

Università degli Studi di Cagliari

PhD DEGREE
Mathematics and Computer Science

Cycle XXXIV

TITLE OF THE PhD THESIS

Artificial Intelligence Approaches Applied To The Financial Forecasting

Domain

Scientific and Disciplinary Sector(s)

S.S.D. INF/01

PhD Student: Andrea Corriga

Supervisor Salvatore Carta, Diego Reforgiato

Recupero

 Final exam. Academic Year 2020/2021

Thesis defence: February 2022 Session

Abstract

Nowadays, Financial Markets represent a crucial part of the world economy.
Financial Markets have grown exponentially in the last decades and they pro-
vide finance for companies that can be used to hire, invest and grow. On the
other hand, Financial Markets provide a big opportunity for people to invest
their money in shares or equities to build up money for their future. The
possibility to increase one’s capital through investment has led researchers
in the last decade to focus their work on predicting the performance of the
market by exploiting novel Machine Learning and Deep Learning tools and
techniques.

Several approaches have been proposed in the literature, ranging from
time-series pattern recognition analysis to more complex approaches based
on Machine Learning and Deep Learning.

Following this trend, the main contribution of this dissertation is the pro-
posal of three novel approaches to tackle these issues. Firstly, starting from
scratch, we propose a fully automated optimized ensemble approach, where
an optimized feature selection process has been combined with an automatic
ensemble Machine Learning strategy. Secondly, we exploit a Deep Learning
approach with an ensemble of CNNs, trained over Gramian Angular Fields
(GAF) images, generated from time series related to the Standard & Poor’s
500 index Future. More precisely, a multi-resolution imaging approach is
used to feed each CNN, enabling the analysis of different time intervals for
a single observation. Finally, we propose an improvement of the previous
approach with a multi-layer and multi-ensemble stock trader. This method
starts by pre-processing data with hundreds of Deep Neural Networks and
then, a reward-based classifier is used to maximize profit and generate stock
signals through different iterations.

At the end of this dissertation, accompanying the current Machine Learn-
ing Interpretability trend, we propose a Visual Framework for in-depth anal-
ysis of the results obtained from Deep Learning approaches, tackling classi-
fication tasks within the financial domain and aiming at a better interpre-
tation and explanation of the trained Deep Learning models. The proposed
Framework offers a modular view, both general and targeted, of results data,
providing several financial-specific metrics.

ii

Acknowledgements

As one said: part of the journey is the end and this thesis ends my long
education journey. At the end of high school, I didn’t know if I wanted to
start college but now, looking back, I feel like I have a lot of people to thank.

First of all, I would like to express my deepest gratitude to my two su-
pervisors Prof. Salvatore Mario Carta and Prof. Diego Reforgiato Recupero
for guiding me on this educational and personal growth path. In particular
I would like to thank Prof. Salvatore who has been an unstoppable mentor
who cared so much about me, my work, and who responded to my questions
and troubles so promptly; your hardness will be my strength tomorrow.

Secondly, I would like to thank Alessandro Sebastian Podda with whom
I spent great time during my PhD. You have been a source of inspiration,
entertainment, and great discussions.

A special thanks to Enrico Podda, an invaluable and irreplaceable friend
and office mate. You have always been there when needed.

Outside from the work, I have a lot of people to thank.
I would like to start with my parents Rafaele e Giuliana, because without you
and your constant support none of this would have happened. Thanks to my
brother Emanuele who, among many other things, gave me a fantastic and
super-sweet nephew Eleonora.

My girlfriend Daniela who spent these 3 years of PhD living with me,
supporting me in all the difficult moments and being patient and tolerant
during the lockdown period.

Finally, I would like to thank all my friends and people who have been
part of my life and supported me during my PhD experience. I can’t mention
you all here but I carry you in my heart.

iv

Furthermore, I have to acknowledge the financial support I have received
during my Ph.D. All my research activities have been funded by:

• POR FESR SARDEGNA 2014-2020 2° CALL ALMOSTANORACLE-
ATI DMI-VISIOSCIENTIAE – CUP: F21G180002300081;

• POR FESR SARDEGNA 2014-2020 CLUSTER - DOUTDES - Pro-
getto di ricerca dell’Università di Cagliari finanziato dalla R.A.S. CUP:
F21B17000860005;

• POR FESR SARDEGNA 2014-2020 2° CALL “SPRINT”- ATI DMI-
LA SIA SRL – CUP F21G18000240009;

• PhilHumans – H2020 MSCA EID - European Industrial Doctorates -
CUP: F26C18000420006;

• POR FESR SARDEGNA 2014 - 2020 CLUSTER - SARDCOIN - Pro-
getto di ricerca dell’Università di Cagliari finanziato dalla R.A.S., CUP:
F21B17000850005.

Statement of Authorship

The thesis entitled Artificial Intelligence Approaches Applied To Financial
Forecasting Domain and the presented works have been done during my can-
didature for this PhD degree. The presented novel approaches were carried
out by myself, under the coordination of my supervisors and the collabora-
tion of the authors indicated in the respective published papers. During the
elaboration of this thesis I have follow appropriate ethics guidelines to con-
duct this research, I have acknowledged all main sources of help and, when I
consulted or quote the work published by others, the source is always given.

vi

Nomenclature

Abbreviations
AI Artifcial Intelligence
AL Attention Layer
ANN Artificial Neural Network
API Application Programming Interface
ARIMA Auto Regressive Integrated Moving Average
ASR Annualized Sharpe Ratio
BN Batch Normalization
BSE Bombay Stock Exchange
BP Back Propagation
CNN Convolutional Neural Network
CSV Comma Separated Value
CV Computer Vision
DL Deep Learning
DNM Dendritic Neuron Model
DNN Deep Neural Network
DRL Deep Reinforcement Learning
DT Decision Trees
FTSE Financial Times-Stock Exchange
FA Fundamental Analysis
FM Financial Markets
GPU Graphic Processing Unit
ICS Internal covariate shift
LSSVR Least Squares Support Vector Regression
LSTM Long Short-Term Memory
MDD Maximum DrawDown
ML Machine Learning
MSE Mean Squared Error
RBF Radial Basis Function
RF Random Forest
RNN Recurrent Neural Network
RoMaD Return Over Maximum Drawdown
RL Reinforcement Learning

viii

SGD Stochastic Gradient Descent
SP500 Standard & Poor 500
SVM Support Vector Machine
SVR Support Vector Regressor
TA Technical Analysis
TOPIX Tokyo Stock Exchange Price Indexes
WFO Walk Forward Optimization

Latin Expressions
i.e. id est, ‘that is’
e.g. exempli gratia, ’for the sake of example’
ergo ’therefore’

Publications

The research reported in this thesis has contributed to the following publica-
tions:

• [1] Carta, S., Corriga, A., Ferreira, A., Reforgiato Recupero, D., Saia,
R. A Holistic Auto-Configurable Ensemble Machine Learning Strategy
for Financial Trading (2019) Computation, 7 (4), pp. 1-25.

• [2] Barra, S., Carta, S.M., Corriga, A., Podda, A.S., Reforgiato Recu-
pero, D.. Deep Learning and Time Series-to-Image Encoding for Fi-
nancial Forecasting (2020) IEEE/CAA Journal of Automatica Sinica, 7
(3), art. no. 9080613, pp. 683-692.

• [3] Carta, S., Consoli, S., Corriga, A., Dapiaggi, R., Podda, A.S., Re-
forgiato Recupero, D. HawkEye: a Visual Framework for Agile Cross-
Validation of Deep Learning Approaches in Financial Forecasting (2020)
In The 4th International Conference on Future Networks and Dis-
tributed Systems (ICFNDS) (pp. 1-6).

• [4] Carta, S., Corriga, A., Ferreira, A., Podda, A.S., Reforgiato Recu-
pero, D. A Multi-Layer and Multi-Ensemble Stock Trader Using Deep
Learning and Deep Reinforcement Learning (2021) Applied Intelligence,
51 (2), pp. 889-905.

x

List of Figures

2.1 Example of hierarchy in Artificial Intelligence field 12

2.2 Machine Learning pipeline process. 13

2.3 Example of clustering algorithms 16

2.4 An example of a Feed-forward Network composed by three
hidden layers. 18

2.5 An example of a Convolutional Neural Network. 19

2.6 ML Evaluation techniques: held-out (top), k-fold (middle)
walk-forward (bottom) . 24

4.1 The proposed two-Step auto adjustable parameters ensemble
for market forecasting. This approach optimizes two sets of pa-
rameters for a final ensemble to trade in any market. Firstly,
in an in-sample dataset with late past data, we optimize the
hyper-parameters, considering performance metrics in the test-
ing part of data. Then, these hyper-parameters are transferred
to create ensembles for an early past (out of sample) dataset.
The individual classifiers have their intrinsic-parameters up-
dated in the validation part of this recent data and then the
final ensemble is built. 39

4.2 Equity CurvesforSP500&DAX 54

4.3 Equity CurvesforFIB&CL 55

5.1 The figure shows the process leading to the generation of the
Gramian Angular Fields images: from left to right, the data
are first plotted and then the coordinate system is transformed
to a polar plane; finally, the GADF and GASF images are
generated according to the function defined in Equation 6.3. . 61

5.2 The policy of composition of the multi-resolution GADF im-
ages is shown above; in particular, (a), (b), (c) and (d) refer
to the same label, but the observations considered in each are
aggregated in four different ways. 62

xii LIST OF FIGURES

5.3 On the leftmost side of the figure the architecture of the Con-
volutional Neural Network is shown. On the rightmost side,
the overall process of the proposed trading system is depicted. 63

5.4 The net profit obtained by the application of the
Buy-and-Hold strategy is shown over the period which
has been taken into account for the experiments (
https://www.investing.com/indices/us-spx-500-futures). 67

5.5 The figure shows the comparison among the tested approaches.
In particular, the blue, orange and green lines represent, re-
spectively, the results obtained by applying our approach, a
random guessing approach and a 1D-CNN. The red line ev-
idences the results which are obtained by the Buy-and-Hold
strategy. In each plot, the x-axis indicates the ensemble thresh-
old considered, while in the y-axis it is shown the obtained Net
Profit, the Romad value, the Annualized Sharpe Ratio and the
Sortino Ratio, respectively, from the upper-leftmost image to
the bottom-rightmost one. 69

5.6 The above plot shows the comparison, in terms of cumula-
tive profit, between the proposed approach (in blue) and the
approach in [5] (in black). Finally, in orange, we show the
Buy&Hold benchmark as a benchmark. 72

6.1 The proposed three layered multi-ensemble approach. The first
layer stacks decisions from CNNs, which are then used as ob-
servations (or states) in a reward-based meta-learner (second
layer) in different training iterations. Finally, a last layer fuses
the final decisions in a final trading signal. 76

6.2 The VGG-based CNN used to pre-process stock market time
series to image data. 78

6.3 The Neural Network architecture of our proposed multi-DQN
agents for stock trading. The activation of the first layer is
chosen through optimization experiments. 81

6.4 Fusion Layer pipeline of our proposed multi-layer agent. Mul-
tiple agents trained after multiple series of different iterations
with the environment perform intra-day stock trading, done
by choosing among different combinations of actions. The fi-
nal action to take is decided by majority voting of decisions.
. 82

6.5 Example of real-world trading simulation through MultiCharts. 86

6.6 Equity curve of our RL-ensemble approach, against the best
non-RL baseline (majority voting ensemble) and the Buy-and-
Hold strategy. 91

LIST OF FIGURES xiii

7.1 The high-level architecture of our framework. 96
7.2 Main dashboard of the VT. It features: (1) the toolbar; (2)

the summary box; and, (3) the plot area. 98
7.3 Different display modes of the plot area: full epoch range (on

the left), custom range selection (on the upper right) and single
epoch zoom (on the lower right). 99

7.4 The sub-period filter. 99

xiv LIST OF FIGURES

List of Tables

4.1 Non-anchored and Anchored WFO 41

4.2 Intra-parameters grid . 41

4.3 Hyper-parameters Grid . 42

4.4 Futures Market Datasets . 47

4.5 Time Consumption . 50

4.6 Buy and Hold and Single Predictors Performance with Default
Configurations . 51

4.7 Single Predictors Performance After a Tuning Process Opti-
mized by Accuracy . 53

4.8 Ensemble Predictors Performance After a Tuning Process Op-
timized by Accuracy . 53

4.9 Comparison of the proposed approach against the Buy and
Hold benchmark by considering different performance metrics
in building the proposed self-configurable ensemble. 57

5.1 In the table, for each initialization method, the configuration
settings are reported. The ”seed” column indicates the seed
number applied for generating the random weights, accord-
ing to the used initialization function. The first 10 networks
have the ”seed” set to ”None”, meaning that randomised num-
bers differ in each execution. The other 10 networks have a
fixed ”seed” meaning that randomised numbers are generated
”seed”. For all configurations, Adam has been used as an op-
timiser. 64

5.2 The eleven walks used for training, validation and testing the
models and how they are composed. 67

5.3 The table shows the quantitative results of the proposed ap-
proach. For each metric, the best result is highlighted in bold. 71

6.1 Dataset structure (1-hour time resolution); prices are expressed
in market points. 84

xvi LIST OF TABLES

6.2 Top-10 results, in terms of Romad, of the parameter optimiza-
tion experiment performed over the validation set, by consid-
ering different metalearner optimizers, layer activations and
different levels of explorations in the metalearner policy. Clas-
sification metrics are percentages in [0, 1] range, while trading
metrics are shown in market points (1 point = 50 USD). . . . 88

6.3 Summary of the comparison between our RL layers and the
non-RL ensembling techniques outlined in Sec. 6.2.2, in an out-
of-sample trading scenario (September 2018 to August 2019).
Best results per trading metric are underlined. Trading met-
rics are expressed in market points (1 point = 50 USD) and
classification metrics are in the interval [0,1]. 89

6.4 Comparison of the real-world trading performance, in terms
of annualized returns, between our method and some litera-
ture competitors when considering different periods and mar-
kets. Our method clearly outperforms all the competitors in
the considered settings. 92

Contents

Abstract i

Acknowledgements iii

Statement of Authorship v

Publications ix

List of Figures xi

List of Tables xv

1 Introduction 3

1.1 Context and Research Contributions 3

1.2 Dissertation Structure . 8

2 Technical background 11

2.1 History of Artificial Intelligence 11

2.2 Supervised approaches . 13

2.3 Unsupervised approaches . 16

2.4 Deep Learning . 17

2.5 Experimental Workflow . 21

2.6 Evaluation Metrics . 24

2.6.1 AI Metrics . 25

2.6.2 Financial Metrics . 26

2.7 Software Tools and Technologies 28

3 State of the art 31

4 A Holistic Auto-Configurable Ensemble Machine Learning
Strategy for Financial Trading 35

4.1 Proposed Approach . 36

4.1.1 Feature Selection . 37

xviii CHAPTER 0. CONTENTS

4.1.2 Two-Step Auto Adjustable Parameters Ensemble Cre-
ation . 38

4.1.3 Policy for Trading . 43
4.2 Experimental Setup . 46

4.2.1 Formal Notation . 46
4.2.2 Datasets . 47
4.2.3 Technical Details . 49

4.3 Experiments . 50
4.3.1 Trading Results . 50
4.3.2 Performance Metrics Trade Impact 53

5 Deep Learning and Time Series-to-Image Encoding 59
5.1 The proposed approach . 59

5.1.1 Trading strategy . 59
5.1.2 Gramian Angular Fields imaging 60
5.1.3 Multi-Resolution Time Series Imaging 61
5.1.4 Ensemble of CNNs . 62

5.2 Experimental Settings . 64
5.2.1 Evaluation and S&P500 65
5.2.2 Walks’ Definition . 66
5.2.3 CNN training and Ensemble policy 68

5.3 Results and Discussion . 68

6 A Multi-Layer and Multi-Ensemble Stock Trader Using Deep
Learning and Deep Reinforcement Learning 75
6.1 Proposed Approach . 75

6.1.1 Layer #1: Stacking trading signals with Convolutional
Neural Networks . 76

6.1.2 Layer #2: Reinforcement MetaLearner 78
6.1.3 Layer #3: Ensembling Multiple Learners 82

6.2 Experimental Setup . 83
6.2.1 Datasets . 83
6.2.2 Benchmarks . 84
6.2.3 Implementation Details of the Proposed Approach . . . 86

6.3 Experiments . 87
6.3.1 Metalearner Parameters Optimization 87
6.3.2 Experimental Results and Comparison With Baselines 89

7 Hawkeye: a Visual Framework for Agile Cross-Validation of
Deep Learning Approaches in Financial Forecasting 95
7.1 Introduction . 95
7.2 The Proposed Framework . 96

7.2.1 Data Organization & Pre-processing 96

0.0. CONTENTS 1

7.2.2 Visual Tool . 97

8 Conclusions 101
8.1 Future Research Directions . 103

Bibliography 105

2 CHAPTER 0. CONTENTS

Chapter 1

Introduction

1.1 Context and Research Contributions

Nowadays, Financial Markets represent the backbone of the modern societies,
as the world economy is closely related to their behavior [6]. In this context,
the investors play a main role, since their decisions drive the Financial Mar-
kets.

In fact, since the dawn of the Financial Markets, people have been trying
to build tools able to provide insights and information about the stock price
variations in the near future, so to increase the possibilities to invest on the
right company [7], future, etc. Since then, the market has become much big-
ger, and the available instruments for Financial Forecasting have reached an
unprecedented efficiency. The literature reports two main economic method-
ologies largely used to analyze and predict the behavior of Financial Markets.
The first is based on fundamental analysis, which takes into account the eco-
nomic elements that may affect the market activities. The second is based
on technical analysis [8], which takes into account the historical behavior of
the market prices. Moreover, the technical analysis considers the financial
asset behavior as a time series and it is based on the consideration that some
behaviors tend to occur again in the future [9, 10].

Fundamental Analysis. FA is a long-term oriented exercise and practice.
FA of stocks determines the fundamental value of a stock by analyzing avail-
able information with a special emphasis on accounting information. FA of
stocks proceeds in two steps (i) the first step inspects the financial data of a
corporation its profit-and-loss account and its balance sheet and aims at as-
sessing future earnings (ii) the second step traces the causal link from future
earnings to market value. [11] In other words FA is a method of measur-
ing a security’s intrinsic value by examining related economic and financial
factors. FA study anything that can affect the security’s value, from macroe-

4 CHAPTER 1. INTRODUCTION

conomic factors such as the state of the economy and industry conditions to
microeconomic factors like the effectiveness of the company’s management.

Technical Analysis. TA is the study of past price movements with the goal
to predict future price movements from the past. The philosophy behind TA
is that information is gradually discounted in the price of an asset. Except for
a crash once in a while there is no ’big bang’ price movement that immediately
discounts all available information. It is said that price gradually moves to
new highs or new lows and that trading volume goes with the prevailing trend.
Therefore most popular technical trading rules are trend following techniques
such as moving averages and filters. TA tries to detect changes in investors’
sentiments in an early stage and tries to profit from them. It is said that
these changes in sentiments cause certain patterns to occur repeatedly in the
price charts, because people react in the same way in equal circumstances.
[12]

Differently from the past, Financial Markets have grown exponentially in
recent decades and, at the same time, more financial instruments have been
introduced to predict their behavior. There are several information and com-
munication technologies that have been employed within the financial domain,
so investors are now supported by many Artificial Intelligence instruments
that help them to take decisions. Such instruments can exploit a diverse
number of techniques [13], from simple statistical approaches to those more
sophisticated based on Deep Learning, Social Media Analysis, Natural Lan-
guage Processing, Sentiment Analysis and so on [14, 15, 16, 17, 18, 19, 20, 21].

Machine Learning solutions have been widely adopted in the context of
financial time series forecasting. They usually operate by using a supervised
strategy, where classifiers (e.g., Naive Bayes, Decision Trees, Support Vector
Machines, etc.) label the data in order to learn their behavior and classify
new data into a number of classes (i.e., in the stock market, such classes
can be considered as prices going up and down). Deep Learning approaches
have also been proposed in the literature, where a Deep Convolutional Neu-
ral Network can be used to perform classification or regression task, which
means predicting the daily direction (positive or negative) of the market for
classifications whereas predicting the daily expected price for regressions. A
common classification task within the financial domain consists of defining
an intraday trading strategy, which targets three possible actions to perform
daily:

• a long action, which consists of buying the stock when the market opens
in the next day, and then selling it before the market closes;

1.1. CONTEXT AND RESEARCH CONTRIBUTIONS 5

• a short action, which consists of selling the stock (using the mechanism
of the short sales) when the market opens, and then buying it before
the market closes;

• a flat action, which consists of deciding not to invest in that day.

In recent years, Machine Learning approaches have been validated to per-
form stock market predictions on the basis of historical time series. The
research performed in recent years in this field is growing both in terms of lit-
erature production and in tools generation [22, 23]; also, an increasing number
of studies involves the use of traditional Machine Learning approaches and
Neural Network models.

The computer-aided stock trading is basically composed of two steps: (i)
analysis of past market behavior, and (ii) taking the optimal stock trading
decision. To perform such tasks, time-series data from past prices are usu-
ally considered as input. These data are usually given by the market under
different resolutions (minutes, hours, days, etc) and contain information such
as open prices, close prices, among others.

Indeed, since input data are structured as time-series, the chronological
order of the samples must be taken into account during the training process,
making the model validation process more difficult. For this reason, in the Fi-
nancial Forecasting domain, methods based on walk-forward validation, such
as rolling window or expanding window approaches, are preferred [24]. Here,
input data are partitioned into consecutive time windows (or walks), each
composed by three different chunks: the first (largest) portion, the training
set is used to train the classifier; the second slice or validation set is used to
perform parameters optimization and evaluate the robustness of the model;
and the last and remaining part (test set) is reserved for back-testing. Fol-
lowing this approach, each walk is then defined by shifting forward the time
window of its predecessor (by a period equivalent to the test set time inter-
val), and the process is iterated. However, this family of validation methods,
although effective, introduces an additional crucial aspect to examine when
analysing results in this domain: the choice on how to temporally partition
the three different sets for training, validation and test.

There are also methods known in statistical analysis that perform re-
gression, which consists of a set of statistical processes for estimating the
relationships among variables [25], with the goal of predicting the exact stock
price for a day. Although both technical and fundamental data can be used
as input data to Machine Learning approaches, fundamental analysis data
do not allow a reliable and high frequency trading for two reasons: (i) these
type of information are published at periodic times (e.g., every trimester);
and (ii) they are responsibility of companies, so they can be liable to frauds.
Therefore, most of Machine Learning approaches do not rely on fundamental
information, using diverse other information from technical analysis such as

6 CHAPTER 1. INTRODUCTION

lagged prices, returns, technical indicators and even news. One more dif-
ference between technical and fundamental analysis is that the latter might
often use sensitive data (e.g. revenue of companies) and policy procedures
should be defined to guarantee privacy, protection and not disclosure of the
data.

Therefore, the research in this area is one of the most active amongst
the pattern recognition related topics, and at the same time it is one of the
most challenging. This is mainly due to the fact that stock prices are often
influenced by factors which are quite hard predictable like political events,
the behaviour of the other stock markets, the psychology of the investors [26],
wars and many other events that rarely happen as the COVID-19 pandemic
[27, 28]; these aspects tend to model the market as an entity which is dy-
namic, non-linear, non-parametric and chaotic [29].The non-linearity of the
data, the high volatility and the large number of external factors lead the re-
sults obtained through common classifiers to be close to random[30], making
this task very challenging to address. Moreover, when employing Frameworks
(e.g., Keras1) and hardware architectures (e.g., CUDA2) to speed up compu-
tation through GPUs, results may change at each run and cannot be easily
reproduced [31].

Essentially, Machine Learning approaches cover most of the research
achieved in the field but, despite the numerous and sophisticated techniques
available today, such a task continues to be considered challenging [32].
There are several reasons to explain that: (i) existing methods employ clas-
sifiers whose intrinsic parameters are tuned without a general approach, but
are based on values heavily depending on the used classifier and the target
data [15, 33]; (ii) the lack of a general technique to set the hyper-parameters
(e.g. training and test set sizes, lags and walks dimension) for the experi-
ments usually makes them not reproducible and, thus, difficult to assess and
to compare with benchmarks or other approaches [33]; (iii) several works
in literature do not specify whether they are performing their test analysis
on in-sample or out-of-sample data, and this is a further reason of confu-
sion [34, 35, 15]; (iv) several works employ classifiers without stating clearly
which is the best and under which conditions [1]. This may bring to the
common sense that each proposed classifier exploits the peculiarities of the
presented market data. Therefore, this does not help understanding whether
the method is effective or there are ad-hoc classifiers and data choices to re-
port best results only [26, 36]; (v) different combinations of feature selection
techniques have been explored in Financial Forecasting, but a Framework

1https://keras.io/
2https://developer.nvidia.com/cuda

https://keras.io/
https://developer.nvidia.com/cuda

1.1. CONTEXT AND RESEARCH CONTRIBUTIONS 7

that can be designed with the goal to get as input any feature and generate
the optimal number of output features is still missing [37]; (vi) for the evalua-
tion step, several metrics have been proposed but there have not been precise
explanations on the adoption of one with respect to the other. This fur-
ther introduces confusion on the overall analysis and on which metric should
be prioritized [38, 39, 40, 41]; and (vii) to define trading strategies, param-
eters such as those for the data preparation, algorithm definition, training
methodology and forecasting evaluation must be the choices to be made by
the trading systems architect [6]. To the best of our knowledge, the literature
does not offer Financial Market forecasting approaches based on a systematic
strategy, able to model automatically itself with regard to these parameters
and chosen market in order to perform well the forecasting task no matter
the market considered.

In this thesis, the use of Machine Learning and Deep Learning has been
applied in the Finance domains through not yet experimented methodologies.
Precisely, starting from some of state-of-the-art tools, in an early phase of
my PhD a general approach for Financial Forecasting with application to
technical analysis, based on an ensemble of predictors automatically created,
considering any kind of classifiers and adjustable to any kind of market, has
been studied and proposed. Secondly, the use of more sophisticated tools like
Deep Convolutional Neural Network and Double Q-Learning (DQL) agents
and Deep Q Networks (DQN) as been applied to perform classification task
to the Financial Markets in order to forecast whenever the market goes up or
down. The thesis contributes to the scientific literature in terms of results and
resources. Furthermore, the work of this thesis has been carried out within
the company Visioscientiae SRL. The proposed algorithms are currently being
tested for a production release.

In brief, the research program addressed during the PhD course was dedi-
cated to the study and development of methodologies to forecast the Financial
Markets methodologically and in a scientific way.

The main research questions addressed in the target domains are:
Q1. How to use existing AI tools and technologies to retrieve useful

information in order to forecast the Financial Markets?
Q2. Is there a way to perform automatic tuning of all parameters of an AI

model that is generalizable enough to be applicable to any Machine Learning
model and Financial Markets?

Q3. There is a scientific and reproducible way to reduce the risk of an
investment made through AI approach?

Q4. How different techniques and their combinations will impact the
performances of the final predictor? Does using ensemble strategies system-
atically improve performance?

8 CHAPTER 1. INTRODUCTION

By answering to these research questions, the contributions provided in
this research work are:

• A novel Auto-Configurable ensemble algorithm to significantly improve
the performance of ML approach applied to Financial Forecasting;

• A novel approach for the forecasting of market behaviour by using Deep
Learning technologies and by encoding time series to GAF images. The
developed CNNs have been applied to the GAF images for a classifica-
tion task.

• A step forward in efficient stock trading with ensembles by presenting
an approach that uses two well known and efficient Machine Learning
approaches, namely Deep Learning and Deep Reinforcement Learning,
in a three layer fashion.

• A tool called Hawkeye which provides a Visual Framework for in-depth
analysis of results obtained from Deep Learning approaches, tackling
classification tasks within the financial domain and aiming at a better
interpretation and explanation of the trained Deep Learning models.

