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Featured Application: Algorithms for synchrophasor, frequency and rate of change of frequency
estimation are essential to implement effective Phasor Measurement Units. In particular, the
three-phase characteristics of AC power systems can be favorably exploited for measuring the
positive sequence contribution. The present paper introduces the mathematical framework of the
Space Vector transformation and compares three estimation algorithms based on this approach,
characterized by reporting latencies lower than two nominal cycles, thus suitable for relaying
and control applications.

Abstract: Phasor Measurement Units are the most advanced instruments for power network moni-
toring, since they allow phasors, frequency and rate of change of frequency (ROCOF) to be measured
in predetermined time instants with respect to an absolute time reference. The employed estimation
algorithm plays a key role in overall performance under off-nominal conditions; the challenge to be
faced is combining high steady-state accuracy with fast responsiveness in dynamic conditions, small
reporting latency and reduced computational burden. Under regular operation, AC power networks
are weakly unbalanced three-phase systems. Based on this consideration, the recent literature has
proposed native three-phase estimation algorithms that effectively exploit this property to accurately
identify the positive sequence synchrophasor, frequency and ROCOF. In this respect, the present
paper describes three among the most promising three-phase algorithms based on the Space Vector
transformation. By means of numerical simulations, it compares the achieved performance in terms
of response time and estimation error both under steady-state and dynamic conditions. All the
considered approaches enable a flexible design that allows balancing accuracy and responsiveness.
For this analysis, the reporting latency has been limited to about one and half nominal cycles, i.e.,
30 ms at 50 Hz; the P-class algorithm suggested by IEC/IEEE Std 60255-118-1 has also been included
as comparison benchmark.

Keywords: Phasor Measurement Unit (PMU); three-phase systems; synchrophasor; frequency; Rate
Of Change Of Frequency (ROCOF); Space Vector; Interpolated Discrete Fourier Transform (IpDFT);
Talor-Fourier Transform (TFT)

1. Introduction
In recent years, modern power networks are experiencing an ever increasing inte-

gration of renewable energy sources and distributed generation, characterized by higher
volatility and faster dynamics [1,2]. In this context, the measurement infrastructure plays
a crucial role in guaranteeing the operability and continuity of service of the power net-
work [3]. In particular, an optimal tradeoff between high measurement accuracy and
low reporting latency is required in many monitoring and control applications, like fault
detection [4] or load shedding [5].
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In such challenging scenario, Phasor Measurement Units (PMUs) might represent a
promising solution as they provide estimates of synchrophasors, frequency and rate of
change of frequency (ROCOF) associated to the fundamental component in remote nodes
of the grid, which are synchronized to Coordinated Universal Time (UTC) [6]. The recent
IEEE/IEC Std 60255-118-1-2018 [7] (denoted as IEC Std for the sake of brevity), defines the
operative requirements for PMUs in terms of measurement accuracy, latency and transient
performance. The measurement accuracy is quantified by means of three indices, namely
Total Vector Error (TVE), Frequency Error (FE), and ROCOF Error (RFE). The reporting
latency, instead, represents the time delay after which measurement data is available at the
PMU output with respect to the corresponding reporting instant (timestamp). Transient
performance is measured by the response time required by the algorithm output to settle
down after fast variations in amplitude or phase and by such response shape parame-
ters. In particular, the IEC Std introduces two performance classes: M for high-accuracy
monitoring applications, and P for low-latency applications where high responsiveness is
recommended, such as relaying and fast control.

The requirements of the IEC Std, as well as the superseded IEEE standards [8,9], have
pushed the development of highly sophisticated algorithms for synchrophasor, frequency
and ROCOF estimation, capable of rejecting spurious contributions as well as accounting
for the dynamics of the fundamental component [10–12]. In particular, the traditional
definition of phasor has been extended to the novel concept of dynamic synchrophasor,
whose amplitude and phase angle may vary as functions of time [13,14].

In practice, though, an effective employment of PMU measurements requires comply-
ing with stringent latency limits [15]. Most of the existing approaches rely on segmenting
the acquired signal and processing each segment via Discrete Fourier Transform (DFT) [16]
or Taylor-Fourier Transform (TFT) [17], in order to extract the parameters associated to
the fundamental component. In general, processing a longer segment enables better dis-
turbance rejection and wider measurement bandwidth, but it also results in increased
computational cost, higher latency and slower response. Therefore, an optimal tradeoff
between accuracy and responsiveness is hard to find and a practical limit of two nominal
cycles has been achieved through a combined application of Hilbert transform and TFT,
at the expense though of higher computational complexity and sensitivity to spurious
interferences [18]. A detailed review of the main synchrophasor estimation approaches is
beyond the scope of this paper and can be found in [6,19].

The Fortescue transformation is often used for an effective analysis of three-phase AC
networks: it allows expressing a sinusoidal three-phase signal in terms of its symmetrical
components [20]. A peculiar characteristic of real-world power systems is that they are
weakly unbalanced during regular operation: in this case, the positive sequence component
alone contains most of the information associated to the fundamental term of a three-
phase quantity. In the recent literature, several PMU algorithms exploits this symmetry
property by using the Clarke/Park transformation [21] or Principal Component Analysis
and Maximum Likelihood estimators [22]. In this context, the Space Vector (SV) -based
approach [23] can be also adopted for reducing computational burden without sacrificing
performance. Instead of dealing with each phase separately, the SV with respect to a
reference frame rotating at the system nominal frequency is computed. Digital filters
whose frequency responses can be customized to reach specific performance goals [24]
are employed to extract the contribution of the positive sequence component from the
complex-valued SV signal. It is worth noting that the SV approach can be also used in
conjunction with other well-known methods for estimating synchrophasor, frequency and
ROCOF such as interpolated DFT (IpDFT) [25] or Taylor-Fourier (TF) filtering [26], thus
leveraging the three-phase symmetry of power systems for reduced computational cost
and improved accuracy.

In this paper, we carry out a rigorous and extensive performance assessment among
three SV-based estimation algorithms, specifically designed for high responsiveness ap-
plications, with maximum latency set to two nominal cycles. To the best of Authors’
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knowledge, this review represents the first attempt of a comparative analysis for highlight-
ing peculiarities and strengths of the different methods. For this purpose, we analyze the
algorithms’ performance in terms of response time and measurement accuracy, both under
steady-state and dynamic conditions; the P-class reference algorithm provided by the IEC
Std is considered as benchmark. In this framework, the paper main contributions consist in:
(i) a reasoned analysis of the most suitable setting for an optimal tradeoff between accuracy
and latency, (ii) a thorough characterization of the algorithms’ performance not only in the
entire IEC Std test set, but also under other conditions including unbalance and harmonic
distortion at off-nominal frequency.

The paper is organized as follows. In Section 2, we introduce the considered measure-
ment algorithms. Section 3 presents the results of the performance comparison. In Section 4,
we provide some closing remarks and outline the future steps of the research activity.

2. Measurement Algorithms

In this paper, we present a comparison among three algorithms for estimating posi-
tive sequence synchrophasor, frequency and ROCOF starting from a three-phase signal.
The considered techniques are the SV filtering algorithm (SV-F) [24], the SV Taylor-Fourier
algorithm (SV-TF) [26] and the SV IpDFT algorithm (SV-IpDFT) [25]. All of them feature
high flexibility: their parameters can be tuned in order to meet specific requirements in
terms of accuracy and latency according to the application. In this respect, we focus on fast
response, fixing the algorithm latency at about one and half nominal cycles. The P-class
algorithm suggested by the IEC Std, which is used as reference to compare the performance
obtained with the three aforementioned algorithms, has a different latency, but always
below two cycles. In the following, the common ground and useful definitions are firstly
introduced, then all the considered algorithms are explained in detail.

2.1. Common Background on Synchrophasor Measurements

Let us consider a three-phase power system characterized by the rated frequency f0,
corresponding to the angular frequency ω0. The synchrophasor approach is based on the
following quasi-steady-state model of the generic phase p signal xp(t) (with p ∈ {a, b, c}),
which may represent the voltage or current waveform measured in a node as a function of
a shared time coordinate t:

xp(t) = x1,p(t) + dp(t)

x1,p(t) =
√

2Xp(t) cos(θp(t)) =
√

2Xp(t) cos(ω0t + ϕp(t))
(1)

Basically, the generic phase p waveform consists of a main term x1,p(t), which is
assumed to be a modulated sinewave whose peak amplitude

√
2Xp(t) and phase angle

ϕp(t) are slowly-varying with respect to the rated frequency. dp(t) represents a second
contribution containing the other components that may be present in the signal, which
are considered as disturbances (e.g., harmonics and interharmonics); its magnitude is
supposed to be considerably lower than that of x1,p(t), while its spectral content near f0 is
assumed to be negligible. Starting from these considerations, the corresponding phase p
(dynamic) synchrophasor X̄p(t) is defined as:

X̄p(t) , Xp(t)ejϕp(t) (2)

In the following, overbar is used to highlight complex-valued quantities; for a lighter
notation, a previously defined complex variable written without overbar denotes its mag-
nitude. From an operative point of view, the synchrophasor is a possibly time-varying
complex-valued number associated to an electric quantity of an AC power system that,
under the previous assumptions, is able to carry its most relevant informative content.
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Using the Euler’s formula, an expression of x1,p(t) where the synchrophasor explicitly
appears can be easily obtained:

x1,p(t) =
√

2
2

[
X̄p(t)ejω0t + X̄∗p(t)e

−jω0t
]

