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Chapter 1

Introduction

Time series forecasting has always been one of the most investigated scientific
areas and this is probably due to the large amount of fields involving a time
component including, meteorology, finance, econometric, astronomy, earth-
quake prediction, just to mention a few. Time series forecasting involves two
sub-areas of study that are time series analysis and time series prediction. Time
series analysis consist of using statistical tools to gain relevant insights from
time series data. Time series prediction includes the use of prediction models
to forecast time series future values from the knowledge of past values. The
present work studies the field of financial time series forecasting, mainly focus-
ing on the Cryptocurrency market. This field poses very sophisticated problems
for several reasons. Due to its recent birth, this market has a dynamic nature
continuously giving rise to new cryptocurrencies leading to frequent and sud-
den variations in their prices. Cryptocurrencies are virtual currencies based on
an innovative technology known as Blockchain. As a consequence, their econ-
omy, along with traditional macroeconomic variables, depends on technology
variables that can be directly measured from the Blockchain platform. All this
features lead to high volatility in cryptocurrency prices.

At the same time, the analysis of a market whose price behaviour is still
largely unexplored has a fundamental impact not only in the scientific field but
also within economic and financial fields, serving as a source of information for
speculators and investors.

The two main approaches used to study this research topic are traditional
econometric methods and artificial intelligence algorithms. Econometric the-
ory, firstly described by econometricians Ciompa and Tinbergen in the early
1900s, consist of applying statistical and mathematical models to economic
time series data in order to outline actual economic phenomena. The main
purpose of econometric is to model the stochastic process that is generating the
data produced by the phenomena that you are observing. Econometric models
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are simplifications of reality that help us approximate a very complex economic
world and uncover basic relations between variables. Economic variables are
most likely generated by an immensely complex model involving potentially
infinitely many variables. A complex model is a model whose parameters es-
timator cannot be described with an analytic expression. As a consequence, a
complex model depends not only on the model itself, but also, on the type of
estimator being used. Basic econometrics models are linear regression models
and autoregressive models, while basic estimators are those based on Ordinary
Least Squares principles, discovered by Carl Friedrich Gauss in 1795.

Artificial Intelligence approach make use of statistical and mathematical al-
gorithms to learn and emulate relationships between specific inputs and out-
puts on a sample data, known as training data. In time series field the inputs
are time series past values while outputs are one or more time series future val-
ues. Two main subfields of Artificial Intelligence are machine end deep learning
whose most popular algorithms are support vector machines and neural net-
works models.

The purpose of the present work is to study an innovative approach, based
on the techniques described above, to gain relevant insights in order to enrich
the state-of-the-art in the field of cryptocurrency time series forecasting. This
study started with a regression forecasting problem of cryptocurrency time se-
ries prices where the main goal was to compare the results obtained through
traditional econometrics models with those obtained using state-of-the-art ar-
tificial intelligence algorithms. Consequently, classification problems were con-
ducted with the aim of predicting cryptocurrency price changes and verifying
that the addition of technical analysis features to the dataset can lead to an
effective improvement in the prediction of cryptocurrency price movements.
Cryptocurrencies arouse keen interest not only in the scientific and financial
fields but also within social media communities, making the analysis of their
price beahviours one of the most discussed topics of the last fiew years. Several
are also the studies that tried to use online information, including social media
topics discussions, to predict cryptocurrencies price changes, proving the exis-
tence of possible cause-effect relationships between the cryptocurrency price
changes and online information. These considerations led to the development
of a study based on identifying and modeling relationships between cryptocur-
rencies market price changes and topic discussion occurrences on social me-
dia. This analysis is a further confirmation on how the addition of social vari-
ables to the dataset lead to an effective improvement on cryptocurrency price
prediction. For this reason we decided to conduct a deeper investigation on
whether developers emotions can effectively provide insights that can improve
the prediction of cryptocurrency prices.

This approach proved how the progressive addition of variables of different
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sources allows the development of more accurate cryptocurrencies prediction
models.

1.1 Thesis Overview

This thesis is organized as follows: in Chapter 2 we present the main concepts
that are extensively used in the rest of this thesis.