1.2 Dissertation Structure

The remainder of this thesis is organised as follows:

• Chapter 2 introduces backgrounds and basic concepts about Machine
Learning and Deep Learning and other technologies that have been
adopted across the various addressed research problems. Moreover, it
describes which software tools and libraries have been adopted. Finally,
the used metrics will be explained;

• Chapter 3 analyzed the state of the arts about Machine Learning and
Deep Learning applied to Financial Forecasting;

• Chapter 4 proposes a fully automated optimized ensemble approach,
where an optimized feature selection process has been combined with
an automatic ensemble Machine Learning strategy, created by a set of
classifiers with intrinsic and hyper-parameters learned in each marked
under consideration. In other words this chapter introduces a general
approach for Financial Forecasting with application to technical analysis
based on an ensemble of predictors automatically created, considering
any kind of classifiers and adjustable to any kind of market. This work
has been published on the [1] Computation Journal;

1.2. DISSERTATION STRUCTURE 9

• Chapter 5 presents a novel approach which aims to achieve market pre-
diction over the SP500 index, by using an ensemble of Convolutional
Neural Networks, with the training phase executed over Gramian An-
gular Fields images (particularly, the GADF). Comparisons both with
state of the art benchmark approaches (e.g. Buy & Hold strategy) and
with the results of an existing competitor method have been performed,
showing that the proposed approach is capable of obtaining a higher
profit in the same investment period. This work led to the publication
of a paper on the [2] IEEE/CAA Journal of Automatica Sinica;

• Chapter 6 proposes an extension of the work proposed in the previous
chapter. In particular, this novel approach proposes a Machine Learning
based stock trading system composed by three different layers, that
leverages both on Deep Learning and Deep Reinforcement Learning
benefits. In summary, the first layer is made by stacking trading signals
with Convolutional Neural Networks. The output of this first layer is
used as input for the Reinforcement Meta Learner second layer. Last
layer, propose the fusion of several multiple DQN agents trading signals,
in order to take more decisions into account for trading. This work led
to the publication of a paper on the [1] Applied Intelligence Journal;

• Chapter 7 concludes the novel proposals of this thesis by presenting a
Visual Framework to perform an in-depth analysis of the results gen-
erated by Deep Learning classifiers. This Visual Framework goes into
the direction of the recent Interpretable AI trend and it allows for an
in-depth analysis of the results obtained from Deep Learning classifiers
specialized in the Financial domain. Notably, this Framework also of-
fers advanced metrics for measuring both economic performance and
quality of the classification models adopted, along with targeted tools
for exploring the results and generating comprehensive reports. This
work led to the publication of a paper on the [3] ACM International
Conference Proceeding Series.

• Chapter 8 closes the circle of the work presented in this Dissertation.
This chapter contains conclusions and final remarks regarding the pre-
sented approaches within the thesis. Finally, future works are pointed
out.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Technical background

This chapter provides basic concepts regarding Artificial Intelligence. Start-
ing with the history of artificial intelligence, basic concepts about Machine
Learning and Deep Learning will be introduced. To better understand the
algorithms proposed in this dissertation the most famous Supervised and Un-
supervised Machine Learning algorithms will be discussed, followed by a deep
overview of Deep Learning. Afterwards, the experiment pipeline in Machine
Learning will be described, starting with problem definition and ending with
model evaluation. Finally, the evaluation metrics used will be provided and
explained.

2.1 History of Artificial Intelligence

The idea of inanimate objects coming to life as intelligent beings has been
around for a long time. The ancient Greeks had myths about robots, and Chi-
nese and Egyptian engineers built automatons. The beginnings of modern AI
can be traced to classical philosophers’ attempts to describe human thinking
as a symbolic system. But the field of AI wasn not formally founded until
1956, at a conference at Dartmouth College, in Hanover, New Hampshire,
where the term Artificial Intelligence was coined. Today, due to the rise of
Big Data and improvements in computing power, Artificial Intelligence has
entered the business environment and public conversation [42].

Originally, the early pioneers of AI believed that every aspect of learning
or any other feature of Artificial Intelligence can in principle be so precisely
described that a machine can be made to simulate it. Therefore, symbolic
AI took center stage and became the focus of research projects. Scientists
developed tools to define and manipulate symbols. Symbolic AI programs are
based on creating explicit structures and behavior rules and the data must
be processed according to these rules. Symbolic Artificial Intelligence showed
early progress at the dawn of AI and computing. Symbolic Artificial Intelli-

12 CHAPTER 2. TECHNICAL BACKGROUND

gence is very convenient for settings where the rules are very clear cut; in fact,
rule-based systems still account for most computer programs today, including
those used to create Deep Learning applications. However, symbolic AI starts
to break when you must deal with the messiness of the world and came up to
be inflexible to face more intelligent tasks, such as object recognition, content
categorization, and machine translation [43].

Figure 2.1: Example of hierarchy in Artificial Intelligence field

To address these issues it was investigated how machine can learn patterns
on its own, starting from data relevant for the targeted task. So the new
AI paradigm was born, called Machine Learning. ML teaches computers to
think in a similar way to how humans do: learning and improving upon past
experiences. It works by exploring data and identifying patterns and involves
minimal human intervention. In other words, humans provide the computer
with data and labels data and the machine learns these patterns; then, the
computer can recognize these patterns even on data it has never seen before.

Machine Learning uses three main techniques:

• Supervised Learning, where data and label are provided by the hu-
man and the computer tries to identify patterns and correlations be-
tween them;

• Unsupervised Learning where only unlabeled data are provided by
the human and the computer tries to learn some inherent structure from
that data;

• Reinforcement Learning where an agent receives information about
its environment and learns to choose actions that will maximize some
reward.

Over time, more sophisticated and complex approaches have been devel-
oped. Deep Learning is a class of Machine Learning algorithms that uses
Neural Networks to discover patterns from data and learn correlations from

2.2. SUPERVISED APPROACHES 13

them. Learning process is done through multiple and stacked layers, unlike
traditional Machine Learning, which learns only one or two layers of data
representations. Hence, learning means optimizing the weights of all layers,
such that the network correctly maps inputs to expected targets. Given the
predicted and true targets, the system computes a score through a loss func-
tion which measures how well the network is classifying samples. The score
is then used by the optimizer that, through a Back-propagation algorithm,
arranges the weight values, so that the loss score will be lower in the next
iteration. Repeating the loop a sufficient number of times makes it possible
to learn weight values that minimize the loss, obtaining a trained model [43].

2.2 Supervised approaches

Learning from past experiences is an attribute of humans while computers do
not have this ability [44]. In supervised Machine Learning, our main goal is
to learn a target function that can be used to predict the class of a sample
or group of samples. In other words, Machine Learning is a type of Artificial
Intelligence technique that makes the system automatically obtain knowledge
from data with no explicit programming. Using supervised approaches, hu-
man involvement focuses only on specifying how the computer accesses the
data allowing it to learn by itself. The main goal is to enable systems to learn
automatically with no human intervention [45]. The process of applying su-
pervised ML to a real-world problem is described in the figure below.

Figure 2.2: Machine Learning pipeline process.

Supervised Machine Learning approaches use information learned from
data (i.e training set data) to classify future samples. In supervised learning
the first step is dealing with the dataset. In order to perform better training,
a good feature selection of the dataset could be necessary. Data preparation
and data preprocessing is a key point in supervised Machine Learning. During
the training process, ML develops an inferred function to forecast the output

14 CHAPTER 2. TECHNICAL BACKGROUND

values. The system is capable of providing results to input data with an
adequate training process. ML algorithm compares the obtained results with
the actual and expected results to identify errors to change the model based
on results. Though several types of ML techniques are available, supervised
ML approaches are the most popular and commonly used technique.

Some of the most famous supervised Machine Learning algorithms are
described below:

• Support Vector Machine. Support Vector Machine (SVM) is a very
well know algorithm mostly used to solve a binary classification prob-
lem. It works by defining a boundary through hyperplane in order to
separate a class from the other maximizing the margin between the two
classes. This hyperplane is used to classify new sets of data. SVM usu-
ally works with a 2-dimensional plane but it can be used as well with a
multidimensional hyperplane. The algorithm takes labeled pairs (xi, yi)
where xi is a vector representation of input data, and yi is a numerical
label. The algorithm then applies an optimization function in order to
separate classes.

• Support Vector Machine + Stochastic Gradient Descent
(SVM+SGD). This method extends the standard SVM implementa-
tion including the Stochastic Gradient Descent algorithm during train-
ing. SGD finds the best coefficients describing the decision boundaries
through a classification function which minimizes a hinge loss function
and allows performing training over large data while reducing the com-
putation time [46].

• Decision Trees. Decision Trees (DT) is a type of supervised Machine
Learning used to categorize or make predictions based on how a previ-
ous set of questions were answered. DTs involve representing a set of
classification rules through a tree: a hierarchical structure consisting of
a set of nodes, connected by oriented and labeled arcs. The root node
and the inner nodes represent attributes, the leaf nodes represent class
labels.

– Root node: no incoming node, two or more outgoing branches
labeled with the possible values of the attribute values

– Inside nodes: one incoming branch, two or more outgoing
branches labeled with the possible values of the attribute

– Leafs: one incoming branch, no outgoing branches.

Each root-leaf path represents a classification rule and several trees can
describe the same dataset. There are heuristics based on local opti-
mization criteria that make it possible to induce a sufficiently small

2.2. SUPERVISED APPROACHES 15

and accurate tree. The basic idea is to choose as a root the attribute
that allows the classes to be more discriminating, the subtrees are con-
structed by applying this criterion recursively.

• Random Forests. Random Forests (RF) method is a popular Machine
Learning algorithm highly applicable to various classification problems.
RF consists of many decision trees, where each tree is independently
trained and votes for a class for the data presented as an input [47].
Essentially, each decision tree splits data into smaller data groups based
on the features of the data until there are small enough sets of data
that only have data points with the same label. These splits are chosen
according to a purity measure and, for each node, the algorithm tries
to maximize the gain computed on it. The final decision is made by an
ensemble (majority vote) of the trees.

• Naive Bayes. Naive Bayes (NB) classifiers are widely used to perform
classification tasks. Naive Bayesian Networks (NBN) are very simple
Bayesian networks that are composed of directed acyclic graphs with
only one parent (representing the unobserved node) and several chil-
dren (corresponding to observed nodes) with a strong assumption of
independence among child nodes in the context of their parent An ad-
vantage of the Naive Bayes classifier is that it requires a small amount
of training data to estimate the parameters necessary for classification.

• Neural Networks. Neural networks attempt to simulate (in a very
simplified way) how the human brain learns. In brief, a typical Neural
Network has from a few dozen to thousands or even millions of artificial
neurons arranged in a series of layers, each of which connects to the
layers on either side. The first layer also known as input layer takes
the data as input for processing and the last layer called output layer
returns the predicted value of the inputs; all other levels between these
two are grouped under the name of hidden layers. The connections
between these nodes are weighted, and the weight value is calculated and
modified during the training phase by the back-propagation algorithm.
More details about modern Neural Networks methods have been deeply
described in Section 2.4.

• Grandient Boosting. Gradient Boosting is one of the most powerful
and popular techniques for building predictive models. With GB a
model is created in a gradual, additive, and sequential way, and it is
generalized by allowing the optimization of an arbitrary differentiable
loss function [48]. Precisely, GB involves three elements: a loss function
to be optimized, a weak learner to make predictions and an additive
model to add weak learners to minimize the loss function.

16 CHAPTER 2. TECHNICAL BACKGROUND

2.3 Unsupervised approaches

Supervised algorithms assume that the data contains the Y label for each
sample in order to build the model. In many cases, however, it is impossible
to have a labeled dataset because labeling may be expensive, error-prone, or
sometimes simply not possible. Unsupervised Machine Learning is used in
these cases because it’s a type of ML that does not aim to classify samples
but instead tries to group samples according to a similarity criterion. It can
be applied to any kind of data because it does not need a training stage.
One of the most common unsupervised approach is named clustering, which
is aimed to segment a collection of samples X = {x1, ..., xn} into partitions
C = {c1, ..., cm} called clusters such that each point in a cluster is similar to
points from its own cluster than with points from some other cluster.

Figure 2.3: Example of clustering algorithms

Some of the most famous unsupervised Machine Learning algorithms are
described below:

• K-means Clustering. The K-means Clustering is a partition method
that aims to group similar data points, discovering hidden patterns di-
viding the dataset into a number of K clusters. The algorithm works
by randomly initializing a defined number of clusters that is provided
as an input parameter and iterating the centroid optimization process
several times according to similarity criteria like the sum of square dis-
tance. The centroids are like the heart of the cluster, the algorithm
finds the closest points and adds them to the cluster. The output of the
algorithm would be a set of labels assigning each sample to one of the
K groups.

2.4. DEEP LEARNING 17

• Hierarchical Clustering. Hierarchical clustering is similar to regular
clustering, except that its aim is to build a hierarchy of clusters that
means, in other words, a tree of clusters which is usually called den-
drogram. This can be very useful if one wants flexibility in how many
clusters one ultimately wants. Each cluster contains children that are
clusters as well, except for the leaves of the tree. A hierarchical clus-
tering algorithm can be either agglomerative or divisive. In terms of
outputs from the algorithm, in addition to cluster assignments, it also
builds a nice tree that gives information about the hierarchies between
the clusters. In this way, it is possible to pick the right number of
clusters one needs.

• Principal Component Analysis The principal component analysis
(PCA) is a dimensionality reduction method that is often used to re-
duce the dimensionality of large datasets. The high dimensionality of
the data can dramatically impact the performance of ML algorithms
and also a large number of dimensions in the feature space can mean
that the volume of that space is very large, and the points that are in
that space often represent a small and non-representative sample. PCA
brings the dimensionality of the data up to two dimensions and this is
done through a linear transformation of the variables that projects the
original ones into a new cartesian system. The reduction in complex-
ity is achieved by simply analyzing the main ones, by variance, among
the new variables. These basis vectors are called principal components
(PCs), and the selected subset constitutes a new space that is smaller
in dimensionality than the original space but maintains as much of the
complexity and information of the original data as possible.

2.4 Deep Learning

One of the limitations of Machine Learning is that as the amount of data
increases, the efficiency of the algorithms’ predictive models decreases. Deep
Learning emerged as a subclass of a broader family of Machine Learning,
where algorithms inspired by the structure and function of the brain, called
artificial Neural Networks, are applied for pattern classification and regres-
sion tasks. The usage of Deep Learning and in particular of Neural Networks
has grown more and more in recent years, due to several factors including the
increase of computational abilities of computers through the use of Graphical
Processing Units (GPUs) [49], and many services we use on a daily basis actu-
ally rely on these technologies. DL eliminates some of the data pre-processing
that is typically involved with Machine Learning. These algorithms can pro-
cess an enormous amount of unstructured data, like text and images, and it

18 CHAPTER 2. TECHNICAL BACKGROUND

automates feature extraction, removing some of the dependency on human
experts. In brief, a DNN consists of multiple numbers of layers of inter-
connected nodes (called perceptrons, each building upon the previous layer
to refine and optimize the prediction or categorization. In this paragraph,
we will introduce the most famous types of Neural Networks present in the
literature, some of which have been adopted in this dissertation.

A Feed-forward Neural Networks (FNN) is an artificial Neural Net-
work where connections between units do not form loops, unlike recurrent
Neural Networks. This type of Neural Network was the first and simplest of
those developed. In this Neural Network the information moves only in one
direction, forward from the input nodes, through hidden nodes (if existing)
to the output nodes. There are no cycles in the network. The feed-forward
networks do not have the memory of inputs that occurred at previous times,
so the output is determined only by the current input. The nodes of this NN
are called perceptrons and they are randomly joined by weighted connections
in a many-to-many fashion. On the basis of the input values fed into the net-
work, nodes of a certain level can be activated and their signal is broadcasted
to the subsequent level. In order to activate nodes of a subsequent level, the
signal generated at a given level is weighted and must be greater than a given
threshold. Weights are generally initialized with random values and adjusted
during training in order to minimize a predefined objective function. A sim-
ple schema of a three-layer Feed-forward Neural Network model is shown in
Figure 2.6.

Figure 2.4: An example of a Feed-forward Network composed by
three hidden layers.

The sample FNN in 2.6 accepts three-dimensional inputs and returns one-
dimensional outputs. Each node of a given layer is connected to nodes of the
subsequent layer. The input data is fed into the network by means of Layer 1,
which acts as Input Layer, and then sent to the first hidden layer, i.e., Layer
2. The output of this layer is finally propagated to Layer 3, which represents

2.4. DEEP LEARNING 19

the Output Layer. The action to move data from a layer to another by
activating or not the corresponding nodes is generally called forward pass of
the network.

Convolutional Neural Networks (CNNs) is a type of feed-forward
artificial Neural Network whose neurons functioning is inspired by the way
the animal visual cortex works. Convolutional Neural Networks are distin-
guished from other Neural Networks by their superior performance with im-
age, speech, or audio signal inputs. They have three main types of layers,
which are: convolutional layer, pooling layer and fully-connected layer. The
convolutional layer is the most relevant block of a CNN, and it is where the
majority of computation occurs. It requires a few components, which are
input data, a filter, and a feature map. A convolution is a linear operation
that involves the multiplication of a set of weights with the input; the filter
is smaller than the input data and the type of multiplication applied between
a filter-sized patch of the input and the filter is a dot product. The con-
volutional layer is always the first layer of a convolutional network and the
fully-connected layer is the final layer. Regarding convolutional layers, they
can be followed by additional convolutional layers or pooling layers. More
details on how the convolutional layer works will be given later.

Figure 2.5: An example of a Convolutional Neural Network.

Recurrent Neural Networks (RNN) is a class of ANN where neurons
are connected together in a loop. In contrast to what we have discussed with
the FNNs which commonly pass the input data directly from input to output
nodes, RNNs have cyclic or recurrent connections among nodes of distinct
levels. This interconnection among layers allows the use of one of the layers
as a memory of state, and allows, providing a time sequence of values as
input, to model a temporal dynamic behavior dependent on the information
received at previous times. RNNs are applicable to tasks of predictive analysis
on sequences of data, such as the recognition of the handwriting or the vocal
recognition. With RNNs, it is possible to use inputs of arbitrary length,
overcoming the limitations of other Neural Networks, such as convolutional
Neural Networks which impose fixed-length inputs.

A very well-known RNN is Long Short-Term Memory (LSTM) net-
work. LSTM networks are designed to work on time series and have achieved
state-of-the-art results on challenging prediction tasks. LSTM networks have

20 CHAPTER 2. TECHNICAL BACKGROUND

cyclic connections among nodes like RNNs with the addiction of memory
blocks in their recurrent hidden layers. Memory blocks save the current tem-
poral state during training and make it possible to learn temporal observations
hidden in the input data. The use of an LSTM network is very effective when
one wants to solve tasks in which the sequencing and temporal order of the
samples are important. For this reason, LSTM networks have had a positive
impact on sequence prediction tasks like speech recognition, connected hand-
writing recognition, financial time series prediction and anomaly detection in
network traffic or IDSs (intrusion detection systems).

We will now discuss the various and most important layers present within
the hidden layers of the Neural Networks.

Convolutional Layer (CL)

Convolutional networks take their name from the convolutional layer, which
is the core of the architecture of this type of Neural Network. The convo-
lution operation is a linear operation involving the multiplication of a set of
weights called filters or kernels or feature detector to the input data (usually
images). These kernels are intentionally smaller than that of input data as
it allows the same set of filters to be multiplied by the input array multiple
times at different points on the image. In simple words, the filter is applied
systematically to each filter-sized input data from left to right and top to
bottom. It is important to note that filters act as feature detectors from the
original input image. Convolution preserves the spatial relationship between
pixels by learning image features using small squares of input data.

Normalization Layer (NL)

Internal covariate shift (ICS) is the technical name used in Machine Learning
to refer to the change in the distribution of inputs into the various layers of
the Neural Network. Training Deep Neural Networks with tens of layers is
challenging due to several factors and one of them is initial random weights
and the distribution of the inputs to deeper layers in the network may change
after each mini-batch when the weights are updated. Batch Normalization
(BN) is a common technique for training very Deep Neural Networks and
solve the ICS problem. It reduces the number of training epochs required
to train Deep Neural Networks standardizing the inputs to a layer for each
mini-batch. Standardizing the inputs mean that inputs to any layer in the
Neural Network should have approximately zero mean and unit variance. BN
layer normalize each input in the current mini-batch by subtracting the input
mean in the current mini-batch and dividing it by the standard deviation.

2.5. EXPERIMENTAL WORKFLOW 21

Other Layers

There are also other layers that can be leveraged in order to fine-tune the
performance of a model. The most representative ones are described below.

Pooling layer Pooling layers are similar to convolutional layers, but they
perform a specific function in order to reduce the dimensionality of the net-
work. Max pooling takes the maximum value in a certain filter region and
average pooling takes the average value in a filter region.

Noise Layer. A Noise layer is usually employed to avoid model over-fitting.
It consists in modifying a fraction of the input of layers, adding and subtract-
ing some values following a predefined distribution (e.g., Gaussian).

Dropout Layer. A Dropout layer may be seen as a particular type of noise
layer. These layers randomly switch off certain neurons in the network. The
probability of a neuron being switched off is given by a specific parameter.
The dropout layer is often used to include randomness in the training phase
and avoid overfitting of the model.

Dense - Fully Connected Layer (FLC). At the bottom of a Neural Net-
work there are Fully Connected layers. In Neural Networks, FCL layers are
those layers where all the inputs from one layer are connected to every acti-
vation unit of the next layer. In most popular Machine Learning models, the
last few layers are full connected layers that compile the data extracted by
previous layers to form the final output.

2.5 Experimental Workflow

Dealing with Machine Learning problems requires several steps, some of them
optional, to reach the solution. In this section, the different elements of the
pipeline will be analyzed, starting from the formulation of the problem to the
analysis of the obtained results.

Problem Definition

Starting from the very beginning, the basic idea behind Machine Learning is
that a given set of data contains enough information to be used to predict an
output. A Machine Learning model must therefore find the relationships and
patterns hidden within the data. Therefore, the first step must be defined:
what kind of problem do you want to solve? Binary classification, multi-
class, regression, etc. This first decision will then lead to the definition of the
next steps such as the model architecture, the loss function and so on. In
addition, inputs and outputs need to be defined and, based on that design
choice, proper training data should be retrieved. [43].

22 CHAPTER 2. TECHNICAL BACKGROUND

Data Pre-Processing

Data pre-processing is a crucial step in obtaining good results with ML. This
macro category includes operations such as vectorization, normalization, miss-
ing values handling, feature extraction etc.

• Vectorization. ML algorithms take vectors of numbers as input feature.
Therefore, it is important to turning data into a numerical data matrix,
where each row is associated with a sample, and the columns are the
feature of that sample. This process is called vectorization. Feature like
words or text sentence can be represented as a list of integers. On the
other hand, this step is not needed when data is already in numerical
forms, like images, which are numerical matrices.

• Normalization. Data Normalization is a common technique applied as
part of data preprocessing for Machine Learning. The goal of normal-
ization is to change the values of numeric columns in the dataset to use
a common scale, without distorting differences in the ranges of values or
losing information. Normalization is also required for some algorithms
to model the data correctly. Depending on the task and the inputs, the
data should have values in [0,1] range. Image data encoded as integers
in the range [0,255] is usually cast to float and divided by 255 so that
they become float values in the [0,1] range. Similarly, when predicting
users’ identities, each feature could be normalized to have a standard
deviation of 1 and a mean of 0.

• Missing Values Handling. In any real-world scenario, there are always
few missing values within the dataset and no model can handle these
missing values on its own. Missing values can be imputed, which means
we can use information in the training set predictors. There are many
options when we decide to replace a missing value. A good practice
can be to replace missing values with a constant value 0 or use a value
from another randomly selected sample. To estimate the missing value
can be used mean, median or mode value otherwise can be used a value
from by another predictive model.

Build the Model

After defining the problem and pre-processing the data, the next step is to
develop a model capable of solving the problem. Three key choices to build
the model should be considered: (i) model architecture that should learn
meaningful data representations, (ii) differentiable optimization function that
should match the type of problem, (iii) optimization configuration that should
support the model in minimizing the objective function [43]. In Deep Learn-
ing, model optimization takes place through a repetitive process called epoch,

2.5. EXPERIMENTAL WORKFLOW 23

which calculates the current error ei of the model at the epoch Ei. The func-
tion that calculates the error is called loss function. Such a function is used to
estimate the loss of the model so that the weights can be updated to reduce the
loss on the next evaluation. There are several loss functions to choose for each
ML problem. For instance, for regression problems, common loss functions
are Mean Squared Error, Mean Squared Logarithmic Error, and Mean Abso-
lute Error ; for binary supervised classification, Binary Cross-Entropy, Hinge
Loss, and Squared Hinge Loss are usually adopted; for multi-class classifi-
cation, common solutions are Multi-Class Cross-Entropy, Sparse Multi-Class
Cross-Entropy, and Kullback Leibler Divergence. Finally, within DL, an op-
timizer is integrated to update the weights and minimize the loss function.
The loss function is used by the optimizer to move in the right direction to
reach the global minimum. Common optimizers include Root Mean Square
Propagation (RMSProp) and Adaptive Moment Estimation (ADAM).

Model Evaluation

The standard practice for building and evaluating a model is to not use the
entire dataset for the training set. In order to have a model that is capable of
generalization and not subject to overfitting, it is important to split the data
into (i) a training set, (ii) a validation set, and a (iii) test set. The training set
contains a big subset of the data to build the predictive models. Validation
set is a portion of the data used to assess the performance of the model built
in the previous phase. It provides a test platform for fine-tuning a model’s
parameters and selecting the best-performing model. Test set contains only
unseen data and it is used to evaluate the model. The test set should be used
only when the tuning of the parameters has been completed, to ensure the
smallest chance of overfitting.

• Held-Out Validation. The dataset is split into two parts, one part for the
training set (80%-90%) and one part for the test set (20%-10%). The
model is built on the training set, and its performance is evaluated on
the test set. This validation technique is quite simple, and a sufficiently
large number of samples is required to be statistically representative,
preventing the validity of the experimental results.

• k-Fold Validation. Similar to held-out validation but in this case the
data is split into K equal-sized partitions. Then, the model is trained
on K–1 partitions and evaluated on partition i. The process is repeated
K times, with a different partition i as a test set. The final metrics are
averaged to obtain the final score. This might solve issues related to
significant variance on final metrics over different train-test split

24 CHAPTER 2. TECHNICAL BACKGROUND

• Walk-Forward Validation. Since the chronological order of data is im-
portant in time series, a walk-forward optimization strategy is used in
Financial Forecasting. WFO splits historical data into the following
two types: (i) In-Sample Data (IS) used for initial testing and parame-
ters optimization and Out-of-Sample Data (OOS) reserved for data set
which is not a part of the in-sample data. IS is divided into multiple
chunks called walks where each one is divided into two parts: Train-
ing and Testing sets. The optimization process is then repeated for
each walk and then the best parameter combination is tested on OOS.
There are two types of WFO strategy: (i) Non-anchored Walk Forward
Optimization and (ii) Anchored Walk Forward Optimization.

Figure 2.6: ML Evaluation techniques: held-out (top), k-fold
(middle) walk-forward (bottom)

2.6 Evaluation Metrics

This section will explain the evaluation metrics used to assess the performance
of the novel approaches proposed within this thesis. In Chapter 2.6.1 will
explain evaluation metrics for Machine Learning models while Chapter 2.6.2
will introduce evaluation metrics specific for the financial domain.

2.6. EVALUATION METRICS 25

2.6.1 AI Metrics

Accuracy

The Accuracy gives us information about the number of instances correctly
classified, compared to the total number of them. It provides an overview of
the classification performance. Accuracy is a well-known metric in Machine
Learning; it is defined as the ratio between the number of correct predictions
against the total number of test samples.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.1)

where:

• TP are correctly labelled positive class samples;

• TN are correctly labelled negative class samples;

• FP are the samples belonging to the negative class labelled as positive;

• FN are the samples belonging to the positive class labelled as negative.

Precision

Precision is a measure that is often used for evaluating supervised methods. It
indicates how many items have been correctly classified for a given class con-
sidering all elements that have been classified with that class. It is expressed
by the following equation:

Precision =
TP

TP + FP
(2.2)

In equation (2.2) TP is the number of items correctly classified for the
target class and FP is the number of elements that have been erroneously
classified for that class.

Recall

Recall is a metric that is often computed together with Precision. It is defined
by the equation (2.3), and measures how many items that belong to a given
class have been properly classified for the class.

R =
TP

TP + FN
(2.3)

As for the Precision, in equation (2.3) TP is the number of items correctly
classified for the target class. FN is the number of elements that belong to
the target class but have not been labeled for that class.

26 CHAPTER 2. TECHNICAL BACKGROUND

F-measure

A measure often used to combine Precision and Recall is the F-measure. It
is computed as their harmonic mean as shown in equation (2.4).

F = 2 · P ·R
P +R

(2.4)

2.6.2 Financial Metrics

Return

The Return or Portfolio Return or Net Profit is the effective gain or loss
realized by an investment. The return is expressed in USD.

Maximum Drawdown

The Maximum DrawDown (MDD) represents the largest drop from a peak
to a trough before a new peak is reached. It indicates the downside risk in
the time period taken into account [50]. Formally, denoting as P the peak
value before the largest drop, and as L the lowest value before a new high
established, its formal notation can be simplified as shown in Equation 2.5.