(3)

where ∗ denotes the complex conjugate operator. From another point of view, x1,p(t) has
been decomposed into the sum of two counter-rotating vectors in the complex plane: one
with positive, the other with negative angular speed, which is often known as image. It is
worth noting that when assuming sinusoidal steady-state conditions at the rated frequency,
the synchrophasor corresponds to the usual phasor. Considering once again the waveform
model (1), the frequency f (t) (corresponding to the angular frequency ω(t)) and its rate of
change ROCOF(t) are defined as:

f (t) =
1

2π

dθp(t)
dt

=
1

2π

dϕp(t)
dt

+ f0 = ∆ f (t) + f0 (4)

ROCOF(t) =
d f (t)

dt
=

1
2π

d2θp(t)
dt2 =

1
2π

d2 ϕp(t)
dt2 (5)

∆ f (t) is also introduced: it represents the frequency deviation with respect to rated
conditions, which is the rotational speed of the synchrophasor in the complex plane
divided by 2π. The target of a PMU is sampling the three-phase waveform of an electrical
quantity and, by means of a proper algorithm, extracting the corresponding synchrophasors,
frequency and ROCOF at discrete and fixed time instants tr = iTRR (with i integer, see [7]),
hence multiples of the reporting interval TRR. Since TRR is generally an integer multiple
of T0 = 1/ f0, θp(tr) = ϕp(tr) when phase angle wrapping is considered. The algorithm
should be able to track dynamic variations as well as rejecting disturbances.

The study of three-phase systems is more efficient when it is performed by using
the symmetrical components. Having available the phase a, b and c synchrophasors,
the corresponding positive, negative and zero sequence synchrophasors (X̄+(t), X̄−(t) and
X̄0(t), respectively) can be obtained as follows by means of the Fortescue transformation
(here the unitary formulation is considered): X̄+(t)

X̄−(t)
X̄0(t)

 =

 X+(t)ejϕ+(t)

X−(t)ejϕ−(t)

X0(t)ejϕ0(t)

 =
1√
3

 1 ᾱ ᾱ2

1 ᾱ2 ᾱ
1 1 1

 X̄a(t)
X̄b(t)
X̄c(t)

 (6)

where ᾱ , ej2π/3. Among the symmetrical components, the positive sequence term has
by far the highest magnitude, since three-phase systems are weakly unbalanced during
regular operation, in particular as far as the transmission grid is considered; for this reason,
many applications rely on a positive sequence representation of the power system.

It is worth noting that processing the single-phase signals while using the definition (4)
may lead to different frequency measurements for each of the phases; conversely, as from [7],
a unique frequency (and ROCOF) value should be provided for each three-phase quantity.
On the one hand, this can be obtained through additional processing (e.g., averaging)
on the three frequency estimates [27]; on the other hand, computing a shared frequency
value reminds that, from a physical point of view, a three-phase quantity is not a mere
set of three independent single-phase quantities. In this regard, a combined processing of
the three signals would enable a direct estimate of frequency and ROCOF other than the
symmetrical components of the synchrophasors, and in particular of the positive sequence
term. Moreover, native three-phase PMU algorithms may exploit that, under regular
operation, three-phase quantities are weakly unbalanced: this may be beneficial to improve
the quality of the estimates while reducing the computational cost.
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2.2. IEC/IEEE 60255-118-1 P-Class Reference Algorithm

The IEC Std suggests a measurement model for synchrophasor estimation and two
PMU algorithms, one for class P, intended for applications requiring fast response, and an-
other one for class M, designed for measurement applications. Both of them are based
on the same concept of quadrature demodulation, which is briefly summarized in the
following. Let us substitute (3) in the decomposition (1) of the phase p waveform xp(t) and
let us multiply by e−jω0t, namely a unitary magnitude vector whose rotational speed in the
complex plane corresponds to the rated angular frequency of the power system. The signal
x̄p,d(t) is thus obtained, which results:

x̄p,d(t) =
√

2
2

X̄p(t) +
√

2
2

X̄∗p(t)e
−j2ω0t + dp(t)e−jω0t (7)

From the previous expression, x̄p,d(t) is a complex-valued signal consisting of three
contributions. Except for a constant scale factor equal to

√
2/2, the first term coincides

with the quantity of interest, i.e., the synchrophasor, that—based on the assumptions
introduced in Section 2.1—is expected to have a spectral content restricted at very low
frequencies. The second term is generated by the counter-rotating image component in (3),
and is represented by the same scale factor multiplied by the synchrophasor conjugate
and an unitary vector, that is rotating clockwise in the complex plane with angular speed
equal to 2ω0; therefore, its frequency content is confined around −2 f0. The last term
is the disturbance multiplied by an unitary vector rotating in the complex plane with
angular speed equal to ω0; reminding the hypothesis about dp(t), the spectral content of
this third contribution is virtually entirely located away from zero. Thanks to the spectral
separation of these terms, the synchrophasor can be extracted from x̄p,d(t) through proper
low-pass filtering. In this respect, it should be stressed that it is particularly important
to somehow attenuate the second contribution (namely that involving the conjugate of
the synchrophasor): it represents a very large unwanted component, since it has the same
magnitude as the low-frequency term to be extracted.

After having explained the basic concepts, we focus on the details of the P-class
algorithm reported in [7] (from here on IEC-P algorithm for the sake of brevity), which
will be considered as a benchmark for the comparison among the different low-latency
techniques; its block diagram is reported in Figure 1.

Figure 1. Block diagram of the IEC-P algorithm.

Let us suppose that the phase quantities have been sampled with rate fs = MC f0
(the positive integer MC is the number of samples per nominal cycle) corresponding to
the sampling interval Ts = 1/ fs; it is also assumed that TRR = QTs, with Q positive
integer. For each phase p, a first estimate ˆ̄X′p of the synchrophasor in the generic reporting
instant tr = iTRR is obtained by means of the following expression, which corresponds to
multiplication by the rotating exponential and finite impulse response (FIR) filtering:



Appl. Sci. 2021, 11, 2261 6 of 34

ˆ̄X′p(tr) = X̂′p(tr)ejϕ̂p(tr) =

√
2

G

(
x̄p,d ∗ wtri

)
(tr) =

√
2

G

MC−1

∑
n=−MC+1

xp(tr − nTs)wtri[n]e−jω0(tr−nTs) (8)

where ∗ indicates the convolution sum; from here on, hat is used to denote estimated
values. Filter coefficients wtri[n] correspond to the 2MC − 1 sample triangular window:

wtri[n] = 1− |n|
MC

, for n = −MC + 1, . . . , MC − 1 (9)

and the constant G is its DC gain:

G =
MC−1

∑
n=−MC+1

wtri[n] = MC (10)

It is worth noting that the low-pass filter defined by (9) is linear-phase, non causal,
with zero group delay. Let us assume sinusoidal steady-state operation with frequency
equal to f0: X̄p(t) in (7) is constant, while the term involving X̄∗p(t) rotates with angular
speed −2ω0. It can be easily proven that the employed filter has frequency response zeros
located at multiples of f0. Hence, under these conditions it is able to completely cancel out
the term rotating at −2ω0. Since the DC gain of the triangular window FIR filter defined as
in (9) is G = MC, the estimate provided by (8) is theoretically exact.

In this algorithm, a three-phase definition of frequency is employed in order to extract
a unique value from the three phases. In particular, the frequency deviation ∆ f corresponds
to the rotational speed (in hertz) of the positive sequence synchrophasor, whose estimate
ˆ̄X′+ is obtained by applying the unitary Fortescue transformation (6):

ˆ̄X′+(tr) = X̂′+(tr)ejϕ̂+(tr) =
ˆ̄X′a(tr) + ᾱ ˆ̄X′b(tr) + ᾱ2 ˆ̄X′c(tr)√

3
(11)

From a physical point of view, this definition of frequency corresponds to the elec-
trical speed of the air gap magnetic field in an ideal, symmetric three-phase machine
whose winding magnetomotive force is purely positive sequence and expressed by the
synchrophasor X̄+.

Frequency deviation and ROCOF measurements are obtained as first and second order
discrete-time derivatives of the estimated phase angle ϕ̂+. For this purpose, let us firstly
compute ϕ̂+ in the time instants tr − STs and tr + STs, where S ≤ Q is a positive integer;
after that, frequency and ROCOF estimates result:

f̂ (tr) = ∆̂ f (tr) + f0 =
ϕ̂+(tr + STs)− ϕ̂+(tr − STs)

4πSTs
+ f0 (12)

R̂OCOF(tr) =
ϕ̂+(tr + STs) + ϕ̂+(tr − STs)− 2ϕ̂+(tr)

2π(STs)2 (13)

Therefore, (12) and (13) correspond to the application of two linear-phase FIR filters
D1

S and D2
S to ϕ̂+/(2π), respectively. Now, let us suppose that the input signals xp(t)

are pure sinewaves whose frequency f is different from f0. In this case, the phase p
synchrophasor is:

X̄p(t) = Xpej((ω−ω0)t+ϕph,p) = X̄ph,pej(ω−ω0)t (14)

where X̄ph,p represents the usual phasor at the frequency f . Hence, the synchrophasor is
a complex number having the same magnitude as the phasor, but its phase angle is time-
varying, since it rotates in the complex plane with angular speed equal to the difference
between ω and ω0. In particular, the real and imaginary parts of X̄p(t) are quadrature
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sinewaves whose frequencies are equal to the frequency deviation ∆ f . From (7), the signal
to be filtered is made of two contributions:

x̄p,d(t) =
√

2
2

X̄ph,pej(ω−ω0)t +

√
2

2
X̄∗ph,pe−j(ω+ω0)t (15)

Introducing Wtri(jω) as the frequency response of the previously defined triangu-
lar window filter (real-valued and identical to the amplitude response), the evaluated
synchrophasor results:

ˆ̄X′p(tr) =
Wtri(j2π∆ f )

G
X̄p(tr) +

Wtri(j(ω + ω0))

G
X̄∗ph,pe−j(ω+ω0)tr (16)

reminding that 2π∆ f = ω−ω0. The first thing to be noticed is that the term proportional
to X̄∗ph,p is attenuated but not completely rejected by the filter, since its rotational speed does
not correspond to a zero of the filter. Furthermore, even neglecting this effect, the magnitude
of the synchrophasor estimate is biased: in fact Wtri(j2π∆ f ) 6= G when ∆ f 6= 0. This effect
is significant even for small values of the frequency deviation. However, having measured
∆̂ f , it can be compensated since the filter response is known; a more accurate synchrophasor
estimate ˆ̄Xp can thus be obtained. In this respect, ref. [7] adopts the following approximated
expression instead of using the exact filter response:

ˆ̄Xp(tr) =
ˆ̄X′p(tr)

A(∆̂ f (tr))
=

ˆ̄X′p(tr)

sin
(

π
f0+1.62∆̂ f (tr)

2 f0

) (17)

As mentioned before, the positive sequence synchrophasor estimate has key im-
portance in power systems. Let us obtain its expression under off-nominal frequency
conditions; the substitution of (16) into (11) leads to:

ˆ̄X+(tr) =
Wtri(j2π∆ f )

A(∆̂ f (tr))
X̄+(tr) +

Wtri(j(ω + ω0))

A(∆̂ f (tr))
X̄∗−(tr)e−j2ω0tr (18)

As in (16), also ˆ̄X+(tr) is disturbed by the presence of a component which rotates
clockwise in the complex plane with angular speed ω + ω0. Based on the assumption of
weakly unbalanced system, such disturbance has a much lower relative magnitude, since
Wtri(j2π∆ f ) is close to G, whereas X−/X+ (often called unbalance factor) is well below
one. Therefore, the positive sequence synchrophasor estimate is considerably less affected
by this phenomenon. Finally, it is worth stressing that ˆ̄X+ does not depend on the zero
sequence component.

The overall algorithm latency is given by L = (MC − 1)Ts + STs, which keeps into
account the filtering process and the phase-angle derivative computation. It is thus always
T0 ≤ L < 2T0, thus S ≤ MC in order to comply with the latency limit for P class algorithms.

2.3. Space Vector Algorithm

PMU algorithms based on the SV transformation of the phase quantities and filtering
of the resulting signal when decomposed in rectangular and polar coordinates have been
recently proposed by the authors in [23,24]. The starting point is the usual measurement
model (1), here rewritten by using the vector notation in order to consider the three
phases simultaneously:

xabc(t) = x1,abc(t) + dabc(t) (19)
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where:

x1,abc(t) =

 x1,a(t)
x1,b(t)
x1,c(t)

 dabc(t) =

 da(t)
db(t)
dc(t)

 (20)

From the three-phase waveforms, it is possible to compute the SV x̄SV(t) in a rotating
reference frame whose instantaneous angular position is β(t); it results:

x̄SV(t) =

√
2
3
[

1 ᾱ ᾱ2 ] xabc(t) e−jβ(t) = x̄SV0(t) e−jβ(t) (21)

where x̄SV0 is the SV in a stationary reference frame characterized by β = 0. Substituting
(19) into (21) while using (3) and reminding (6) leads to:

x̄SV(t) = X̄+(t)ej(ω0t−β(t)) + X̄∗−(t)e
−j(ω0t+β(t)) + d̄SV(t)

d̄SV(t) =

√
2
3
[

1 ᾱ ᾱ2 ] dabc(t) e−jβ(t) = d̄SV0(t) e−jβ(t)
(22)

Three terms appear: the first one is related to the positive sequence synchrophasor,
the second depends on the negative sequence synchrophasor, the last is produced by
disturbances. Of course, the term due to the positive sequence synchrophasor is expected
to be considerably higher with respect to the others. Furthermore, it is worth noting
that the zero sequence synchrophasor does not affect the SV signal. Now, let us choose
β(t) = ω0t, namely performing the SV transformation in a reference frame whose angular
speed corresponds to the rated angular frequency. In this case, the positive sequence
synchrophasor produces a very low frequency contribution; instead, the term related
to the negative sequence synchrophasor rotates with an angular speed close to 2ω0 in
clockwise direction. Reminding that the spectral content of dp(t) is assumed to be located
away from f0, the spectrum of d̄SV(t) is well separated from that of the positive sequence
synchrophasor. This suggests that an estimate of X̄+(t) can be extracted from x̄SV(t) by
means of proper low-pass filtering, without explicitly computing per phase synchrophasors.
Adopting the same three-phase definition of frequency deviation already employed by
the IEC-P algorithm, ∆ f and ROCOF represent (except for a scale factor 2π) the first and
second order derivatives of the positive sequence synchrophasor phase angle. Therefore,
their estimates can be obtained by filtering x̄SV , computing its phase angle and performing
numerical differentiations.

The architecture of this approach corresponds to the block diagram reported in
Figure 2; its practical implementation requires first of all to properly sample the phase
signals with rate fs. From the acquired data, applying (21) with β(t) = ω0nTs the samples
of the SV signal x̄SV are obtained. A first low-pass filtering stage H with unit DC gain is
applied to the real and imaginary parts of x̄SV in order to remove most of d̄SV as well as
the term produced by the negative sequence. Both FIR and infinite impulse response (IIR)
filters can be employed, even if best performance and greater flexibility is obtained with
FIR design. The samples of x̄SV, f are thus obtained and they have to be further processed
in order to compensate for the group and phase delay introduced by H; it is extremely
simple when a linear-phase FIR filter is adopted.

After that, x̄SV, f is decomposed into its magnitude xSV, f and argument ϕSV, f . The es-
timate ϕ̂+(tr) of the positive sequence synchrophasor phase angle in the generic reporting
instant tr is obtained by applying to ϕSV, f a linear-phase FIR low-pass filter P (character-
ized by unit DC gain, designed to attenuate the residual impact of d̄SV and of the oscillating
term produced by X̄−) and compensating its delay. Its bandwidth should be sufficient to
properly follow the phase angle dynamics, which are typically rather slow.
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Figure 2. Block diagram of the SV-F algorithm.

Similarly, frequency deviation and ROCOF measurements in the reporting instants
(∆̂ f (tr) and R̂OCOF(tr), tr = QTs) are computed by filtering ϕSV, f with linear-phase,
partial band first and second-order FIR differentiators (F and R respectively) and compen-
sating the introduced delays. Their frequency responses should match those of ideal first
and second order differentiators only near zero (just slow frequency variations have to
be accurately tracked), while they should have considerably lower magnitudes at higher
frequencies in order to achieve good disturbance rejection and noise immunity.

An estimate X̂′+ of the positive sequence synchrophasor magnitude can be obtained
by applying a low-pass filter M to xSV, f while taking into account the introduced delay.
Similarly to P, M should have unitary DC gain and should be designed to reject the
infiltration of d̄SV as well as the term proportional to X̄−. Its bandwidth should be large
enough to properly follow amplitude modulations, which are fairly slow in practical
power systems.

However, it should be noticed that X̂′+ may be significantly biased under off-nominal
frequency conditions, similarly to what happens with the IEC-P algorithm discussed in the
previous subsection. Assuming perfectly sinusoidal, positive sequence input with angular
frequency ω 6= ω0, x̄SV, f results:

x̄SV, f (nTs) = H(j2π∆ f )X̄+(nTs) = H(j2π∆ f )X̄ph,+ej(ω−ω0)nTs (23)

where X̄ph,+ is the positive sequence phasor while filter H is assumed to be a linear-
phase FIR filter having amplitude response H(jω) For a linear-phase filter H, the relation-
ship between its frequency response H̄(jω) and amplitude response H(jω) is: H̄(jω) =
H(jω)e−jωτH , where τH is the group delay. According to the procedure described in the
previous lines, it is easy to derive the magnitude estimate X̂+ = H(j2π∆ f )X+, reminding
that the DC gain of M is unitary by assumption. Similarly to what explained in Section 2.2,
the effect of filter H can be removed since its response is known and a measurement of
the frequency deviation is available. Hence a better estimate X̂+ of the positive sequence
synchrophasor magnitude is:

X̂+(tr) =
X̂′+(tr)

H(j2π∆̂ f (tr))
(24)

One of the main advantages of this SV-based approach is its flexibility: achieved
performance strongly depends on the filters H, M, P, F and R, which can be tuned in order
to reach predetermined goals in terms of accuracy, latency and responsiveness. It is worth
highlighting that closed-form expressions provided in [24] allow predicting the results of
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the P- and M-class compliance tests prescribed by [7], thus substantially helping the design
of the aforementioned filters.

The algorithm latency in this case is L = ((NH + max{NM, NP, NF, NR})/2− 1)Ts,
where NH , NM, NP, NF, NR are the number of taps of the filters H, M, P, F and
R, respectively.