Chapter 3 presents a novel approach of analyzing cryptocurrencies price
prediction, namely the progressive addition of features of different sources to
the dataset that proved an effective improvement in the accuracy of the pre-
dictions. Starting from considering only trading variables as inputs models we
gradually add to the dataset technical analysis variables and online informa-
tion, such as variables generated from social media discussions and online de-
velopers comments.

Chapter 4 presents a literature review of cryptocurrency time series predic-
tion.

Chapter 5 finally draws the conclusions of this thesis highliting results and
contributions and presenting futures works.
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Chapter 2

Background

2.1 Cryptocurrencies and Blockchain

Cryptocurrencies are virtual currencies based on Blockchain technology. The
Blockchain concept is built on the distributed ledger technology that offers
a consensus validation mechanism through a network of computers that fa-
cilitates peer-to-peer transactions without the need for an intermediary or a
centralized authority to update and maintain the information generated by the
transactions. The name Blockchain derives from the fact that when a transac-
tion is validated is added as a new “block” to an already existing chain of trans-
actions. Blockchain is one of the most promising technologies of the moment
whose applications range from proprietary networks used to process financial
transactions or insurance claims to platforms that can issue and trade equity
shares and corporate bonds [81]. The most valueble cryptocurrency at the mo-
ment is the Bitcoin, a form of electronic cash invented by an unknown person
or group of people using the pseudonym Satoshi Nakamoto, whose network of
nodes was started in 2009. Although this ecosystem was introduced in 2009,
its actual use began to grow only from 2013. Therefore, Bitcoin is a new entry
in currency markets, though it is officially considered as a commodity rather
than a currency and its price behaviour is still largely unexplored, presenting
new opportunities for researchers and economists to highlight similarities and
differences with standard financial currencies, also in view of its very different
nature with respect to more traditional currencies or commodities. Ethereum
and Litecoin are two other valuable cryptocurrencies at the moment. Ethereum
was invented in 2013 by programmer Vitalik Buterin and its network went live
on 2015. This cryptocurrency is second only to Bitcoin in market capitalization.
Litecoin is a peer-to-peer cryptocurrency and open-source software project de-
veloped by Charlie Lee and its network went live on 2011. The price volatility of
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cryptocurrencies, above all the Bitcoin one, is far greater than that of fiat cur-
rencies, providing significant potential in comparison to mature financial mar-
kets. Hence, forecasting cryptocurrencies price has also great implications not
only in the scientific field but also within economic and financial fields, serving
as a source of information for speculators and investors.

2.2 Time Series

2.2.1 Definition

A time series is a set of observations x;, each one being recorder at a specific
time t. A discrete-time time series is one in which the set T, of times at which
observations are made is a discrete set, as is the case, for example, when obser-
vations are made at fixed time intervals. Continuous-time time series are ob-
tained when observations are recorded continuously over some time interval,
for example when Tj = [0, 1].

2.2.2 Time Series Decomposition

Any time series is supposed to consist of three systematic components that can
be described and modelled. These are 'base level’, 'trend’ and 'seasonality’, plus
one non-systematic component called 'noise’. The base level is defined as the
average value in the series. A trend is observed when there is an increasing or
decreasing slope in the time series. Seasonality is observed when there is a re-
peated pattern between regular intervals, due to seasonal factors. Noise repre-
sents the random variations in the series. Every time series is a combination of
these four components, where base level and noise always occur, whereas trend
and seasonality are optional. Depending on the nature of the trend and season-
ality, a time series can be described as an additive or multiplicative model. This
means that each observation in the series can be expressed as either a sum or
a product of the components [57]. An additive model is described by following
the linear equation:

x(t) = BaseLevel + Trend + Seasonality+ Noise 2.1

A multiplicative model is instead represented by the following non-linear
equation:
x(t) = BaseLevel « Trend » Seasonality * Noise (2.2)

An additive model would be used when the variations around the trend
does not vary with the level of the time series whereas a multiplicative model
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would be appropriate if the trend is proportional to the level of the time series.
This method of time series decomposition is called "classical decomposition".

