Moore and Jarvis, 2008).
Migratory phenology and habitat change as affected by
current climate change should therefore be a priority of
future studies. 

EELS’ RECRUITMENT DYNAMICS

Success and extent of eels’ recruitment depends both
on global (Knights, 2003; Kettle and Haines, 2006; Bon-
hommeau et al., 2008; Pacariz et al., 2014; Gutierrez-
Estrada and Pulido-Calvo, 2015; Bornarel et al., 2018)
and local factors, whose interaction modulate spatial and
temporal dynamics of recruits entering brackish environ-
ments and freshwaters (Gascuel et al.,1995; Arribas et al.,
2012; Harrison et al., 2014; Trancart et al., 2014; Aran-
buru et al., 2015). Recruitment dynamics at the local scale
can vary daily, seasonally, and annually (Bru et al., 2009;
Laffaille et al., 2007; Zompola et al., 2008; Arribas et al.,
2012, Podda et al., 2020), are well known for Atlantic es-
tuaries and rivers of Europe (Beaulaton and Castelnaud,
2005; Harrison et al., 2014), and relatively less known for
the estuaries located in the southernmost distribution area
(Arribas et al., 2012). 

Although only one cohort recruits each year (De-
saunay and Guerault, 1997), glass eels arrive in different
waves from different routes (Boëtius and Harding, 1985).
The preference of glass eels for freshwater or brackish
water varies with the body condition and the timing of ar-
rival to the continental shelf (Edeline et al., 2005). Re-
constructions of exact hatching site and migration routes
of the larvae and glass eel, based on mere analyses of re-
cruitment and sampling data (Dekker, 1998; Lecomte-Fin-
ger, 1992), have been carried out since the early 20th
century (Boëtius and Harding, 1985; Van Ginneken and
Maes, 2005; Westerberg et al., 2018).

Most of the available multi-year temporal series on
glass eels’ recruitment to European estuaries is based on
fishery and/or scientific surveys, however pluriannual
fishery independent studies are very scarce. Fishery data-
based glass eels’ recruitment estimates generally suffer
from sampling (methods and protocols) and temporal bi-
ases (fishing season). For example, in Europe, most sur-
veys to estimate recruitment rates have been conducted in
rivers or estuaries, where the eels’ dispersion is influenced
by the riverbed or river mouth width, allowing easier glass
eel samplings (Adam et al., 2008; Bru et al., 2009; Zom-
pola et al., 2008).

Models like the glass eel recruitment estimation model
one (GEREM)(Drouineau et al. 2016) estimated the an-
nual glass eel recruitment at different spatial scales, pro-
viding a recruitment index to robustly compare spatial
variation trends, with large biases for specific regions
where data are scarce or not existent (e.g., North Africa,
Eastern Mediterranean, and the Baltic Sea). 

Moreover, it must be noticed that an accurate knowl-
edge of the physical-chemical characteristics of the sur-
veyed environments is also needed to properly assess
movement and distribution of eels in both the biomes
hosting their life cycle (Adam et al., 2008). This need cre-



Hard times for the catadromous European eel 51

ates a significant challenge: precise information on eels’
numbers entering inland waters and moving through the
biomes would be collected to understand recruitment dy-
namics, but, yet it is hard to be obtained because of the
complex, often unpredictable, environmental variability
of shallow water ecosystems that can mask natural pat-
terns at the relevant spatial scales. Implementing standard-
ized data collection programmes of glass eels’ abundance
should be therefore a major investment of future research
and stock assessment protocols.

THREATS TO A. ANGUILLA

The global status of the eel is primarily a consequence
of a prolonged decline of its recruitment across the entire
distribution area (Moriarty and Dekker, 1997; ICES, 2020
and author therein). Many factors have been identified as
recruitment short- or medium-term drivers but, so far, it
has been difficult to reach clear conclusions about what
are the primary drivers of its decline. Multiple environ-
mental factors (e.g., river flow, changes in the North At-
lantic Oscillation, warming of sea surface temperature,
currents) probably affected the documented decline (e.g.,
Gandolfi et al., 1984; Domingos, 1992; Elie and Rochard,
1994; de Casamajor et al., 1999; Prouzet, 2002; Jellyman
and Lambert, 2003; Knights, 2003; Polyakov et al., 2005;
Bouvet et al., 2006; Bureau Du Colombier et al., 2007;
Friedland et al., 2007; Laffaille et al., 2007; Adam et al.,
2008; Bonhommeau et al., 2008; Crivelli et al., 2008;
Kettle et al., 2008; Zompola et al., 2008; Miller et al.,
2009; Durif et al., 2011; Kettle et al., 2011; Arribas et al.,
2012; Baltazar-Soares et al., 2014; Hanel et al., 2014; Mi-
lardi et al., 2018; Podda et al., 2020).