2.4. Space Vector Taylor-Fourier Algorithm

In [13], the TF approach to synchrophasor estimation was introduced. Basically, it
is based on a measurement model which is a truncated Taylor expansion of the phase p
synchrophasor around the generic reporting time tr in order to model its time evolution.
Model parameters are obtained through least-squares fitting of a sliding window of the
collected samples, thus corresponding to FIR filtering. Synchrophasor, frequency and
ROCOF estimates can be easily obtained from the model parameters. It is worth noting that
a frequency estimate for each phase is obtained. Since according to [7] a unique frequency
value for each three-phase quantity must be provided, a possible solution is computing the
average between the three different frequency measurements.

In [26], the technique has been extended for being applied to the SV signal, thus
directly estimating positive and negative sequence synchrophasors. This enables higher
design flexibility with respect to a per phase approach, which results in better perfor-
mance and lower computational burden. Furthermore, it directly provides frequency
and ROCOF values according to the three-phase definition adopted by the previously
presented algorithms.

The block diagram of the method is reported in Figure 3; the starting point is the SV
x̄SV0(t) on a stationary reference frame, which is obtained by applying the SV transforma-
tion (21) with β = 0 to the three-phase signals. Under the usual assumptions, it results:

x̄SV0(t) = X̄+(t)ejω0t + X̄∗−(t)e
−jω0t + d̄SV0(t) (25)

Figure 3. Block diagram of the SV-TF algorithm.

As mentioned above, the TF approach relies on a measurement model obtained
through truncated Taylor expansions of the synchrophasors around the reporting instant.
Therefore, considering the positive and negative sequence synchrophasors in the neighbor-
hood of tr:

X̄+(t) ≈
K+

∑
k=0

X̄(k)
+ (tr)

(t− tr)k

k!

X̄−(t) ≈
K−

∑
k=0

X̄(k)
− (tr)

(t− tr)k

k!

(26)

where X̄(k)
+ (tr) and X̄(k)

− (tr) are the kth order derivatives of the positive and negative se-
quence synchrophasor model at the reporting instant tr; considering k = 0, they correspond
to the two synchrophasors. Expansion orders K+ and K− are in general different: this
additional degree of freedom is enabled thanks to the SV-based approach, while it would
have not been possible if the conventional implementation were adopted.
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The expressions (26) can be used to write a model for the SV signal in the neighborhood
of the reporting instant:

x̄SV0(t) ≈ X̄+(t)ejω0t + X̄∗−(t)e
−jω0t (27)

Now, let us suppose that the phase signals have been sampled with rate fs; the samples
of the SV signal x̄SV0 can be easily computed. Furthermore, let us consider a sliding window
made of Nw samples (with Nw odd) of x̄SV0 and centered on tr; these samples can be
arranged in a vector x̄SV0(tr). Using (27) it is possible to write the corresponding vector
of Nw samples obtained from the model, having assumed that its parameters (namely the
synchrophasor derivatives) are constant within the window. Adopting vector notation, this
leads to:

x̄SV0(tr) ≈
[
Φ̄A+ Φ̄HA−

]
· p̄±(tr) = B̄± · p̄±(tr) (28)

where:

x̄SV0(tr) =



x̄SV0(tr +
Nw−1

2 Ts)
...

x̄SV0(tr)
...

x̄SV0(tr − Nw−1
2 Ts))


(29)

p̄±(tr) =
[

X̄(0)
+ (tr), · · · , X̄(K+)

+ (tr), X̄(0)∗
− (tr), · · · , X̄(K−)∗

− (tr)
]T

(30)

A+ =



1 Nw−1
2 Ts

( Nw−1
2 Ts)

2

2 · · · ( Nw−1
2 Ts)

K+

k!
...

...
...

...
1 0 0 0
...

...
...

...

1 −Nw−1
2 Ts

(− Nw−1
2 Ts)

2

2 · · · (− Nw−1
2 Ts)

K+

k!


(31)

Φ̄ =



ejω0
Nw−1

2 Ts

. . .
1

. . .

e−jω0
Nw−1

2 Ts


ejω0tr (32)

and A− is obtained from (31) by replacing K+ with K−; the superscripts H and T indicate
the Hermitian transpose and the transpose operators, respectively.

p̄±(tr) is the vector of the model parameters in the reporting instant. It can be
estimated by minimizing the Euclidean norm of the vector of the differences between the
samples of the SV signal and those obtained from the model, hence:

ˆ̄p±(tr) = arg min
p̄±(tr)

∥∥B̄± · p̄±(tr)− x̄SV0(tr)
∥∥ (33)

which corresponds to an ordinary least squares (LS) problem whose solution is:

ˆ̄p±(tr) = H̄ · x̄SV0(tr)

H̄ = (B̄H
±B̄±)−1B̄H

±
(34)

where H̄ is a complex filter bank, namely its hth row H̄h,∗ contains the complex-valued
coefficients of the FIR filter that permits obtaining the hth element of ˆ̄p±. In the same
fashion, H̄(jω) denotes the vector-valued frequency response of the filter bank; its hth
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element is the frequency response of the FIR filter defined by the coefficients H̄h,∗. Therefore,
the estimated positive sequence synchrophasor is:

ˆ̄X+(tr) = H̄1,∗ · x̄SV0(tr) (35)

Estimates can also be obtained by using a weighted LS (WLS) method [28] where the
weights are given, for instance, by the squared coefficients of a cosine window. Up to now,
the WLS estimator has never been applied in conjunction with the SV-TF approach.

As previously mentioned, the TF expansion applied to the complex-valued SV signal
permits selecting different expansion orders for the positive and negative sequence syn-
chrophasor, which is not possible when considering the conventional implementation in
the real-valued phase signals: this additional degree of freedom in the design of TF filters
enables better performance. In general, increasing the positive sequence synchrophasor
expansion order K+ is beneficial, since the model is able to better represent its dynamics.
On the contrary, when the focus is measuring the positive sequence synchrophasor, choos-
ing K− = K+ often leads to an overparametrized model. In this case, the best choice is
K− < K+, since it increases the robustness with respect to noise and disturbances (which are
bettered filtered thanks to the “stiffer” underlying model), without significant drawbacks.

According to the three-phase definition of frequency deviation and ROCOF, they can
be obtained, with the formulas reported in [13], from the estimated derivatives of the
positive sequence synchrophasor at tr, that is as:

∆̂ f (tr) =
1

2π

=
[

ˆ̄X(1)
+ (tr) · ˆ̄X∗+(tr)

]
∣∣∣ ˆ̄X+(tr)

∣∣∣2 (36)

R̂OCOF(tr) =
1
π

=
[

ˆ̄X(2)
+ (tr) ˆ̄X∗+(tr)

]
2
∣∣∣ ˆ̄X+(tr)

∣∣∣2 −
<
[

ˆ̄X(1)
+ (tr) ˆ̄X∗+(tr)

]
=
[

ˆ̄X(1)
+ (tr) ˆ̄X∗+(tr)

]
∣∣∣ ˆ̄X+(tr)

∣∣∣4
 (37)

From the above equations, it is clear that an order K+ ≥ 2 is needed to estimate
frequency and ROCOF.

The latency of the algorithm depends only on the length of the window and thus,
in this case, is L = Nw−1

2 Ts.

2.5. Space Vector IpDFT Algorithm

IpDFT algorithms based on proper weighting windows [29,30] have been widely
used to measure spectral components and frequencies of electrical signals [31]. More
recently, several PMU techniques exploiting this approach have been proposed in the
literature [16,32,33]. In order to obtain a synchrophasor estimate, they require observing
the phase signal xp(t) over a time interval centered around the reporting instant tr and
corresponding to an integer number C ≥ 2 of rated cycles; the sampling frequency fs is
multiple of the rated frequency f0, so that MC samples per nominal cycle are collected.
The underlying signal model is very similar to (1), but in this case the amplitude and
frequency (defined as in (4)) are assumed to be constant within the analyzed time interval.
Therefore, it results:

xp(t) =
√

2
2

[
X̄ph,p(tr)e−jω(tr)tr ej(ω(tr)−ω0)tejω0t + X̄∗ph,p(tr)ejω(tr)tr e−j(ω(tr)−ω0)te−jω0t

]
+ dp(t)

=

√
2

2

[
X̄p(tr)ejω0t + X̄∗p(tr)e−jω0t

]
+ dp(t) (38)

The first step of the IpDFT algorithm is applying a proper tapering window to the
collected samples. Assuming that spectral interference is negligible, there should be at
least two DFT bins produced by the signal component rotating with angular frequency
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ω (namely the one related to the synchrophasor to be estimated) which falls under the
main lobe of the window. Since its shape is known, the ratio between the magnitudes
of these components allows estimating the frequency deviation ∆ f and, in turns, also
the synchrophasor. In particular, the knowledge of ∆ f allows compensating the effect
of scalloping loss which may undermine the evaluated magnitude under off-nominal
frequency conditions.

As mentioned above, the method properly works if the two considered DFT bins
are not affected by spectral interference: this may be produced by the disturbance dp(t),
but also by the image component (namely the counter-rotating term appearing in (38)): spe-
cific care has to be taken, since it has the same magnitude as the term to be evaluated. This
effect can be reduced by selecting a proper window (e.g., Rife-Vincent type I, characterized
by maximum asymptotic decay of the sidelobes) and increasing the observation interval,
even if the latter expedient results in several drawbacks. First of all, algorithm latency and
computational burden are increased; secondly, the assumption of having constant signal
parameters over a longer time window becomes harder to be met, thus it may seriously
jeopardize the achieved dynamic performance.