2.2.3 iid Noise

The simplest model for a time series is one in which there is no trend or sea-
sonal component and in which the observations are simply independent and
identically distributed (iid) random variables with zero mean. In this model
there is no dependence between observations. From a mathematical point of
view, we can state that for all =1 and all x, x3, ..., X, equation 2.3 is valid.

P[Xp+n < x1X1 = X1, 000, Xp = X | = P[Xppsn < X] (2.3)
Equation 2.3 shows that the knowledge of Xj, ..., X}, is of no value for predicting

the behaviour of Xn+ h. lid sequences are carachterized by constant mean,
variances and higher order moments.

random values

random values

1 100 200 300 400 500
t

Figure 2.1: Gaussian IIDs - Examples of iid sequences



8 CHAPTER 2. BACKGROUND

2.2.4 Stationarity

A time series {X;} is said to be stationary if its statistics does not change over
time. {X,} is stationary if its statistical properties are similar to those of the
time-shifted series {X;}, for each integer h. More specifically, a time series
can be strict stationary or weakly stationary.

A time series {X;} is said to be strictly stationary if equation 2.4 occurs for
every t and h.

(X100 X1) = (Xi41, 000 Xes1), (W) ENXN 2.4)

Strict stationarity is a more restrictive concept implying that the entire distri-
bution does not change over time.

A time series {X,} is said to be weakly stationary or covariance stationary, if
the mean, variance and covariances are invariant in time z.

In stationary data, the unconditional moments are time-invariant while the
conditional moments can change. Let us consider the stochastic process X;
that generates our time series observations that is well approximated by an
AR(1) model. The unconditional mean of Xt is given by equation 2.5.

E(X;)=pu, with p time-invariantand X;~ N(u, 02) (2.5)

The conditional mean of X; = ¢ X, +€;, withe; ~ N(0,0?), is given by equation
2.6.

E(Xt|Xt—1) = E(¢Xt—1|Xt—1) + E(€t|Xt—1) = ¢E(X; |Xt—l) =X  (2.6)

In 2.5 we assume E(e| X;—1) = 0 for exogeneity.

2.2.5 White Noise

If {X,} is a sequence of uncorrelated random variables, each with zero mean
and variance o2, then {Xt} is stationary. Such a sequence is referred to as a
white noise process with zero mean and variance o?. From a mathematical

point of view, this process is represented by equation 2.7.
{X;} =~ WN(0,0?) 2.7)

More specifically, a white noise process is an example of a weakly stationary
process.
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White Noise, 500 observations

|
0 50 100 150 200 250 300 350 400 450 500

Figure 2.2: Realization of a white noise process with 500 observations

2.2.6 Random Walk

A stochastic process with a unit root is non-stationary, namely shows statisti-
cal properties that change over time, including mean, variance and covariance,
and can cause problems in predictability of time series models. A common
process with unit root is the random walk.

A time series {X;} is said to be a random walk if as defined as in equation
2.8, where {¢,} ~ WN(0,0?) is a white noise process.

X;=€e1+ex+...+€;,, VIEN (2.8)

The more common way to define the random walk is in recursive form as the
sum of all white noise processes until ¢, as described in equation 2.9.

Xi=Xip+e€rp1+..+€,_1+€;, VYheN (2.9

The random walk is a non-stationary process because it contains a stochas-
tic trend formed by the accumulation of random shocks.
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1 Random Walk 5 Random Walks
20
0
-20
-40 -60
0 500 1000 0 500 1000
50 Random Walks 200 Random Walks
150 - 150
100 100
50 50
oN 0
-50 -50
-100 -100
500 1000 0 500 1000

Figure 2.3: Realization of random walks
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2.2.7 Linear Autoregressive Models

Autoregressive models are used to model temporal dependence and dynamic
behaviour of stationary time series. Their popularity derives from the Wold’s
Theorem which states that most weakly stationary time-series {X;} can be well
approximated by autoregressive processes.

A time series {X;} is said to be generated by an autoregressive model of or-
der 1, denoted with AR(1), if and only if, equation 2.10 yields.

