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Abstract: Achondrogenesis type II (ACG2) is a lethal skeletal dysplasia caused by dominant pathogenic
variants in COL2A1. Most of the variants found in patients with ACG2 affect the glycine residue
included in the Gly-X-Y tripeptide repeat that characterizes the type II collagen helix. In this study,
we reported a case of a novel splicing variant of COL2A1 in a fetus with ACG2. An NGS analysis
of fetal DNA revealed a heterozygous variant c.1267-2_1269del located in intron 20/exon 21. The
variant occurred de novo since it was not detected in DNA from the blood samples of parents.
We generated an appropriate minigene construct to study the effect of the variant detected. The
minigene expression resulted in the synthesis of a COL2A1 messenger RNA lacking exon 21, which
generated a predicted in-frame deleted protein. Usually, in-frame deletion variants of COL2A1 cause
a phenotype such as Kniest dysplasia, which is milder than ACG2. Therefore, we propose that the
size and position of an in-frame deletion in COL2A1 may be relevant in determining the phenotype
of skeletal dysplasia.

Keywords: skeletal dysplasia; achondrogenesis type II; COL2A1; splicing variant; minigene assay;
in-frame deletion

1. Introduction

Achondrogenesis type II (ACG2) is a rare, lethal genetic disease that is part of an
uncommon skeletal dysplasia group. ACG2 is characterized by a short neck with macro-
cephaly; a small thorax; underdeveloped lungs; a prominent abdomen; short arms; short
legs; and incomplete ossification of the vertebral column, sacrum, and pubic bones. More-
over, it is marked by distinctive facial features such as a prominent forehead; a small chin;
and in some cases, a cleft palate [1].

ACG2, first described by Langer [2] and Saldino [3], is caused by a dominant variant
in COL2A1. Pathogenic variants in this gene cause different skeletal disorders, includ-
ing achondrogenesis type II and hypochondrogenesis (MIM#200610), Kniest dysplasia
(MIM#156550), platyspondylic dysplasia Torrance type (MIM#151210), spondyloepiphyseal
dysplasia congenita (SEDC) (MIM#183900), spondyloperipheral dysplasia (MIM#271700),
SED with metatarsal shortening (formerly Czech dysplasia) (MIM#609162), SED with
pronounced metaphyseal changes (including SEMD Strudwick type) (MIM#184250), and
Stickler syndrome (MIM#108300) [4,5].
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ACG2 is the most severe phenotype, while Kniest and SED dysplasia are milder but
still have grave conditions, characterized by skeletal anomalies [6]. Stickler syndrome is
the mildest condition, and frequently, ocular findings are the only clinical manifestations.
Different types of COL2A1 variants are associated with the various phenotypes [7].

COL2A1 is located at 12q13.11 (MIM#120140) and contains 54 exons. It encodes the
polypeptide subunit of the type II collagen, which is a homotrimer formed by three α-1(II)
chains [8]. Similar to other collagens, a repeating Gly-X-Y motif, which is fundamental for
homotrimer formation, characterizes the COL2A1 protein. In fact, in ACG2, the most com-
mon COL2A1 variants affect the glycine residue in Gly-X-Y repeats of the α-1 chain [9,10].
These variants cause a dominant-negative effect that dramatically impairs homotrimer
assembly and stability, leading to growth bone alterations and severe phenotypes such as
ACG2 and hypochondrogenesis. In contrast, nonsense mutations or out-of-frame deletions
can cause a premature stop codon that leads to haploinsufficiency, resulting in a decrease
in collagen synthesis, as well as diseases with milder phenotypes than that observed in
ACG2 [7,11]. Splice site variants leading to an in-frame deletion of COL2A1 have already
been described and are mainly associated with Kniest dysplasia [12,13]. In this study, we
reported a case of a novel COL2A1 splicing mutation in a fetus with an ACG2 phenotype,
and tentatively explained this uncommon genotype–phenotype association. Moreover, we
performed a minigene assay to show that the splicing variant generated an exon skipping,
leading to an in-frame deletion of COL2A1.