MDD =
(P − L)

P
(2.5)

Return Over Maximum Drawdown

The Return Over Maximum Drawdown (Romad) is a metric largely used
within the financial field in order to evaluate the gain or loss in a certain period
of time, such as the Sharpe Ratio or the Sortino Ratio [51, 52]. More formally,
it represents the average return for a portfolio expressed as a proportion of
the Maximum DrawDown level, as shown in Equation 2.10, where Portfolio
Return denotes the difference between the final capital and the initial one.

Romad =
Portfolio Return

MDD
(2.6)

Equity Curve

The Equity Curve (EC) reports the change in the value of a trading account
in a time period graphically [53]. A significant positive slope usually indicates
that the effectiveness of the adopted trading strategy, while a negative slope
indicates that such a strategy generates negative returns. For instance, given
an Initial Investment (II) to trade a number of futures that have a certain

2.6. EVALUATION METRICS 27

entry price and exit price, considering the related trade commission, is it pos-
sible to can calculate the points EC = {ec1, ec2, · · · , ecN} that compose the
equity line. An example of Equity Curve can be seen shown in Equation 2.7.

ec1 = II − ((entry price × number of futures)− commission)
ec2 = II − ((exit price× number of futures)− commission)
...
ecN−1 = II − ((entry price × number of futures)− commission)
ecN = II − ((exit price× number of futures)− commission)

(2.7)

Coverage

The Coverage metric reports how many times in percentage an operation is
performed [54] (i.e., buy or sell) on the market (i.e., |buy|+ |sell|), compared
to the number of days taken into consideration, as shown in Equation 2.8. It
gives us important information since in addition to predicting a buy or sell
operation, an algorithm can also predict to not buy and not sell anything
(hold).

Coverage =
(TP + FP)

TP + TN + FP + FN
(2.8)

Sharpe Ratio

The Sharpe Ratio (also known as the Sharpe index, the Sharpe measure, and
the reward-to-variability ratio)is a financial risk index used to help investors
to understand the return of an investment compared to its risk; the greater
the value of the Sharpe Ratio, the more attractive the risk-adjusted return;

SharpeRatio =
Rp −Rf

σp
(2.9)

Where:

• Rp is the actual or expected portfolio return;

• Rf is the Risk-free rate;

• σp is the standard deviation of the portoflio’s excess return

Sortino Ratio

The Sortino Ratio is a variation of the Sharpe Ratio2.6.2 that differentiates
harmful volatility from total overall volatility by using the asset’s standard
deviation of negative portfolio returns—downside deviation—instead of the

28 CHAPTER 2. TECHNICAL BACKGROUND

total standard deviation of portfolio returns. The SR takes an asset or port-
folio’s return and subtracts the risk-free rate, and then divides that amount
by the asset’s downside deviation.

SortinoRatio =
Rp −Rf

σD
p

(2.10)

Where:

• Rp is the actual or expected portfolio return;

• Rf is the Risk-free rate;

• σD
p is the standard deviation of the downside

2.7 Software Tools and Technologies

During the various research works the following toolkits have been employed
for the development and evaluation of the proposed solutions.

Scikit-learn1 is a Python library that provides implementations of super-
vised and unsupervised algorithms, and metrics to evaluate results.

Tensorflow2 is an end-to-end open-source platform for Machine Learning.
It has a comprehensive, flexible ecosystem of tools, libraries and community
resources that lets researchers push the state-of-the-art in ML and developers
easily build and deploy ML-powered applications.

Keras3 is a high-level Neural Networks API, written in Python. It was
developed to rapidly build Deep Learning architectures by pre-developed
modules. It also has the advantage that can be run on both CPUs and GPUs.

Numpy4 is the fundamental package for scientific computing in Python. It
is a Python library that provides a multidimensional array object, various
derived objects (such as masked arrays and matrices), and an assortment
of routines for fast operations on arrays, including mathematical, logical,
shape manipulation, sorting, selecting, I/O, discrete Fourier transforms,
basic linear algebra, basic statistical operations, random simulation and
much more.

1https://scikit-learn.org/stable/
2https://www.tensorflow.org/
3https://keras.io/
4https://numpy.org

https://scikit-learn.org/stable/
https://www.tensorflow.org/
https://keras.io/
https://numpy.org

2.7. SOFTWARE TOOLS AND TECHNOLOGIES 29

Pandas5 is a Python library that provides easy-to-use data structures and
data analysis tools. It allows to efficiently manage great matrices of data
and perform classic operations that are typically adopted on tables (e.g.,
join and selection of rows based on their values).

Matplotlib6 is one of the most popular Python library. It is a comprehen-
sive library for creating static, animated, and interactive visualizations in
Python.

OpenCV7 is a huge open-source library for computer vision, Machine Learn-
ing, and image processing. OpenCV supports a wide variety of programming
languages like Python, C++, Java, etc. It can process images and videos to
identify objects, faces, or even the handwriting of a human.

5https://pandas.pydata.org/
6https://matplotlib.org/
7https://opencv.org/

https://pandas.pydata.org/
https://matplotlib.org/
https://opencv.org/

30 CHAPTER 2. TECHNICAL BACKGROUND

Chapter 3

State of the art

The Neural Networks approaches applied to Financial Forecasting started ap-
proximately across the end of 80’s and the beginning of 90’s. In those years,
one of the first Artificial Neural Network has been proposed [7], with the aim
of predicting the TOPIX index (Tokyo Stock Exchange Price Indexes), by
taking six metric vectors as input. In the same year, the authors in [55] built
a recurrent NN for stock price patterns’ recognition, exploiting the triangle
pattern as a clue to the trend of the future stock prices. In [56], a similar
approach has exploited eleven market indicators for building and training a
recurrent Neural Network for monthly transition of the stock price index [57].
Several approaches have also been proposed in the field, facing the financial
series prediction topic by using the DNM (Dendritic Neuron Model) tech-
nique [58], whose performances have been shown both on Asiatic [59] and US
Market [60]. These techniques have evolved a lot in the recent 10 years, as
well as the finance itself [61]. As a consequence, dozens of scientific papers
have been published, proposing approaches which aim at predicting the stock
prices by exploiting news data extracted from the most popular social net-
works for modelling the uncertainty which lies behind the fluctuation of the
market [62]. Financial Forecasting is indeed one of the research branches in
which Sentiment Analysis found a quite breeding ground [63, 64].

Alongside the Artificial Neural Networks, also the ML approaches had
the possibility to show their efficiency through the years[65]. In [66], the
authors have compared the capabilities of the Support Vector Machines [67]
in market prediction related issues against those obtained by using the Radial
Basis Function (RBF) Networks and Back Propagation (BP). In [68], a recent
literature review is performed, which compares the modern Machine Learning
approaches in FF field.

Interesting results have also been obtained when fusing together the above
described techniques: as an example, in [69] the authors have fused ANN
with Decision Trees. The rationale behind this hybrid approach is that where
ANNs are able to provide quite good performances in forecasting the market

32 CHAPTER 3. STATE OF THE ART

trend, a DT model is stronger in generating potential rules which describe the
forecasting decisions. Similarly, in [14], a two stage fusion approach is pro-
posed for predicting CNX Nifty and S&P Bombay Stock Exchange Sensex
from Indian stock markets. Specifically, the first stage uses a Support Vector
Regressor, whereas the second one exploits, in turn, Artificial Neural Net-
works, Random Forest and Support Vector Regression. Ten indicators have
been selected as input to the prediction models. A comparison of different
market price prediction approaches is shown in [70], where classification-based
approaches usually provide better results, such as [71, 72, 73], rather than
some regression-based benchmarks. As reported in [74], moreover, ”there
is no general consensus on best forecasting technique for price prediction”,
particularly since ”price series is inherently a non-stationary series having
non-constant mean and variance”, making it not always advantageous to rep-
resent the problem through linear models such as regression.

The work in [75] used standardized technical indicators to forecast rise
or fall of market prices with AdaBoost algorithm, which is used to optimize
the weight of these technical indicators. In [76, 77], the authors used Auto
Regressive Integrated Moving Average (ARIMA) in pre-processed time series
data in order to predict prices. The authors in [78] proposed a hybrid ap-
proach, based on Deep Recurrent Neural Networks and ARIMA in a two-step
forecasting technique to predict and smooth the predicted prices. Another hy-
brid approach is proposed in [79], which uses a sliding-window metaheuristic
optimization with the firefly algorithm (MetaFA) and Least Squares Support
Vector Regression (LSSVR) to forecast the prices of construction corporate
stocks. The MetaFA is chosen to optimize, enhance the efficiency and reduce
the computational burden of LSSVR. The work in [80] used Principal Com-
ponent Analysis to reduce the dimensionality of the data, Discrete Wavelet
Transform to reduce noise, and an optimized Extreme Gradient Boosting to
trade in Financial Markets. The work in [81] validated an extension of Sup-
port Vector Regression, called Twin Support Vector Regression, for financial
time series forecasting. The work in [82] proposed a novel fuzzy rule trans-
fer mechanism for constructing fuzzy inference Neural Networks to perform
two-class classification, such as what happens in Financial Forecasting (e.g.,
buy or sell). Finally, [83] proposed a novel learning model, called Quantum-
inspired Fuzzy Based Neural Network to classification. This learning happens
using concepts of Fuzzy c-Means clustering. The reader should notice that
fuzzy learning is commonly used to reduce uncertainty in the data [84], so
such solutions can be useful for Financial Forecasting. Several other interest-
ing studies have been carried out in the literature, such as a comparison of DL
technologies to prices prediction [85], the use of DL and statistical approaches
to forecast crisis in the stock market [86], the use of reward-based classifiers
such as Deep Reinforcement Learning [87], among others.

However, it is usually known that single classifiers/hybrid approaches can

33

obtain better performance than that of their single versions when applied in an
ensemble model [88, 89]. With that in mind, the literature also reports many
approaches that exploit a set of different classification algorithms [90, 91, 92]
whose results are combined according to a certain criterion (e.g., full agree-
ment, majority voting, weighted voting, among others). An ensemble process
can work in two ways: by adopting a dependent framework (i.e., in this case,
the result of each approach depends on the output of the previous one), or
by adopting an independent framework (i.e., in this case, the result of each
approach is independent) [93]. In this sense, the work in [94] proposed a
novel multiscale nonlinear ensemble leaning paradigm, incorporating Empir-
ical Mode Decomposition and Least Square Support Vector Machine with
kernel function for price forecasting. The work in [95] fits the same Sup-
port Vector Machines classifier multiple times on different sets of training
data, increasing its performance to predict new data. Authors of [96] com-
bined results of bivariate empirical mode decomposition, interval Multilayer
Perceptrons and interval exponential smoothing method to predict crude oil
prices. Other interesting approaches using ensembles are the use of multiple
Feed Forward Neural Networks [97], multiple Artificial Neural Networks with
model selection [98], among others.

Authors in [99], used modular Neural Networks trained on various tech-
nical and economical information in order to determine when to buy and sell
stocks. This work was extended later in [100] using recurrent Neural Net-
works that are more suitable to time series. The work in [101] used a similar
recurrent Neural Network, but trained on eleven economic indicators. Other
subsequent works have used more advanced ML classifiers to perform stock
trading. The work presented in [102] used Long Short Term Memories DNN,
an evolution of recurrent networks, on augmented market trading data. The
work in [103] used a more evolved recurrent network to predict the stock trad-
ing signal by forecasting the opening, closing, and difference between these
prices.

Other works have explored the use of Non-Neural Network based clas-
sifiers. Authors in [104] used SVM on features originated from the prices,
such as trend, market fluctuation, and noise on multiple time resolutions to
predict stock trends. Zhou et al. [105] employed the same classifier on a very
heterogeneous dataset with sources from historical transaction data, techni-
cal indicators, stock posts and news to predict the directions of stock price
movements. Another kind of classifier usually considered in previous works is
the Random Forest, as it consists of an ensemble of individual decision trees
and, therefore, can be a powerful tool for trading. The work in [106] evaluated
the robustness of RF to stock selection through fundamental/technical and
pure momentum feature spaces. Finally, the work of Khan et al. [107] has
assessed the effectiveness of RF on features from social media and financial
news data.

34 CHAPTER 3. STATE OF THE ART

The use of Reinforcement Learning (RL) in stock market prediction has
shown state-of-the performance in several works in the literature and is con-
sidered a trending topic in stock market prediction. By considering the market
as an environment that returns maximized rewards when the right trading
signals are emitted, the stock trader agents are trained as much as possible
in order to follow the market behavior by optimizing financial metrics. These
metrics can be returns, Sharpe Ratio, among others. One of the pioneer
works in this regard comes from the work in [108], that used a Q-Learning
value-based RL approach to optimize asset allocation decision. Later, Mi-
hatsch and Neunier et al. [109] added in the Q-learning function the notion
of risk. Gao and Chanet al. used as performance functions of Q-learning
training the absolute profit and relative risk adjusted profit[110]. Authors
in [111] used four Q-learning agents that act serially in different steps of the
trading procedure. Moody et al. [112] used a Recurrent Neural Network in
the RL pipeline for trading, an approach known as Recurrent Reinforcement
Learning (RRL). Recent solutions proposed in this aspect are the work in
[113], which modified and adapted the A3C RL algorithm and joined it with
Deep Learning, and also the work of Lei et al.[114], which proposed DL and
DRL to adaptively select and reweight several features of financial signals.

Chapter 4

A Holistic Auto-Configurable
Ensemble Machine Learning
Strategy for Financial Trading

This chapter introduces a general approach for Financial Forecasting with
application to technical analysis based on an ensemble of predictors auto-
matically created, considering any kind of classifiers and adjustable to any
kind of market. In our ensemble, each market will have two sets of pa-
rameters tuned: the time series parameters (hyper-parameters) and classifier
parameters (intrinsic-parameters), no matter the classifiers considered in the
ensemble. These parameters are tuned in late past (in-sample) and early past
(out-of-sample) datasets, respectively. The input data of such an ensemble
is transformed by the Independent Component Analysis, whose parameters
are also optimized to make it general enough to return the optimal number
of output signals. Therefore, this approach is different from the literature as
it is composed of an ensemble of classifiers that can include any classifier and
can be maximized for more than one market. To do that, this dissertation
study the performance of our data-driven ensemble construction by consid-
ering different performance metrics in known data in order to tune ensemble
parameters over the space of features (ICA feature selection), parameters
(parameters of classifiers, or intra-parameters), and also in the space of time
(parameters of the time series). Experiments performed in several futures
markets show the effectiveness of the proposed approach with respect of both
buy-and-hold strategy and other literature approaches, highlighting the use
of such a technique specially by conservative and beginner investors who aim
to do safe investment diversification.

The contributions of this work are therefore the following:

36CHAPTER 4. A HOLISTIC AUTO-CONFIGURABLE ENSEMBLE ML STRATEGY

1. We formalise a general ensemble construction method, which can be
evolved by considering any kind of different classifiers and can be applied
to any market.

2. We propose an auto-configurable nature, or data-driven nature of such
an ensemble. Our approach seeks for hyper-parameters and intrinsic-
parameters in late and early past data respectively, generating a final
ensemble no matter the market considered.

3. We discuss the use of an optimized Independent Component Analysis
(ICA) method as feature selection of the ensemble input, in order to
produce the best number of selected features given any number of input
signals.

4. We conduct a performance study by using different metrics based on
classification, risk and return, comparing our approach to the well estab-
lished Buy and Hold methodology and several canonical state-of-the-art
solutions.

5. In order to reduce the risk that the general strategy optimization phase
would lead to results affected by overfitting bias, this dissertation sys-
tematically rely on the concepts of strictly separated in-sample and out-
of-sample datasets for an efficient two-step ensemble parameter tuning,
aimed to trade in Financial Markets.

4.1 Proposed Approach

This dissertation proposes an auto-configurable ensemble, composed by any
number of classifiers and adjustable to any market. This ensemble is created
automatically after optimizing two sets of parameters: hyper-parameters and
intrinsic-parameters. Once optimized in an In-Sample late past (IS) data,
hyper-parameters are transferred to the training part of early past data, which
we call Out-of-Sample (OOS) data. These hyper-parameters will help to find
another set of parameters, called intrinsic-parameters, that are optimized in
order to update the ensemble of classifiers to more recent data. Then, any
new forecasting method can be tested. This reduces the problem of creating
ad-hoc ensembles for specific markets, as our ensemble method outputs a pool
of best classifiers for any market as soon the market data are in the IS and
training part of OOS sets. Additionally, we allow any number and type of
classifiers technologies in the proposed ensemble, minimizing the brute force
search for specific classifiers in an ensemble.

Our proposed auto-configurable ensemble is composed of three steps, as
follows:

4.1. PROPOSED APPROACH 37

1. Feature Selection: data from the target market is pre-processed, with
parameters being learned in the IS data.

2. Two-Step-Auto Adjustable Parameters Ensemble Creation:
with the auto-configurable optimized sets of hyper-parameters and
intrinsic-parameters found in IS data, the approach outputs the set
of hyper-parameters only, which will be transferred to a new optimiza-
tion round. This new optimization step is done in the training part of
the OOS data, and will find final intrinsic-parameters in recent data to
build the final ensemble of classifiers.

3. Policy for Trading: we define how to use the created ensemble to
trade.

Detailed discussions of these steps are done in the next subsections.

4.1.1 Feature Selection

In order to reduce noise from the data, the literature reports some ap-
proaches able to better generalize the involved information by selecting only
the characteristics that best represent the domain taken into account (e.g., the
stock market). Although other feature selection techniques could be used by
our proposed approach, we considered the Independent Component Analysis
(ICA) in our approach, as it was, as far as we know, not fully explored in the
financial market context. This feature selection approach is able to extract
independent streams of data from a dataset composed of several unknown
sources, without needing to know any criteria used to join them [115].

The idea of ICA is to project the d dimensional input space into a lower
dimensional space d′. This is done by finding a linear representation of non-
gaussian data, so the components are statistically independent. Let us assume
a d dimensional observation vectors x = {x1, x2, ..., xd} composed of zero
mean random variables. Let s = (s1, s2, ..., sd) be the d-dimensional transform
of x. Then, the problem is to determine a constant weight matrix W so that
the linear transformation of the observed variables

s = Wx (4.1)

has certain properties. This means that the input x can be written in terms
of the independent components, or

x = A−1s, (4.2)

where A is the inverse (or the pseudo-inverse) of the W transform matrix.
The ICA Based dimensionality reduction algorithm is based on the idea

that the features that are least important are the ones whose contributions

38CHAPTER 4. A HOLISTIC AUTO-CONFIGURABLE ENSEMBLE ML STRATEGY

to the independent components are the least. The least important features
are then eliminated and the independent components are recalculated based
on the remaining features. The degree of contribution of a feature is approx-
imated as the sum of the absolute values of the transform matrix W entries
associated with that feature. The ICA process considers the input data as
a non-linear combination of independent components by assuming that such
a configuration is true in many real-world scenarios, which are characterized
by a mixture of many non-linear latent signals [116, 117]. A more rigorous
formalization of ICA is provided in [118], where a statistical latent variables
model has been adopted. It assumes that we observe n linear mixtures of n
independent components.

In our optimized ICA approach, we select the best possible number of
parameters to be used by this technique, no matter the market considered.
This is done by adjusting hyper-parameters, a step further discussed in the
next subsection.

4.1.2 Two-Step Auto Adjustable Parameters Ensemble
Creation

This Section discusses the proposed method of generating automatically an
ensemble of several classifiers to trade in any kind of market. We start by
giving an overview of the approach, then we show how we perform optimiza-
tion of parameters and, finally, we describe the parameters to be learned in
order to achieve the final ensemble.

Overview

Our method is a self-configurable ensemble of classifiers whose pipeline can be
see in Fig. 4.1. In our approach, hyper-parameters are optimized through per-
formances metrics calculated for the ensemble in the IS data, and are trans-
ferred to the training set of OOS (more recent past) data. Finally, intrinsic-
parameters are found for the classifiers of the final ensemble, considering more
recent past data and the ensemble is updated to test any kind of new data.

The performance metrics we consider in our study lie within the Machine
Learning and the economic domains. The rationale behind that is that, in
addition to a mere evaluation of the percentage of correct predictions (i.e.,
accuracy), it is also necessary to estimate the impact of them at the economic
level. For instance, the measurement of a good accuracy in the predictions
related to a period of five years is not significant if for some intervals of this
period (e.g., two consecutive years) we suffered huge economic losses that,
certainly, in a real-world scenario, would have stopped any further invest-
ment. For this reason, together with the Accuracy metric, we adopted as
evaluation metrics the Maximum Drawdown, the Coverage, and the Return

4.1. PROPOSED APPROACH 39

Figure 4.1: The proposed two-Step auto adjustable parameters
ensemble for market forecasting. This approach optimizes two sets
of parameters for a final ensemble to trade in any market. Firstly,
in an in-sample dataset with late past data, we optimize the hyper-
parameters, considering performance metrics in the testing part
of data. Then, these hyper-parameters are transferred to create
ensembles for an early past (out of sample) dataset. The individual
classifiers have their intrinsic-parameters updated in the validation
part of this recent data and then the final ensemble is built.

40CHAPTER 4. A HOLISTIC AUTO-CONFIGURABLE ENSEMBLE ML STRATEGY

Over Maximum Drawdown, whose formalization will be provided later in Sec-
tion 2.6.

To illustrate the benefits of our proposed auto-configurable ensemble
method, we build it considering three basic state-of-the-art classifiers [119,
14, 120]: Gradient Boosting (GB), Support Vector Machines (SVM), and
Random Forests (RF), although any other kinds of classifiers may either re-
place those or be plugged in. Our method has two sets of parameters to be
learned, through a methodology described in details in the next subsection.

Walk-forward Optimization

One of the most used optimization approaches within a Financial Forecast-
ing process for the detection of the best parameters to adopt in the trading
strategy is called Walk Forward Optimization (WFO) [121]. We adopt such
a strategy to find the best ensemble hyper-parameters in the IS data and
intrinsic-parameters in part of OOS data. It works by isolating the IS time
series into several segments, or walks, where each segment is divided in two
parts: Training and Testing sets. The parameters optimization for the used
trading strategy is then performed by (i) using several combinations of pa-
rameters to train the model in the training part of a segment; and (ii) declare
the best (optimized) parameters the ones that yield best performance in the
testing set of the same segment. The process is then repeated on the other
segments. The performance obtained in the testing set of each segment is not
biased as we are not using unknown data, but just IS data. The Walk Forward
Optimization can be performed by following two methodologies, described as
follows:

1. Non-anchored Walk Forward Optimization: this approach creates walks
of same size. For example, let us assume we have a dataset composed
of 200 days that we want to divide into 6 walks of 100 days. One way
is to consider the first 80 days of each walk as the training set and
the remaining 20 days as the testing set, as shown in the left side of
Table 4.1.

2. Anchored Walk Forward Optimization: in this scenario, the starting
point of all segments is the same. Additionally, the training set of each
segment is longer than the training set of the previous one, therefore
the length of each walk is longer than the length of the previous one,
as shown in the right side of Table 4.1.

In our approach, we consider the non-anchored modality of the Walk
Forward process, a widely used approach in the literature for Financial Mar-
kets [122]. Additionally, the non-anchored WFO used in our approach further
subdivides the training data in Table 4.1 into training and validation data,

4.1. PROPOSED APPROACH 41

Table 4.1: Non-anchored and Anchored WFO

Data Non-anchored WFO Anchored WFO
segment/walk Training Testing Days Training Testing Days

1 1→ 80 81→ 100 100 1→ 80 81→ 100 100
2 21→ 100 101→ 120 100 1→ 100 101→ 120 120
3 41→ 120 121→ 140 100 1→ 120 121→ 140 140
4 61→ 140 141→ 160 100 1→ 140 141→ 160 160
5 81→ 160 161→ 180 100 1→ 160 161→ 180 180
6 101→ 180 181→ 200 100 1→ 180 181→ 200 200

Table 4.2: Intra-parameters grid

Algorithm Parameter Values Description
Gradient Boosting n estimators 10, 25, 50, 100 Boosting stages to perform

learning rate 0.0001, 0.001, 0.01, 0.1 Contribution of each tree
max depth 2, 4, 6, 8, 10 Maximum depth of each estimator

Support V ector Machines max iter 20, 50, 100 Hard Limit on iterations within solver
tol 0.0001, 0.001, 0.01, 0.1 Tolerance for stopping criterion
C 1, 10, 20, 50 Penalty of the error term
gamma 0.0001, 0.001, 0.01, 0.1 Coefficient for the used kernel

Random Forests n estimators 20, 50, 100 Trees in the forest
max depth 1, 5, 10, 50 Maximum depth of the tree
min samples split 0.2, 0.4, 0.8, 1.0 Minimum samples to split an internal node

where the validation data is 30% of the training data. Then, the performance
in the validation data will help finding a set of intrinsic-parameters of the
classifiers of the ensemble, whereas the performance in the testing data will
find the hyper-parameters of the ensemble. We discuss such auto-configurable
parameters in the next section.

Transferable Self Configurable Parameters

With the information of the classifiers used and the optimization methodology
in mind, we finally describe the parameters to be found in order to generate
the final ensemble. The first set of parameters to be learned through non-
anchored WFO comes from the classifiers and are reported in Table 4.2, along
with a list of values that must be grid searched within the process. Other
values and even other parameters can be added too, making the classifiers
even more robust to the uncertainties in the training data. Such values are
optimized according to the performances in the validation data, a fraction of
the training data discussed before in section 4.1.2.

The second set of parameters to be tuned is represented by the hyper-
parameters, which are not from the classifiers anymore, but are related to
the non-anchored WFO and ICA feature selection. Table 4.3 shows the
hyper-parameters that need to be optimized according to the chosen met-
ric. They are (i) the dimension of the window for each walk; (ii) the train-
ing set size; (iii) lag size; and (iv) number of output signals of the consid-

42CHAPTER 4. A HOLISTIC AUTO-CONFIGURABLE ENSEMBLE ML STRATEGY

ered ICA feature selection approach. These hyper-parameters are optimized
through the chosen performance metrics after ensemble classification of test-
ing data, where test size = window size−train size−validation size. This
hyper-parameters self-configuration step of our approach is carried out only
within the IS part of our dataset, according to a considered metric. Once the
hyper-parameters and intrinsic-parameters are found in the IS data, the algo-
rithm transfers the hyper-parameters only to the OOS dataset. Then, only the
intrinsic-parameters of the ensemble are optimized and, thus, the ensemble is
ready to test new data.

Table 4.3: Hyper-parameters Grid

Parameter Values Description
window size 100, 150, 200, 250, 300 Days used for the training and test sets definition
train size 60, 65, 70, 75, 80 Percentage of window size used for the training set
lags 1, 3, 5, 7, 9 Previous days to use in order to predict the next one
ica comp 1, 3, 5, 7, 9 Independent Component Analysis output components

Algorithm 1 describes the proposed approach of multi-classifiers auto-
configurable ensemble. The algorithm has three main variables: (i)
MAX FINAL METRIC (initialized in step 7 of the algorithm), which will
be used in step 28 to check which hyperparameter h ∈ H has the best en-
semble performance metric; (ii) ENS METRICS (initialized in step 8 of
the algorithm), which will sum up the metric of applying the ensemble in test
part of IS data in all walks; and (iii) MAX WALK METRIC (initialized in
step 14 of the algorithm), which will be used to optimize classifiers intrinsic-
parameters in the validation data of each walk. The algorithm starts by, given
a combination of hyper-parameters h ∈ H, building the walks W (step 10)
and, for each walk w ∈ W , it builds and transforms features (steps 12 and
13), doing grid search in all the classifiers intrinsic-parameters combinations
i ∈ I in order to find the best classifier for each walk (steps 16-22). After the
best of each classifier is found for a walk, we apply the ensemble of them ac-
cumulating the performance metric in the testing data for all the walks (step
26). After this is done for each hyperparameter combination, we verify, in
steps 28-30, if the total metric of the ensemble in all the walks is the highest
possible. When all the hyperparameter combinations h have their ensemble
tested and with their accumulated metrics on the testing data calculated, in
step 33 the algorithm is sure that it found the best possible hyperparameter
h′ ← H, which is returned by the algorithm.

After the hyper-parameters are found in the IS data, we start the search
for the intrinsic-parameters of the ensemble in recent past data, and then
our ensemble is ready and can already trade. Such procedure is reported in
Algorithm 2. In this algorithm, just two metrics are necessary: (i) the variable
MAX WALK METRIC (step 12 of the algorithm) to tune the intrinsic-

4.1. PROPOSED APPROACH 43

parameters of the classifiers in the new OOS data; and (ii) METRIC (step 8 of
the algorithm) to calculate the final metrics of the ensemble trading on unseen
OOS data. The process is similar to Algorithm 1, with the difference being
the fact that hyper-parameters are not searched anymore and the testing data
is used to report trading real-time results. The algorithm returns the mean
metric, considering the whole testing period.