X;=¢Xio1+e,  {et =WN(0,0%) (2.10)

Since the model is of order 1, its equation is characterized by a single regressor
and recursive substitution lead to equation 2.11.

Xt = (/)Xt—l +€r= (pZXt_g +¢)€t—l +€r=...

. nel (2.11)
=¢"Xt-n+¢" €r—pn-1)t...tPer_1 +€;

The autoregressive model of order 1 can also feature an "intercept” or "con-
stant" parameter a that determines the unconditional mean of the time-series.
An AR(1) model with intercept is represented by equation 2.12.

X;=a+d1 X, +€;, €~ WN(0,02) (2.12)
The unconditional mean of the time series is given by equation 2.13.
E(X))=E(a+¢pX;1+€;)=a+PE(X;1) =a+u (2.13)

Reminding that the unconditional mean of a stationary stochastic process is
time-invariant, we have E(X;) = E(X;-1) = u. From this consideration we prove
that the unconditional mean of the process is given by equation 2.14.

_a
_m

For a random walk process ¢ = 1 and y — oo. The unconditional moments of
a random walk process are not defined.

The autoregressive model of order 1 with equation 2.10, can be generalized
to a model of order p.

A time series {X;} is said to be generated by an autoregressive model of or-
der p, denoted AR(p), if and only if is represented by equation 2.15.

7 (2.14)

Xe=1 X1+ o Xia+ ot PpXi—pte, {e ~WN(0,07) (2.15)
An autoregressive model of order p generates stationary time series if

|p1+ P2+ ..+ Pp| < 1.
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2.3 Statistical Learning

Nowadays vast amounts of data are being generated in many fields, from aca-
demic research to agricultural, finance and industrial experiments. By analysing
these data it is possible to extract important patterns and insights that can be
used to improve solutions and business processes. This approach of learning
from data is known as statistical learning. Typical use cases of learning prob-
lems are predict the price of a stock on the basis of company performance mea-
sures and economic data, identify and group identity documents from digitized
images, identify the risk factors for prostate cancer, based on clinical and de-
mographic variables and so on and so forth. The learning problems can be cat-
egorized as either supervised or unsupervised. In supervised learning, the goal
is to predict the value of an outcome measure based on a number of input mea-
sures. In this scenario the outcome variable can be quantitative, for example a
stock price or categorical, such as heart attack/no Heart attack. The sample
data are grouped into a training set of data, in which the outcome and feature
measurements for a set of objects are observed. Using this data a prediction
model, or learner, can be built and used to predict the outcome for new unseen
objects. A good model is one that accurately predicts such an outcome. This
kind of problem is called "supervised" because of the presence of the outcome
variable to guide the learning process. In the unsupervised learning problem
there is no measurements of the outcome and only the input features are ob-
served. The task in this problem is to describe how the data are organized or
clustered.

The distinction in output type, namely between quantitative and categori-
cal variables, has led to a naming convention for the prediction tasks. We re-
fer to regression tasks when we predict quantitative outputs, and classification
when we predict qualitative outputs. Inputs also vary in measurement type
and can includes both qualitative and quantitative input variables. These have
also led to distinctions in the types of methods that are used for prediction:
some methods are defined most naturally for quantitative inputs, some most
naturally for qualitative and some for both. Qualitative variables are typically
represented numerically by codes. The easiest case is when there are only two
classes or categories, such as "success" or "failure", "survived" or "died". These
are often represented by a single binary digit or bit as 0 or 1, or else by 1 and
1. Such numeric codes are sometimes referred to as targets. When there are
more than two categories, several alternatives are available. The most useful
and commonly used coding is via dummy variables. Here a K-level qualita-
tive variable is represented by a vector of K binary variables or bits, only one of
which is “on” at a time. Although more compact coding schemes are possible,
dummy variables are symmetric in the levels of the factor [51].
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2.3.1 Linear Regression Models and Least Squares

Let us consider an input set of data represented by the vector X T — (Xl, X5, ..., Xp),
and want to predict a real-valued output Y. The linear regression model has the
form of equation 2.16.