While eels are still a common species throughout Eu-
rope, their stocks have been declining rapidly during the
last 40-50 years (Dekker, 2016). The decline of the eel
global stock affects indeed its entire geographical range,
also concerning the southern part of its distribution area,
as documented by a concurrent decline in glass eels’ re-
cruitment, as well as by contracting local stocks in the
Mediterranean Region (Ciccotti, 2005; Aalto et al., 2016;
Amilhat et al., 2016). Silver eels’ abundance decreased
by as much as 90% between 1975 and 2010 (Bevacqua et
al., 2015) with human mediated activities being a con-
tributing factor to this decline (Calles et al., 2010; Feun-
teun, 2002; Piper et al., 2013). It is known that a
combination of natural causes and anthropogenic pres-
sures has been impacting both the eel stock and its habi-
tats (Jacoby et al., 2015; Miller et al., 2016; Drouineau et
al., 2018b). The European eel is subjected to fishing ac-
tivities at all continental life stages (from juveniles to
adults) and high fishing mortality estimated over the en-
tire life cycle suggests that overfishing represents one of
the main threats for the survival of the entire eel popula-

tion (FAO, 2007). Furthermore, all commercial produc-
tion of A. anguilla (intensive and extensive farming, com-
mercial and recreational fishing) depends on the
exploitation of wild stocks (juveniles to supply farms,
adults for fishing) (OSPAR, 2010). To deal with this prob-
lem there are various regional management measures cur-
rently undertaken to regulate European eel fisheries.
Principal conservation measures in place for glass, yellow
and silver eels include a ban on commercial fishing of
glass eels, gear regulations, quotas, closed seasons, li-
censes for fishing, size limits, free gaps in weirs and re-
quirements for elver passes (Ringuet et al., 2002). Other
pressures play an important role in the decline of the Eu-
ropean eel, and include also habitat loss, water pollution,
parasitism, and migration obstacles (dams, weirs, pump-
ing stations) (e.g., Baltazar-Soares et al., 2014; Culurgioni
et al., 2014; 2015; Bevacqua et al., 2015; Aalto et al.,
2016; Dekker and Beaulaton, 2016). These factors affect
European eels most in the continental phase of their life
cycle, while environmental factors, such as climate
change, mostly influence their oceanic phase (Drouineau
et al., 2018b). However, as eels can spend most of their
life in freshwater (Tesch, 2003) the environmental stres-
sors affecting their life in this biome needs to be studied
thoroughly. 

In 2007, the European Commission developed a spe-
cific legislation (Council Regulation (EC) No. 1100/2007)
to protect eels (European Commission, 2007). European
eel has been listed also in Appendix II of the Convention
on International Trade in Endangered Species (CITES,
2020) and in Appendix II of Convention for the Conser-
vation of Migratory Species (CMS) (CITES, 2020). Most
recently, the International Union for Conservation of Na-
ture (IUCN) has recently classified the European eel as
Critically Endangered (IUCN, 2014; Pike et al., 2020). 

The stock of the European eel is currently at its his-
torical minimum. For more than half a century, stock
abundance and fishing yield have declined by about 5%
per year, to less than 10% of its historical level (Dekker,
2003a; 2004; ICES, 2019). From 1980 to 2010 recruit-
ment of young eel (glass eel) from the ocean towards the
continent dropped consistently by approximately 15% per
year, to 1%-10% of its former levels (Dekker, 2000; ICES,
2020). The causes of these downward trends are not clear,
and, consequently, efficient remedies and mitigation
measures are hard to design (Dekker, 2016). Hence, the
dynamics of the population are only marginally known
(Dekker, 2004) in the current relatively well-documented
years, and even more so for the decades during which the
stock declined (Dekker, 2016). To fill these gaps of
knowledge, monitoring programmes have been estab-
lished, and models of stock dynamics also developed (De
Leo et al., 2009; Walker et al., 2013).

Many discoveries were made in the 20th century about
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the behavior and movement ecology of this species. Ex-
tensive sampling programs were conducted in the Atlantic
Ocean to understand the horizontal and vertical movement
of eel leptocephali (Hanel et al., 2014; Miller et al., 2015),
and direct observations of the migratory behavior of yel-
low and silver eels were made using telemetry (Amilhat
et al., 2016; Righton et al., 2016; Béguer-Pon et al.,
2018). However, less is known about the migratory be-
havior of glass eels during their complex journey from the
continental slope to estuaries.