2. Materials and Methods
2.1. Case Report

A 35-year-old Italian primigravida was referred to our genetic unit at 18-week ges-
tation (WG) due to abnormal ultrasonographic findings. The parents of the fetus were
non-consanguineous, and the familial history did not reveal any relevant information.
Informed written consent for both diagnostic and research purposes was obtained from
the parents.

A three-dimensional ultrasound was performed to examine the fetus. The fetal 3D
ultrasound examination showed a brachycephaly, a prominent abdomen, short limbs (<at
the third centile), a facial dysmorphism characterized by abnormal implantation of the
ears, microretrognathia, frontal bossing, a long philtrum, and congenital megalophthalmos.
The three-dimensional rendering of the fetal skeleton showed reduced ossification of the
sacrum, iliac spines, and arched femurs (Figure 1A). Amniocentesis performed at 19-WG
for fetal karyotyping and array-CGH were negative.

At 20-WG gestation, the parents decided to interrupt the pregnancy. Postmortem
radiography confirmed reduced ossification of the sacrum and arched femurs (Figure 1B).
An autopsy was also performed (Figure 1C), and a cleft palate was observed. The prenatal
and postnatal findings were strongly suggestive of skeletal dysplasia, in particular, of
achondrogenesis type 2.
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Figure 1. (A) Three-dimensional ultrasound image of the fetus showing reduced ossification of the 
sacrum, iliac spines, and arched femurs. (B) Radiograph of the fetus showing reduced ossification 
of the sacrum, iliac spines, and arched femurs. (C) Frontal view of the fetus postmortem. 

2.2. Gene Sequencing 
Whole exome sequencing (WES) and in silico analysis of COL2A1 (NM_001844.5) on 

the fetal DNA revealed a heterozygous base-pair deletion involving the exon 21 of the 
COL2A1 gene (c.1267-2_1269del). 

DNA from the fetal tissue was enriched with SeqCap EZ Exome v3, prepared accord-
ing to the manufacturer’s protocol (Nimblegen, Roche, Basel, Switzerland), and 150 × 2 bp 
end sequenced on NextSeq550 (Illumina Inc., San Diego, CA, USA) with a 100× mean cov-
erage. Reads were aligned with the human genome reference sequence (hg19) using Bur-
rows–Wheeler Aligner (BWA) and then mapped and analyzed by the IGV software (Inte-
grative Genome Viewer, 2013 Broad Institute, Cambridge, MA, USA). The variant call for 
identifying nucleotide variants was performed using automated in-house pipelines (Ge-
nome Analysis ToolKit Unified Genotyper Module, GATK, Cambridge, MA, USA). Vari-
ants were classified following the guidelines of the American College of Medical Genetics 
and Genomics (ACMG) [14]. The data interpretation was made by in silico filtering for 
COL2A1, and a heterozygous base-pair deletion involving the exon 21 of COL2A1 (c.1267-
2_1269del) was detected. 

Genomic DNA was also extracted from the blood samples of the patient’s parents. 
The genomic DNA was amplified by the polymerase chain reaction (PCR) with primers 
forward 5′-ggttggggttcattctttgc-3′ and reverse 5′-tgatggggtttgactccaga-3′ for exon 21 of 
COL2A1. The PCR products were then purified and bidirectionally sequenced on a 310 
ABI PRISM Genetic Analyzer (Applied Biosystems, Waltham, MA, USA). The c.1267-
2_1269del variant of COL2A1 was confirmed in the fetus and excluded in the parents. 

2.3. Minigene Assay 
A wild-type DNA fragment containing COL2A1 from exon 19 to exon 22 was ampli-
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Figure 1. (A) Three-dimensional ultrasound image of the fetus showing reduced ossification of the
sacrum, iliac spines, and arched femurs. (B) Radiograph of the fetus showing reduced ossification of
the sacrum, iliac spines, and arched femurs. (C) Frontal view of the fetus postmortem.

2.2. Gene Sequencing

Whole exome sequencing (WES) and in silico analysis of COL2A1 (NM_001844.5) on
the fetal DNA revealed a heterozygous base-pair deletion involving the exon 21 of the
COL2A1 gene (c.1267-2_1269del).