14
fO=Po+ ) X;Bj. (2.16)
j=1

The linear model either assumes that the regression function E (Y|X ) is linear,
or that the linear model is a reasonable approximation. Here the §; ’s are un-
known parameters or coefficients, and the variables X; can come from differ-
ent sources, such as quantitative inputs, transformations of quantitative inputs,
such as log, square-root or square, basis expansions, such as X, = Xlz, X3 = Xf,
leading to a polynomial representation, numeric or "dummy" coding of the
levels of qualitative inputs, interactions between variables, for example, X3 =
X1 - X». No matter the source of the X; , the model is linear in the parame-
ters. Typically we have a set of training data (x, y1), ..., (X, yn) from which to
estimate the parameters . Each x; = (xil,xig,...,xip)T is a vector of feature
measurements for the ith case. The most popular estimation method is least
squares, in which we pick the coefficients g = (B, B1, ..., ﬁp)T to minimize the
residual sum of squares represented in equation 2.17.

p

N 9 N 2
Rss(ﬁ):;(%_f(xi)) :Z(J’iﬁo—zxijﬁj) . 2.17)
1= J

i=1 =1

From a statistical point of view, this criterion is reasonable if the training ob-
servations (x;, y;) represent independent random draws from their population.
Even if the x;’s were not drawn randomly, the criterion is still valid if the y;’s are
conditionally independent given the inputs x;. Figure 2.4 illustrates the geome-
try of least-squares fitting in the R”*!-dimensional space occupied by the pairs
(X, Y).

The purpose is to minimize equation 2.17. Let us denote X the N x (p + 1)
matrix with each row an input vector (with a 1 in the first position), and simi-
larly let y be the N-vector of outputs in the training set. With these considera-
tions the residual sum-of-squares can be written as equation 2.18.

RSS(B) = (y-XB)" (y—Xp). (2.18)

This is a quadratic function in the p+1 parameters. Differentiating with respect
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Figure 2.4
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to f we obtain equation 2.19.

PRSS . (2.19)
—— =2x'X.
opop”

Assuming that X has full column rank, and hence XX is positive definite, the
first derivative can be set to zero, leading to the unique solution represented by
equation 2.20.

B=(x"x) Xly. (2.20)

The predicted values at an input vector x, are given by f(xo) = (1 : xo) TB. The
fitted values at the training inputs are expressed by equation 2.21 with y; =
f (xi)-

y=XpB= X(XTX)_IXTy. 2.21)

2.3.2 Linear Methods for Classification: Logistic Regression

In this scenario the predictor takes values in a discrete set and it is always pos-
sible to divide the input space into a collection of regions labeled according to
the classification. The boundaries of these regions can be rough or smooth,
depending on the prediction function. For an important class of procedures,
these decision boundaries are linear and they are known as linear methods for
classification.

The logistic regression model arises from the desire to model the posterior
probabilities of the K classes via linear functions in x, while at the same time
ensuring that they sum to one and remain in [0,1]. The model has the form
represented in equation 2.22.

logPr(G—l‘X—x) g
10 1
Pr(G:K(X:x)
log Pr(G:Z‘X:x) ot flx
Pr(G:K(X:x) 2.22)

PdG:K—ﬂX:@
) = Bk-10 + Bg_1%.

log
Pr(G - K(X —x
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The model is specified in terms of K — 1 log-odds or logit transformations, re-
flecting the constraint that the probabilities sum to one. Although the model
uses the last class as the denominator in the odds-ratios, the choice of denomi-
nator is arbitrary in that the estimates are equivariant under this choice. Equa-
tion 2.23 shows that the probabilities clearly sum to one.

Pr(G:k‘X:x): exp(ﬂko+ﬁ]€X) k=1,.,K-1
1+Z£_11 exp(ﬁlo+,31Tx), , (2.23)
1
Pr{G=K|X=x|=
( ‘ ) 1+3,5 exp(Bio + B[ x)

Logistic regression can be binomial, ordinal or multinomial. When K = 2, the
model is binomial and it is especially simple, since there is only a single linear
function and the observed outcome for a dependent variable can have only two
possible types, encoded with 0 and 1 for example. It is widely used in biostatis-
tical applications where binary responses (two classes) occur quite frequently.
For example, patients survive or die, have heart disease or not, or a condition is
present or absent. Multinomial logistic regression deals with situations where
the outcome can have three or more possible types that are not ordered while
ordinal logistic regression deals with dependent variables that are ordered.