General threats to the survivorship of A. anguilla span
across their entire home range including either freshwater,
marine coastal, and oceanic habitats. Threats to reproduc-
ing stocks in freshwater are, obviously, conceivably more
of concern. Freshwater ecosystems are threatened habitats
by multiple human disturbances (Vörösmarty et al.,
2010), which are expected to affect future species ranges
(Comte et al., 2016; Radinger et al., 2016). From a leg-
islative perspective, the presence of obstacles to river flow
is important for determining the hydromorphological sta-
tus of a river in terms of hydrological regime, continuity,
morphological condition, and ecological flows (EU Water
Framework Directive (WFD) 2000/60/EC; Moccia et al.,
2020). Indeed, in recent years, there has been a growing
interest about ecological consequences of river fragmen-
tation by physical obstacles (Garcia de Leániz, 2008;
Januchowski-Hartley et al., 2013; Kroon and Phillips,
2016; Birnie-Gauvin et al., 2017; Jones et al., 2019). Re-
cent estimates of fragmentation suggest that 63% of rivers
worldwide are no longer free-flowing and that half of all
rivers reaches have diminished connectivity (Grill et al.,
2019). Rivers’ flows have been regulated for the purposes
of flood protection, navigation, and agricultural develop-
ment, as well as for electricity production and other
human uses. However, these regulations have overall de-
graded river geomorphological and hydrological condi-
tions (e.g., by the fragmentation of river networks and
generating a deficit of sediment transport) (Alexander et
al., 2012; Grill et al., 2019). In river ecosystems, frag-
mentation due to dam building and changes to river flows
due to drought may affect river continuity and can be con-
sidered a key driver of the Anthropocene biodiversity cri-
sis (Meybeck, 2003; Dudgeon et al., 2006; Zarfl et al.,
2015). River connectivity interruption threatens ecosys-
tems’ structure and functioning by hindering movements
of migratory species, the exchange of individuals and of
genetic information between populations (Wofford et al.,
2005; Raeymaekers et al., 2008;), altering aquatic habi-
tats, flow, and sediment transport regimes (Bunn and
Arthington, 2002).

Disruption of natural movements can affect the extent,
viability, and persistence of native aquatic species, and
has caused a decline in the distribution and abundance of
many fish populations, including eels (Feunteun, 2002;

Burkhead, 2012; Katz et al., 2013). In this regard, we
stress here that catadromous fish are declining worldwide,
also because of direct and indirect effects generated by
dams building (Shields et al., 2005; Collas et al., 2018.

In particular dams mediated river fragmentation limits
fish dispersal and likely increases their extinction risk
(Carvajal-Quintero et al., 2017; Dias et al., 2017). For ex-
ample, hydroelectric dams can cause injury, direct mor-
tality, delays in migration times, and inhibit downstream
migration in A. anguilla (Behrmann-Godel and Eckmann,
2003; Durif et al., 2003; Winter et al., 2006; Bruijs and
Durif, 2009). Downstream passage at non-powered dams
(i.e., dams not equipped with turbines) can have minor
impacts, as the passage of fish through them is usually
safe (Besson et al., 2016), but anyway can delay migration
(Larinier, 2000; Larinier and Travade, 2002; Besson et al.,
2016) and result in lower (20%) annual migration rates
when compared to equivalent non-obstructed rivers (Fe-
unteun et al., 2000; Acou, 2006).

A high level of connectivity between habitats in a river
system and between a river and the sea is vital for sus-
taining healthy stream fish populations and assemblages
that migrate among several habitats, for suitable feeding,
spawning, and refuge conditions (Lucas and Baras, 2001;
Maitland, 2003; Carlsson et al., 2004; Perkin and Gido,
2012; van Puijenbroek et al., 2019): this holds conceiv-
ably true particularly for the survivorship of catadromous
fish that migrate across different aquatic biomes.