Doing the search of parameters this way, the hyper-parameters of the final
ensemble will be optimized in the IS data through non-anchored WFO. Then,
these hyper-parameters are transferred to the non-anchored WFO of the OOS

data, and intrinsic-parameters are now optimized in the validation data only.
Thus, an auto adjustable ensemble approach is built in such a way that will
return an ensemble of the best possible classifiers for any market, as long as
their IS and training and validation OOS data are fed to the algorithm, being
this way a data-driven optimization approach.

4.1.3 Policy for Trading

Many literature studies [123, 124] demonstrate the effectiveness of ensemble
approaches that implement different algorithms and feature subsets. Ensem-
ble approaches [125] usually get the best results in many prestigious Machine
Learning competitions (e.g., Kaggle, Netflix Competition, KDD, and so on).

Therefore, in this work, we are adopting an ensemble learning approach,
which means that the final result (i.e., the prediction) is obtained by com-
bining the outputs made by single algorithms in the ensemble. As stated
before in Chapter 3, such an ensemble process can work in a dependent or
independent fashion. The approach we choose is the independent framework,
so each classifier decision may represent a vote that is independent from the
others. We apply such an approach using three selected algorithms (i.e., Gra-
dient Boosting, Support Vector Machines, and Random Forests) with their
ensemble hyper-parameters initially found in the IS data, and whose individ-
ual classifiers intrinsic-parameters are found in the OOS data. We adopt in
our ensemble approach the aggregation criterion called complete agreement,
meaning that we make our prediction to do along or short operation only
if there is a total agreement among all the algorithm predictions, otherwise
we do not make a prediction for the related futures market (flat). This is
an approach that usually leads towards better predictive performance, com-
pared to that of each single algorithm. Such an approach for the future day
prediction is better illustrated in Algorithm 3.

44CHAPTER 4. A HOLISTIC AUTO-CONFIGURABLE ENSEMBLE ML STRATEGY

Algorithm 1 Proposed hyperparameter search approach
1.22

Require:
IS=time series from in sample data
I= list of intra-parameters as shown in Table 4.2
H=list of hyper-parameters as shown in Table 4.3
C=list of classifiers from the ensemble

Ensure:
h′= Optimized hyper-parameters
procedure Return hyper-parameters(IS, I, H, C)

MAX FINAL METRIC ← 0
ENS METRIC ← 0
for h in H do . for each hyperparameter combination

W [h]← buildWalks(IS, h(window size)) . Starts non-anchored
WF0

for w in W [h] do . for each walk
F ← buildFeatures(w, h(lags)) . get features
F ′ ← icaTransform(h(ica comp), F) . transform features
MAX WALK METRIC ← 0
for c in C do . for each classifier

for i in I do . for each intrinsic parameter, train and
validate

M [i]← trainClassifier(F ′, h(train size), c[i])
METRIC ← testClassifier(M [i], F ′[h(train size) ∗

0.3])
if METRIC > MAX WALK METRIC then

E[c, w]←M [i]
MAX WALK METRIC ←METRIC

end if
end for

end for
test data← F ′[h(window size)−h(train size)−h(train size)∗

0.3]
ENS METRIC ← ENS METRIC +

testClassifier(E[C,w], test data)
end for
if ENS METRIC > MAX FINAL METRIC then

h′ ← h
MAX FINAL METRIC ← ENS METRIC

end if
end for
return h′

end procedure

4.1. PROPOSED APPROACH 45

Algorithm 2 Proposed intrinsic parameter search approach and ensemble trading

1.22

Require:
OOS=time series from in sample data
I= list of intra-parameters as shown in Table 4.2
h′=best hyperparameter found in Algorithm 1
C=list of classifiers from the ensemble

Ensure:
MEAN METRIC= Mean performance of trading
procedure Ensemble Trading(OOS, I, h′, C)

W ← buildWalks(OOS, h′(window size)) . Starts non-anchored
WFO

METRIC ← 0 . Metric used to report testing results
for w in W do . for each walk

F ← buildFeatures(w, h′(lags)) . get features
F ′ ← icaTransform(h′(ica comp), F) . transform features
MAX WALK METRIC ← 0
for c in C do . for each classifier

for i in I do . for each intrinsic parameter, train and validate
M [i]← trainClassifier(F ′, h′(train size), c[i])
METRIC ← testClassifier(M [i], F ′[h′(train size) ∗ 0.3])
if METRIC > MAX WALK METRIC then

E[c, w]←M [i]
MAX WALK METRIC ←METRIC

end if
end for

end for
test data← F ′[h′(window size)−h′(train size)−h′(train size)∗

0.3]
METRIC ←METRIC + testClassifier(E[C,w], test data)

end for
MEAN METRIC ←METRIC/|W |
return MEAN METRIC

end procedure

46CHAPTER 4. A HOLISTIC AUTO-CONFIGURABLE ENSEMBLE ML STRATEGY

Algorithm 3 Future day prediction

1.3

Require: A=Set of algorithms, D=Past classified trading days, d̂=Day to
predict

Ensure: result=Day d̂ prediction
1: procedure Prediction(A, D, d̂)
2: models = trainingModels(A,D)

3: predictions = getPredictions(models, d̂)
4: if agreement(predictions) == TRUE ∧ predictions == −1 then
5: result ← short
6: else if agreement(predictions) == TRUE ∧ predictions == 1 then
7: result ← long
8: else
9: result ← flat
10: end if
11: return result
12: end procedure

4.2 Experimental Setup

In this section, we discuss the setup chosen to guide the experiments per-
formed to validate our ensemble approach against some benchmarks from the
literature. We start discussing the datasets, the performance metrics and
implementation aspects of our proposed method and of the benchmarks.

4.2.1 Formal Notation

We denote a set of data composed by a series of consecutive trading days
of a futures market D = {d1, d2, . . . , dN}, and a set of features F =
{date, open, high, low, close, volume, next} that compose each d ∈ D1, where
next = 1 if the close− open of the next day is ≥ 0, otherwise next = −1 (we
also associated the meaning of long operation to 1 and the meaning of short
operation to −12).

We denote as D+ ⊆ D the subset of trading days with a positive closing
(i.e., close − open ≥ 0), and as D− ⊆ D the subset of trading days with a
negative closing (i.e., close− open < 0).

We denote as D̂ = {d̂1, d̂2, . . . , d̂U} a set of unclassified trading days. It
should be observed that, according to the aforementioned definition of next ∈

1They stand for date of day, open value, highest value reached in the day, lowest value
reached in the day, close value, and exchange volume.

2They represent the operations allowed on the futures markets taken into consideration
in this paper.

4.2. EXPERIMENTAL SETUP 47

F , a trading day can only belong to one class c ∈ C, where C = {1,−1}.
We also denote as I = {i1, i2, . . . , iX} the components of each trading day

d ∈ D, obtained by transforming the original data through a feature selection
process, which in our case is ICA.

Finally, we denote a set of operations O = {long, short, f lat} allowed on
a futures market, where flat means that no operation of long or short has
been performed 3.

4.2.2 Datasets

To verify our approach performance against some benchmarks, we selected
four datasets based on stock futures markets (SP500, DAX and FIB) and one
future of commodity (CL). As far as the stock futures markets are concerned,
we included the FIB market, which is characterized by an atypical behavior
with respect to the other stock futures markets in the years taken into account
during the experiments. We based our choice on the observation that stock
markets behavior is usually different from that of the bond markets, as there
usually exists an inverse correlation between them. Indeed, the stock futures
are frequently characterized by a strong upward bias (e.g., SP500 and DAX),
with some exceptions related to some particular economic scenarios, as it
happened for the Italian FIB in recent years. Details of such datasets are
reported in Table 4.4.

Table 4.4: Futures Market Datasets

Futures Name From To Trading
dataset day day days
SP500 Standard & Poors 500 02/01/2008 31/12/2018 2827
DAX German Market 02/01/2008 28/12/2018 2792
FIB Italian Market FIB Future 02/01/2008 27/12/2018 2790
CL Light Sweet Crude Oil Future 02/01/2008 28/12/2018 2774

These datasets can be easily found at different time resolutions (e.g., 5-
minutes, 10-minutes, 1-hour, etc.). In this work, we further transform the
futures market datasets by adopting a 1-day resolution. It means that, start-
ing from the original resolution that characterizes the dataset (e.g., 5-minutes,
10-minutes, 1-hour, among others), the data have been opportunely joined in
order to obtain for each day included in the dataset the following new infor-
mation I={date, open value, highest value, lowest value, close value, exchange
volume}, where each record of the new dataset corresponds to one day. As
the SP500 market has a point value of 50 USD, the DAX market has a point
value of 25 EURO, the FIB market has a point value of 5 EURO and the CL

3https://www.thebalance.com/long-and-short-trading-term-definitions-1031122

https://www.thebalance.com/long-and-short-trading-term-definitions-1031122

48CHAPTER 4. A HOLISTIC AUTO-CONFIGURABLE ENSEMBLE ML STRATEGY

market has a point value of 1,000 USD, in order to simplify, we do not convert
the points to their corresponding currency values, keeping such information
in points.

In these datasets, we denote a set of data composed of a series of
consecutive trading days as X = {x1, x2, . . . , xN}, and a set of features
F = {date, open, high, low, close, volume, next} that compose each x ∈ X
and next = 1 if the close − open of the next day is greater than or equal
to zero, and next = −1 otherwise. We also label the long operation to 1,
and short operation to −1, as they represent the operations allowed on the
futures markets taken into consideration in this paper.

It should be observed that, according to the aforementioned definition
of next ∈ F , a trading day can only belong to one class c ∈ C, where
C = {1,−1}. We also denote as I = {i1, i2, . . . , iX} the components of each
trading day x ∈ X, obtained by transforming the original data through a
feature selection process, which in our case is ICA. Finally, we denote a set
of of operations O = {long, short, f lat} allowed on a futures market, where
flat means that no operation of long or short has been performed.

Given the previous definitions, for each trading day x (i.e., each dataset
row), we add a further data field next, which corresponds to the target class
related to the next trading day x+1, and is defined according to the notation
reported in Equation 4.3.

nextx =

{
1, if (closex+1 − openx+1) ≥ 0

-1, otherwise.
(4.3)

We let the reader observe that the time series resolution may be set even
to a finer scale, e.g., hours or minutes. In such a case, a record in a given time
interval would consist of a group features {time, open value, highest value,
lowest value, close value} for each considered interval, ended with the next
class, as defined above.

To train our prediction models with more than a day of the features market
(lags hyper-parameter in Table 4.3), we can arbitrarily aggregate more days,
obtaining a series of vectors V composed of ICA components of N days, with
the next value as target class. As an example, assuming we have to aggregate
three days x1, x2, x3, each of them characterized by two ICA components i1, i2,
we would obtain the vector shown in Equation 4.4.

V = [x1(i1), x1(i2), x2(i1), x2(i2), x3(i1), x3(i2), nextx4] (4.4)

In our experiments, we report the experiments considering the period from
2016 to 2018 as OOS data, where we have updated and tested our approach
after the auto-configuration and tuning of the hyper-parameters in the IS

data, which uses the remaining years.

4.2. EXPERIMENTAL SETUP 49

4.2.3 Technical Details

The approach proposed in this paper has been developed in Python, as well
as the implementation of the state-of-the-art classification techniques used
to define our ensemble approach, which are based on scikit-learn4. In order
to make our experimental results reproducible, we have set to zero the seed
of the pseudo-random number generator used by the scikit-learn evaluation
algorithms. The PC where all the experiments have been performed is an
Intel i7-3770S, octa-core (3.10 GHz × 8) with a Linux 64-bit Operating
System (Debian Stretch) with 8 GBytes of RAM.

As for the benchmarks, we firstly considered the common Buy and Hold
benchmark strategy. It represents a passive investment strategy in which
the investors buy futures and hold them for a long period, regardless of the
market’s fluctuation. Such a strategy is largely used in literature as a bench-
mark to evaluate the profitability of an investment strategy. In addition, we
performed the future market predictions by using single predictors (i.e., GB,
SVM, and RF), configuring their default hyper-parameters according to some
common values in the literature: 40% of the IS dataset as walk size, of which
75% is used as training set and the remaining 25% as validation set with 5
day-lags [34, 126, 35, 127, 128]. Finally, we also used a recent approach to
perform trading [81], which we call TSVR in the remaining of this paper. For
this approach, we used both the linear and nonlinear kernel. As described in
in [81], we have used 10-fold cross validation in the training data to find the
kernel parameters that yielded the best mean squared error in all markets.
As this approach is proposing to predict the closing price (regression prob-
lem), we mapped the problem consistently with ours and changed the output
so that for each day we have either a long or short operation. As with our
approach, final results are reported in terms of classification performance in
the testing part of the OOS dataset.

Regarding time consumption related to our approach, we can observe
from the pipeline showed in Fig. 4.1 that it is strictly related to the canonical
time spent by each algorithm that composes the ensemble, multiplied by the
intrinsic-parameters involved in the auto-tuning process plus the time spent
by other processes (i.e., walk-forward and ICA Feature Selection), since the
detection process of the optimal hyper-parameters has been previously (one
time) performed in the in-sample part of the datasets, therefore it does not
need to be repeated at each prediction.

More formally, assuming t being the execution time of each ensemble
algorithm, na the number of algorithms in the ensemble, np the number
of parameters involved in the auto-tuning process and ∆ the execution time
related to the other processes, the total time consumption τ can be formalized
as shown in Equation 4.5.

4http://scikit-learn.org

http://scikit-learn.org

50CHAPTER 4. A HOLISTIC AUTO-CONFIGURABLE ENSEMBLE ML STRATEGY

τ = (t · na · np) + ∆ (4.5)

For example, with a previous information that the proposed approach
involves 3 algorithms (i.e., Gradient Boosting, Support Vector Machine, and
Random Forests) with, respectively, 3, 4, and 3 intrinsic-parameters, and
by using a machine with the software and hardware characteristics reported
in Section 4.2.3, the average time consumption for each prediction on the
markets taken into account is reported in Table 4.5.

Table 4.5: Time Consumption

Futures Average prediction
market time in seconds
SP500 5.36
DAX 1.69
FIB 5.40
CL 13.57
Mean time 6.50

It should be observed that such a running time can be effectively reduced
by parallelism of the process over several machines, both along algorithms
and markets, by exploiting large scale distributed computing models such as
MapReduce [129, 130]. This improves the approach scalability in the context
of applications that deal with frequency trading.

4.3 Experiments

In this section, we discuss the experimental results of applying our approach
in four different markets, comparing it with common benchmarks and state-
of-the-art approaches. We divide this section into two subsections: firstly,
we start in Section 4.3.1 the discussion of results in a natural trading setup.
Then, we perform in Section 4.3.2 a study of the impact of different perfor-
mance metrics in the proposed trading system.

4.3.1 Trading Results

We firstly start showing trading results of the non-optimized individual clas-
sifiers and other benchmark approaches considered in the experiments in Ta-
ble 4.6, where BH stands for Buy and Hold, GB stands for Gradient Boost-
ing, SVM stands for Support Vector Machines, and RF stands for Random
Forests. All the values are expressed in futures market points, with the excep-
tion of those expressed as a percentage. It should be noted that all the exper-
iments have been performed by taking into account the same out-of-sample

4.3. EXPERIMENTS 51

time period used for the performance evaluation of our approach (i.e., years
from 2016 to 2018).

It can be seen from Table 4.6 that the Buy and Hold strategy performed
well in two (SP500 and DAX) out of four markets in terms of return if com-
pared to benchmark approaches. Regarding the individual classifiers, the best
mean accuracy of 53.75% was achieved by the SVM classifier. Such a high
mean accuracy makes this classifier achieving the highest return in FIB mar-
ket. According to MDD, it is less risky (lowest MDD) for FIB and SP500
markets. The GB classifier got the second place with 50.50% mean accuracy.
However, it is not the best trading strategy in terms of return and risk in any
of the markets considered, which allows us to reach an interesting conclusion
that higher accuracies do not necessary imply better trading strategies. RF
classifier achieved a 50% mean accuracy. In terms of risk, it outperforms
others in DAX market. Finally, TSVR showed a very poor algorithm perfor-
mance. There are two possible explanations for its poor behavior in all these
markets in general: (i) TSVR is trained to perform regression instead of clas-
sification (we use the sign of predictor to do a decision); and (ii) we consider
the standard parameters of such a technique. With such findings, we enforce
the necessity of using optimized parameters and ensembles of classifiers with
diverse behaviors.

Table 4.6: Buy and Hold and Single Predictors Performance with
Default Configurations

Strategy Market Accuracy MDD MDD% Return Return% Romad
BH SP500 – 601.75 29.53 473 23.21 0.79
BH DAX – 3102.5 29.49 51.5 0.49 0.02
BH CL – 34.29 65.71 -5.92 -11.35 -0.17
BH FIB – 6175 29.25 -3135 -14.85 -0.51
GB SP500 0.51 465.75 22.86 136.5 6.7 0.29
GB DAX 0.49 4970.5 47.25 -3878 -36.86 -0.78
GB CL 0.52 27.55 52.8 16.39 31.41 0.59
GB FIB 0.5 7060 33.44 -2843 -13.47 -0.4

SVM SP500 0.55 401.25 19.69 359 17.62 0.89
SVM DAX 0.52 2901 27.58 -1040 -9.89 -0.36
SVM CL 0.54 26.47 50.73 18.83 36.09 0.71
SVM FIB 0.54 4640 21.98 11483 54.4 2.47
RF SP500 0.47 587.75 28.84 -317.5 -15.58 -0.54
RF DAX 0.5 2516 23.92 -1329 -12.63 -0.53
RF CL 0.52 20.79 39.84 34.17 65.48 1.64
RF FIB 0.51 9133 43.26 2237 10.6 0.24

TSVR LIN SP500 0.21 4807.75 235.93 -2929 -143.74 -0.61
TSVR LIN DAX 0.4 18386.5 174.78 -3456 -32.85 -0.19
TSVR LIN CL 0.37 201.53 386.22 -111.25 -213.2 -0.55
TSVR LIN FIB 0.48 41280 195.55 8503 40.28 0.21

TSVR NONLIN SP500 0.22 4445.25 218.15 -2566.5 -125.95 -0.58
TSVR NONLIN DAX 0.4 17421.5 165.61 -2734 -25.99 -0.16
TSVR NONLIN CL 0.39 180.86 346.61 -91.49 -175.34 -0.51
TSVR NONLIN FIB 0.47 41660 197.35 7483 35.45 0.18

As next step, we evaluated the performance of the ensembles of each

52CHAPTER 4. A HOLISTIC AUTO-CONFIGURABLE ENSEMBLE ML STRATEGY

benchmark predictor after we performed the self-configuration step, setting
as optimization metric the Accuracy as set up in Algorithms 1 and 2. The
results related to this experiment are shown in Table 4.7 and consider the op-
timized individual classifiers versus the benchmarks again. This table shows
the benefits of the proposed adjustable parameters optimization approach
(intrinsic-parameters and hyper-parameters), where, for example, for the GB
classifier, accuracy increased in classifying three markets, keeping the same
accuracy for the other market. It can also be seen that the MDD decreased
for some markets.

Finally, the performances of our ensemble approach are reported in Ta-
ble 4.8. Considering that our ensemble makes its prediction only when all
the predictors agree (complete agreement strategy), the Coverage value indi-
cates the percentage of days when we operated in the futures market (i.e., by
placing Short or Long operations). This means that in the remaining days
we do not perform any Long or Short operations (i.e., we performed Flat
operations only). The reader may observe that the results obtained by our
ensemble approach are more robust with respect to those of single predictors
in most of the markets, specially because it is the only technique that yields
positive returns for all the markets. Moreover, it can be seen in Table 4.8 an
improvement of the proposed approach regarding the benchmarks and opti-
mized classifiers, specially in terms of risk-base metrics (MDD and Romad).
This highlights the benefits of the proposed approach, which differs from the
ones of the literature by its total data-driven nature, where a bunch of pro-
cedures as features selection, parameters tuning and time series adjustments
are automatically chosen based on data performance, maximizing ensembles
to do conservative investments with minimum losses. This means that the
proposed approach can be regarded as a trading strategy useful for novice
traders, who are initially careful about their investments.

On the basis of the aforementioned considerations, Fig. 4.3 shows the
equity curves for the considered markets. As far as our ensemble approach
is concerned, results and discussions are consistent with those in Table 4.8,
whereas Buy and Hold results and discussions are consistent with Tables 4.6
or 4.7. The difference is that the equity curve indicates the cumulative return
of the underlying market within the considered OOS test data, whereas the
results of the tables indicate the final value over the entire period. As far
as the DAX market is concerned, the reader may notice that, although our
proposed ensemble is slightly worse than the results of the BH approach, it
shows positive return. The worse performance of our approach relies on the
fact that we are maintaining the same classifiers in the ensemble, no matter
the market. We envision that a further step of the proposed approach in the
future is also performing a data-driven selection of classifiers in the ensemble
according to the market behavior.

4.3. EXPERIMENTS 53

Table 4.7: Single Predictors Performance After a Tuning Process
Optimized by Accuracy

Strategy Market Accuracy MDD MDD% Return Return% Romad
BH SP500 – 601.75 29.53 473 23.21 0.79
BH DAX – 3102.5 29.49 51.5 0.49 0.02
BH CL – 34.29 65.71 -5.92 -11.35 -0.17
BH FIB – 6175 29.25 -3135 -14.85 -0.51
GB SP500 0.52 704.75 34.58 -309.5 -15.19 -0.44
GB DAX 0.51 4890.5 46.49 -2587 -24.59 -0.53
GB CL 0.54 24.13 46.24 9.81 18.8 0.41
GB FIB 0.5 12553 59.46 -2733 -12.95 -0.22

SVM SP500 0.55 544.25 26.71 155 7.61 0.28
SVM DAX 0.51 4033 38.34 -2546 -24.2 -0.63
SVM CL 0.54 31.84 61.02 -4.97 -9.52 -0.16
SVM FIB 0.51 7245 34.32 3357 15.9 0.46
RF SP500 0.51 624.5 30.65 -500 -24.54 -0.8
RF DAX 0.51 4645.5 44.16 -3720 -35.36 -0.8
RF CL 0.5 23.82 45.65 11.39 21.83 0.48
RF FIB 0.5 7358 34.86 -553 -2.62 -0.08

TSVR LIN SP500 0.21 4807.75 235.93 -2929 -143.74 -0.61
TSVR LIN DAX 0.4 18386.5 174.78 -3456 -32.85 -0.19
TSVR LIN CL 0.37 201.53 386.22 -111.25 -213.2 -0.55
TSVR LIN FIB 0.48 41280 195.55 8503 40.28 0.21

TSVR NONLIN SP500 0.22 4445.25 218.15 -2566.5 -125.95 -0.58
TSVR NONLIN DAX 0.4 17421.5 165.61 -2734 -25.99 -0.16
TSVR NONLIN CL 0.39 180.86 346.61 -91.49 -175.34 -0.51
TSVR NONLIN FIB 0.47 41660 197.35 7483 35.45 0.18

Table 4.8: Ensemble Predictors Performance After a Tuning Pro-
cess Optimized by Accuracy

Strategy Market Coverage Accuracy MDD MDD% Return Return% Romad
ENS SP500 0.63 0.57 406.5 19.95 485.75 23.84 1.19
ENS DAX 0.55 0.52 2184.5 20.77 9.5 0.09 0
ENS CL 0.57 0.55 17.56 33.65 13.19 25.28 0.75
ENS FIB 0.42 0.52 1655 7.84 2760 13.07 1.67

4.3.2 Performance Metrics Trade Impact

In this part of the experiments, we report the trading results of our approach
against the Buy and Hold benchmark when considering different performance
metrics in Algorithms 1 and 2. Table 4.9 shows the results, where we indicate,
for each market, the best hyperparameters found for the ensemble (in blue),
classification metrics (in white) and risk and financial metrics (in green), to-
gether with BH metrics for the same markets (in gray). With such a study, we
investigate what is the best metric to consider when optimizing the intrinsic-
parameters and hyper-parameters of the proposed approach.

It can be seen from Table 4.9 that for Accuracy and Return performance
metrics, the risk is decreased (better MDD) no matter the market used. How-

54CHAPTER 4. A HOLISTIC AUTO-CONFIGURABLE ENSEMBLE ML STRATEGY

Figure 4.2: Equity CurvesforSP500&DAX

ever, the Accuracy showed to be the best metric as we have four better MDD
metrics, three better returns and three better Romads, totalling ten wins
against two losses from BH. All the other metrics do not beat the BH more

4.3. EXPERIMENTS 55

Figure 4.3: Equity CurvesforFIB&CL

than the accuracy, but the results in this table shows that there is a corre-
lation between high accuracy in the training of the ensemble and a low risk
in the trading real-world environment. This can be particularly noted from

56CHAPTER 4. A HOLISTIC AUTO-CONFIGURABLE ENSEMBLE ML STRATEGY

the results in Table 4.8, where our proposed approach showed to be the only
one who got positive returns in all the markets. A solution like the proposed
ensemble can be a good solution for initial investors who want a trade-off
between low risk and non negative returns. This is explained because an
ensemble does not trade all the time (low coverage), so a better accuracy in
these less frequent trading times makes a more efficient and less risky trading
system. These results are therefore a further evidence of the goodness and
robustness of the proposed approach, specially in the presence of atypical and
unpredictable markets.

4.3. EXPERIMENTS 57

Table 4.9: Comparison of the proposed approach against the Buy
and Hold benchmark by considering different performance metrics
in building the proposed self-configurable ensemble.

A
cc

u
ra

cy
B

u
y

an
d

 H
o

ld
O

u
r

P
er

fo
rm

an
ce

m
ar

ke
t

ye
ar

w
al

k_
si

ze
tr
ai

n(
%

)
la

gs
ic

ac
om

p
pr

ea
cc

ac
cu

ra
cy

co
ve

ra
ge

m
dd

m
dd

(%
)

re
tu

rn
re

tu
rn

(%
)

ro
m

ad
m

dd
m

dd
(%

)
re

tu
rn

re
tu

rn
(%

)
ro

m
ad

m
dd

(%
)

re
tu

rn
(%

)
ro

m
ad

S
P

50
0

20
16

-2
01

7-
20

18
10

0
65

9
5

0.
54

0.
57

0.
63

40
6.

5
19

.9
5

48
5.

75
23

.8
4

1.
19

60
1.

75
29

.5
3

47
3

23
.2

1
0.

79
+

+
+

D
A

X
20

16
-2

01
7-

20
18

30
0

65
7

0
0.

53
0.

52
0.

55
21

84
.5

20
.7

7
9.

5
0.

09
0

31
02

.5
29

.4
9

51
.5

0.
49

0.
02

+
C

L
20

16
-2

01
7-

20
18

20
0

80
7

5
0.

5
0.

55
0.

57
17

.5
6

33
.6

5
13

.1
9

25
.2

8
0.

75
34

.2
9

65
.7

1
-5

.9
2

-1
1.

35
-0

.1
7

+
+

+
F
IB

20
16

-2
01

7-
20

18
25

0
65

1
5

0.
5

0.
52

0.
42

16
55

7.
84

27
60

13
.0

7
1.

67
61

75
29

.2
5

-3
13

5
-1

4.
85

-0
.5

1
+

+
+

R
et

u
rn

B
u

y
an

d
 H

o
ld

O
u

r
P

er
fo

rm
an

ce
m

ar
ke

t
ye

ar
w

al
k_

si
ze

tr
ai

n(
%

)
la

gs
ic

ac
om

p
pr

ea
cc

ac
cu

ra
cy

co
ve

ra
ge

m
dd

m
dd

(%
)

re
tu

rn
re

tu
rn

(%
)

ro
m

ad
m

dd
m

dd
(%

)
re

tu
rn

re
tu

rn
(%

)
ro

m
ad

m
dd

(%
)

re
tu

rn
(%

)
ro

m
ad

S
P

50
0

20
16

-2
01

7-
20

18
30

0
80

1
3

0.
57

0.
55

0.
54

45
2.

25
22

.1
9

22
0.

5
10

.8
2

0.
49

60
1.

75
29

.5
3

47
3

23
.2

1
0.

79
+

D
A

X
20

16
-2

01
7-

20
18

30
0

70
3

5
0.

55
0.

52
0.

6
27

32
25

.9
7

10
6

1.
01

0.
04

31
02

.5
29

.4
9

51
.5

0.
49

0.
02

+
+

+
C

L
20

16
-2

01
7-

20
18

25
0

80
3

5
0.

51
0.

54
0.

55
29

.8
7

57
.2

4
-1

0.
09

-1
9.

34
-0

.3
4

34
.2

9
65

.7
1

-5
.9

2
-1

1.
35

-0
.1

7
+

F
IB

20
16

-2
01

7-
20

18
10

0
80

7
2

0.
51

0.
52

0.
47

24
95

11
.8

2
44

85
21

.2
5

1.
8

61
75

29
.2

5
-3

13
5

-1
4.