DNA from the fetal tissue was enriched with SeqCap EZ Exome v3, prepared according
to the manufacturer’s protocol (Nimblegen, Roche, Basel, Switzerland), and 150 × 2 bp
end sequenced on NextSeq550 (Illumina Inc., San Diego, CA, USA) with a 100× mean
coverage. Reads were aligned with the human genome reference sequence (hg19) using
Burrows–Wheeler Aligner (BWA) and then mapped and analyzed by the IGV software
(Integrative Genome Viewer, 2013 Broad Institute, Cambridge, MA, USA). The variant call
for identifying nucleotide variants was performed using automated in-house pipelines
(Genome Analysis ToolKit Unified Genotyper Module, GATK, Cambridge, MA, USA).
Variants were classified following the guidelines of the American College of Medical
Genetics and Genomics (ACMG) [14]. The data interpretation was made by in silico
filtering for COL2A1, and a heterozygous base-pair deletion involving the exon 21 of
COL2A1 (c.1267-2_1269del) was detected.

Genomic DNA was also extracted from the blood samples of the patient’s parents.
The genomic DNA was amplified by the polymerase chain reaction (PCR) with primers
forward 5

′
-ggttggggttcattctttgc-3

′
and reverse 5

′
-tgatggggtttgactccaga-3

′
for exon 21 of

COL2A1. The PCR products were then purified and bidirectionally sequenced on a 310 ABI
PRISM Genetic Analyzer (Applied Biosystems, Waltham, MA, USA). The c.1267-2_1269del
variant of COL2A1 was confirmed in the fetus and excluded in the parents.

2.3. Minigene Assay

A wild-type DNA fragment containing COL2A1 from exon 19 to exon 22 was amplified
by PCR using human genomic DNA as a template and oligonucleotides, including restric-
tion sites for XhoI and HindIII: Forward 5

′
-cagAAGCTTgggttgggtgcatgtgcataat-3

′
and
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reverse 5
′
-gtaCTCGAGtgaagctgtatctgggccttct-3

′
. The wild-type fragment was then used as

a template to generate a fragment containing the variant c.1267-2_1269del by site-directed
mutagenesis (overlap extension PCR) using the following additional oligonucleotides:
Forward 5

′
-tcatgcccacgctcctggcatt-3

′
and reverse 5

′
-aatgccaggagcgtgggcatga-3

′
. All the

PCR amplifications were performed with the Pfu DNA polymerase. The wild-type and
mutated amplified products were purified by a gel extraction kit (QIAquick Gel Extraction
kit, Qiagen, Hilden, Germany) and then cloned into a pcDNA3 expression vector at the
XhoI and HindIII restriction sites to generate two minigene constructs: COL2A1-WT and
COL2A1-MUT. Recombinant vectors were checked by a sequence analysis.

Human embryonic kidney fibroblasts (HEK 293T) cells were grown in Dulbecco’s
modified Eagle’s medium, DMEM (Sigma-Aldrich, St. Louis, MO, USA), supplemented
with 10% fetal bovine serum at 37 ◦C with 5% CO2 atmosphere. Transient transfection
was performed on 70% confluent cells plated in six-well dishes with 2 µg of wild-type
or mutant minigenes, using the Lipofectamine 3000 transfection reagent (Thermo Fisher,
Waltham, MA, USA), according to the manufacturer’s instructions. The cells were har-
vested 48 h after the transfection, and total RNA was extracted using the RNeasy Mini
Kit (Qiagen, Hilden, Germany) by following the manufacturer’s instructions. Total RNA
samples were reverse-transcribed to cDNA using the High-Capacity RNA-to-cDNA Kit
(Applied Biosystems). The cDNA was amplified by PCR using the following primers:
Forward 5

′
-tcgcggtgaacctggtact-3

′
(sequence located in exon 19 of COL2A1) and reverse

5
′
-gccttgttcacctttgaagcca-3

′
(sequence located in exon 22 of COL2A1). PCR products were

visualized by 1.5% agarose gel, and the cDNA amplified fragments were purified by
a gel extraction kit (QIAquick Gel Extraction kit, Qiagen, Hilden, Germany) and then
bidirectionally sequenced.