Having estimated the three synchrophasors of the phase quantities, the positive se-
quence synchrophasor X̄+ is evaluated through the Fortescue transformation (6). From the
previous considerations, the estimates ˆ̄Xp of the phase synchrophasors may contain dis-
turbances due to the infiltration of the image components. Similarly to what explained in
Section 2.2, this effect is significantly attenuated in the positive sequence synchrophasor
measurement ˆ̄X+ thanks to the weak unbalance level of real-world three-phase quantities.
However, explaining how this cancellation occurs is troublesome, since the IpDFT algo-
rithm is inherently nonlinear and closed-form expressions cannot be easily derived. Finally,
it is also worth noting that applying the IpDFT algorithm to the phase signals produces
three (different) frequency estimates, which have to be processed (averaged) in order to
obtain a unique value.

Similarly to the TF approach, the IpDFT algorithm can be favorably applied to the SV
signal x̄SV0 in a stationary reference frame, as in the block diagram reported in Figure 4; this
enables a direct estimation of the positive sequence synchrophasor. As in Section 2.4, x̄SV0

is computed from the phase waveforms by means of the SV transformation (21) with β = 0.
Its model, which also in this case is assumed to be valid over the C nominal cycle interval
centered around the reporting instant, results by applying to (38) the SV transformation on
the same reference frame, hence:

x̄SV0(t) = X̄ph,+(tr)ejω(tr)tr ej(ω(tr)−ω0)tejω0t + X̄∗ph,−(tr)e−jω(tr)tr e−j(ω(tr)−ω0)te−jω0t + d̄SV0(t)

= X̄+(tr)ejω0t + X̄∗−(tr)e−jω0t + d̄SV0(t) (39)

Figure 4. Block diagram of the SV-IpDFT algorithm.
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The next step is considering the Nw = CMC samples of the SV signal collected
around tr and, having applied a smoothing window defined by the sequence w[n] (n =
0, . . . , Nw − 1), computing the DFT bins X̄SV0(k, tr) whose corresponding frequencies are
close to f0, namely whose indexes k are near to C. Let us assume that, as typically happens
in practical implementations, MC and thus also Nw are even numbers.

X̄SV0(k, tr) =
Nw−1

∑
n=0

w[n]x̄SV0(tr + (n− Nw/2)Ts)e
−j2π kn

Nw (40)

The key underlying assumption of IpDFT algorithms is that long-range leakage is
negligible for the considered indexes k. When comparing (39) with (38), it is evident
that this assumption is more easily met as long as the IpDFT algorithm is applied to the
SV signal instead of a phase waveform. In fact, thanks to low unbalance level of power
systems, in the first case the disturbance produced by the counter-rotating component is
considerably lower in relative value.

Therefore, neglecting spectral interference, it results (ω = ω(tr) in the following):

X̄SV0(k, tr) ≈ X̄ph,+(tr)W̄(k− λ)e−jωNwTs/2

= X̄ph,+(tr)W̄(k− λ)e−jπλ (41)

where W̄(γ) is the discrete-time Fourier transform of w[n] computed in the generalized bin
γ, while λ = f NwTs. Now, let us suppose to have employed a periodic window having
w[0] = 0: it is worth noting that this property holds true for many widely employed
windows, even including those belonging to the Rife-Vincent class I family. In this case, it
is possible to write:

X̄SV0(k, tr) ≈ (−1)kX̄ph,+(tr)W(k− λ) (42)

where W(γ) is the amplitude response of the window. Let us assume that k0 is the closest
integer to λ, namely the index of the highest DFT component. Writing λ = k0 + δ(tr)
(|δ(tr)| < 1/2), δ can be estimated from the ratio between the magnitudes of the two largest
bins with the following equations:

ξ(tr) =
|X̄SV0(k0 + l(tr), tr)|
|X̄SV0(k0, tr)|

≈ |W(l(tr)− δ(tr))|
|W(−δ(tr))|

= g(δ(tr)) (43)

δ̂(tr) = g−1(ξ(tr)) (44)

where l(tr) = sign(|X̄SV0(k0 + 1, tr)| − |X̄SV0(k0 − 1, tr)|).
The frequency is then estimated as:

f̂ (tr) = f0 +
δ̂(tr)

NwTs
(45)

Using δ̂, the positive sequence synchrophasor in the reporting instant is obtained
through scalloping loss compensation and phase shift of the highest DFT component:

ˆ̄X+(tr) = (−1)k X̄SV0(k0, tr)

W
(
δ̂(tr)

) (46)

Finally, the ROCOF is obtained by using the previously described algorithm to per-
form frequency measurements in the time instants tr − STs and tr + STs while computing
a discrete-time derivative, thus applying the linear-phase FIR filter D1

S (introduced in
Section 2.2) to the frequency estimates:

R̂OCOF(tr) =
f̂ (tr + STs)− f̂ (tr − STs)

2Ts
. (47)
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As in Section 2.2, the algorithm latency is given by half the window length plus
the delay required by the discrete-time derivative used to compute ROCOF, that is L =
(Nw/2− 1 + S)Ts = (CMC/2 + S− 1)Ts.

3. Simulation Results
3.1. Implementation of the Algorithms

The target of this section is comparing the capabilities of the previously discussed
PMU algorithms in estimating the positive sequence synchrophasor, frequency and ROCOF
under different conditions. The tests waveforms follow the standard [7], with reference to
P compliance class and maximum reporting rate, but additional cases are also included.
Accuracy of the estimates is quantified in terms of total vector error (TVE), absolute
frequency error (|FE|) and absolute ROCOF error (|RFE|) defined, with reference to the
generic measurement instant tr, as:

TVE(tr) =
| ˆ̄X+(tr)− X̄+(tr)|

X+(tr)

|FE(tr)| = | f̂ (tr)− f (tr)|

|RFE(tr)| = |R̂OCOF(tr)− ROCOF(tr)|

(48)

The considered algorithms have been applied with the same sampling rate fs = 200 · f0;
a reporting interval equal to the sampling interval (that is Q = 1, TRR = Ts) is employed
for a more accurate comparison. In order to have similar latencies, so that the comparison
is more significant, all the methods except for IEC-P have been implemented to use three
nominal cycles for each synchrophasor estimation. Filter design has key importance in
the performance achieved by the SV-F algorithm. The first filter H is a 181 tap lowpass
linear-phase equiripple having 2 Hz passband frequency with 2 · 10−3 passband ripple,
50 Hz stopband frequency and 0.03 stopband ripple. Filters M and P are identical 421 tap
lowpass equiripple linear-phase filters with 2 Hz passband frequency, 0.01 passband ripple,
50 Hz stopband frequency and 0.03 stopband ripple. All the coefficients of H, M and P
have been scaled in order to have unit DC gain; this ensures theoretically zero error when
the input is sinusoidal and positive sequence, also under off-nominal frequency. Filter F
is a 421 tap linear-phase, equiripple partial-band differentiator. Its coefficients have been
scaled so that the output is one when the input is x[n] = nTs; it results in theoretically zero
frequency estimation error when input is sinusoidal, positive sequence but frequency is
different from its rated value. Finally, filter R is a 421 tap, linear-phase, equiripple 2nd
order partial-band differentiator. Its coefficients have been scaled in order to return unitary
output when input is x[n] = (nTs)2/2; this corresponds to zero RFE in the presence of a
purely positive sequence input exhibiting a frequency ramp. The SV-TF estimator has been
designed in order to exploit the additional flexibility enabled by the native three-phase
approach: K+ = 3 guarantees a good modeling of the time-dependency of the positive
sequence synchrophasor, while K− = 1 is generally sufficient to prevent the infiltration
of the negative sequence term in the positive sequence synchrophasor estimate. When
considering the IEC-P and SV-IpDFT methods, S = 1 is employed, namely the finite
differences in the reporting instant tr are computed from the estimates in tr − Ts and tr + Ts.
Finally, a periodic Hann window is used for the implementation of the SV-IpDFT algorithm.

3.2. Tests under Steady-State Conditions

These tests require applying three-phase waveforms whose parameters, which are the
positive sequence phasor, the frequency and the ROCOF, have constant values (it implies
ROCOF = 0). The target is evaluating the capabilities of the PMU algorithms in returning
accurate estimates (ideally constant and equal to those present in the test waveform) in the
presence of different disturbing factors.



Appl. Sci. 2021, 11, 2261 16 of 34

3.2.1. Off-Nominal Frequency

The first set of tests is focused on testing the accuracy achieved by the different
algorithms when the input is sinusoidal, positive sequence, but the frequency differs
from its rated value. In particular, different frequencies have been considered. Figure 5
reports the maximum TVE under steady-state conditions for all the algorithms; frequency
spans the range [48, 52]Hz with a step of 0.2 Hz. Since the negative sequence input is
zero, positive sequence synchrophasor estimates are not affected by spectral interference.
In particular, TVE values are negligible for the SV-F and SV-IpDFT, since they provide
a theoretically exact compensation of the scalloping loss, which is the only error source
under these conditions. TVE is not negligible (albeit it is still very low) as far as the SV-TF
(<7.1 · 10−3) and IEC-P (<4.5 · 10−3) methods are concerned. The reason is that the SV-
TF technique does not compensate for scalloping loss due to the employed filters, while
IEC-P uses an approximate formula, thus leading to its mitigation but not to a complete
cancellation. All the algorithms result in negligible RFE values (in the order of 10−8 Hz/s
or even lower), while the |FE| has a meaningful value only for SV-TF (0.078 mHz at 48 Hz).
In this case, the reason is undermodeling of the positive sequence synchrophasor because
of its truncated Taylor expansion and the consequent error infiltration in (36), which is used
for obtaining the frequency estimate. It is worth noting that both FE and TVE values can
be reduced by obtaining the filter bank from a WLS solution (e.g., weights corresponding
to the coefficients of a Hann window), as previously mentioned in Section 2.4.