85
-0

.5
1

+
+

+

R
o

M
aD

B
u

y
an

d
 H

o
ld

O
u

r
P

er
fo

rm
an

ce
m

ar
ke

t
ye

ar
w

al
k_

si
ze

tr
ai

n(
%

)
la

gs
ic

ac
om

p
pr

ea
cc

ac
cu

ra
cy

co
ve

ra
ge

m
dd

m
dd

(%
)

re
tu

rn
re

tu
rn

(%
)

ro
m

ad
m

dd
m

dd
(%

)
re

tu
rn

re
tu

rn
(%

)
ro

m
ad

m
dd

(%
)

re
tu

rn
(%

)
ro

m
ad

S
P

50
0

20
16

-2
01

7-
20

18
20

0
80

5
5

0.
53

0.
57

0.
68

36
5.

25
17

.9
2

32
0.

5
15

.7
3

0.
88

60
1.

75
29

.5
3

47
3

23
.2

1
0.

79
+

+
D

A
X

20
16

-2
01

7-
20

18
20

0
60

9
5

0.
52

0.
56

0.
42

97
2

9.
24

24
00

22
.8

1
2.

47
31

02
.5

29
.4

9
51

.5
0.

49
0.

02
+

+
+

C
L

20
16

-2
01

7-
20

18
25

0
80

3
5

0.
51

0.
54

0.
55

29
.8

7
57

.2
4

-1
0.

09
-1

9.
34

-0
.3

4
34

.2
9

65
.7

1
-5

.9
2

-1
1.

35
-0

.1
7

+
F
IB

20
16

-2
01

7-
20

18
15

0
70

3
5

0.
49

0.
49

0.
48

69
75

33
.0

4
-5

93
0

-2
8.

09
-0

.8
5

61
75

29
.2

5
-3

13
5

-1
4.

85
-0

.5
1

R
et

u
rn

 (
%

)
B

u
y

an
d

 H
o

ld
O

u
r

P
er

fo
rm

an
ce

m
ar

ke
t

ye
ar

w
al

k_
si

ze
tr
ai

n(
%

)
la

gs
ic

ac
om

p
pr

ea
cc

ac
cu

ra
cy

co
ve

ra
ge

m
dd

m
dd

(%
)

re
tu

rn
re

tu
rn

(%
)

ro
m

ad
m

dd
m

dd
(%

)
re

tu
rn

re
tu

rn
(%

)
ro

m
ad

m
dd

(%
)

re
tu

rn
(%

)
ro

m
ad

S
P

50
0

20
16

-2
01

7-
20

18
30

0
80

1
3

0.
57

0.
55

0.
54

45
2.

25
22

.1
9

22
0.

5
10

.8
2

0.
49

60
1.

75
29

.5
3

47
3

23
.2

1
0.

79
+

D
A

X
20

16
-2

01
7-

20
18

30
0

70
3

5
0.

55
0.

52
0.

6
27

32
25

.9
7

10
6

1.
01

0.
04

31
02

.5
29

.4
9

51
.5

0.
49

0.
02

+
+

+
C

L
20

16
-2

01
7-

20
18

25
0

80
3

5
0.

51
0.

54
0.

55
29

.8
7

57
.2

4
-1

0.
09

-1
9.

34
-0

.3
4

34
.2

9
65

.7
1

-5
.9

2
-1

1.
35

-0
.1

7
+

F
IB

20
16

-2
01

7-
20

18
10

0
80

7
2

0.
51

0.
52

0.
47

24
95

11
.8

2
44

85
21

.2
5

1.
8

61
75

29
.2

5
-3

13
5

-1
4.

85
-0

.5
1

+
+

+

M
D

D
 (

%
)

B
u

y
an

d
 H

o
ld

O
u

r
P

er
fo

rm
an

ce
m

ar
ke

t
ye

ar
w

al
k_

si
ze

tr
ai

n(
%

)
la

gs
ic

ac
om

p
pr

ea
cc

ac
cu

ra
cy

co
ve

ra
ge

m
dd

m
dd

(%
)

re
tu

rn
re

tu
rn

(%
)

ro
m

ad
m

dd
m

dd
(%

)
re

tu
rn

re
tu

rn
(%

)
ro

m
ad

m
dd

(%
)

re
tu

rn
(%

)
ro

m
ad

S
P

50
0

20
16

-2
01

7-
20

18
25

0
65

9
2

0.
54

0.
56

0.
56

31
5.

25
15

.4
7

15
6.

5
7.

68
0.

5
60

1.
75

29
.5

3
47

3
23

.2
1

0.
79

+
D

A
X

20
16

-2
01

7-
20

18
15

0
65

1
4

0.
5

0.
53

0.
5

32
02

30
.4

4
-2

36
8.

5
-2

2.
52

-0
.7

4
31

02
.5

29
.4

9
51

.5
0.

49
0.

02
C

L
20

16
-2

01
7-

20
18

25
0

65
5

2
0.

49
0.

51
0.

53
24

.1
1

46
.2

1
-5

.4
7

-1
0.

48
-0

.2
3

34
.2

9
65

.7
1

-5
.9

2
-1

1.
35

-0
.1

7
+

+
F
IB

20
16

-2
01

7-
20

18
20

0
80

3
0

0.
49

0.
47

0.
41

56
53

26
.7

8
-3

75
3

-1
7.

78
-0

.6
6

61
75

29
.2

5
-3

13
5

-1
4.

85
-0

.5
1

+

58CHAPTER 4. A HOLISTIC AUTO-CONFIGURABLE ENSEMBLE ML STRATEGY

Chapter 5

Deep Learning and Time
Series-to-Image Encoding

5.1 The proposed approach

As pointed in Chapter 1, most of the research in market prediction and Finan-
cial Forecasting is based on Artificial Neural Networks or Machine Learning
approaches. These models are commonly trained on time series data describ-
ing a market index in the past, with the goal of predicting its future trend.
The aim of this work is to achieve market prediction over the S&P500 index,
by using an ensemble of CNNs, with the training phase executed over GAF
images (particularly, the GADF). This particular kind of imaging technique
is detailed in section 5.1.2. The rightmost part of Figure 5.3 shows how the
proposed trading system works; firstly, the data of the original time series are
aggregated according to 4 intervals of time; then, consecutive time frames of
20 observations are extracted from each time series, in order to generate the
related set of GADF images. Twenty similar CNNs (whose architecture is
shown in the leftmost part of Figure 5.3) are trained over these images, and
the threshold-driven ensemble approach takes place for deciding which action
to perform the day after the observations, as described in what follows. As
mentioned before, this work as been published in [131]

5.1.1 Trading strategy

We design our system to simulate a classic intraday trading strategy. This
strategy generally consists of buying or selling a specific financial instrument
(in our case, the S&P500 index future), by making sure that any open position
is closed before the market closes in the same trading day. Specifically, we
model our strategy such that, for each single trading day, the final output of
our system is one of the following actions:

60 CHAPTER 5. DL AND TIME SERIES-TO-IMG ENCODING

• a long action, which consists of buying the stock, and then selling it
before the market closes;

• a short action, which consists of selling the stock (using the mechanism
of the uncovered sale), and then buying it before the market closes;

• a flat action, which consists of deciding not to invest in that day.

The ideal target of this strategy requires the system to choose the action
that maximizes the economic return (i.e., the profit) of the day, given a
prediction about the stock price trend in that day (i.e., whether the price
will rise or fall). Thus, a long action is performed whenever our system
predicts that the price will rise in that day; conversely, a short action is
chosen whenever our system predicts that the price will fall in that day; last
case, a flat action is performed whenever the system is not enough confident
about the market behaviour.

5.1.2 Gramian Angular Fields imaging

The Gramian Angular Field (GAF) imaging is an elegant way to encode
time series as images. This has been proposed by Wang et Oates in [132].
The main reasons which led to the definition of this approach regards the
possibility to use existing pre-trained models, rather than training Recurrent
Neural Networks from scratch or using 1D-CNN models. The last two models
may result inconvenient.

In order to build the GAF images, first a rescaling of the real observa-
tions of the time series is needed; therefore, let X = {x1, x2, . . . , xn} be the
considered time series with n components, the rescaling to the interval [-1, 1]
is achieved by applying the mean normalisation:

x̃i =
(xi −max(X)) + (xi −min(X))

max(X)−min(X)
(5.1)

Hence, the scaled series is represented by X̃ = {x̃1, x̃2, . . . , x̃n}. This is
transformed to a polar coordinates system by computing the angular cosine
of the single components of the scaled time series:[

θi = arccos(x̃i), x̃i ∈ X̃
ri = i

N
, with ti ≤ N

]
(5.2)

Finally, Gramian Summation Angular Field (GASF) and Gramian Differ-
ence Angular Field can be easily obtained by computing the sum/difference
between the points of the time series:

GASF = [cos(θi + θj)] = X̃
′ · X̃ −

√
I − X̃2

′
·
√
I − X̃2

GADF = [sin(θi + θj)] =
√
I − X̃2

′
· X̃ − X̃ ′ ·

√
I − X̃2

(5.3)

5.1. THE PROPOSED APPROACH 61

Figure 5.1 shows the process for transforming a time series to the GADF
and GASF images. It is worth to notice that the equations in (6.3) produce
a 1D matrix as an output of the encoding process. This matrix actually
represents a heatmap, whose values range from 0 (blue) to 1 (red). In a
successive step, we applied the RGB color map to the image, thus resulting
in a three channel matrix (further details on this process can be found in [132]
and [133]). Note that the application of the color map is not strictly required
by our approach; however, preliminary experiments showed us that applying
the color map to the images led us to obtain better results and, additionally,
to achieve a faster network convergence and stability.

Figure 5.1: The figure shows the process leading to the generation
of the Gramian Angular Fields images: from left to right, the data
are first plotted and then the coordinate system is transformed to
a polar plane; finally, the GADF and GASF images are generated
according to the function defined in Equation 6.3.

5.1.3 Multi-Resolution Time Series Imaging

The time-series data show a quite important factor, that is the variation of a
feature across the time and, therefore, how quickly data change. The speed
which regulates the change of the features provides many insights about the
evolution of the event: unfortunately, this peculiarity is hidden or even im-
possible to identify when data granularity is too coarse. As a trivial example,
let us think to how important is the granularity of information in weather
forecasting: an actual changing from sunny to rainy which occurs in few min-
utes gives different information with respect to the same change in 24 hours
period. Moreover, often the observations contained in a time series are not
done at the same interval of time, i.e. the distance between two consecutive
observations is not always the same, thus forcing the researcher to aggregate

62 CHAPTER 5. DL AND TIME SERIES-TO-IMG ENCODING

the data for uniforming this distance through the entire time series. Given
the two factors described above, our approach proposes a multi-resolution
imaging, which aggregates the data under K different intervals of time, thus
creating K different, but analogous, time series. Let D = {T, F1, F2, . . . , FN}
be the original time series in which T defines the moment in which the obser-
vations of a given event are done, and Fi with i = 1, 2, . . . , N are the features
describing the event. Given two consecutive observations in D, let us say Dj

and Dj+1, let ID be the distance between them in terms of time. The new
K aggregated time series are D1, D2, . . . , DK , and the interval between two
consecutive observations is IDk

> ID for each k = 1, . . . , K.
Figure 5.2 shows the composition approach in which (a), (b) (c) and (d)

are four GADF images built from four time-series which differ for their ag-
gregation intervals. The composition aims at building a unique image, which
considers the evolution of the time series in a fixed period of time.

Figure 5.2: The policy of composition of the multi-resolution
GADF images is shown above; in particular, (a), (b), (c) and (d)
refer to the same label, but the observations considered in each
are aggregated in four different ways.

5.1.4 Ensemble of CNNs

Once the time series are converted to GADF images, the training phase can
take place. Figure 5.3 shows the architecture of the Convolutional Neural Net-
work involved (on the left). It consists of a simplified version of the VGG-16

5.1. THE PROPOSED APPROACH 63

network [134], composed by 5 convolutional layers and a fully-connected one.
Although our approach is independent of the network adopted, our choice
was motivated by the fact that very deep networks were not suitable for the
task, given the low number of samples at our disposal (SP500 only has a few
thousand of daily samples). Indeed, our early tests showed that the simpli-
fied VGG led us to significantly improve the results, learning stability and
execution times, both when compared to the standard VGG-16 and ResNet
[135] architectures.

Additionally, note that no padding is added, therefore the convolutional
layers produce an output of the same size of the input. The activation function
in each of them is a ReLU, while in the classification layer the softmax function
is used.

Figure 5.3: On the leftmost side of the figure the architecture of the
Convolutional Neural Network is shown. On the rightmost side,
the overall process of the proposed trading system is depicted.

The ensemble configuration involves the training of twenty Convolutional
Neural Networks, each with a different weight initialization method; the con-
figuration parameters for each network are detailed in Table 5.1. The choice
of defining each network with different weight initialization methods arises
from the need of excluding most of the randomness factors which can affect
the final prediction. This ensures that the answer of the ensemble originates
from a proper convergence of the weights, no matters how they are initialized.
Once the neural networks are trained, the test samples are given as input to
all the networks. The final decision of the ensemble is taken by applying a
majority voting based approach, which returns a specific output r ∈ {0, 1},
according to the percentage of networks which agree with the same classifi-

64 CHAPTER 5. DL AND TIME SERIES-TO-IMG ENCODING

cation. In the experimental results section, six different thresholds (related
to the agreement percentage of the networks) are tested, from 0.5 up to 1,
according to the percentage of networks which agree to the same classification.

Table 5.1: In the table, for each initialization method, the con-
figuration settings are reported. The ”seed” column indicates the
seed number applied for generating the random weights, accord-
ing to the used initialization function. The first 10 networks have
the ”seed” set to ”None”, meaning that randomised numbers dif-
fer in each execution. The other 10 networks have a fixed ”seed”
meaning that randomised numbers are generated ”seed”. For all
configurations, Adam has been used as an optimiser.

Init. method Configuration parameters seed
Orthogonal gain=1.0 -

lecun uniform - -
VarianceScaling scale=1, mode=’fan in’, distr.=’normal’ -
RandomNormal mean=0.0, stddev=0.05 -
RandomUniform minval=-0.05, maxval=0.05 -
TruncatedNormal mean=0.0, stddev=0.05 -

glorot normal - -
glorot uniform - -

he normal - -
he uniform - -
Orthogonal gain=1.0 42

lecun uniform - 42
VarianceScaling scale=1, mode=’fan in’, distr.=’normal’ 42
RandomNormal mean=0.0, stddev=0.05 42
RandomUniform minval=-0.05, maxval=0.05 42
TruncatedNormal mean=0.0, stddev=0.05 42

glorot normal - 42
glorot uniform - 42

he normal - 42
he uniform - 42

5.2 Experimental Settings

This section describes the settings of the experimental phase. In particular,
first, in Subsection 5.2.1 the dataset S&P500 is presented and described along
with the Buy-and-Hold investment strategy applied on it. This represents

5.2. EXPERIMENTAL SETTINGS 65

the benchmark comparison method for the majority of the trading systems.
Then, in Subsection 5.2.2, the validation approach is defined. Finally, in
Subsection 5.2.3 the ensemble policy is shown.

5.2.1 Evaluation and S&P500

The S&P500 (Standard & Poor’s 500) is maybe the most important U.S.
index. Born in 1789, at the beginning it only consisted of 90 titles. Since
1957, the year corresponding to when computers started to be actively applied
to the financial market, the number of quoted companies has grown up to 500.
It followed that S&P500 became one of the most influencing market in the
U.S., even overcoming the Dow-Jones index. For the trading operations the
S&P500 Futures have been used. They consist of futures contracts on a stock
or a financial index. These derivative securities are used by investors and
portfolio managers to hedge their equity positions against a loss in stocks; in
other words, S&P500 Index is used by those who want to hedge risk over a
certain period of time.

Currently, S&P500 index is one of the most widely traded index future
contracts in the United States and it is computed by multiplying the S&P500
value by 50 USD. As an example, if the S&P500 is at a level of 2,500, then
the market value of a future contract is 2,500 × 50 USD or 125,000 USD.

The S&P500 data are publicly available on many platforms over Internet;
also, these can be downloaded at different levels of granularity, according to
the scope of the research that is being carried out. The S&P500 dataset
downloaded from Trading View Software has been used for the experiments.
Historically the data are tracked and gathered once every fifteen seconds, but
some of the platforms only provide data daily. More in detail, for each of the
acquired records, the following data are available:

• Date of the observation: mm/dd/yyyy ;

• Interval of the observation: hh:mm:ss ;

• Open: the value the index has opened in the specified date;

• Close: the value the index has closed in the specified date;

• High: the highest value reached by the index in the specified date;

• Low: the lowest value reached by the index in the specified date.

We decided to use S&P500 as a benchmark for several reasons. First of
all, because it is one of the most relevant stock markets in the world. The
second reason is that it is extremely challenging to forecast its behaviour.
Indeed, it shows a high level of volatility, where this measure indicates the

66 CHAPTER 5. DL AND TIME SERIES-TO-IMG ENCODING

mean fluctuation of the market over a certain time interval. The practical
importance of this factor relies in the assumption that there is a tight correla-
tion between the mean fluctuation and the quantification of the risks related
to the asset [136]. In the recent years, many studies have been conducted in
this area to the point that a specific branch of the market-related research
focuses on the prediction of this fluctuation [137]. On top of this, we can use
the performances of the Buy-and-Hold strategy (hereafter shortened as B&H)
applied on S&P500 as a direct benchmark. B&H is both a strategy easy to
replicate, and also an extremely significant competitor when considering a
time frame where the market performs a large and quite constant growth.
Indeed, B&H is a passive investment strategy where an investor buys stocks
and holds them for a long time, with the hope that stocks will gradually
increase in value over a long period of time. This strategy works as follows:
given an investment period, B&H ”buys” a stock at the beginning, ”holds” it
for the entire investment period, and sells it at the end. The net profit is the
difference between the price at the end period and the price at the beginning.
In Figure 5.4, the selected time frame for comparing our approach against the
B&H strategy is shown (from 2009-02-01 to 2014-07-31); it is easy to notice
that this investment period is extremely favourable for B&H and extremely
challenging for our approach.

5.2.2 Walks’ Definition

With respect to the common cross-validation approaches, which are typically
applied when dealing with image classification, like the Leave-One-Out cross
validation (LOOCV) or the k-fold cross validation, time series data need
a more specific purpose approach, since they need to consider the semantic
linking between the observation at time t and the one at time t+1. The walk-
forward validation strategy properly fits in this scenario since the folds which
are considered for the validation are temporally split, and internally processed
as one sample. As a consequence, the use of GADF helps maintaining the
correlation between two consecutive observations, thus keeping unaltered the
semantic of the succession.

For our own research we considered an investment period which goes from
February 1st 2000 to January 30th 2015, for a total of 16 years and 4569 obser-
vations which are related to the actual days in which the financial market has
been opened. Each observation has been labelled according to the difference
Close−Open of the day after which is: F

• 1, if the close-open value of the day after is positive;

• 0, otherwise

The data are divided in training, validation and testing sets; in Table 5.2, the
walks are shown: in particular, each model has been trained over a period of

5.2. EXPERIMENTAL SETTINGS 67

Figure 5.4: The net profit obtained by the application
of the Buy-and-Hold strategy is shown over the period
which has been taken into account for the experiments (
https://www.investing.com/indices/us-spx-500-futures).

ten years, validated over the following six months and finally tested over the
last six months.

Table 5.2: The eleven walks used for training, validation and test-
ing the models and how they are composed.

training validation test
since → to since → to since → to
1 2000-02-01 → 2009-01-30 2009-02-01 → 2009-07-31 2009-08-02 → 2010-01-31
2 2000-08-01 → 2009-07-31 2009-08-02 → 2010-01-31 2010-02-01 → 2010-07-30
3 2001-02-01 → 2010-01-31 2010-02-01 → 2010-07-30 2010-08-01 → 2011-01-31
4 2001-08-01 → 2010-07-30 2010-08-01 → 2011-01-31 2011-02-01 → 2011-07-31
5 2002-02-01 → 2011-01-31 2011-02-01 → 2011-07-31 2011-08-01 → 2012-01-31
6 2002-08-01 → 2011-07-31 2011-08-01 → 2012-01-31 2012-02-01 → 2012-07-31
7 2003-02-02 → 2012-01-31 2012-02-01 → 2012-07-31 2012-08-01 → 2013-01-31
8 2003-08-01 → 2012-07-31 2012-08-01 → 2013-01-31 2013-02-01 → 2013-07-31
9 2004-08-01 → 2013-07-31 2013-08-01 → 2014-01-31 2014-02-02 → 2014-07-31
10 2004-08-01 → 2013-07-31 2013-08-01 → 2014-01-31 2014-02-02 → 2014-07-31
11 2005-02-01 → 2014-01-31 2014-02-02 → 2014-07-31 2014-08-01 → 2015-01-30

68 CHAPTER 5. DL AND TIME SERIES-TO-IMG ENCODING

5.2.3 CNN training and Ensemble policy

According to the considerations exposed in Section 5.1.3, we used K = 4
for the evaluation of our approach. Starting from the original time series of
S&P500, in which the observations are sampled at intervals of 5 minutes, the
data have been aggregated according to f4 new intervals:

• 1 hour

• 4 hours

• 8 hours

• 1 day

This means that starting from the original time series, we aggregated the data
in four different ways and from each we selected 20 samples for predicting the
market-day after (20 1-hour blocks make one GADF for the first time series,
20 4-hours blocks make one more GADF image, etc).

The Close − Open value has been computed for each sample, and a
20X20X3 GADF image has been built and composed according to the pro-
cess shown in Figure 5.2. By following this procedure, the aggregated GADF
image will have dimension 40X40X3. For each of the walks defined in the
previous section, the ensemble of CNNs is executed over the test samples;
the majority voting approach works as follows: each of the CNN gives as
output a single-value which is 0 or 1 whether the CNN suggests to perform
a short or a long action, respectively. When working in ensemble, the final
prediction is taken according to the answer of all the CNNs, according to the
trading strategy defined in 5.1.1. Note that in cases where not all the CNNs
agree with the same result, a coverage-base approach is used: let N be the
number of networks involved in the ensemble, t ∈ [0.5, 1] be a threshold which
indicates the required percentage of agreement, and A be the most predicted
action (between long or short) by the nets for the considered day. Then, the
system performs A in that day if and only if at least n > tN networks have
voted A; conversely, if the agreement threshold is not reached, the system
does not perform any operation and just holds.

5.3 Results and Discussion

In this section, the quantitative and qualitative results are shown and dis-
cussed. The results of the proposed approach have been compared against
the following benchmarks:

• B&H Strategy: as explained in Section 5.2, this represents the bench-
mark comparison method for the majority of the trading system ap-
proaches;

5.3. RESULTS AND DISCUSSION 69

Figure 5.5: The figure shows the comparison among the tested ap-
proaches. In particular, the blue, orange and green lines represent,
respectively, the results obtained by applying our approach, a ran-
dom guessing approach and a 1D-CNN. The red line evidences the
results which are obtained by the Buy-and-Hold strategy. In each
plot, the x-axis indicates the ensemble threshold considered, while
in the y-axis it is shown the obtained Net Profit, the Romad value,
the Annualized Sharpe Ratio and the Sortino Ratio, respectively,
from the upper-leftmost image to the bottom-rightmost one.

70 CHAPTER 5. DL AND TIME SERIES-TO-IMG ENCODING

• Random Guessing: this easy technique exploits 10 random classifiers,
included in an ensemble that using a majority voting approach tries to
perform long or short operations. The comparison against this random
predictor serves as proof that our approach does not act randomly, that
the performed actions (longs or shorts) have a strong basis, and that
the criteria are correctly learnt from the past trend of the market;

• 1D-CNN: this approach does not apply the GADF transformation to
the time series; therefore, the time series are directly applied and pro-
cessed by 1-dimensional Convolutional Neural Network. This test aims
at showing the benefits of the GADF transformations in the proposed
approach.

Figure 5.5 shows the performances of the simple trading system based
on our forecasting approach (in blue) against those described before: the
B&H strategy (in red), the 1D-CNN (in green) and the Random Guessing (in
orange). The performances are computed over all the walks that have been
taken into account; on the x-axis of of each plot the considered threshold for
the ensemble is indicated. Overall, the thresholds from 0.5 to 0.7 let us obtain
the best achievements. As shown in the plot, the proposed approach is the
only one capable of sensitively overcome the benchmark performance of the
B&H. However, a peak in the performance is appreciable with the threshold
set to 0.6, in which the highest net profit is obtained. The quantitative
results are shown in Table 5.3 and further confirm the good qualitative scores.
Moreover, the table shows the big difference between the net profit obtained
by our approach and the B&H strategy. Using ensemble thresholds higher
than 0.7, the results tend to degrade, mainly due to the fact that it becomes
harder to obtain a total agreement among the nets in the ensemble. Anyway,
even with a threshold set to 1 (meaning that all the nets must agree to trigger
a long or short action), we managed to earn 1.375 dollars; thus, we still do
not lose money, even though the risk is quite high, as shown in the Sharpe
Ratio and Sortino Ratio plots. In general, the good performances for all
the threshold values are a clear indicator of the robustness of our proposed
approach.

In addition to comparing our results to the benchmark, we have also
considered the approach proposed by Calvi et al. [5], which consists of the
daily prediction of the S&P500 index, as in our case, but by using a Support
Tensor Machine (STM) as a predictor (defined as a tensor extension of the
better known Support Vector Machine). Figure 5.6 shows the gap between
the net profit given by our method, and those returned by the Buy&Hold
and the work in [5]. The comparison does not take into account the market
period related to the 2008’s Financial Crisis (whose effects impacted the years
between 2007 and early 2009), when it results unfair to overcome the B&H
strategy, due to the dramatic performances of the index in this period.

5.3. RESULTS AND DISCUSSION 71

Table 5.3: The table shows the quantitative results of the proposed
approach. For each metric, the best result is highlighted in bold.

Threshold Coverage (%) Accuracy (%) Net Profit (USD) Romad ASR Sortino Ratio

Proposed
Approach

0,5 95,433 52,638 66.625 8,289 1,196 0,452
0,6 72,423 54,810 82.312 11,95 1,808 0,828
0,7 47,716 56,564 62.600 8,517 1,518 1,009
0,8 22,950 56,632 46.212,5 9,105 1,596 1,504
0,9 7,494 53,125 17.487,5 3,97 0,452 0,370
1,0 1,990 55,882 1.375 0,365 -1,445 -0,524

1D-CNN

0,5 94,906 47,254 -69.525 -0,904 -0,936 -0,425
0,6 74,824 46,791 -52.250 -0,832 -0,921 -0,420
0,7 53,688 46,564 -40.725 -0,927 -1,172 -0,451
0,8 33,723 46,875 -13.287,5 -0,749 -0,743 -0,281
0,9 15,456 48,106 -6.650 -0,463 -0,836 -0,387
1,0 7,494 49,218 1.337,5 0,2 -0,582 -0,293

Random
Guessing

0,5 82,552 48,297 -41.912 -0,991 -0,930 -0,395
0,6 26,639 50,109 -9.575 -0,596 -0,661 -0,265
0,7 4,449 42,105 -5.775 -0,604 -1,665 -0,586
0,8 0,292 20,0 -1.275 -0,610 -4,067 -1,331
0,9 0 0 n.a. n.a. n.a n.a
1,0 0 0 n.a. n.a. n.a. n.a.

B&H - - - 56.600 3,847 0,258 0,394

Conversely, the considered period (from late 2009 until 2016) highlights a
strong increase of the S&P500 index, thus improving the Buy&Hold perfor-
mances. Nevertheless, our method is able to outperform such performances,
which is not the case of the approach in [5].

Finally, note that, in the Financial Forecasting domain, the prediction
accuracy is very close to 50%, mainly due to the high variability of the in-
dexes which complicates a lot the decision between long and short actions.
In this scenario, using a single CNN (both in terms of prediction and, where
appropriate, in terms of probability of the prediction) usually introduces a
major drawback: the initialization seed may significantly affect the final re-
sult. Moreover, focusing on improving the accuracy does not usually imply
the net profit to grow accordingly. It follows that, by slightly changing the
initialization, the same network could give worse results for the same period,
or in any case could behave too differently when tested on different markets.
This reveals the need of stabilising the results; the ensemble architecture, to-
gether with different weight initialisation policies, has shown to have a much
more robust behaviour, allowing us to obtain more stable results and thus
alleviate the randomness. As a result, according to the set thresholds, we
perform a long operation only when the ensemble suggests to buy when a
certain ensemble voting policy is satisfied; otherwise we perform a short op-
eration. The mitigation of the randomness yields two simple but significant
consequences:

• when we lose, we tend to lose very little;

• when we win, we tend to win considerably.