3. Results

WES of the fetal DNA revealed a heterozygous variant c.1267-2_1269del (NC_000012.11:
g.48380957_48380961del) located in intron 20/exon 21 of COL2A1 (NM_001844.5). This
variant has never been reported in control populations (dbSNPs, EVS, GnomAD, and
1000 genomes databases) and, as a pathogenic variant, in ClinVar and LOVD databases.
Sanger sequencing across the site of the variant observed in the affected fetus confirmed
the presence of the wild-type sequence in the unaffected parents, consistent with a de novo
mutation in the fetus (Figure 2).
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Figure 2. Genealogic tree of the family with Sanger sequencing of exon 21 of COL2A1.

COL2A1 in-frame deletions have already been reported and are responsible for a
milder phenotype. We considered this variant as strongly causative of the observed phe-
notype since we did not identify additional variants in COL2A1 coding and regulatory
regions. In addition, we did not detect rare homozygous or putative compound heterozy-
gous combinations in other genes previously reported in overlapping conditions.

Since the variant does not contain the splice acceptor site of exon 21 of COL2A1, to
study the variant’s effect, we generated an appropriate minigene construct, as described
in the Methods section (Figure 3A). We transfected mutant and wild-type minigene con-
structs in HEK293T cells and detected the expression of minigenes by RT-PCR. The band
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of amplified cDNA corresponding to the spliced transcript in the mutant sample was
lower than that detected in the wild-type sample, which is consistent with the skipping
of exon 21 in COL2A1 messenger RNA (Figure 3B). Furthermore, the sequence of cDNA-
amplified products confirmed that, in the mutant sample, the minigene expression resulted
in the skipping of exon 21 (Figure 3C). The skipping of exon 21 generated an in-frame dele-
tion (p.Gly423_Thr455del) in the COL2A1 protein (NP_001835.3). The PROVEAN algorithm
predicted this variant to be deleterious [15], with a score of −122.637 recorded (cut-off of −2.5).
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spliced forms are indicated on the right side. Wild-type and mutated constructs are represented on the top and the bottom,
respectively. (B) Electrophoresis of PCR amplification of nucleic acids extracted from HEK293T-transfected cells. RNA
samples were reverse-transcribed and subjected to PCR amplification with specific primers located in exons 20 (Forward)
and 23 (Reverse) of COL2A1. The DNA band of 810 bp represents the non-spliced DNA of the transfected constructs,
while the 232 and 133 bp bands represent the spliced transcripts in the cells transfected with the wild-type and mutated
constructs. DNA was purified from the 232 and 133 bp bands and then sequenced (EV: Empty vector; WT: Wild-type
minigene construct; MUT: Mutated minigene construct; and NC: Negative control). (C) Electropherograms of amplified
products (wild-type and mutated) are shown in panel B.

4. Discussion

To classify the detected in-frame deletion as pathogenic, we applied the following
ACMG criteria: PS2 (de novo variant), PM4_Strong (protein changing length variant),
PM2 (absent in population databases), PP3 (computational evidence), and PP4 (patient’s
phenotype highly specific for a gene). The minigene assay demonstrated that the splicing
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variant generated an in-frame deletion, and therefore, we applied the PM4 criterion. In
addition, we promoted PM4 to a strong criterion since in-frame deletions in COL2A1 are
likely to be pathogenic [7,9].

COL2A1 pathogenic variants are associated with many skeletal dysplasia, with a series
of phenotypes ranging from lethal to relatively mild forms often reported [6]. Since a
dominant inheritance characterizes the diseases associated with COL2A1 mutations, two
mechanisms have been linked with pathogenetic COL2A1 variants: Haploinsufficiency and
negative dominance, with the latter being related to a more severe phenotype [9].

The substitution of glycine in the G-X-Y repeat of COL2A1 protein is the typical
example of dominant-negative mutation and is mainly associated with ACG2. In contrast,
variants leading to a premature stop codon can activate a mechanism of nonsense-mediated
decay (NMD), resulting in haploinsufficiency of COL2A1. These variants are mainly
associated with the mildest clinical forms of skeletal dysplasia [7,9].