48 48.5 49 49.5 50 50.5 51 51.5 52
f [Hz]

0

1

2

3

4

5

6

7

8

[%
]

10–3 max TVE

IEC-P
SV-F
SV-TF
SV-IpDFT

Figure 5. Maximum TVE results under off-nominal frequency conditions.

3.2.2. Harmonic Disturbances

Another important set of tests is focused on assessing the impact of harmonic dis-
turbances on positive sequence synchrophasor, frequency and ROCOF measurements
obtained with the different algorithms. SV-based PMU algorithms (SV-F, SV-TF and SV-
IpDFT) estimate the positive sequence synchrophasor, frequency and ROCOF by processing
the SV signal. Therefore, in order to understand their behavior, it is significant to write the
expression of x̄SV under steady-state conditions in the presence of harmonic disturbances.
It results from (22) where:

X̄+(t) = X̄ph,+ej(ω−ω0)t X̄−(t) = X̄ph,−ej(ω−ω0)t (49)
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d̄SV0(t) =
∞

∑
h=2

[
X̄ph,h,+ejhωt + X̄∗ph,h,−e−jhωt

]
(50)

X̄ph,h,− is the negative sequence phasor of the fundamental; X̄ph,h,+ and X̄ph,h,− are, respec-
tively, the positive and negative sequence phasors of the hth order harmonic. Therefore,
positive sequence terms produce complex exponential contributions to x̄SV which rotate
with angular speed hω, hence in positive direction; conversely, negative sequence compo-
nents are responsible for complex exponential terms which rotate with angular speed −hω,
thus in negative direction. Zero sequence terms do not appear in x̄SV .

As mentioned before, SV based PMU algorithms apply some kind of bandpass filtering
to x̄SV0 in order to extract only the components whose rotational speeds are close to ω0, thus
representing the centre of the passband. It is worth noting that, for a given harmonic order
h, negative sequence components are easier to be filtered with respect to positive sequence
terms, since they are 2ω0 farther with respect to the middle of the passband. Similar
consideration applies also to the IEC-P method. In fact, with some manipulations, it is
possible to show that the provided positive sequence synchrophasor estimate corresponds
to the application of the triangular FIR filter to the SV signal whose instantaneous angular
position of the reference frame is β(t) = ω0t.

In practical applications, the three-phase set is very close to be symmetric: this means
that phase b and c waveforms are obtained by time-shifting that of phase a by −1/(3 f )
and 1/(3 f ), respectively. Under this assumption, it can be shown that:

• harmonics whose orders are multiple of three are purely zero sequence contributions;
• harmonics whose orders are given by h = 3k + 1 are purely positive sequence contri-

butions;
• harmonics whose orders are given by h = 3k − 1 are purely negative sequence

contributions.

In order to test the performance of the different algorithms in the presence of harmonic
disturbances, three-phase test signals characterized by a positive sequence contribution
at frequency f with a superimposed symmetric hth order harmonic (h ranging from 2 to
50) having 1% relative amplitude have been applied. For each test signal and algorithm,
maximum TVE, |FE| and |RFE| values over a 2-s time interval have been evaluated
and compared. It is worth reminding that because of the aforementioned considerations,
injected harmonics whose orders are multiple of 3 do not affect the estimates. A particular
situation for methods IEC-P and SV-IpDFT occurs when frequency is equal to its rated
value. In fact, they apply a frequency shift of − f0 to the SV signal and then either a two-
cycle triangular or a three-cycle Hann window having frequency response zeros located
at multiples of f0, thus in correspondence of the harmonics, which are fully removed.
As a result, positive sequence synchrophasor, frequency and ROCOF estimates obtained
with these techniques are intrinsically immune to harmonic disturbances when f = f0.
Under the same conditions, the SV-F method provides very good synchrophasor and
frequency estimates, with maximum TVE and |FE| below 2 · 10−3% and 0.2 mHz; |RFE|
is significant, reaching a maximum value of 0.39 Hz/s, which is still compliant with the
P-class limit of the IEC/IEEE standard. The SV-TF method results in the highest errors,
with maximum TVE of 3.6 · 10−2% (thus well below the 1% limit prescribed by the IEC/IEEE
standard) in the presence of the 2nd order harmonic, and then decaying for the higher-order
components thanks to the response of the TF filter. Conversely, |FE|, exceeds 13 mHz at
the 4th order harmonic, namely significantly higher with respect to the 5 mHz limit; |RFE|
almost reaches 0.6 Hz/s, also in this case higher than the corresponding limit. However,
harmonic rejection capability of the SV-TF approach can be dramatically improved by
applying weighting coefficients to the samples, such as those of a Hann window.

Harmonic rejection capability has been tested also under off-nominal frequency (not
requested by the IEC/IEEE standard), namely considering f = 49 Hz; results are reported
in the following Figures 6–8.
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Figure 6. Maximum TVE in the presence of 1% harmonic disturbances, f = 49 Hz.
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Figure 7. Maximum |FE| in the presence of 1% harmonic disturbances, f = 49 Hz.



Appl. Sci. 2021, 11, 2261 19 of 34

5 10 15 20 25 30 35 40 45 50

Harmonic order

0

2

4

6

8

10

12

14

16

[H
z/

s]

max |RFE|

IEC-P

SV-F

SV-TF

SV-IpDFT

Figure 8. Maximum |RFE| in the presence of 1% harmonic disturbances, f = 49 Hz.

The first consideration is that from the previous graphs the envelope of the errors
reflects the response of the filters employed by the different algorithms. The somewhat
jagged trend occurs since, according to their harmonic order, superimposed disturbances
in the SV signal have alternatively positive angular speed, negative angular speed, or zero
magnitude. Under these conditions, it is clear that IEC-P and SV-IpDFT are no longer
able to fully reject harmonic disturbance. When looking at the TVE values (Figure 6),
the SV-IpDFT algorithm still results in excellent accuracy: maximum is about 3 · 10−4% at
the 4th order harmonic; the IEC-P method reaches a larger maximum TVE slightly above
2 · 10−3%, which is still pretty low. As for the SV-F algorithm, performance is very close
to that achieved at nominal frequency. The same applies to the SV-TF algorithm, with the
highest error now occurring at the 4th order harmonic. From Figure 7, maximum frequency
errors for SV-F and SV-TF algorithms are similar to those with f = f0, while the SV-IpDFT
approach guarantees the best results; this means that the adopted Hann window is very
effective in preventing spectral interference. Frequency estimates provided by the IEC-P
method are affected by significant errors, but they remain below 2.5 mHz. Finally, when
analyzing the results in terms of RFE, values obtained with the SV-F algorithm are also
in this case very similar to those measured with nominal frequency; maximum |RFE|
of the SV-TF technique slightly increases to almost 0.8 Hz/s at the 4th order harmonic.
SV-IpDFT ensures the best performance also in terms of ROCOF estimate, while the |RFE|
values corresponding to the IEC-P algorithm are extremely large. The impact of harmonic
disturbances affecting the positive sequence synchrophasor estimates, which are no more
suppressed by the triangular window, is highly magnified by the second order differentiator
that allows computing the ROCOF.

3.2.3. Unbalance

Asymmetries between the three phases may be present in real-world applications:
thus, assuming purely sinusoidal steady-state conditions, the three-phase input to the
PMU is not purely positive sequence, but it may contain also negative and zero sequence
contributions. From the considerations of Section 3.2.2, it can be noticed that, for all
the algorithms, the zero sequence contribution is inherently rejected, while the negative
sequence term results as a complex exponential disturbance, whose rotational speed
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is −(ω + ω0), affecting the positive sequence synchrophasor, frequency and ROCOF
estimates. Therefore, the target of these tests is assessing the capability of the different
algorithms to provide accurate estimates also in the presence of three-phase asymmetry; for
the sake of completeness, frequency f is swept in the range [48, 52]Hz, as in the previous
tests. Accuracy is quantified by the maximum TVE, |FE| and |RFE| evaluated on a
2-s time interval for each test condition and PMU algorithm. It is worth noting that the
IEC-P and SV-IpDFT methods are intrinsically immune to the infiltration of the negative
sequence component when f = f0, thanks to the zeros of the employed triangular or
Hann window. Also the SV-TF method results in virtually zero error in this case: in fact,
the underlying model produces zeros located at − f0 in the frequency responses in the
resulting complex-valued filters which are applied to the SV signal in order to obtain the
positive sequence synchrophasor and its derivatives.