72 CHAPTER 5. DL AND TIME SERIES-TO-IMG ENCODING

Figure 5.6: The above plot shows the comparison, in terms of
cumulative profit, between the proposed approach (in blue) and
the approach in [5] (in black). Finally, in orange, we show the
Buy&Hold benchmark as a benchmark.

5.3. RESULTS AND DISCUSSION 73

This result is to be considered particularly significant, thanks to the capability
of our approach of beating the B&H strategy in the years in which the latter
performs well.

74 CHAPTER 5. DL AND TIME SERIES-TO-IMG ENCODING

Chapter 6

A Multi-Layer and
Multi-Ensemble Stock Trader
Using Deep Learning and Deep
Reinforcement Learning

6.1 Proposed Approach

As it can be noticed from the literature on RL research, there are a few
explorations on maximizing ensembling steps on the reward-based training
pipeline, with most of the works in this regard relying solely on one individual
agent that receives one or multiple sources of information as input, and the
output is done by one single agent that is trained on a customized number of
iterations.

In our work, we propose to do exactly the opposite by maximizing en-
sembling steps in a three layer stock trader. Our approach receives stacked
inputs from other classifiers and fuses its set of classifications through sev-
eral training iterations, integrating these steps on an RL trader agent. Our
three layer-stock trader, whose pipeline is better illustrated in Figure 6.1, is
composed of the following layers:

1. Layer #1: Stacking/pre-processing layer: this layer acts on stock
market data at different time resolutions, converting these time series
data to images and using intra-day trading signals generated by 1000
CNNs as meta-features to be used by the next layer.

2. Layer #2: Reinforcement Meta Learner: we consider a reward
based classifier to process the outputs from the previous layer, an en-
semble process that is usually called stacking [138]. The stacking is

76 CHAPTER 6. STOCK TRADER USING DRL

performed by a meta-learner, which is, in our case, based on Deep Dou-
ble Q-Learning [139].

3. Layer #3: Ensembling Layer: this layer fuses different signals of
different training iterations of the meta learner in order to get a final
decision.

Figure 6.1: The proposed three layered multi-ensemble approach.
The first layer stacks decisions from CNNs, which are then used
as observations (or states) in a reward-based meta-learner (second
layer) in different training iterations. Finally, a last layer fuses the
final decisions in a final trading signal.

We discuss the details of each layer in the next subsections.

6.1.1 Layer #1: Stacking trading signals with Convo-
lutional Neural Networks

Several approaches in the literature have used CNNs to perform stock trading
decision [140, 141, 142], treating the stock trading problem as a Computer

6.1. PROPOSED APPROACH 77

Vision application by using time-series representative images as input. Fol-
lowing this approach, CNNs can highlight in their deeper layers details of
these images that are difficult to find in their numerical format, helping in
performing accurate classification and, therefore, better trading.

In the first layer of our trading algorithm, we leverage the benefits of these
networks by generating a series of meta-features using hundreds of CNNs.
This approach, inspired by the work of Barra et al. [140], is based on three
steps: (i) time-series-to-image conversion; (ii) different CNNs processing; and
(iii) fusing of trading results.

For converting time series to images, the authors consider the Gramian
Angular Field (GAF) imaging inspired from Wang and Oates [108]. To build
such images, re-scaling of time-series are needed. Let X = {x1, x2, . . . , xn} be
a time series with n components, the following normalization, usually called
the min-max normalization [143] is done as follows:

x̃i =
(xi −max(X)) + (xi −min(X))

max(X)−min(X)
(6.1)

The scaled series, represented by X̃ = {x̃1, x̃2, . . . , x̃n} are then trans-
formed to polar coordinates system by the following equation:[

θi = arccos(x̃i), x̃i ∈ X̃
ri = i

N
, with ti ≤ N

]
(6.2)

Finally, Gramian Summation Angular Field (GSAF) and Gramian Differ-
ence Angular Field (GDAF) matrices can be easily obtained by computing
the sum/difference between the points of the time series:

GSAF (i, j) = [cos(θi + θj)] = X̃
′ · X̃ −

√
I − X̃2

′
·
√
I − X̃2

GDAF (i, j) = [sin(θi + θj)] =
√
I − X̃2

′
· X̃ − X̃ ′ ·

√
I − X̃2

(6.3)

The result of such transformations are 1-channel 2D matrices that repre-
sent a heatmap, whose values range from 0 (black) to 1 (red). In a second
step, a colormap is applied to the input matrix, resulting in a three channel
output matrix. In the work of Barra et al. [140], best results were reported
using GDAF.

Converting stock market time series to images in this approach has the
limitation of not generating too big images, making such inputs unfeasible to
Deep Convolutional Neural Networks. Time-series data show an important
feature that is the variation of data in the time. They way the data change
can, therefore, provide important interpretation about how an event evolves.
Thus, the authors propose to aggregate the data under K different intervals
of time, using these K time series as sub-regions of the final converted image.

78 CHAPTER 6. STOCK TRADER USING DRL

This image has a final resolution of 40 × 40 pixels, and is processed by an
ensemble of VGG-based CNNs, with the architecture better detailed in Figure
6.2. The final trading signal is the majority voting of the outputs.

Figure 6.2: The VGG-based CNN used to pre-process stock mar-
ket time series to image data.

Our extensions of the work in [140] are two-fold: (i) in [140], twenty dif-
ferent CNNs (each trained with a different weight initialization) are fused to
provide the final (daily) decisions. We noticed that the adoption of a naive
consensus mechanism to fuse these CNN outputs did not allow the approach
to be sufficiently robust in markets with different characteristics. Hence, in
this new work, we improved the method by exploiting Reinforcement Learn-
ing to find the optimal policy to fuse these CNN outputs, with the aim of
favouring the most reliable networks, and penalising the less precise ones; (ii)
to do so, we first extend the numbers of CNN used, by considering 10 best
training epochs over 100 CNNs, with different initialization parameters (not
previously used in [140]), to generate daily trading decisions. Then, these
1000 array of decisions are used, in a novel way, to generate meta-features to
be employed as inputs of several RL agents. Therefore, the 100 CNNs act as
a first layer (or feature generation/pre-processing) of our new approach, not
used to trade as the 20 CNNs from [140] are used for; and (iii), finally, we
train these RL agents (with different experience of the environment) based
on Neural Networks (Deep Q-Learning) with these features to automatically
find the possible best ensembling policies, to perform a majority voting over
these agents (as described in next Sections 6.1.2 and 6.1.3), in order to get
final decisions to be tested in real-world trading scenarios.

6.1.2 Layer #2: Reinforcement MetaLearner

Reinforcement Learning (RL) [144] is a self-taught learning process which
can be represented by a Markov Decision Process (MDP) [145]. An MDP is
a 4-tuple (S,A, Pa, Ra) where:

• S is a set of states;

• A is a set of actions (in the specific case of reinforcement learning this
is the set of actions that the agent is allowed to do, thus in our case
this set is finite);

6.1. PROPOSED APPROACH 79

• Pa(s, s
′) is the probability that an action a in state s will lead to the

state s′;

• Ra(s, s
′) is the immediate expected reward received in the transition

from a state s to a state s′ doing an action a.

The main goal of the Reinforcement Learning process is, therefore, to find
a policy π that returns the highest reward. To perform such a task, the agent
can try different policies in a training stage, but only one of those has the
highest reward possible, which is called the optimal policy. Several approaches
can be used to train RL agents, among them, a promising strategy is using
evolutionary algorithms [146].

When applied in Machine Learning problems, the following analogies are
usually made: (i) the state is a feature vector which represents the input of the
agent (e.g., in our case, a vector containing input data); (ii) the actions are
the outputs of the Machine Learning agent (e.g., the trading decision to do);
and (iii) the reward function is built at a training stage and returns higher
rewards to correct actions (e.g., the market profit generated by the local
trading decision). Thus, differently from supervised learning (when agents
learn from annotations) and unsupervised learning (where agent searches for
hidden structures in the data, to identify clusters), in Reinforcement Learning
the agent learns how to maximize a reward function in a given environment.

In our proposed Reinforcement Trading (RT), the trading signals vector
from the previous layer is described as {p1, ..., pn}, and the return at time t
is defined as rt = pt− pt−1. Trading decisions such as long, flat and short are
represented as At ∈ {1, 0,−1}. Therefore, in RT, the profit Rt is calculated
as [147]:

Rt = At−1rt − c|At − At−1| (6.4)

where c is the transaction cost paid to the brokerage company when two
consecutive decisions are done, or At 6= At−1.

Hence, the objective of RT is maximizing the reward over a period T , or

max
Θ

T∑
t=1

Rt|Θ, (6.5)

where Θ is the family of parameters of the model (agent). For example,
if the model is a Neural Network, then Θ = {w, b}, where w are the weights
and b are the biases that should be trained to maximize the objective.

In our approach, we use the benefits of Reinforcement Learning classifiers
to act in a stacking scenario. Here, the RL agent acts like a meta-learner,
using the outputs from previous layer as states. In its training, the agent
learns to maximize rewards, which is calculated as:

80 CHAPTER 6. STOCK TRADER USING DRL

Reward =

close− open if action is long
−(close− open) if action is short
0 if action is flat

(6.6)

where open and close are, respectively, the opening and closing prices of
the mar

Our meta-learner in the considered day earner is based on Double Q-
Learning (DQL) agents [148]. In such an algorithm for Deep Reinforcement
Learning (DRL), Deep Q Networks (DQN) are used in order to learn a reward-
inspired function called Q-function Q(x, a), which is disposed in a table. This
function is calculated as:

Q(x, a) = D(x, a) + γmax
a
Q(y, a), (6.7)

where x and y are a states, a is an action, D(x, a) is the reward from taking
action a and γ is the discount factor, which controls the contribution of
rewards in the future. Therefore, in Equation 6.7, the Q-value yielded from
being at state x and performing action a is the reward D(x, a) plus the highest
Q-value possible from the next state y also performing action a, discounted
by the discount factor.

The update rule for finding new Q-function approximations is based on
the following criterion:

Q(x, a)new = Q(x, a)old + α[(D(x, y, a) + γmax
b
Q(y, b)−Q(x, a)old)], (6.8)

where α is the learning rate, D(x, y, a) is the immediate reward from taking
action a and moving from state x to y and maxbQ(y, b) is the maximum
future reward considering all possible actions b in the new state y.

Such a parameterized table is learned through network weights in Deep Q-
Learning, found through backpropagation of errors in a training stage. DQN
loss functions are calculated as:

Loss = [Q(x, a,Θ)− (D(x, a) + γmax
a
Q(y, a,Θ′)]2 (6.9)

Therefore, the goal of the network is to find parameters Θ that minimize
Equation 6.9.

In a testing scenario, a DQN processes the input (state) and returns Q-
values for each action to take. Then, the action with the highest Q-value
will be chosen to be executed at that state. Therefore, for a state with n
dimensions and an action space of m possible actions, the Neural Network is
a function Rn → Rm.

Some important features of our considered DQL are the target networks
[148] and dueling networks [149]. The first one is used just to calculate the

6.1. PROPOSED APPROACH 81

target from Equation 6.10 below. It is a network similar to the main network,
and its weights w′ are initially the same as the weights w of the main network.
However, new weights are copied every t steps from the main network and
remain the same in the other steps. When using target networks, the weights
update of DQNs happens as it follows:

4w = α[(D(x, y, a) + γmax
a
Q(y, a, w))−Q(x, a, w)]5w Q(x, a, w), (6.10)

where4w is the change in weights to perform in the training stage, Q(x, a, w)
is the current predicted Q-value and 5wQ(x, a, w′) is the gradient of the cur-
rent predicted Q-value. The part of the equation D(x, y, a)+γmaxaQ(y, a, w)
−Q(x, a, w) is commonly known as Temporal Difference (TD) error. Finally,
the part D(x, y, a) + γmaxaQ(y, a, w) is also called target.

The use of target networks is justified since the same parameters (weights)
are used for estimating the target D(x, y, a) + γmaxaQ(y, a, w) and the pre-
dicted Q-value Q(x, a, w) in Equation 6.10. As a consequence, there is a
strong correlation between the target and the network weights w. This means
that, at each training step, both the predicted Q-values and the target change.
This causes an unstable training procedure, as the weights update goal will
be finding a predicted Q-value that gets close to an always moving target.
The use of a target network yields a better and fast training, and is composed
of two steps: (i) the main DQN network helps selecting the best action (the
one with the highest Q-value); and (ii) use the target network to calculate
the target Q value of taking that action at the next state.

Figure 6.3: The Neural Network architecture of our proposed
multi-DQN agents for stock trading. The activation of the first
layer is chosen through optimization experiments.

Additionally, dueling networks [149] help the network to calculate each
of the values (D(x, y, a) and maxbQ(y, b)) in Equation 6.7 separately. This
is done through individual fully connected layers positioned after the penul-
timate layers of the DQNs, which estimate each of these values with a final

82 CHAPTER 6. STOCK TRADER USING DRL

aggregation layer that is then used to calculate Q(x, a). To avoid backprop-
agation issues created by calculating Equation 6.7 in pieces, the aggregation
layer includes subtracting the mean maxbQ(y, b) for all possible actions b.
Therefore, this architecture helps accelerating the training, as the immediate
reward D(x, y, a) can be found without calculating the maxbQ(y, b) for each
action at that state.

Figure 6.3 shows the architecture of the proposed main network used to
stock trading, which includes the use of dueling and target networks in its
final version. The main DQN is a very simple network composed of one
flatten layer, one fully connected layer with 35 neurons. The activation of
such neurons are activated after optimization experiments, which depend on
the market considered (we discuss how it is done in Section 6.3.1 for one
dataset), and N neurons fully connected layer with linear activation, where
N is the number of decisions to take in the stock market (we chose N = 3,
which are long, short and long operations).

6.1.3 Layer #3: Ensembling Multiple Learners

In this last layer, we propose the fusion of several multiple DQN agents trad-
ing signals, in order to take more decisions into account for trading. After
multiple different training iterations (or epochs) of the above meta-learning
agent with the environment, different actions in the market are done, as Fig-
ure 6.4 illustrates.

Figure 6.4: Fusion Layer pipeline of our proposed multi-layer
agent. Multiple agents trained after multiple series of different
iterations with the environment perform intra-day stock trading,
done by choosing among different combinations of actions. The
final action to take is decided by majority voting of decisions.

6.2. EXPERIMENTAL SETUP 83

Given such outputs from the previous meta-learners, the final agent works
in an ensemble (or late fusion) fashion, which considers the majority vot-
ing of decisions to generate the final trading signal. By taking a vector
Lt = {l1, l2, ..., ln} of n iterations (epochs) decisions for a day t, where
li ∈ {L,H, S}, the ensembling layer fuses them in just one trading signal
lt as the following:

lt = Mode(Lt) (6.11)

where Mode(Lt) is the most frequent value in Lt. In our approach we consider
Lt as a 25-dimensional vector (empirically chosen), which means that we
ensemble 25 meta-learner training iterations decisions.

The idea behind this approach is that the same agent trained at different
iterations can be complementary, as the agents have different experiences with
the environment thus making the approach more robust against uncertainties
of the stock markets behavior. Indeed, by ensembling the individual agents
decisions through the majority voting, we require the final agent to perform
a long, flat or a short action only when the fusion has a good confidence
about the choice (i.e., when there is a wide agreement among the individual
agents).

6.2 Experimental Setup

This section describes the experimental setup adopted in this work. It reports
the markets, metrics, state-of-the-art approaches considered for comparison
and implementation details of the proposed approach.

6.2.1 Datasets

We perform the experimental validation of our approach by using historical
data from the Standard & Poor’s 500 future index (S&P 500), as well as
the JP Morgan (JPM) and Microsoft (MSFT) single stock indexes. These
data can be usually found at different time resolutions, or granularity (e.g.,
5-minutes, 10-minutes, 1-hour, etc.). The dataset structure is summarized
in Table 6.1: each entry specifies the timestamp of the considered time slot
(technically known as candle), among with its open, close, high and low prices.
These prices are usually denoted by market points (1 point=50,00 USD for
the S&P 500 future index, while 1 point=1,00 USD for single stocks). We
run our first layer of CNNs over these datasets, thus extracting 1000 different
predictions (long, short or flat) for each day of the chosen period, to be used
as input for the second layer (the meta-learner).

84 CHAPTER 6. STOCK TRADER USING DRL

Table 6.1: Dataset structure (1-hour time resolution); prices are
expressed in market points.

Date Time Open High Low Close

...

17/06/2011 19 : 00 7349 7363.5 7346 7351

17/06/2011 20 : 00 7352 7373 7350 7362

17/06/2011 21 : 00 7361 7376.5 7341.5 7374.5

...

6.2.2 Benchmarks

In order to make a complete comparison between the proposed approach,
some other well-performing ensembling techniques, and literature bench-
marks, we selected several significant benchmarks.

More in details, the benchmarks we consider can be divided into two
groups. The first group includes some variations of our approach, where the
second and third layers of our stack are replaced with alternative and well-
performing non-RL ensembling techniques. They are:

1. the first layer only of our approach, through a majority voting over the
1000 CNN trading signals, which shows to be the strongest benchmark,
with a very competitive behaviour in the considered periods;

2. the first layer only of our approach, but considering a threshold agree-
ment of at least 50% of the same CNN trading signals;

3. the same first layer only of our approach, but now considering a thresh-
old agreement of at least 70% of the same CNN trading signals.

On the other hand, the second group of benchmarks is represented by some
literature works that propose trading techniques based on Machine Learning.
As far as we know, however, the existing works that punctually report the used
out-of-sample periods, as well as the results in terms of economic performance
of their methods, are very few for intra-day stock trading. Among them, we
have selected the following two:

1. the approach proposed by Sezer et al. in [150], called CNN-TAr, where
the authors encode trading signals (e.g : EMA, SMA, etc.) into 15x15
images, and train a CNN to perform daily trading;

2. the technique presented by Calvi et al. in [151], where the authors pro-
pose a Support Tensor Machine, called LS-STM, i.e. a tensor extension
of the best known support vector machine, to perform daily trading.

6.2. EXPERIMENTAL SETUP 85

Finally, together with all the benchmarks mentioned above, for each pe-
riod and market considered, we compare our proposed method against the
Buy-and-Hold strategy, which consists of a passive investment where the in-
vestor buys the stocks at the first day of the considered period, and sells
them at the end of the period. Since this strategy essentially replicates the
behaviour of the market, it represents a valid benchmark to compare the
performance of the proposed method against the market itself.

86 CHAPTER 6. STOCK TRADER USING DRL

6.2.3 Implementation Details of the Proposed Ap-
proach

The proposed approach has been developed in Python using keras-rl li-
brary [152] and was run in an Intel i7-8700k with a 64-bit Operating Sys-
tem (Ubuntu Linux 18.04 for tge development and learning stages, Microsoft
Windows 10 for the simulation step) with 64 GBytes of RAM and a Nvidia
TITAN XP GPU. Our method includes several DQN agents, equipped with
target networks and dueling architectures. In its second layer, it considers
agents trained for 25 epochs/iterations (empirically chosen) and the final trad-
ing signal is given in the last layer of our method, by considering the majority
voting of these decisions.

Figure 6.5: Example of real-world trading simulation through Mul-
tiCharts.

The output of our last layer is hence encoded into a (datetime, decision)
.csv file. Then, each real-world trading simulation is performed through Mul-
tiCharts1, a Windows-based trading platform. Figure 6.5 shows how Multi-
Charts implements our trading decisions: when performing long actions, the
tool executes a buy order at the begin of the day, immediately after the market
opens (recall we perform daily trading), and a sell order immediately before
the market closes; for shorts, the opposite (i.e. it performs a sell order when
the market opens, and a buy order when it closes, by exploiting the uncovered
sales mechanism); finally, flat actions are simply ignored. Notably, the source
code of our solution is available for download at a public repository2.

1https://www.multicharts.com/
2https://git.io/JRX4D

https://www.multicharts.com/
https://git.io/JRX4D

6.3. EXPERIMENTS 87

6.3 Experiments

In this section, we validate the quality and trading performances of our ap-
proach through several simulations, in which we perform intra-day trading in
several stock markets, through a backtesting mode. Our experiments consist
of two stages: in the first stage, we perform a preliminary study on the met-
alearner parameters to optimize the second layer of our approach; then, we
compare our proposed strategy against the benchmarks introduced in previ-
ous Section 6.2.2, in a real-world trading scenario.

6.3.1 Metalearner Parameters Optimization

Before showing the comparison with benchmarks and other relevant litera-
ture works, we report the outcomes of the preliminary parameter optimization
performed to tune the second layer of our approach. To do so, we consider
a small out-of-sample subset, that we call validation set, to analyze the re-
sults. To this, we exploit our S&P 500 dataset, spanning the date interval
between February 1st of 2012 to September 5th of 2018 for training, and from
September 6th of 2018 to March 5th of 2019 for validation.

The first set of parameters are the optimizers of the Deep-Q Networks.
Indeed, this is a very important parameter, because the goal of the Reinforce-
ment Learning network is to minimize the difference between the different
Q-functions in Equation 6.9. Therefore, the optimizers update the weight
parameters in Θ to perform such an optimization. The Loss Function acts as
a guide to the optimizer, telling if it is moving in the right direction to the
global minimum.

The second parameter comes from the RL dilemma known as exploration
versus exploitation, that requires to choose between keep doing the normal
learning process (exploitation), or try something new (exploration). In our
deep-q agent, exploitation means always taking the action with the highest Q-
value, and explorations means taking random actions with a given percentage
of probability. We vary the probability of explorations in the greedy policy
used in our metalearner.

Finally, the final parameter we want to tune is the activation of the 35-
neurons layer of our Q-network. Activation functions are one of the most
important components of a Neural Network model. They determine the out-
put of a model, its performance and efficiency of training.

In summary, the possible values of each parameter are:

1. Adagrad, Adam, Adadelta, Adamax and Rmsprop, as optimizers;

2. 30%, 50%, 70% and 90%, as percentage of explorations;

3. TanH, Selu, Relu, Linear and Sigmoid, as activation functions.

88 CHAPTER 6. STOCK TRADER USING DRL

Table 6.2 shows the top-10 results considering the Romad metric out of 100
experiments performed, showing their classification and trading performance.

Table 6.2: Top-10 results, in terms of Romad, of the parame-
ter optimization experiment performed over the validation set, by
considering different metalearner optimizers, layer activations and
different levels of explorations in the metalearner policy. Classifi-
cation metrics are percentages in [0, 1] range, while trading metrics
are shown in market points (1 point = 50 USD).

Optimizer Explor. Activator Long Prec. Short Prec. Accuracy Cover. MDD Return Romad
ADADELTA 0.5 TanH 0.58 0.38 0.48 0.20 38.75 362.75 9.36
ADADELTA 0.3 Relu 0.53 0.59 0.55 0.77 79.50 520.25 6.54

ADAM 0.9 Selu 0.58 0.57 0.57 1.00 135.75 833.50 6.14
RMSPROP 0.3 Selu 0.53 0.74 0.60 0.42 121.00 541.00 4.47
ADAGRAD 0.5 Selu 0.20 0.62 0.50 0.14 54.25 223.75 4.12

ADAM 0.5 Relu 0.55 0.52 0.53 0.80 151.25 598.25 3.96
ADAGRAD 0.7 Sigmoid 0.57 0.53 0.55 0.86 200.50 610.50 3.04
RMSPROP 0.7 Sigmoid 0.52 0.50 0.51 1.00 134.75 386.00 2.86
ADAGRAD 0.3 Linear 0.50 0.56 0.53 0.34 117.25 321.50 2.74

ADAM 0.3 Sigmoid 0.57 0.55 0.56 0.41 115.75 300.50 2.60

At first, we observe that the Adadelta optimizer presented the two best
positioned results in terms of Romad, by using, respectively, 50% of explo-
rations with TanH activation and 30% of explorations with Relu activation.
The TanH activator presented a return that is 9.36 higher than the risk as-
sumed in trading, but it trades only 20% of the time. Such a strategy showed
the lowest risk, illustrated by a maximum drawdown of 38.75. It also showed
the best long precision (58%), which entails its very well position in terms of
the Romad metric. The Adam optimizer showed three configurations posi-
tioned in the top-10 approaches. In particular we noticed that, when using
a very high probability of explorations (90%) and the Selu activation, it in-
creased the profit (the highest of all, with 833 market points), but also the
risk (an MDD of 135.75, the third highest of the experiments). Even in that
scenario, it showed a Romad of 6.14, the third best of all. However, that
comes with a 100% coverage, which means that the agent was more exposed
at the market risk.

Conversely, the Rmsprop activation function had only one configuration
in the Romad top-10 results, however, it showed the best accuracy of all
(60%), and also the best precision of shorts (a surprising 74%). However,
that high short precisions do not yield a very high return in the market
period analyzed, specially considering that the agent trades only 42% of the
time. However, that configurations still had a good risk-return trade-off, with
a 4.47 Romad. Finally, Adagrad optimization approach had three config-
urations in the top-10 results. Its best configuration uses 50% probability
of explorations in the RL agent training, with the Selu activation approach.
However, it showed the lowest long precision and accuracy of all approaches,

6.3. EXPERIMENTS 89

but its fifth best position in that table is mainly due to the fact that such an
agent enters the market only 14% of the time (second lowest of all), but also
providing the second lowest risk of all the approaches.

6.3.2 Experimental Results and Comparison With
Baselines

We now focus on the comparison of our proposed technique against the base-
lines previously summarized in Section 6.2.2. As previously outlined, we start
our analysis of the experimental results by comparing the performance of
our multi-ensemble and multi-layer approach, against several well-performing
variations of it. These variations only rely on the first layer of the stack, thus
not providing the reinforcement learning components and ensembles. How-
ever, the experiments show how our second and third levels based on RL both
help to significantly improve the overall performances of the approach.

To obtain such a result, we considered, for all the strategies, a real-world
trading scenario where we assumed to trade a single future on the S&P
500 market, with the same initial investment capital of 4,000 market points
(200,000 USD). As a robust training period, we consider the same 7-years
period of Section 5.1, starting from February 1st of 2012 to September 5 of
2018, while as test set, we exploited a time frame spanning September 6th
of 2018 to August 30th of 2019 (the last trading year of our dataset). Note
that it represents an interesting period to analyse, since it is characterized
by a first phase in which the market suffered high volatility and a significant
fall, mainly due to commercial war between the USA and China, opposed to
a second phase, in which the market experienced a strong recovery, with very
positive performance. Table 6.3 shows the results of our experiments.

Table 6.3: Summary of the comparison between our RL layers and
the non-RL ensembling techniques outlined in Sec. 6.2.2, in an
out-of-sample trading scenario (September 2018 to August 2019).
Best results per trading metric are underlined. Trading metrics are
expressed in market points (1 point = 50 USD) and classification
metrics are in the interval [0,1].

Classification metrics Trading metrics
Method Long prec. Short prec. Cover. MDD Return RoMaD
RL-ensemble (proposed) 0.59 0.50 1.00 221.74 1265.50 5.70
Majority ensemble 0.60 0.69 0.55 162.75 901.00 5.53
Thresh. voting ensemble (50%) 0.61 0.60 0.35 130.75 662.75 5.06
Thresh. voting ensemble (70%) 0.31 0.00 0.06 186.74 -89.24 -0.47
Buy-and-Hold baseline - - - 598.00 45.50 0.08

First, let us analyse the Buy-and-Hold strategy, which represents a passive
investment approach, commonly used as a trading benchmark since it essen-

90 CHAPTER 6. STOCK TRADER USING DRL

tially replicates the market behaviour. In our test period, B&H performances
return a modest income, but with a high investment risk (due to the mar-
ket fall at the end of 2018). Since S&P500 is a usually growing market, the
Buy-and-Hold strategy is generally effective, but it is in such periods that it
shows its limits. This is particularly relevant when operating with the lever-
age, in which sudden and sharp falls can lead to a loss of the invested capital,
and therefore require to provide new investments to keep the position with
the broker active (margin calls). Overall, it is therefore very important that
advanced trading strategies should be able not to follow the market trend
during negative phases, while, conversely, to detect and exploit the positive
trends.

For this reason, when looking at the results in Table 6.3, we did not
take into close consideration the results in terms of classification (e.g., pre-
cisions), and in particular we did not evaluate them in terms of accuracy.
This is because, compared to a standard classification task, in trading it is
not important the amount of correct choices, but rather to correctly select
the operations with a higher specific weight (i.e., days with higher volatil-
ity), since a single wrong choice can compromise the result of a high number
of correct choices. On the other hand, we give particular emphasis to the
most significant indicators in the analysis of the financial strategy, i.e. the
return, the MDD and – specifically – the RoMaD, which quantifies the ratio
between the obtained profit and the assumed risk, thus making it possible to
determine the safest and most robust solution to adopt.