Eels can climb along waterfalls and weirs of hy-
dropowers (Byrne and Beckett, 2012). Nevertheless, most
counteracting methods applied to mitigate negative effects
of dams on fish migration, do not grant success for all mi-
gratory fish upstream, and even if they do, successful
catadromous fish species can encounter unfavorable habi-
tat conditions in reached reservoirs (Larinier, 2001; van
Puijenbroek et al., 2019). Upstream migration in presence
of dams may be also delayed given the required time to
obtain further fish passages (Larinier, 2001; Lucas and
Baras, 2001; Brink et al., 2018). Moreover, because gen-
eral upstream effects of dams increase with the size of the
dam and reservoir (Birnie-Gauvin et al., 2017; Brink et
al., 2018), large dams, usually, tend to be more harmful
than smaller barriers. Downstream migration in presence
of dams can enhance mortality due to predation in reser-
voirs and passage in hydropower turbines or spillway
(Larinier, 2001; Wilkes et al., 2018). Hence, independ-
ently of the movement direction and of the presence of
fish transposition devices, dams can severely impair
catadromous fish movement and, thus, are partly respon-
sible for the decline of catadromous species and, in par-
ticular, of eels (Calles et al., 2010; Feunteun, 2002; Piper
et al., 2013). Widespread eel ladders could aid upstream
migration, although to date, few efficiency assessments
of their efficiency exist (Jellyman and Arai, 2016). Alter-
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native approaches to the capture and the transfer of adult
eels downstream of a barrier are also used worldwide
(ICES, 2016; Jellyman and Unwin, 2017; Béguer-Pon et
al., 2018). A management of the water regimes alterations
of the dams during the fish migratory peaks could be also
an effective measure (Boubee et al., 2001; Trancart et al.,
2013), but they can be complicated if they are not pre-
dicted to limit the economic loss (Teichert et al., 2020).

SUCCESS AND LIMITS OF EELS RESTOCKING
PRACTICES 

Restocking practices are used for conservation, pro-
tection, or recovery purposes of endangered species and
to increase the productivity of fish stocks (FAO, 2003).
Among the actions undertaken to recovery the European
eel population, restocking practices in continental systems
where natural recruitment is low or absent are still under-
developed (Moriarty and McCarthy, 1982; Andersson et
al., 1991; Wickström et al., 1996; Pedersen, 1998; Simon
and Dörner, 2014; Ovidio et al., 2015; Hanel et al., 2019).
Eels’ restocking initiated in Europe before to the 20th cen-
tury and has been done for decades across the entire con-
tinent (Wickström et al., 1996; Moriarty and Dekker,
1997; Psuty and Draganik, 2008; Dekker and Beaulaton,
2016). 

The release of glass eels in closed catchments can ef-
ficiently support local eels’ production and as well as pro-
mote local employment (Wickström et al., 1996;
Pedersen, 2000; Rosell et al., 2005; Psuty and Draganik,
2008). Moreover, among the conservation measures con-
ceived for inland waters that are distant from the sea, re-
stocking is the only solution that enhances the local stocks
Simon et al., 2013; Ovidio et al., 2015; Matondo et al.,
2019). Considering that a proportion of stocked eels needs
to escape as silver eels, contrasting for example hy-
dropower-induced mortality during the downstream mi-
gration (Winter et al., 2006), restocking is probably the
best long-term plan to meet the silver eels’ escapement
target in the Eel Recovery Plan of the European Union.

To date, the success of eels’ artificial reproduction in
captivity has not yet been totally obtained, therefore, do-
mestication and aquaculture may represent an effective
tool to satisfy purchaser requests and to preserve natural
stocks (Guarniero et al., 2020). However, this species rep-
resents a true challenge for breeding and production (e.g.,
egg quality, fertilization rate, and larval survival are the
main challenges). Wild-caught glass eels and elvers rep-
resent the only supply of restocking, that can be translo-
cated from estuaries to rivers with low or without natural
immigration (Pedersen et al., 2000; Matondo et al., 2019).
In their new freshwater environments, restocked young
eels can survive, grow, and mature into silver eels that,
ultimately, display a seaward migration behavior that is

similar to the one exhibited by naturally recruited wild
eels (e.g., Shiao et al., 2006; Ovidio et al., 2015; Kull-
mann and Thiel, 2018; Matondo et al., 2019; Felix et al.,
2020). Nevertheless, it is yet to be demonstrated whether
restocking is an efficient measure to restore the eels’
stocks and also to produce new mature individuals that
could successfully contribute to the successive spawning
stocks (Westin, 1998; 2003; Prigge et al., 2013; Wester-
berg et al., 2014). Moreover, further studies are also
needed to assess the impact of restocking practices on the
future sexual differentiation of the restocked individuals
(Geffroy and Bardonnet, 2015; Ovidio et al., 2015). Re-
stocked eels’ long-term survival is also still debated
(Westin, 1998; 2003; Prigge et al., 2013; Westerberg et
al., 2014).