First of all, amplitude unbalance has been considered: phase a magnitude is set
10% larger with respect to the others. TVE is still very low for all the algorithms and
frequency values (below 1.2 · 10−2%) and hence not shown, while results in terms of FE
and RFE are much more significant; they are reported in Figures 9 and 10 as functions of f .
As mentioned above, the negative sequence acts as a disturbance in the SV signal located
at frequency −( f + f0) whose relative magnitude is 3.2% with respect to the positive
sequence component; it has to be rejected by the filtering stages of the different algorithms.
As expected, when f = f0 all the algorithms except for SV-F result in zero error and exhibit
a monotonic increase of errors as long as f deviates from f0. For significant values of ∆ f ,
SV-F becomes the most accurate algorithm, both for frequency and ROCOF measurement.
The behavior of SV-IpDFT is fairly good as far as the frequency estimate (|FE| below
1 mHz), while |RFE| values are significant, exceeding 0.5 Hz/s; the reason is the spectral
interference produced by the negative sequence term (it becomes larger as the difference
between f and f0 increases) that the algorithm assumes to be negligible, whose impact is
magnified by the numerical differentiation. The triangular window adopted by the IEC-P is
not very effective in reducing the oscillation produced by the negative sequence component
in the positive sequence synchrophasor phase angle estimate under off-nominal frequency
conditions. When numerical first and, even more, second order discrete differentiation
is applied to obtain frequency and ROCOF estimates, the magnitude of this oscillation
increases noticeably: it is not surprising that the IEC-P method achieves the worst |RFE|
values. The SV-TF method achieves the highest frequency error because of the response
of the filter used for obtaining the positive sequence synchrophasor first-order derivative,
which in turns is used for frequency estimation. Better results would have been obtained by
designing a filter with a wider stopband around − f0. ROCOF measurement is fairly good
(second only to the SV-F method), but it is worth highlighting that significantly lower |FE|
and |RFE| can be obtained by adopting, as mentioned before, Hann weighting in filter
design; values of 0.06 mHz and 0.01 Hz/s at 52 Hz are achieved in a worst-case scenario.

Similar results, confirming the above discussion, can be found also in case of phase
unbalance, thus reducing the angle of phase a by 10◦ with respect to purely sinusoidal
positive sequence conditions. Since the unbalance level is higher in this case (5.6%),
the errors are expected to be higher too. TVE increases but it is still very small (below
1.8 · 10−2%); Figures 11 and 12 show the |FE| and |RFE| values. It is worth highlighting
that results show that the magnitudes of all the errors increase proportionally to the
unbalance level; this has been extensively studied in in [34] for IEC-P, SV-F, and TF-
based algorithms and analytical expression to predict their values are also available. This
consideration applies with excellent accuracy also for the SV-IpDFT estimator, even though
it is intrinsically nonlinear. Once again, the performance of SV-TF can be enhanced if the
filters are obtained with the WLS approach (weights corresponding to the squares of the
Hann window coefficients) and |FE| and |RFE| thus become lower than 0.12 Hz and
0.03 Hz/s, respectively, again reflecting the stronger impact of the disturbance with respect
to the previous unbalance test case.
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Figure 9. Maximum |FE| results under off-nominal frequency conditions in the presence of magni-
tude unbalance.

48 48.5 49 49.5 50 50.5 51 51.5 52

f [Hz]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

[H
z/

s]

max |RFE|

IEC-P

SV-F

SV-TF

SV-IpDFT

Figure 10. Maximum |RFE| results under off-nominal frequency conditions in the presence of
magnitude unbalance.
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Figure 11. Maximum |FE| results under off-nominal frequency conditions in the presence of phase-
angle unbalance.
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Figure 12. Maximum |RFE| results under off-nominal frequency conditions in the presence of
phase-angle unbalance.

3.2.4. Wideband Noise

Tests with additive uniform white noise permit to verify the immunity of the al-
gorithms to disturbances that are not narrowband (such as unbalance and harmonics
discussed in Sections 3.2.2 and 3.2.3) but correspond instead to wideband noise which may
be due to different sources, such as thermal noise of analog signal conditioning stages and
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quantization noise of digitization stages. Purely sinusoidal, positive sequence input at
nominal frequency has been considered and independent zero-mean uniform noise has
been superimposed to the samples. This permits to highlight the impact of the noise alone
having considered different yet realistic signal-to-noise ratios (SNRs). TVE, FE and RFE
have been evaluated over a 20-s test duration, and their Root Mean Square (RMS) values
have been computed. Maximum errors are not considered in this case, since they have
intrinsically a considerably worse statistical behavior. Figure 13 reports the impact of noise
on the RMS value of TVE. It is clear that the impact depends on the equivalent noise band-
width of the filters or cascades of filters used for synchrophasor estimation; as expected,
the error increases linearly with the noise level. In this respect, SV-IpDFT (characterized by
the narrowest equivalent bandwidth) achieves the lowest error values. On the opposite
side, the SV-TF technique suffers from the largest TVEs: it is somewhat expected, since TF
filters have been designed with dynamic performance in mind. In general, increasing the
expansion order widens the equivalent bandwidth and thus also the sensitivity to noise.
Furthermore, it is interesting to notice that the aforementioned Hann weighting in SV-TF
leads, in the presence of wideband noise, to an error which is 25% higher, meaning that the
improved characteristics of dynamic synchrophasor tracking have, as a side effect, lower
noise immunity.
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SV-TF
SV-IpDFT

Figure 13. RMS TVE in the presence of additive wideband noise at different SNRs.

Figures 14 and 15 report the RMS errors for frequency and ROCOF, respectively. Also
in this case, performance depends on the equivalent noise bandwidths (this applies to
linear but also nonlinear algorithms trough small-signal linearization) that characterize
the different methods for estimating frequency and ROCOF, and as expected the values of
the errors are proportional to the noise level. It can be noticed that the differences among
the algorithms under test are larger when RMS FE and RFE are considered instead of the
RMS TVE.
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Figure 14. RMS FE in the presence of additive wideband noise at different SNRs.
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Figure 15. RMS RFE in the presence of additive wideband noise at different SNRs.

When looking at the RMS FE, the SV-F algorithm results in the lowest error values,
while the other techniques achieve similar performance (SV-TF is marginally the worst).
Focusing on the RMS RFE, it is clear that IEC-P and SV-IpDFT suffer from the largest errors:
the reason is that ROCOF is obtained with first (SV-IpDFT) or even second-order (IEC-P)
discrete-time derivatives, whose outputs are notably highly sensitive to the presence of
input noise. The SV-TF with the selected expansion orders provides the best ROCOF
estimate in the presence of noise, with SV-F resulting in slightly higher RMS RFE. Also
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in this case, Hann weighting for SV-TF leads to significantly worse errors, with a growth
up to 78% and 176% for |FE| and |RFE|, respectively. This result highlights how the
values of the adopted weighting coefficients must be carefully considered: they can be very
helpful for synchrophasor estimation algorithm design (as proven in previous sections),
but only if high SNR is expected.

3.3. Tests under Dynamic Conditions

One of the breakthroughs of PMUs is that they enable monitoring the time evolution
of the power system. For this purpose, the employed algorithms should be able to track
the value of synchrophasor, frequency and ROCOF also when the parameters defining the
input signal are time-varying. Tests under dynamic conditions are aimed at evaluating the
accuracy in these scenarios.

3.3.1. Amplitude and Phase-Angle Modulations

Electrical signals in the presence of power system oscillations can be modeled as
in (1). Therefore, the tracking capability of PMUs under these conditions can be as-
sessed by applying three-phase balanced sinewaves with sinusoidal amplitude or phase
angle modulation.

xabc(t) =
√

2X(1 + kx cos(2π fmt))

 cos(ω0t + ka cos(2π fmt− π))
cos(ω0t− 2

3 π + ka cos(2π fmt− π))
cos(ω0t + 2

3 π + ka cos(2π fmt− π))

 (51)

where kx and ka are the amplitude and phase-angle modulation indexes, respectively, X is
the unmodulated RMS amplitude and fm is the modulation frequency. Applying the SV
transformation to (51), it results:

x̄SV(t) =
√

3X(1 + kx cos(2π fmt))ej(ka cos(2π fmt−π)+ω0t−β(t)) = X̄+(t)ej(ω0t−β(t)) (52)

Tests are performed with different values of fm, which is swept from 0 (unmodulated)
to 2 Hz with 0.1 Hz step in order to evaluate the measurement bandwidths of the different
techniques. For each algorithm and condition, accuracy is expressed by the maximum
values of TVE, |FE| and |RFE| over a 10-s test duration.

Let us firstly consider amplitude modulated signals, with kx = 0.1 and ka = 0; in this
case, the algorithms are required to extract a bandpass signal from x̄SV , whose spectral
content is located between f0 ± fm. This is evident for SV based algorithms, but it is true
also for the IEC-P method as long as the positive sequence synchrophasor, frequency and
ROCOF measurements are considered. The SV-TF immediately appears as perfectly suited
to cope with this test, since TF filters are designed with dynamic performance in mind; in
particular, the filter that allows positive sequence synchrophasor measurement exhibits
a flat frequency response around f0 (due to multiple null derivatives according to the
selected expansion order). Figure 16 reports the TVE values for all the algorithms; as
expected, errors monotonically increase with the modulation frequency and, furthermore,
it is clearly noticeable that SV-TF provides the most accurate synchrophasor measurement.
IEC-P and SV-F achieve very close error values, but it should be highlighted that the results
obtained with SV-F strongly depend on the filter design, which is obtained as a tradeoff
between steady-state and dynamic performance according to the specific needs. It is not
surprising that the highest error values are reached by the SV-IpDFT method, which relies
on a steady-state model of the SV signal.
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Figure 16. Maximum TVE results under amplitude modulations with modulation frequency fm.