Looking at Table 6.3, we can summarize the results of the competitors of
the proposed approach as it follows. The strongest baseline is represented by
an ensemble of independent neural networks, obtained as the majority voting
of their decisions. This “naive” ensemble is therefore performed over the first
layer of our approach. On the practical side, it shows to be a very effective
strategy, with an extremely positive behaviour which overperforms the market
throughout the considered test period. It provides the second highest return
(901 market points, or 45, 050.00 USD), the second lowest MDD and also the
second highest RoMaD of 5.53. However, this agent is very cautious about
its decisions, not entering the market in almost half of the trading days (i.e.
coverage is 0.55)

The rest of the approaches presented in the third and fourth row of Table
6.3 represent two variations of the aforementioned first-layer majority voting
ensemble. These variations are obtained by imposing a minimum agreement
threshold on the majority decision. However, from our experiments, this tech-
nique has shown to cause a regular decrease of the RoMaD as the threshold
used increases. Therefore, we only reported results with agreement thresh-
olds of 50 and 70%, for illustrative purposes. Going into detail, with a 50%
decision agreement, the trader agent enters the market 35% of the days, pro-
viding the third highest return, which, according to its RoMaD, is 5.06 times

6.3. EXPERIMENTS 91

higher than the risk. Notably, this solution achieves the lowest maximum
drawdown value, thanks to a balanced combination of low coverage and high
precision of operations, making it an effective and low-risk strategy for the
considered period. Conversely, the ensemble with a 70% of majority voting
agreement gives the overall worst performances, with a negative return and
– consequently – a negative RoMaD. This approach is useful to only show
how a reduction in coverage does not automatically translate into a decrease
in risk, and also to denote the existence of a non-negligible variance in the
predictions of individual CNNs.

At last, we analyse the results of our proposed approach, based on a
metalearner that autonomously learns how to ensemble the CNN decisions.
The metalearner is then executed in separate iterations, and its decisions are
subjected to a second level of majority ensembling (in order to balance the
different first-level ensembling strategies found by the metalearner). Such a
multi-ensemble method provides the best return so far (1265 market points,
equivalent to 63,250.00 USD, which means 5,270.83 USD per month in a very
difficult period). Even though such a profit came with the second highest
MDD of all (221.74 market points), it is still more than a half the value of the
B&H strategy, and only the 0.055% of the initial investment (4,000 market
points), which can still be considered a modest risk for a financial strategy.

Notwithstanding, even in this scenario, we increased our best competitor
return by 28.78%, also providing the highest RoMaD of 5.70. In other words,
this means that the given return is almost six times the value of the risk
assumed. To better understand how our approach boosts the best baseline
(first-layer majority voting ensemble), in Figure 6.6 we show their equity
curves, together with the Buy-and-Hold baseline that, as previously said,
indicates the market behaviour.

Figure 6.6: Equity curve of our RL-ensemble approach, against
the best non-RL baseline (majority voting ensemble) and the Buy-
and-Hold strategy.

According to Figure 6.6, the proposed approach is not only consistently
above, in terms of return, both to the market and to the competitor through-

92 CHAPTER 6. STOCK TRADER USING DRL

out the period considered, but also appears to be more effective in generating
profit during negative market phases. Moreover, it is the only one of the three
strategies to have a consistently positive return over the period in question.
Following these results, we can therefore say that the adoption of the second
layer based on the RL-ensemble technique is promising in terms of effective-
ness of the final trading strategy provided, and seems to globally confirm the
validity of the proposed approach.

Finally, to conclude the analysis of the performance of our approach, we
start the comparison of our method against the last two baselines discussed
in Section 6.2.2: the approach proposed by Sezer et al. in [150] (CNN-TAr),
and the one by Calvi et al. [151] (LS-STM), which represents two different
strong competitors in literature. To do that, we consider new symbols (MSFT
and JPM) and periods, with respect to previous experiments, that has been
used in the considered works.

Table 6.4: Comparison of the real-world trading performance, in
terms of annualized returns, between our method and some litera-
ture competitors when considering different periods and markets.
Our method clearly outperforms all the competitors in the consid-
ered settings.

[h!]

Annualized return
Period: 2007-2012 Period: 2009-2015

JPM stock MSFT stock S&P500 future
OUR PROPOSAL 11.3% 17.53% 23.20%
CNN-TAr [150] 9.19% 4.44% n.a.
LS-STM [151] n.a. n.a. ∼ 10.15% 1
Buy-and-Hold -1.67% -1.93% 21.33%

The annualized return value is approximate, since the authors in [151] reported the cumulative profit

chart only.

Table 6.4 reports the results achieved in terms of annualized return, i.e.
the percentage of annual return on the initial investment (which we assumed
to be equal to the stock/future value at the begin of the period), together with
the Buy-and-Hold performance, which allows us to estimate the behaviour of
the market. The first period we considered spans the date interval between
January 1st of 2007 and December 31st: in these six years, both JPM and
MSFT recorded a slightly negative trend, mainly due to the sever economic
crisis of 2008, associated with sub-prime mortgages. However, both our pro-
posal and the CNN-TAr approach manage to generate a positive return in
this phase: in particular, our approach has proved to be comparable and
even mildly superior when trading on the JPM symbol, while it showed to be
extremely performing against this competitor for what concerns the MSFT

6.3. EXPERIMENTS 93

index.
On the other hand, with regard to the second period, which covers dates

between January 1st of 2009 and December 31st of 2015, we examine the
performance of our approach when trading on the S&P500 future against the
LS-STM competitor. We notice that the achieved annualized return of the
latter is approximated, since in the original work from Calvi et al. [151], the
authors plotted the cumulative profit curve without specifying the punctual
values of returns. However, our method clearly outperforms this competitor,
and also the Buy-and-Hold strategy, which nevertheless highlights a very
strong market trend in this period, hard to outrun.

Overall, both in relation to the non-RL ensemble techniques we used as
benchmarks and to the competitors present in literature, in the periods and
markets they covered, our approach showed to be competitive in performance
and robust in results. As outlined in next Section ??, further studies are
needed to investigate the response of our method in markets with different
behaviours and characteristics, as well as for the management of compound
portfolios.

94 CHAPTER 6. STOCK TRADER USING DRL

Chapter 7

Hawkeye: a Visual Framework
for Agile Cross-Validation of
Deep Learning Approaches in
Financial Forecasting

7.1 Introduction

As mentioned before, Financial Forecasting represents a challenging task,
mainly due to the irregularity of the market, high fluctuations and noise of
the involved data, as well as collateral phenomena including investor mood
and mass psychology. Among these, it is worth to mention the bias intro-
duced by the choice of model weights initialization and the considered obser-
vation periods, as well as the narrow separation between significant results
and noise, typical of the financial domain. A thorough analysis of these pe-
culiar issues lead to a substantial increase of the experiments and results to
analyze, making the discovery of meaningful hidden patterns very difficult
and time consuming to perform. To cope with these concerns, in this chapter
we propose a visual framework for in-depth analysis of results obtained from
Deep Learning approaches, in order to predict the daily price variation of Fi-
nancial Markets, along with evaluating the robustness and predictive power
of the models used. Our framework offers a modular view, both general and
targeted, of results data, several instruments to easily navigate over different
walks, classifiers and training epochs, a large set of metrics (e.g., Sharpe Ratio,
Precision, Maximum Drawdown, Accuracy, etc.) and plots to assess both the
economic performance and the goodness of the classification process, and an
advanced system for custom reports generation and sub-period investigation.

The general architecture of our proposed framework is depicted in Fig-
ure 7.1. First, we show how the input data are organized and handled;

96 CHAPTER 7. HAWKEYE

Figure 7.1: The high-level architecture of our framework.

then, we describe more specifically the core components of the tool. No-
tably, a demo version of the framework, with preset sample data, is available
at http://hawkeye.unica.it, and publicly accessible by using Hawkeye and
madain demo as login credentials.

7.2 The Proposed Framework

7.2.1 Data Organization & Pre-processing

The first two fundamental components of our framework are the Data
Repository (DR) and the Data Preprocessor (DP). The DR is a stor-
age component, i.e. a repository which contains a directory resi for each
different results scenario i to analyze. Within resi, the user must upload re-
sults data files in a custom data structure, compliant with our framework. In
particular, by default, resi would contain: (i) a log.json file, which contains
general information about the analysed scenario and the used Deep Learn-
ing parameters (e.g., number of epochs, time period considered, selected loss
function, learning rate, etc.. An example can be seen here1); and, (ii) two
main folders, one for validation data and one for test data (if provided),
internally partitioned into walks, in order to reproduce the walk-forward sub-
division. Each walk j sub-folder then provides a list of results k.json files,
for every Deep Learning classifier tested on the considered walk. An example
of the two folders can be seen here2.

This repository structure, although general enough to integrate with any
classification tool based on Deep Learning, is not restrictive, since the frame-
work also provides a specific module (which acts as a middle layer) to easily
adapt other repository structures and formats to import data in our tool.

On the other hand, the DP is a software component, implemented in
Python 3, responsible for an on-the-fly processing of input data, required to

1http://hawkeye.unica.it/log_demo
2http://hawkeye.unica.it/zip_demo

http://hawkeye.unica.it
http://hawkeye.unica.it/log_demo
http://hawkeye.unica.it/zip_demo

7.2. THE PROPOSED FRAMEWORK 97

generate specific views or custom comparisons, or to simulate and modify,
at runtime, several real-world trading parameters such as stop-loss or broker
fees.

7.2.2 Visual Tool

We now describe how the core component of our framework, the Visual
Tool (VT), works. It consists of a Graphic User Interface (GUI) to deeply
analyze the results of different Deep Learning classification scenarios where
the walk-forward cross-validation strategy is employed to solve financial clas-
sification forecasting problems. As previously mentioned, since randomness
severely affects the results in this specific domain, the VT is designed to
ease the navigation and scrolling through the results, for different walks (i.e.,
market periods) and epochs (i.e., model iterations).

Once logged in, a screen with a list of imported scenarios is shown. Then,
by selecting a specific scenario, the tool loads its main dashboard, which looks
as illustrated in Figure 7.2. It exhibits three functional blocks, described in
the following.

Toolbar. The first block (in red) implements a toolbar which let the user
navigate, explore and filter the loaded scenario. For instance, it is possible to
switch between the validation and test views or to show the average behavior
of all classifiers, in order to investigate the model robustness. Moreover, it
makes easier to zoom over specific ranges of epochs, as shown in Figure 7.3,
to accurately and punctually check the performance of a single classifier, and
to exclude selectively models subject to over-fitting. All the choices made
within this toolbar affect the plots visualization in the third block, described
next.

Summary box. The second block (in green) simplifies the navigation be-
tween different scenarios and views. Indeed, the VT provides keyboard short-
cuts to quickly move between scenarios and parameters. Through the sum-
mary box, the analyst can therefore constantly monitor the displayed view.

Plot area. The third and last functional block (in cyan) represents the key
part of our VT. It provides a dynamic plot for each different metric featured
by the framework. Most of the displayed metrics relate to the assessment
of financial performance, and can be informally summarized as follows: (i)
Return3, i.e. the actual profit achieved at the end of the period taken into
account; (ii) Sharpe Ratio [153], a common statistical measure of financial

3https://www.investopedia.com/terms/r/return.asp

https://www.investopedia.com/terms/r/return.asp

98 CHAPTER 7. HAWKEYE

Figure 7.2: Main dashboard of the VT. It features: (1) the toolbar;
(2) the summary box; and, (3) the plot area.

performance, given by the average return earned in excess of a risk-free strat-
egy (e.g., the passive income generated by a U.S. Treasury Bill rate in the
same period), divided by the average volatility of the portfolio (i.e., the stan-
dard deviation of returns); (iii) Sortino Ratio [154], similar to the previous
Sharpe Ratio, except that it only takes into account the downside volatility
(i.e., the standard deviation of negative returns only); (iv) Maximum Draw-
down [155] (MDD), which is intuitively defined as the highest difference (in
dollars) between a local maximum point and a subsequent local minimum
point in the profit curve, or the maximum accumulated slump (commonly
used as an alternative estimator of the investment risk); and, (v) Return over
Maximum Drawdown4 (Romad) that is, as the name itself suggests, the ratio
between Return and MDD, which collectively estimates the profitability of
the trading strategy.

Along with these financial indicators, the plot area also provides stan-
dard metrics for the analysis of the Deep Learning process, in particular: (i)
Precision, i.e. the percentage of correctly classified items of a given class,
over all the instances of that class; (ii) Precision-over-Random (PoR), to es-
timate how far the computed precision deviates from a benchmark given by
the random predictor; (iii) Coverage, which defines the percentage of oper-
ations performed by the classifier (between long, short and idle actions);
(iv) Accuracy, which is the ratio between the number of correct predictions
over the total number of samples; and, (v) Loss, i.e the values of the loss
function used to during the training of the classifier, which usually represents
the classification error for the considered sample set (e.g., root-mean-square
error, binary cross-entropy, etc.).

Furthermore, when solving Financial Forecasting problems trough Deep
Learning techniques, a common practice is that of specializing some net-
works/classifiers in specific trading policies, depending on the general be-

4https://tinyurl.com/hawkeye-romad

https://tinyurl.com/hawkeye-romad

7.2. THE PROPOSED FRAMEWORK 99

Figure 7.3: Different display modes of the plot area: full epoch
range (on the left), custom range selection (on the upper right)
and single epoch zoom (on the lower right).

Figure 7.4: The sub-period filter.

100 CHAPTER 7. HAWKEYE

haviour of the target market. From this perspective, the VT also offers the
possibility of selectively displaying the metrics for three different trading poli-
cies: long+short, long only and short only. Finally, each plot also provides
a comparison with the Buy&Hold benchmark, in the same considered period.

Sub-period filter. In addition to the three functional blocks of the main
dashboard, the VT provides some additional features, accessible through the
toolbar. Indeed, analyzing the global results of the classifiers may be not
sufficient, as it does not give clear indications of day-by-day performance. To
tackle this problem, the VT exploits the preprocessor to generate, at run-time,
the equity curve (i.e., the cumulative profit curve) of a deep classifier, for a
specific walk and epoch. This curve, along with summary information and
benchmark data, is then shown in the sub-period filter popup, as illustrated
in Figure 7.4. Through this popup, the user may also apply a custom broker
fee (in the penalty field), specify a stop-loss threshold, as well as select a
sub-period of observation.

Custom reports. Finally, starting from the input data, the framework
generates advanced reports and offers the user the possibility to download
them locally, for offline analysis and sharing. Through this feature, the user
can download on his/her computer several types of documents and files, in-
cluding: (i) the rasterized png version of the plots displayed in the VT; (ii)
the hdf5 snapshot of the Deep Learning models used (we have tested our
framework with Keras); (iii) the csv files containing day-by-day predictions;
and (iv) the xls reports, which notably provide detailed data and results for
each scenario, as well as targeted threshold analyses.

Chapter 8

Conclusions

In this thesis, the use of Machine Learning and Deep Learning has been
applied in the Finance domains through not yet experimented methodologies
and novel approaches.

Machine Learning techniques cover a crucial role in many financial con-
texts since they are used to evaluate the potential risks of investments, thus
reducing the losses due to unreliable strategies. The high degree of com-
plexity, dynamism and non-stationary nature of data involved in the futures
markets makes the definition of an effective prediction model a challenge.

In order to face this problem, this dissertation introduced an auto-
configurable ensemble approach to significantly improve the trading perfor-
mance. This is done through optimizing two sets of parameters in late and
early past data, returning customized ensembles that act by complete agree-
ment strategy in any kind of market. By following a methodological ex-
perimental approach, our proposed automatic ensemble method starts auto-
tuning hyper-parameters in late past data. Among these hyper-parameters,
we tune feature selection parameters, which will return the best possible
inputs for each classifier in the ensemble and also time series parameters,
which will present the best disposal of features for the classifiers. As the last
step, we tuned intrinsic-parameters, creating powerful ensembles with clas-
sifiers trained with recent past data. Such an automatic ensemble fine-tune
model returns an ensemble of the best possible individual classifiers found
in the training data, which can be applied for different markets. All these
parameters optimizations are done through a Walk Forward Optimization
approach considering the non-anchored modality. Results of trading in an
out-of-sample data, spanning years 2016, 2017, and 2018 show that, despite
the data complexity, the proposed ensemble model is able to get good perfor-
mance in the context of positive returns in all the markets considered, being
a good strategy for conservative investors who want to diversify, but keep-
ing their investments profitable. It also turned out that in one market the
proposed approach fails in achieving better trading performance than bench-

102 CHAPTER 8. CONCLUSIONS

marks. We believe that, in addition to select ad-hoc hyper-parameters and
intrinsic-parameters for each market, an automatic selection of new ad-hoc
classifiers to be used by our proposed approach must also be done. We believe
that this additional step can find new classifiers useful to understand different
natures of data from different markets.

Secondly, we have proposed an innovative approach for the forecasting of
market behavior by using Deep Learning technologies and by encoding time
series to GAF images. The developed CNNs have been applied to the GAF
images for a classification task. Moreover, an ensemble was fed with the
CNNs above a majority voting strategy that has been used to select the final
classification. High results have been obtained using the S&P500 Future, the
market where we have trained, validated and tested our networks and the
overall ensemble. The GAF imaging technique has thus been applied within
the financial technology domain bringing the benefits of CNN. Moreover, our
approach, a combination of Deep Learning and GAF images technologies,
outperformed the benchmarks strategies consisting of Buy-and-Hold opera-
tions for a classification task where long and short actions can be performed.
The analysis of the tuning of several hyper-parameters is being carried out
by our team and is subject of future works. Currently, we are studying the
stacking policy of the GAF images (as shown in Fig.5.2), and how accuracy
and net profit vary according to the value of K parameter (currently set to
4). Our approach outperforms the Buy-and-Hold strategy, although the latter
was still very competitive and profitable within the considered period.

As a third novel approach, in this dissertation we have proposed a step
forward in efficient stock trading with ensembles by presenting an approach
that uses two well-known and efficient Machine Learning approaches, namely
Deep Learning and Deep Reinforcement Learning, in a three-layer fashion.
The proposed method then exploits several ensembling steps to provide its
final intra-day trading strategy: firstly, we stack hundreds of Deep Learning
decisions, provided by a large number of CNNs trained with historical market
data encoded into GAF images, and use them as input for a Reinforcement
Meta Learner Classifier; and, lastly, we ensemble the decisions of several
training iterations of the meta learner.

From our experimental results, we observe that: (i) the meta learner leads
to better trading results and less overfitting when we preliminary explore
the training parameters and adopt the most promising ones; (ii) compared
to well-performing non-RL ensemble benchmarks, our approach showed a
final return improvement of 28.78% when compared to our best benchmark
(which, notably, has still very good performances in the considered period),
by yielding returns 5.70 higher than the risk assumed, and outperforming
the market not only in the crisis scenario of 2018, but also in the following
phase of 2019 in which the market showed a very solid trend; and, finally,
(iii) our approach provides the best performances, when tested against the

8.1. FUTURE RESEARCH DIRECTIONS 103

strong methods proposed by Sezer et al. [150] and Calvi et al. [151], in two
different real-world trading scenarios, and when considering several distinct
periods and markets.

However, the analysis of the results coming from Deep Learning ap-
proaches applied to Financial Forecasting problems has proven to be a very
difficult task, mainly due to the complexity in determining the predictive
power and robustness of the models used. In fact, the large number of factors
that influence the market behavior, as well as the importance of (i) identify-
ing significant and meaningful patterns, (ii) selecting representative analysis
periods and, above all, (iii) filtering inaccurate or over-fitting outcomes, may
represent complex issues even for experienced researchers and data analysts.
To address these issues, in this thesis we have proposed a visual framework
for in-depth analysis of results obtained from Deep Learning classifiers spe-
cialized in the financial domain. Notably, our framework is not limited to
meet only the aforementioned requirements, but it also offers advanced met-
rics for measuring both economic performance and quality of the classification
models adopted, along with targeted tools for exploring the results and gen-
erating comprehensive reports. Furthermore, the platform has shown to be
effective already for real-world usage, as it is currently adopted and exploited
by a fintech company for the optimal tuning and in-depth analysis of several
robo-trading systems, representing its main core business.

8.1 Future Research Directions

Our research on Machine Learning and Deep Learning applied to the Finan-
cial Forecasting domain has led to different novel approaches but still poses
some interesting challenges that require further investigation. One more path
we are already exploring consists of applying the results of our ensembles ap-
proaches to real trading platforms. The goal is, on the one hand, to simulate
the real earnings we would have obtained on the past data and the desired
market. With the test being robust, on the other hand, the next step would be
to perform real-time tradings on a certain number of markets. The platform
we are already playing with is MultiCharts1. Moreover, one more possible
future work can involve the definition of multi-market strategies, able to im-
prove the prediction performance by diversifying the investments or by using
information about the behavior of many markets, in order to fine-tune the
kind of classifiers used or their predictions. Finally, as stated before, a data-
driven selection of classifiers for the ensemble, rather than just intrinsic and
hyperparameters, is a promising research direction to be done.

Regarding the algorithm proposed in Chapter 5, we would also like to test
our approach on different classification tasks within several domains such as

1https://www.multicharts.com/

https://www.multicharts.com/

104 CHAPTER 8. CONCLUSIONS

Sentiment Analysis, Emotion Detection, Credit Scoring. The reason is to
understand how GAF imaging performs in presence of text or different kinds
of feature vectors.

Furthermore, we aim to extend the network structure proposed in Chapter
6 in order to reduce the effects of overfitting: for instance, we think that
adding recurrent layers – such as Long Short Term Memories networks – in the
proposed pipeline can potentially help to improve the results. Additionally,
we also aim to evaluate the impact of optimization algorithms [156, 157] when
training both the first and second layers of our approach. And, finally, we
would focus our future investigations on the fusion of different meta learner
optimizers/parameters, which may increase the number of experts in the final
ensembling methodology and, therefore, lead to a more robust and stable
trading strategy.

For what concern Hawkeye, the visual Framework proposed in Chapter 7
we are evolving the system towards several directions, focussing in particular
on: (i) adding more plots and metrics to provide a more detailed analysis
and investigation of results; (ii) extend our Framework to support models
based on regression in addition to those based on classification; and, finally,
(iii) generalizing the system to domains beyond the financial and economic
contexts.

Bibliography

[1] S. Carta, A. Corriga, A. Ferreira, D. Recupero, and R. Saia, “A holis-
tic auto-configurable ensemble machine learning strategy for financial
trading,” Computation, vol. 7, no. 4, pp. 1–25, 2019.

[2] S. Barra, S. Carta, A. Corriga, A. Podda, and D. Recupero, “Deep
learning and time series-to-image encoding for financial forecasting,”
IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 3, pp. 683–692,
2020.

[3] S. Carta, S. Consoli, A. Corriga, R. Dapiaggi, A. Podda, and D. Re-
forgiato Recupero, “Hawkeye: A visual framework for agile cross-
validation of deep learning approaches in financial forecasting,” 2020.

[4] S. Carta, A. Corriga, A. Ferreira, A. Podda, and D. Recupero, “A multi-
layer and multi-ensemble stock trader using deep learning and deep
reinforcement learning,” Applied Intelligence, vol. 51, no. 2, pp. 889–
905, 2021.

[5] G. G. Calviand V. Lucicand D. P. Mandic, “Support tensor machine
for financial forecasting,” in ICASSP 2019 - 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 8152–8156, May 2019.

[6] R. C. Cavalcante, R. C. Brasileiro, V. L. F. Souza, J. P. Nóbrega,
and A. L. I. Oliveira, “Computational intelligence and financial mar-
kets: Asurvey and future directions,” Expert Systems with Applications,
vol. 55, pp. 194–211, 2016.

[7] T. Kimoto, K. Asakawa, M. Yoda, and M. Takeoka, “Stock market
prediction system with modular neural networks,” in Neural Networks,
1990., 1990 IJCNN International Joint Conference on, pp. 1–6, IEEE,
1990.

[8] T. Oberlechner, “Importance of technical and fundamental analysis in
the european foreign exchange market,” International Journal of Fi-
nance & Economics, vol. 6, no. 1, pp. 81–93, 2001.

106 BIBLIOGRAPHY

[9] H. V. Roberts, “Stock-market “patterns” and financial analysis:
Methodological suggestions,” The Journal of Finance, vol. 14, no. 1,
pp. 1–10, 1959.

[10] A. S. Weigend, Time series prediction: forecasting the future and un-
derstanding the past. Routledge, 2018.

[11] C. Abad, S. A. Thore, and J. Laffarga, “Fundamental analysis of stocks
by two-stage dea,” Managerial and Decision Economics, vol. 25, no. 5,
pp. 231–241, 2004.

[12] G. A. Griffioen, “Technical analysis in financial markets,” 2003.

[13] G. Preethi and B. Santhi, “Stock market forecasting techniques: A sur-
vey.,” Journal of Theoretical & Applied Information Technology, vol. 46,
no. 1, 2012.

[14] J. Patel, S. Shah, P. Thakkar, and K. Kotecha, “Predicting stock and
stock price index movement using trend deterministic data preparation
and machine learning techniques,” Expert Systems with Applications,
vol. 42, no. 1, pp. 259–268, 2015.

[15] X. Ding, Y. Zhang, T. Liu, and J. Duan, “Deep learning for event-driven
stock prediction,” in Twenty-Fourth International Joint Conference on
Artificial Intelligence, 2015.

[16] T. H. Nguyen and K. Shirai, “Topic modeling based sentiment analysis
on social media for stock market prediction,” in Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), vol. 1, pp. 1354–1364, 2015.

[17] J. Bollen, H. Mao, and X. Zeng, “Twitter mood predicts the stock
market,” Journal of computational science, vol. 2, no. 1, pp. 1–8, 2011.

[18] T. Rao and S. Srivastava, “Analyzing stock market movements us-
ing twitter sentiment analysis,” in Proceedings of the 2012 interna-
tional conference on advances in social networks analysis and mining
(ASONAM 2012), pp. 119–123, IEEE Computer Society, 2012.

[19] S. Carta, A. Corriga, R. Mulas, D. R. Recupero, and R. Saia, “A su-
pervised multi-class multi-label word embeddings approach for toxic
comment classification,” in KDIR, pp. 105–112, ScitePress, 2019.

BIBLIOGRAPHY 107

[20] D. Dess̀ı, F. Osborne, D. R. Recupero, D. Buscaldi, and E. Motta,
“Generating knowledge graphs by employing natural language process-
ing and machine learning techniques within the scholarly domain,” Fu-
ture Generation Computer Systems, vol. 116, pp. 253–264, 2021.

[21] F. Hoppe, D. Dess̀ı, and H. Sack, “Deep learning meets knowledge
graphs for scholarly data classification,” in Companion Proceedings of
the Web Conference 2021, pp. 417–421, 2021.

[22] S. Soni, “Applications of anns in stock market prediction: a survey,”
International Journal of Computer Science & Engineering Technology,
vol. 2, no. 3, pp. 71–83, 2011.

[23] T. Lintonenand T. Räty, “Self-learning of multivariate time series us-
ing perceptually important points,” IEEE/CAA Journal of Automatica
Sinica, vol. 6, pp. 1318–1331, November 2019.

[24] K. Żbikowski, “Using volume weighted support vector machines with
walk forward testing and feature selection for the purpose of creating
stock trading strategy,” Expert Systems with Applications, vol. 42, no. 4,
pp. 1797–1805, 2015.

[25] S. Chatterjee and A. S. Hadi, Regression analysis by example. John
Wiley & Sons, 2015.

[26] Y. Zhang and L. Wu, “Stock market prediction of s&p 500 via combina-
tion of improved bco approach and bp neural network,” Expert systems
with applications, vol. 36, no. 5, pp. 8849–8854, 2009.

[27] D. Zhang, M. Hu, and Q. Ji, “Financial markets under the global pan-
demic of covid-19,” Finance Research Letters, p. 101528, 2020.

[28] J. W. Goodell, “Covid-19 and finance: Agendas for future research,”
Finance Research Letters, p. 101512, 2020.

[29] T. Z. Tan, C. Quek, and G. S. Ng, “Brain-inspired genetic complemen-
tary learning for stock market prediction,” in 2005 IEEE Congress on
Evolutionary Computation, vol. 3, pp. 2653–2660, IEEE, 2005.

[30] E. A. Gerlein, M. McGinnity, A. Belatreche, and S. Coleman, “Evalu-
ating machine learning classification for financial trading: An empiri-
cal approach,” Expert Systems with Applications, vol. 54, pp. 193–207,
2016.

[31] S. Scardapane and D. Wang, “Randomness in neural networks: an
overview,” Wiley Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery, vol. 7, no. 2, p. e1200, 2017.