Variants that affect splicing can generate either an out-of-frame protein, possibly
activating an NMD mechanism or an in-frame protein with a small deletion. The in-frame
deletions of COL2A1 are primarily associated with Kniest dysplasia [12], an intermediate
phenotype that is less severe than ACG2. In contrast, a milder phenotype is expected
in the case of NMD activation caused by an out-of-frame exon deletion [9]. Functional
studies assessing the pathogenicity of the variant are thus required in order to determine
whether a new variant in a splice site generates a frameshift [16]. In our case, the detected
splice site variant generated an in-frame deletion that showed a substantial expression in a
minigene splicing assay. Therefore, the severe phenotype observed was possibly due to a
dominant-negative mechanism caused by the resulting protein deletion variant.

To better understand the phenotype generated by the COL2A1 variant detected by us,
we listed variants of COL2A1 already reported in the literature to cause in-frame deletions
in order to perform a genotype–phenotype correlation. The size of the in-frame deletion
seems to be very important for the determination of the phenotype. Variants with deletions
of 18 amino acids or fewer are associated with less severe phenotypes (Figure 4). Notably,
18 amino acids correspond to the number of residues in a turn of the extended left-handed
helix formed by each collagen chain in the collagen triple helix (Figure 4) [17].

Therefore, a deletion longer than 18 amino acid residues might cause the forma-
tion of more extended loops, introducing bulkier structural defects in the heterotrimers,
whereas shorter loops might be accommodated more easily, producing less irregular
protein assemblies. There are only two exceptions to this rule: the quite long deletion
p.Gly1164_Ala1199del at C-termini associated with an intermediate phenotype [26], and
the small deletion p.Gly1017_Val1022del associated with a severe phenotype [18]. However,
the p.Gly1164_Ala1199del variant occurs at the C-terminal side of the triple-helical region.
In this location, it might simply disfavor the initial process of triple helix formation. Hence,
producing less aberrant multimers and reducing dominant effects. Therefore, the unique
exception remains the p.Gly1017_Val1022del variant [18]. In a large study that attempted to
show a genotype-phenotype correlation for COL2A1-related disorders, severe phenotypes
were found to be more associated with in-frame deletions than frameshift variants [7].

In vitro studies have shown that the in-frame deletion of COL2A1 generates a loop
structure in the trimer of collagen type II molecules that are highly susceptible to trypsin’s
proteolytic activity [13]. In addition, heterotrimers composed of mutant and wild-type
sequences assemble with local disrupted domains at the deletion site, destabilizing the col-
lagen fiber structure. Therefore, a more extended deletion could more efficiently destabilize
the trimer, increasing the proteolytic damage operated by matrix proteases.



Genes 2021, 12, 1395 7 of 9

Genes 2021, 12, x FOR PEER REVIEW 6 of 9 
 

 

PM2 (absent in population databases), PP3 (computational evidence), and PP4 (patient’s 
phenotype highly specific for a gene). The minigene assay demonstrated that the splicing 
variant generated an in-frame deletion, and therefore, we applied the PM4 criterion. In 
addition, we promoted PM4 to a strong criterion since in-frame deletions in COL2A1 are 
likely to be pathogenic [7,9]. 

COL2A1 pathogenic variants are associated with many skeletal dysplasia, with a se-
ries of phenotypes ranging from lethal to relatively mild forms often reported [6]. Since a 
dominant inheritance characterizes the diseases associated with COL2A1 mutations, two 
mechanisms have been linked with pathogenetic COL2A1 variants: Haploinsufficiency 
and negative dominance, with the latter being related to a more severe phenotype [9]. 

The substitution of glycine in the G-X-Y repeat of COL2A1 protein is the typical ex-
ample of dominant-negative mutation and is mainly associated with ACG2. In contrast, 
variants leading to a premature stop codon can activate a mechanism of nonsense-medi-
ated decay (NMD), resulting in haploinsufficiency of COL2A1. These variants are mainly 
associated with the mildest clinical forms of skeletal dysplasia [7,9]. 