Frequency errors are either small or negligible (<2 · 10−3 mHz) for all algorithms but
SV-IpDFT, which shows higher |FE| up to 13.25 mHz due to its underlying steady-state
assumption that is not able to effectively cope with amplitude modulated input signals.
As a consequence, |RFE| achieved by SV-IpDFT is also huge (it can easily go beyond
10 Hz/s, when fm gets larger than a few tenths of hertz). Conversely, the other algorithms
result in negligible RFE values (order of magnitude 10−5 Hz/s, or less).

More varied is the performance of the methods under phase angle modulations,
as shown in Figures 17–19. Again, the dynamic model which the SV-TF is based on results
in the most accurate synchrophasor estimations: the TF filters preserve the bandpass
characteristics of the SV signal also in this case. As for the other algorithms, TVE values
are low, but they show how the synchrophasor tracking properties can be significantly
different. In particular, SV-IpDFT shows the highest errors because of the steady-state signal
representation, which shows its major weakness under dynamic conditions. The same
considerations hold true also for frequency estimation: the SV-TF is also in this case the
less sensitive to the sinusoidal frequency oscillation (see Figure 18). The other algorithms
show similar errors, with the SV-F approach being the least accurate, even if better dynamic
performance would be enabled by different filter design. As far as ROCOF measurements
is concerned, SV-IpDFT is again more prone to errors for the aforementioned reasons.
The other algorithms are quite similar and it is interesting to notice that SV-TF is no longer
the best one, mainly because, when sinusoidal variations are involved, the truncation of
the Taylor expansion limits the tracking capabilities. A higher expansion order might help
reducing the RFE values.
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Figure 17. Maximum TVE results under phase-angle modulations with modulation frequency fm.
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Figure 18. Maximum |FE| results under phase-angle modulations with modulation frequency fm.
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Figure 19. Maximum |RFE| results under phase-angle modulations with modulation frequency fm.

3.3.2. Frequency Ramp

This test requires applying a three-phase positive sequence sinusoidal waveform
whose frequency varies from 48 Hz to 52 Hz (between the instants tstart = 3 s and tend = 7 s)
with constant ROCOF equal to 1 Hs/s, starting from and reaching steady-state conditions.
Performance is evaluated in terms of TVE, |FE| and |RFE|, but measurements whose
reporting instants are before tstart + 2/ f0 (thus two nominal cycles after the start of the
ramp) or after tend − 2/ f0 (that is two nominal cycles before the end of the ramp) are
excluded from the analysis, as prescribed by [7]. Under this condition, the TVE values
resulting from the algorithms IEC-P, SV-F and SV-IpDFT, which are not intrinsically based
on a dynamic synchrophasor model, are significantly degraded with respect to off-nominal
frequency conditions, as it can be noticed from Figure 20. On the contrary, the SV-TF
method, whose filters are derived from a Taylor expansion of the synchrophasor, shows
almost the same performance as that reported in Figure 5. In fact, the dynamics corre-
sponds to a slowly-varying fundamental frequency which can be embedded by the TF
synchrophasor model. The SV-TF method reaches the highest |FE| values, which are very
close to those obtained under off-nominal frequency conditions (see Section 3.2.1); also the
corresponding maximum |RFE| is not negligible (always <0.06 Hz/s), since the Taylor
expansion truncation and the linearization used for ROCOF computation (see (37)) become
more significant when higher-order derivatives are involved. It is interesting to notice
that thanks to the normalization of filter R coefficients, SV-F has an ideal behaviour in the
presence of constant ROCOF, and thus leading to virtually zero RFE in the presence of a
frequency ramp. ROCOF measurement provided by the SV-IpDFT algorithm has a small
spike (resulting in 0.025 Hz/s RFE) when frequency reaches 50 Hz. The reason is that the
frequency estimation error changes sign exactly at the nominal frequency, and this affects
the ROCOF measurement, which is obtained by numerical differentiation.
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Figure 20. TVE as a function of time under frequency ramp conditions.

3.3.3. Step Tests

In these tests, the applied input signal is sinusoidal and positive sequence with
rated frequency, but it exhibits a step variation of either its magnitude or phase angle
in a predetermined time instant tstep. The target is assessing the behavior of the PMU
algorithms in the presence of fast transients, such as those triggered by switching and
faults. As prescribed by [7], step magnitudes are 10% in magnitude and 10◦ in phase;
performance are evaluated thus assessing the times required by TVE, FE and RFE to
return below the corresponding steady-state limits (response times), the delay time and the
magnitude of overshoot/undershoot which may be present in the estimates.

Figure 21 shows the magnitude of the positive sequence synchrophasor estimated
by the different algorithms in the presence of a +10% amplitude step, starting from 1 p.u.
magnitude. All the algorithms have negligible delay time thanks to a proper compensation
of the group delay: halfway of the step is reached within 1 sample (100µs) from the step
instant tstep = 1 s. The magnitude estimate obtained with the SV-TF method exhibits
undershoot in the pre-transition region and overshoot in the post-transition region (as
evident from Figure 21) with a maximum of 8.08% of the step size. Such effect, which is
due to the characteristics of the TF filters, can be mitigated by using Hann weighting as
discussed above. All the other algorithms do not show significant under/overshoot: they
are easily within the limit indicated by the standard (5% of the step magnitude).

The TVE, FE and RFE response times for all the algorithms reported in Table 1. It is
worth highlighting that SV-F and IEC-P have zero error both in frequency and ROCOF since
in this case phase angle is decoupled from amplitude estimate. SV-TF has response times
that strongly depend on the order of expansion and on the possible use of weights, which
can easily lead to maximum |FE| and |RFE| lower than the corresponding steady-state
limits: in that case, frequency and ROCOF response times becomes equal to zero.
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Figure 21. Positive sequence synchrophasor magnitude estimation, 10 % amplitude step.

Table 1. Response times for +10% magnitude step test.

Algorithm
Response Time [ms]

TVE Frequency ROCOF

IEC-P 21.7 0.0 0.0
SV-F 21.6 0.0 0.0

SV-TF 22.6 52.3 58.7
SV-IpDFT 28.4 52.5 58.1

Figure 22 reports the positive sequence synchrophasor phase angle estimated by the
considered algorithms when a −10◦ phase step is applied. Analogously to amplitude step
test, overshoot and undershoot are noticeable only for SV-TF algorithm, which leads to a
maximum value of 8.1% with respect to the step magnitude, thus above the limit of the
standard. Response times are reported in Table 2, where SV-TF shows the longest TVE
response time because of the secondary lobes present in the time evolution of TVE (see
Figure 23) that go beyond the 1% steady-state limit prescribed by [7]. The Hann weighting
allows improving SV-TF dynamic response, leading to a TVE response time of 15.0 ms and
to a maximum under/overshoot of 4.4%. In addition, it also allows reducing the frequency
and ROCOF response times, which, as reported in Table 2, are very close to the window
length for all the algorithms (namely two and three nominal cycles for IEC-P and the other
methods, respectively). In fact, FE and RFE promptly react to the abrupt phase change as
soon as the step enters in the sample window, resulting in large deviations from actual
frequency and ROCOF (up to about 1 Hz and 80 Hz/s for |FE| and |RFE|, respectively).
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Figure 22. Positive sequence synchrophasor phase angle estimation, −10◦ phase step.
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Figure 23. TVE in the presence of a −10◦ phase step.
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Table 2. Response times for −10◦ phase step test.

Algorithm
Response Time [ms]

TVE Frequency ROCOF

IEC-P 26.4 39.8 40.0
SV-F 31.0 56.8 60.0

SV-TF 53.0 60.0 60.0
SV-IpDFT 34.6 51.0 56.2

4. Conclusions

The paper has presented a thorough comparison among the performance achieved by
four low-latency algorithms for positive sequence synchrophasor, frequency and ROCOF
estimation. Three of them are designed directly on the SV signal model, while the fourth
one is the reference P-class method of the latest IEC/IEEE standard, which is used as
a benchmark. The paper has shown how, depending on the actual conditions of the
three-phase signals and on the specific assumptions of each method, results can differ
noticeably. It is extremely important to notice that the algorithms are characterized by
parameters that need to be finely tuned according to the desired performance target. It is
also clear that techniques designed to track the synchrophasor dynamics better preserve
the bandpass characteristics of the positive sequence synchrophasor, but at the expense
of a lower immunity to disturbances. The paper has highlighted that, depending on the
expected level of narrowband or wideband disturbances, some methods can be prone to
errors. Countermeasures, such as different weighting functions have been also presented,
while keeping in mind that a tradeoff between bandwidth and immunity, between fast
response to abrupt changes and small artifacts in the response itself, is always to be sought.
The presented algorithms have, in general, good performance, and peculiar characteristics,
but some unexpected outcomes have been highlighted by the analysis (e.g., those about
the RFE under phase modulation). The performed comparison allows understanding in
detail the potentialities of these methods that are simple and lightweight and thus likely to
be implemented in commercial PMUs for three-phase systems.
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Abbreviations
The following abbreviations are used in this manuscript:

ROCOF Rate Of Change Of Frequency
PMU Phasor Measurement Unit
UTC Coordinated Universal Time
IEEE Institute of Electrical and Electronics Engineers
IEC International Electrotechnical Commission
TVE Total Vector Error
FE Frequency Error
RFE ROCOF Error
DFT Discrete Fourier Transform
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TFT Talor-Fourier Transform (TFT)
SV Space Vector
IpDFT Interpolated Discrete Fourier Transform
TF Talor-Fourier
FIR Finite Impulse Response
IIR Infinite Impulse Response
SNR Signal to Noise Ratio
RMS Root Mean Square
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