108 BIBLIOGRAPHY

[32] P. Misra et al., “Machine learning and time series: Real world applica-
tions,” in Computing, Communication and Automation (ICCCA), 2017
International Conference on, pp. 389–394, IEEE, 2017.

[33] H. Ince and T. B. Trafalis, “A hybrid forecasting model for stock market
prediction.,” Economic Computation & Economic Cybernetics Studies
& Research, vol. 51, no. 3, 2017.

[34] L. A. Teixeira and A. L. I. De Oliveira, “A method for automatic stock
trading combining technical analysis and nearest neighbor classifica-
tion,” Expert systems with applications, vol. 37, no. 10, pp. 6885–6890,
2010.

[35] V. P. Upadhyay, S. Panwar, R. Merugu, and R. Panchariya, “Fore-
casting stock market movements using various kernel functions in sup-
port vector machine,” in Proceedings of the International Conference
on Advances in Information Communication Technology & Computing,
p. 107, ACM, 2016.

[36] R. Hafezi, J. Shahrabi, and E. Hadavandi, “A bat-neural network multi-
agent system (bnnmas) for stock price prediction: Case study of dax
stock price,” Applied Soft Computing, vol. 29, pp. 196–210, 2015.

[37] U. N. Chowdhury, S. K. Chakravarty, and M. T. Hossain, “Short-term
financial time series forecasting integrating principal component anal-
ysis and independent component analysis with support vector regres-
sion,” Journal of Computer and Communications, vol. 6, no. 03, p. 51,
2018.

[38] B. Vanstone and G. Finnie, “An empirical methodology for developing
stockmarket trading systems using artificial neural networks,” Expert
systems with Applications, vol. 36, no. 3, pp. 6668–6680, 2009.

[39] T. Rollinger and S. Hoffman, “Sortino ratio: A better measure of risk,”
Futures Magazine, vol. 1, no. 02, 2013.

[40] J. White and V. Haghani, “A brief history of sharpe ratio, and beyond,”
Available at SSRN 3077552, 2017.

[41] A. Frugier, “Returns, volatility and investor sentiment: Evidence from
european stock markets,” Research in International Business and Fi-
nance, vol. 38, pp. 45–55, 2016.

[42] M. Haenlein and A. Kaplan, “A brief history of artificial intelligence:
On the past, present, and future of artificial intelligence,” California
management review, vol. 61, no. 4, pp. 5–14, 2019.

BIBLIOGRAPHY 109

[43] M. Marras, “Machine learning models for educational platforms,” 2020.

[44] I. Muhammad and Z. Yan, “Supervised machine learning approaches:
A survey.,” ICTACT Journal on Soft Computing, vol. 5, no. 3, 2015.

[45] R. Saravanan and P. Sujatha, “A state of art techniques on machine
learning algorithms: a perspective of supervised learning approaches in
data classification,” in 2018 Second International Conference on Intel-
ligent Computing and Control Systems (ICICCS), pp. 945–949, IEEE,
2018.

[46] D. Dessi, “Knowledge extraction from textual resources through seman-
tic web tools and advanced machine learning algorithms for applications
in various domains,” 2020.

[47] L. Breiman, “Random forests,” Machine Learning, vol. 45, pp. 5–32,
Oct 2001.

[48] S. Carta, A. S. Podda, D. R. Recupero, R. Saia, and G. Usai, “Popu-
larity prediction of instagram posts,” Information, vol. 11, no. 9, 2020.

[49] L. Deng, “A tutorial survey of architectures, algorithms, and applica-
tions for deep learning,” APSIPA Transactions on Signal and Informa-
tion Processing, vol. 3, 2014.

[50] M. Magdon-Ismail and A. F. Atiya, “Maximum drawdown,” Risk Mag-
azine, vol. 17, no. 10, pp. 99–102, 2004.

[51] H. Alostad and H. Davulcu, “Directional prediction of stock prices using
breaking news on twitter,” in Web Intelligence, no. 1 in 15, pp. 1–17,
IOS Press, 2017.

[52] D. Alajbeg, Z. Bubaš, and Š. Ivan, “The p/e effect on the croatian stock
market,” Journal of International Scientific Publications: Economy and
Business, vol. 10, p. 84, 2016.

[53] K. Schipper and A. Smith, “A comparison of equity carve-outs and sea-
soned equity offerings: Share price effects and corporate restructuring,”
Journal of Financial Economics, vol. 15, no. 1-2, pp. 153–186, 1986.

[54] R. M. Hayes, “The impact of trading commission incentives on analysts’
stock coverage decisions and earnings forecasts,” Journal of Accounting
Research, vol. 36, no. 2, pp. 299–320, 1998.

[55] K.-i. Kamijo and T. Tanigawa, “Stock price pattern recognition-a re-
current neural network approach,” in 1990 IJCNN International Joint
Conference on Neural Networks, pp. 215–221, IEEE, 1990.

110 BIBLIOGRAPHY

[56] C. H. Lee and K. C. Park, “Prediction of monthly transition of the
composition stock price index using recurrent back-propagation,” in
Artificial neural networks, pp. 1629–1632, Elsevier, 1992.

[57] E. Guresen, G. Kayakutlu, and T. U. Daim, “Using artificial neural
network models in stock market index prediction,” Expert Systems with
Applications, vol. 38, no. 8, pp. 10389–10397, 2011.

[58] S. Gaoand M. Zhouand Y. Wangand J. Chengand H. Yachiand J. Wang,
“Dendritic neuron model with effective learning algorithms for classifi-
cation, approximation, and prediction,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 30, pp. 601–614, Feb 2019.

[59] D. Jiaand S. Zhengand L. Yangand Y. Todoand S. Gao, “A den-
dritic neuron model with nonlinearity validation on istanbul stock and
taiwan futures exchange indexes prediction,” in 2018 5th IEEE In-
ternational Conference on Cloud Computing and Intelligence Systems
(CCIS), pp. 242–246, Nov 2018.

[60] T. Zhou, S. Gao, J. Wang, C. Chu, Y. Todo, and Z. Tang, “Finan-
cial time series prediction using a dendritic neuron model,” Knowledge-
Based Systems, vol. 105, pp. 214 – 224, 2016.

[61] J. D. Farmer and A. W. Lo, “Frontiers of finance: Evolution and
efficient markets,” Proceedings of the National Academy of Sciences,
vol. 96, no. 18, pp. 9991–9992, 1999.

[62] V. S. Pagolu, K. N. Reddy, G. Panda, and B. Majhi, “Sentiment anal-
ysis of twitter data for predicting stock market movements,” in 2016
international conference on signal processing, communication, power
and embedded system (SCOPES), pp. 1345–1350, IEEE, 2016.

[63] A. Mittal and A. Goel, “Stock prediction using twit-
ter sentiment analysis,” Standford University, CS229
(2011 http://cs229. stanford. edu/proj2011/GoelMittal-
StockMarketPredictionUsingTwitterSentimentAnalysis. pdf), vol. 15,
2012.

[64] N. Oliveira, P. Cortez, and N. Areal, “The impact of microblogging data
for stock market prediction: Using twitter to predict returns, volatil-
ity, trading volume and survey sentiment indices,” Expert Systems with
Applications, vol. 73, pp. 125–144, 2017.

[65] S. Consoli, D. Reforgiato Recupero, and M. Saisana, “Data science for
economics and finance: Methodologies and applications,” 2021.

BIBLIOGRAPHY 111

[66] T. B. Trafalis and H. Ince, “Support vector machine for regression and
applications to financial forecasting,” in Proceedings of the IEEE-INNS-
ENNS International Joint Conference on Neural Networks. IJCNN
2000. Neural Computing: New Challenges and Perspectives for the New
Millennium, vol. 6, pp. 348–353, IEEE, 2000.

[67] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[68] B. M. Henrique, V. A. Sobreiro, and H. Kimura, “Literature review:
Machine learning techniques applied to financial market prediction,”
Expert Systems with Applications, 2019.

[69] C. Tsai and S. Wang, “Stock price forecasting by hybrid machine learn-
ing techniques,” in Proceedings of the International MultiConference of
Engineers and Computer Scientists, vol. 1, p. 60, 2009.

[70] D. Shah, Isah, and F. Zulkernine, “Stock market analysis: A review and
taxonomy of prediction techniques,” International Journal of Financial
Studies, vol. 7, p. 26, 05 2019.

[71] M. Ballings, D. V. den Poel, N. Hespeels, and R. Gryp, “Evaluating
multiple classifiers for stock price direction prediction,” Expert Systems
with Applications, vol. 42, no. 20, pp. 7046 – 7056, 2015.

[72] S. Basak, S. Kar, S. Saha, L. Khaidem, and S. Dey, “Predicting the
direction of stock market prices using tree-based classifiers,” The North
American Journal of Economics and Finance, 07 2018.

[73] S. Dey, Y. Kumar, S. Saha, and S. Basak, “Forecasting to classification:
Predicting the direction of stock market price using xtreme gradient
boosting,” 10 2016.

[74] S. Aggarwal, L. Saini, and A. Kumar, “Price forecasting using wavelet
transform and lse based mixed model in australian electricity market,”
International Journal of Energy Sector Management, vol. 2, pp. 521–
546, 11 2008.

[75] Y. Wuand J. Maoand W. Li, “Predication of futures market by us-
ing boosting algorithm,” in International Conference on Wireless Com-
munications, Signal Processing and Networking (WiSPNET), pp. 1–4,
March 2018.

[76] S. M. Idreesand M. A. Alamand P. Agarwal, “A prediction approach for
stock market volatility based on time series data,” IEEE Access, vol. 7,
pp. 17287–17298, 2019.

112 BIBLIOGRAPHY

[77] S. Carta, A. Medda, A. Pili, D. Reforgiato Recupero, and R. Saia,
“Forecasting e-commerce products prices by combining an autoregres-
sive integrated moving average (arima) model and google trends data,”
Future Internet, vol. 11, no. 1, p. 5, 2019.

[78] H. P. S. D. Weerathungaand A. T. P. Silva, “Drnn-arima approach to
short-term trend forecasting in forex market,” in International Confer-
ence on Advances in ICT for Emerging Regions (ICTer), pp. 287–293,
Sep. 2018.

[79] J. Chouand T. Nguyen, “Forward forecast of stock price using sliding-
window metaheuristic-optimized machine-learning regression,” IEEE
Transactions on Industrial Informatics, vol. 14, pp. 3132–3142, July
2018.

[80] J. Nobre and R. F. Neves, “Combining principal component analysis,
discrete wavelet transform and xgboost to trade in the financial mar-
kets,” Expert Systems with Applications, vol. 125, pp. 181 – 194, 2019.

[81] D. Gupta, M. Pratama, Z. Ma, J. Li, and M. Prasad, “Financial time
series forecasting using twin support vector regression,” PLOS ONE,
vol. 14, pp. 1–27, 03 2019.

[82] M. Prasad, Y. Lin, C. Lin, M. Er, and O. Prasad, “A new data-driven
neural fuzzy system with collaborative fuzzy clustering mechanism,”
Neurocomputing, vol. 167, pp. 558 – 568, 2015.

[83] O. P. Pateland N. Bharilland A. Tiwariand M. Prasad, “A novel
quantum-inspired fuzzy based neural network for data classification,”
IEEE Transactions on Emerging Topics in Computing, pp. 1–1, 2019.

[84] G. J. Klir and T. A. Folger, Fuzzy Sets, Uncertainty, and Information.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1987.

[85] R. Gonçalves, V. M. Ribeiro, F. L. Pereira, and A. P. Rocha, “Deep
learning in exchange markets,” Information Economics and Policy,
vol. 47, pp. 38 – 51, 2019. The Economics of Artificial Intelligence
and Machine Learning.

[86] S. P. Chatzis, V. Siakoulis, A. Petropoulos, E. Stavroulakis, and N. Vla-
chogiannakis, “Forecasting stock market crisis events using deep and
statistical machine learning techniques,” Expert Systems with Applica-
tions, vol. 112, pp. 353 – 371, 2018.

[87] Y. Dengand F. Baoand Y. Kongand Z. Renand Q. Dai, “Deep direct
reinforcement learning for financial signal representation and trading,”

BIBLIOGRAPHY 113

IEEE Transactions on Neural Networks and Learning Systems, vol. 28,
pp. 653–664, March 2017.

[88] T. G. Dietterich, “Ensemble methods in machine learning,” in Multiple
Classifier Systems, vol. 1857 of Lecture Notes in Computer Science,
pp. 1–15, Springer, 2000.

[89] A. Zainal, M. A. Maarof, S. M. H. Shamsuddin, and A. Abraham, “En-
semble of one-class classifiers for network intrusion detection system,”
in IAS, pp. 180–185, IEEEComputer Society, 2008.

[90] T. G. Dietterich, “Ensemble methods in machine learning,” in Inter-
national workshop on multiple classifier systems, pp. 1–15, Springer,
2000.

[91] R. Saia, C. Salvatore, and R. RECUPERO, “A probabilistic-driven en-
semble approach to perform event classification in intrusion detection
system,” in 10th International Joint Conference on Knowledge Discov-
ery, Knowledge Engineering and Knowledge Management, 2018.

[92] S. Carta, G. Fenu, D. R. Recupero, and R. Saia, “Fraud detection for
e-commerce transactions by employing a prudential multiple consen-
sus model,” Journal of Information Security and Applications, vol. 46,
pp. 13–22, 2019.

[93] O. Sagi and L. Rokach, “Ensemble learning: Asurvey,” Wiley Interdisc.
Rew.: Data Mining and Knowledge Discovery, vol. 8, no. 4, 2018.

[94] B. Zhu, S. Ye, P. Wang, K. He, T. Zhang, and Y.-M. Wei, “A novel
multiscale nonlinear ensemble leaning paradigm for carbon price fore-
casting,” Energy Economics, vol. 70, pp. 143 – 157, 2018.

[95] A. P. Rattoand S. Merelloand L. Onetoand Y. Maand L. Malandriand
E. Cambria, “Ensemble of technical analysis and machine learning for
market trend prediction,” in IEEE Symposium Series on Computational
Intelligence (SSCI), pp. 2090–2096, Nov 2018.

[96] S. Sun, Y. Sun, S. Wang, and Y. Wei, “Interval decomposition ensemble
approach for crude oil price forecasting,” Energy Economics, vol. 76,
pp. 274 – 287, 2018.

[97] K. S. Ganand K. O. Chinand P. Anthonyand S. V. Chang, “Homoge-
neous ensemble feedforward neural network in cimb stock price fore-
casting,” in International Conference on Artificial Intelligence in Engi-
neering and Technology (IICAIET), pp. 1–6, Nov 2018.

114 BIBLIOGRAPHY

[98] Y. Ding, “A novel decompose-ensemble methodology with aic-ann ap-
proach for crude oil forecasting,” Energy, vol. 154, pp. 328 – 336, 2018.

[99] T. Kimoto, K. Asakawa, M. Yoda, and M. Takeoka, “Stock market
prediction system with modular neural networks,” in 1990 IJCNN in-
ternational joint conference on neural networks, pp. 1–6, IEEE, 1990.

[100] K.-i. Kamijo and T. Tanigawa, “Stock price pattern recognition-a re-
current neural network approach,” in 1990 IJCNN International Joint
Conference on Neural Networks, pp. 215–221, IEEE, 1990.

[101] C. H. Lee and K. C. Park, “Prediction of monthly transition of the
composition stock price index using recurrent back-propagation,” in
Artificial neural networks, pp. 1629–1632, Elsevier, 1992.

[102] T. Sunand J. Wangand J. Niand Y. Caoand B. Liu, “Predicting futures
market movement using deep neural networks,” in 18th IEEE Interna-
tional Conference On Machine Learning And Applications (ICMLA),
pp. 118–125, 2019.

[103] Y. Linand T. Huangand W. Chungand Y. Ueng, “Forecasting fluctua-
tions in the financial index using a recurrent neural network based on
price features,” IEEE Transactions on Emerging Topics in Computa-
tional Intelligence, pp. 1–12, 2020.

[104] W. Fenghua, X. Jihong, H. Zhifang, and G. Xu, “Stock price prediction
based on ssa and svm,” Procedia Computer Science, vol. 31, pp. 625
– 631, 2014. 2nd International Conference on Information Technology
and Quantitative Management, ITQM 2014.

[105] Z. Zhou, M. Gao, Q. Liu, and H. Xiao, “Forecasting stock price move-
ments with multiple data sources: Evidence from stock market in
china,” Physica A: Statistical Mechanics and its Applications, vol. 542,
p. 123389, 2020.

[106] Z. Tan, Z. Yan, and G. Zhu, “Stock selection with random forest: An
exploitation of excess return in the chinese stock market,” Heliyon,
vol. 5, no. 8, p. e02310, 2019.

[107] W. Khan, M. A. Ghazanfar, M. A. Azam, A. Karami, K. H. Alyoubi,
and A. S. Alfakeeh, “Stock market prediction using machine learning
classifiers and social media, news,” Journal of Ambient Intelligence and
Humanized Computing, 2020.

[108] Z. Wang and T. Oates, “Encoding time series as images for visual in-
spection and classification using tiled convolutional neural networks,”

BIBLIOGRAPHY 115

in Workshops at the Twenty-Ninth AAAI Conference on Artificial In-
telligence, 2015.

[109] O. Mihatsch and R. Neuneier, “Risk-sensitive reinforcement learning,”
in Advances in Neural Information Processing Systems, pp. 1031–1037,
MIT Press, 1999.

[110] X. Gao, S. Hongkong, and L. Chan, “An algorithm for trading and
portfolio management using q-learning and sharpe ratio maximization,”
in International Conference on Neural Information Processing, pp. 832–
837, 2000.

[111] J. W. Lee, J. Park, O. Jangmin, J. Lee, and E. Hong, “A multiagent
approach to q-learning for daily stock trading,” IEEE Transactions
on Systems, Man, and Cybernetics - Part A: Systems and Humans,
vol. 37, pp. 864–877, 2007.

[112] J. Moody, L. Wu, Y. Liao, and M. Saffell, “Performance functions and
reinforcement learning for trading systems and portfolios,” Journal of
Forecasting, vol. 17, no. 5-6, pp. 441–470, 1998.

[113] Q. Kang, H. Zhou, and Y. Kang, “An asynchronous advantage actor-
critic reinforcement learning method for stock selection and portfolio
management,” in Proceedings of the 2nd International Conference on
Big Data Research, ICBDR 2018, (New York, NY, USA), p. 141–145,
Association for Computing Machinery, 2018.

[114] K. Lei, B. Zhang, Y. Li, M. Yang, and Y. Shen, “Time-driven feature-
aware jointly deep reinforcement learning for financial signal repre-
sentation and algorithmic trading,” Expert Systems with Applications,
vol. 140, p. 112872, 2020.

[115] S. Choi, “Independent component analysis,” Encyclopedia of Biomet-
rics, pp. 917–924, 2015.

[116] A. Hyvärinen and E. Oja, “Independent component analysis: algo-
rithms and applications,” Neural networks, vol. 13, no. 4-5, pp. 411–430,
2000.

[117] C. Jutten and J. Karhunen, “Advances in blind source separation (bss)
and independent component analysis (ica) for nonlinear mixtures,” In-
ternational Journal of Neural Systems, vol. 14, no. 05, pp. 267–292,
2004.

[118] C. Jutten and J. Herault, “Blind separation of sources, part i: An adap-
tive algorithm based on neuromimetic architecture,” Signal processing,
vol. 24, no. 1, pp. 1–10, 1991.

116 BIBLIOGRAPHY

[119] W. Huang, Y. Nakamori, and S.-Y. Wang, “Forecasting stock market
movement direction with support vector machine,” Computers & Op-
erations Research, vol. 32, no. 10, pp. 2513–2522, 2005.

[120] J. Döpke, U. Fritsche, and C. Pierdzioch, “Predicting recessions with
boosted regression trees,” International Journal of Forecasting, vol. 33,
no. 4, pp. 745–759, 2017.

[121] C. D. Kirkpatrick and J. R. Dahlquist, Technical Analysis: The Com-
plete Resource for Financial Market Technicians. FT Press, November
2010.

[122] E. Tomasini and U. Jaekle, Trading Systems. Harriman House Limited,
2011.

[123] A. J. C. SHARKEY, “On combining artificial neural nets,” Connection
Science, vol. 8, no. 3-4, pp. 299–314, 1996.

[124] A. Tsymbal, M. Pechenizkiy, and P. Cunningham, “Diversity in search
strategies for ensemble feature selection,” Information fusion, vol. 6,
no. 1, pp. 83–98, 2005.

[125] M. Van Wezel and R. Potharst, “Improved customer choice predictions
using ensemble methods,” European Journal of Operational Research,
vol. 181, no. 1, pp. 436–452, 2007.

[126] D. Enke, M. Grauer, and N. Mehdiyev, “Stock market prediction with
multiple regression, fuzzy type-2 clustering and neural networks,” Pro-
cedia Computer Science, vol. 6, pp. 201–206, 2011.

[127] M. Klassen, “Investigation of some technical indexes in stock forecasting
using neural networks.,” in WEC (5), pp. 75–79, Citeseer, 2005.

[128] P. C. Tetlock, “Giving content to investor sentiment: The role of media
in the stock market,” The Journal of finance, vol. 62, no. 3, pp. 1139–
1168, 2007.

[129] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–
113, 2008.

[130] I. A. T. Hashem, N. B. Anuar, A. Gani, I. Yaqoob, F. Xia, and
S. U. Khan, “Mapreduce: Review and open challenges,” Scientomet-
rics, vol. 109, no. 1, pp. 389–422, 2016.

BIBLIOGRAPHY 117

[131] S. Barra, S. M. Carta, A. Corriga, A. S. Podda, and D. Reforgiato Re-
cupero, “Deep learning and time series-to-image encoding for financial
forecasting,” IEEE/CAA Journal of Automatica Sinica, vol. 7, no. JAS-
2019-0392, p. 683, 2020.

[132] Z. Wang and T. Oates, “Encoding time series as images for visual in-
spection and classification using tiled convolutional neural networks,”
in Workshops at the Twenty-Ninth AAAI Conference on Artificial In-
telligence, 2015.

[133] Z. Wang and T. Oates, “Imaging time-series to improve classification
and imputation,” in Twenty-Fourth International Joint Conference on
Artificial Intelligence, 2015.

[134] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[135] K. Heand X. Zhangand S. Renand J. Sun, “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 770–778, June 2016.

[136] P. Cizeau, Y. Liu, M. Meyer, C.-K. Peng, and H. E. Stanley, “Volatility
distribution in the s&p500 stock index,” Physica A: Statistical Mechan-
ics and its Applications, vol. 245, no. 3-4, pp. 441–445, 1997.

[137] M. Martens, “Measuring and forecasting s&p 500 index-futures volatil-
ity using high-frequency data,” Journal of Futures Markets: Futures,
Options, and Other Derivative Products, vol. 22, no. 6, pp. 497–518,
2002.

[138] D. H. Wolpert, “Stacked generalization,” Neural Networks, vol. 5,
pp. 241–259, 1992.

[139] H. V. Hasselt, “Double q-learning,” in Advances in Neural Information
Processing Systems 23 (J. D. Lafferty, C. K. I. Williams, J. Shawe-
Taylor, R. S. Zemel, and A. Culotta, eds.), pp. 2613–2621, Curran
Associates, Inc., 2010.

[140] S. Barraand S. M. Cartaand A. Corrigaand A. S. Poddaand D. R. Re-
cupero, “Deep learning and time series-to-image encoding for financial
forecasting,” IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 3,
pp. 683–692, 2020.

[141] H. S. Sim, H. I. Kim, and J. J. Ahn, “Is deep learning for image recog-
nition applicable to stock market prediction?,” Complexity, 2019.

118 BIBLIOGRAPHY

[142] T. Kim and H. Y. Kim, “Forecasting stock prices with a feature fusion
lstm-cnn model using different representations of the same data,” PLOS
ONE, vol. 14, pp. 1–23, 02 2019.

[143] J. Han, M. Kamber, and J. Pei, Data Transformation and Data Dis-
cretization, ch. 3, pp. 111–118. Elsevier, 2011.

[144] R. Surton and A. Barto, Reinforcement Learning: an introduction,
vol. 1. MIT press Cambridge, 1998.

[145] M. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

[146] S. M. J. Jalali, S. Ahmadian, A. Khosravi, S. Mirjalili, M. R. Mah-
moudi, and S. Nahavandi, “Neuroevolution-based autonomous robot
navigation: A comparative study,” Cognitive Systems Research, vol. 62,
pp. 35 – 43, 2020.

[147] W. Siand J. Liand P. Dingand R. Rao, “A multi-objective deep rein-
forcement learning approach for stock index future’s intraday trading,”
in International Symposium on Computational Intelligence and Design
(ISCID), vol. 2, pp. 431–436, Dec 2017.

[148] H. V. Hasselt, “Double q-learning,” in Advances in Neural Information
Processing Systems 23 (J. D. Lafferty, C. K. I. Williams, J. Shawe-
Taylor, R. S. Zemel, and A. Culotta, eds.), pp. 2613–2621, Curran
Associates, Inc., 2010.

[149] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in In-
ternational Conference on Machine Learning, vol. 48 of Proceedings of
Machine Learning Research, (New York, New York, USA), pp. 1995–
2003, PMLR, 2016.

[150] O. B. Sezer and A. M. Ozbayoglu, “Algorithmic financial trading with
deep convolutional neural networks: Time series to image conversion
approach,” Applied Soft Computing, vol. 70, pp. 525 – 538, 2018.

[151] G. G. Calviand V. Lucicand D. P. Mandic, “Support tensor machine
for financial forecasting,” in ICASSP 2019 - 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 8152–8156, May 2019.

[152] M. Plappert, “keras-rl.” https://github.com/keras-rl/keras-rl,
2016.

https://github.com/keras-rl/keras-rl

BIBLIOGRAPHY 119

[153] A. W. Lo, “The statistics of sharpe ratios,” Financial analysts journal,
vol. 58, no. 4, pp. 36–52, 2002.

[154] A. Chaudhry and H. L. Johnson, “The efficacy of the sortino ratio and
other benchmarked performance measures under skewed return distri-
butions,” Australian Journal of Management, vol. 32, no. 3, pp. 485–
502, 2008.

[155] M. Magdon-Ismail and A. F. Atiya, “Maximum drawdown,” Risk Mag-
azine, vol. 17, no. 10, pp. 99–102, 2004.

[156] S. Ahmadianand A. R. Khanteymoori, “Training back propagation neu-
ral networks using asexual reproduction optimization,” in Conference
on Information and Knowledge Technology (IKT), pp. 1–6, 2015.

[157] S. M. J. Jalali, S. Ahmadian, P. M. Kebria, A. Khosravi, C. P. Lim,
and S. Nahavandi, “Evolving artificial neural networks using butterfly
optimization algorithm for data classification,” in Neural Information
Processing, (Cham), pp. 596–607, Springer International Publishing,
2019.

	Abstract
	Acknowledgements
	Statement of Authorship
	Publications
	List of Figures
	List of Tables
	Introduction
	Context and Research Contributions
	Dissertation Structure

	Technical background
	History of Artificial Intelligence
	Supervised approaches
	Unsupervised approaches
	Deep Learning
	Experimental Workflow
	Evaluation Metrics
	AI Metrics
	Financial Metrics

	Software Tools and Technologies

	State of the art
	A Holistic Auto-Configurable Ensemble Machine Learning Strategy for Financial Trading
	Proposed Approach
	Feature Selection
	Two-Step Auto Adjustable Parameters Ensemble Creation
	Policy for Trading

	Experimental Setup
	Formal Notation
	Datasets
	Technical Details

	Experiments
	Trading Results
	Performance Metrics Trade Impact

	Deep Learning and Time Series-to-Image Encoding
	The proposed approach
	Trading strategy
	Gramian Angular Fields imaging
	Multi-Resolution Time Series Imaging
	Ensemble of CNNs

	Experimental Settings
	Evaluation and S&P500
	Walks' Definition
	CNN training and Ensemble policy

	Results and Discussion

	A Multi-Layer and Multi-Ensemble Stock Trader Using Deep Learning and Deep Reinforcement Learning
	Proposed Approach
	Layer #1: Stacking trading signals with Convolutional Neural Networks
	Layer #2: Reinforcement MetaLearner
	Layer #3: Ensembling Multiple Learners

	Experimental Setup
	Datasets
	Benchmarks
	Implementation Details of the Proposed Approach

	Experiments
	Metalearner Parameters Optimization
	Experimental Results and Comparison With Baselines

	Hawkeye: a Visual Framework for Agile Cross-Validation of Deep Learning Approaches in Financial Forecasting
	Introduction
	The Proposed Framework
	Data Organization & Pre-processing
	Visual Tool

	Conclusions
	Future Research Directions

	Bibliography