Variants that affect splicing can generate either an out-of-frame protein, possibly ac-
tivating an NMD mechanism or an in-frame protein with a small deletion. The in-frame 
deletions of COL2A1 are primarily associated with Kniest dysplasia [12], an intermediate 
phenotype that is less severe than ACG2. In contrast, a milder phenotype is expected in 
the case of NMD activation caused by an out-of-frame exon deletion [9]. Functional stud-
ies assessing the pathogenicity of the variant are thus required in order to determine 
whether a new variant in a splice site generates a frameshift [16]. In our case, the detected 
splice site variant generated an in-frame deletion that showed a substantial expression in 
a minigene splicing assay. Therefore, the severe phenotype observed was possibly due to 
a dominant-negative mechanism caused by the resulting protein deletion variant. 

To better understand the phenotype generated by the COL2A1 variant detected by 
us, we listed variants of COL2A1 already reported in the literature to cause in-frame dele-
tions in order to perform a genotype–phenotype correlation. The size of the in-frame de-
letion seems to be very important for the determination of the phenotype. Variants with 
deletions of 18 amino acids or fewer are associated with less severe phenotypes (Figure 
4). Notably, 18 amino acids correspond to the number of residues in a turn of the extended 
left-handed helix formed by each collagen chain in the collagen triple helix (Figure 4) [17]. 

 
Figure 4. Schematic view of collagen α-1(II) chain (top) that shows the novel protein deletion posi-
tion reported in this work and previously published deletions. Deletions, characterized by the loss 

Figure 4. Schematic view of collagen α-1(II) chain (top) that shows the novel protein dele-
tion position reported in this work and previously published deletions. Deletions, character-
ized by the loss of 18 amino acids or fewer, causing intermediate (*) and severe (**) effects are
shown in light green and grey, respectively. Larger deletions causing intermediate (*) and se-
vere (**) effects are shown in light blue and yellow, respectively. In the severe group, there
are cases of ACG2 or hypochondrogenesis. In the intermediate group, there are cases of Kni-
est dysplasia or SEDC. Periodicity of 18 amino acids (bottom) of the extended left-handed helix
of each protein chain in the collagen triple helix are exemplified here by a portion of the Pro-
tein Data Bank structure 3HQV (Cα atoms are represented by spheres). Amino acid numbering
refers to the protein with NCBI accession code NP_001835.3. p.Gly423_Thr455del (our study);
p.Gly732_Arg767del and p.Gly1017_Val1022del (Körkkö et al. 2000) [18]; p.Pro916_Gly1074del
(Barat-Houari et al. 2016) [10]; p.Gly291_Lys308del (Winterpacht et al. 1993) [19]; p.Ala302_Lys308del
(Bogaert et al. 1994) [20]; p.Gly324_Ala341del, p.Gly357_Gly363del, p.Gly423_Ala428del,
and p.Gly456_Pro473del (Wilkin et al. 1999) [12]; p.Gly342_Pro356del (Fernandes et al. 1988;
Wada et al. 2011) [21,22]; p.Gly408_Ala422del (Spranger et al. 1997) [23]; p.Gly474_Gln479del
(Winterpacht et al. 1994) [24]; p.Gly561_Ser578del (Weis et al. 1998) [13]; p.Gly804_Pro821del
(Mortier et al. 2000) [25]; p.Gly1164_Ala1199del (Lee et al. 1989) [26].

In the two studies, transgenic mice were generated with a construct containing a
human COL2A1 with an in-frame deletion. In the first study, exon 7 was eliminated, while
in the second one, 12 exons were removed [27,28]. These transgenic mice showed severe
chondrodysplasia and died shortly after birth. Vandenberg et al. [27] hypothesized a
mechanism of collagen suicide induced by the short deleted COL2A1 protein. Furthermore,
in both cases, a high expression of the transgene seems also relevant to determine the
phenotype. Therefore, the expression of a COL2A1 pathogenic variant could determine
the generation of a product that interferes with the wild-type form, inhibiting the correct
formation of collagen trimers. In our case, the minigene assay was valuable for defining
the expression of the COL2A1 carrying the splicing variant.

In conclusion, our study showed that the size and position of the deletions across the
helical regions could be relevant for determining the pathogenicity of COL2A1 variants
capable of generating in-frame deletions. More cases involving large in-frame deletions
are needed to confirm this hypothesis. Functional studies are critical to demonstrate the
generation of an expressed in-frame deletion variant, which could help variant classification
or explain variant pathogenicity.
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