The size and stage of restocking material (glass eel vs.
yellow eel), their origin (cultured vs. wild eels), their
health status (e.g., parasites, infections, deseases), and the
trophic status of the water body may altogether influence
the restocking yield (Prigge et al., 2013; Pedersen et al.,
2016; Ovidio et al., 2015). The annual growth in length
and the survival rates of restocked eels vary strongly
among different recipient environments, and depend upon
the characteristics of rearing location, the wild origin of
reared eels, and the stage used (juvenile vs. adult eels)
(Bisgaard and Pedersen, 1991; Pedersen, 1998; Lin et al.,
2007; Simon et al., 2013; Simon and Dörner, 2014). Re-
cent studies reported that natural mortality of restocked
populations decreases with increasing individual body
mass and, thus, restocking carried out with larger eels re-
sulted in a better survival rate and, consequently, in a
higher yield (Pedersen et al., 2016). More recent experi-
ments showed that restocked eels have an initial delay of
their downstream migration, and those recaptured eels
have lower body length and weight, likely attributable to
their allochthonous origin (Prigge et al., 2013). Interest-
ingly, however, both restocked and farmed eels show sim-
ilar migratory behaviors and routes during spawning
migrations in the open ocean (Westerberg et al., 2014;
Chen et al., 2018). Information about the effects of re-
stocked eels’ density on the restocking yield are much
less, and densities used for restocking are, typically, site
specific and established based on the natural recruitment
and yield per recruit estimates (Moriarty and Dekker,
1997). Moreover, as few studies have contextually inves-
tigated survival, growth, dispersal, and movement of the
restocked eels (Shiao et al., 2006; Pedersen et al., 2009;
Desprez et al., 2013; Wickström et al., 2014; Ovidio et
al., 2015; Sjöberg et al., 2017), little is known about the
best procedure for implementing restocking with maxi-
mum survival rates in riverine ecosystems and, even,
about how to accurately assess the level of restocking suc-
cess (Pedersen 2000; Pedersen, 2009; Deprez et al., 2013;
Matondo et al., 2019).
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Based on the above cues and considering the still large
gaps of knowledge about the best protocol to restock effi-
ciently depaupered eels’ populations (Wickström and
Sjöberg, 2014; Stacey et al., 2015), we claim the need of
new and science-based assessments of restocking protocols
in different scenarios, possibly coping with the expected
habitat quality modifications caused by climate change and
unintentionally to the anthropogenic emergence and spread
of pathogens (e.g., Anguillicola crassus Kirk, 2003; Wick-
ström et al., 2014, and Anguillid Herpesvirus 1, AngHV-1,
Kullmann et al., 2017) (Delrez et al., 2021). 

THE WAY FORWARD

Despite the research effort to date, identification of the
best technologies to reduce the threats that impair A. an-
guilla remains challenging. Data about the distribution
range of the European eel are still spatially and temporally
fragmented, and the available ones are still affected by a
large heterogeneity in the sampling methods and in analy-
sis protocols. These gaps of knowledge represent alto-
gether major biases for any possible generalization about
the life cycle of eels. Thus, the put in place of standardized
monitoring programmes represents a priority to increase
our knowledge of the eels’ life cycle and their migration
patterns. Only when these gaps of knowledge will be
filled, restoration of environmental connectivity, particu-
larly when rivers’ flow is interrupted by artificial obstacles
like dams, will contribute to enhance eels’ stocks and their
ability to fuel future generations. In this regard, we antic-
ipate that the removal or mitigation of migration barriers,
by promoting fish passage and habitat restoration, could
represent a key step to enhance the yield of any eventual
restocking practice without prejudice to the risk that
restoring connectivity could facilitate the dispersion of
alien fish species in a catchment (Clavero and Hermoso,
2010). Better understand habitat-eel relationships is prob-
ably one of the most promising ways that may contribute
to habitat restoration for restoring inland eel stocks (Laf-
faille et al., 2004). Using eels to study water contamina-
tion based on an integrated approach (ecotoxicological,
parasitological, pollution topics) is crucial for the evalu-
ation of environmental health, and chemical status of
water bodies, and will directly be beneficial for restoration
of eels’ stocks and consequently for ensuring water quality
and habitat conservation (Maes et al., 2005; Belpaire and
Goemans, 2007; Bourillon et al., 2020; Capoccioni et al.,
2020). With this in mind, we contend that identifying river
basins and the minimum proportion of river stretches that
could serve as “eel reserves” is also needed, along with
collaborative research approach between researchers and
stakeholders, with the final aim of establishing protocols
of eels’ exploitation that respond to the principles of a sus-
tainable use of resources and development.
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