2.3.3 Non-linear Methods for Classification: Support Vector Ma-
chines

This section describes generalizations of linear decision boundaries for classi-
fication, covering extensions to the non-separable case, where the classes over-
lap. These techniques are then generalized to what is known as the support
vector machine, which produces nonlinear boundaries by constructing a linear
boundary in a large, transformed version of the feature space. Support Vector
Machines are supervised learning algorithms used for machine learning appli-
cations to solve classification and regression problems. The original SVM algo-
rithm was introduced by Vapnik and Chervonenkis [112] in 1963. In 1992 Boser,
Guyon and Vapnik [15] developed a new SVM version for non-linear classifica-
tion problems by applying kernel functions to maximum margin hyperplanes.
SVM’s are based on statistical learning frameworks and they are one of the most
robust and commonly used prediction methods in machine learning applica-
tions. The original SVM implementation is a linear classifier involving a lin-
ear kernel for linearly separable data. In this problems the input space can al-
ways be divided into a collection of regions with linear decision boundaries. In
a p-dimensional space a linear classifier is a (p — 1)-dimensional hyperplane
described by equation 3.10, where w is the normal vector to the hyperplane,
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(x1,y1),..., (xp, yn) are n points of a given training data set and y; is the class to
which the point x; belongs.

wix—-b=0 (2.24)

The hyperplane that best classifies the data is the one that represents the
largest separation, better known as margin, between the classes. Therefore,
this hyperplane is chosen so that the distance from it to the nearest data point
on each side is maximized. If the data is linearly separable, then such a hy-
perplane exists and it is known as the maximum-margin hyperplane. In 1992
Boser, Guyon and Vapnik introduce an extension of the original SVM algorithm
useful when dealing with non-linearly separable data where the classes overlap.
In this cases the SVM produces non-linear boundaries by constructing a linear
boundary in a large, transformed version of the feature space. More specifi-
cally, this extended version creates non-linear classifiers by simply replacing
every dot product in the 3.10 with a non-linear kernel function. These kernel
functions allow the original space to be mapped to a higher dimensional fea-
ture space, thus making the separation between classes more obvious in this
transformed space. The most commonly used kernels are listed below.

e Polynomial: k(%, 7) = (%- )¢

_1E-7112
e Gaussian radial basis function (rbf): k(X,y) =e 202

* Hyperbolic tangent: k(X, y) = tanh(kX-y + c), where k>0 and c <0

2.3.4 Neural Networks

The concept of artificial neural network was introduced in 1958 by Frank Rosen-
blatt proposing the first single feed forward neural network, also known as per-
ceptron. The term neural network has evolved to encompass a large class of
models and learning methods. A neural network is a two-stage regression or
classification model, typically represented by a network diagram as in 2.5. This
network applies both to regression or classification. For regression, typically
K =1 and there is only one output unit Y; at the top. However, these networks
can handle multiple quantitative responses in a seamless fashion. For K-class
classification, there are K units at the top, with the kth unit modeling the prob-
ability of class k. There are K target measurements Yy, k = 1,..., K, each being
coded as a 0 — 1 variable for the kth class. Derived features Z;, are created from
linear combinations of the inputs, and then the target Y} is modeled as a func-
tion of linear combinations of the Z,, as descriebed in equation 2.25, where
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Figure 2.5: Schematic of a single hidden layer, feed-forward neural network
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Z=(%,2,..s Zm)and T = (T3, Tz, ..., Tk).

Zm=0(aom+ a;X), m=1,...M
Te=Bok+PiZ, k=1,..,K (2.25)
fie(X)=gk(T), k=1,...K.

The activation function (v) is usually chosen to be the sigmoid (v) =1/(1+e7").
Sometimes Gaussian radial basis functions are used for the (v), producing what
is known as a radial basis function network. Neural networks are usually struc-
tured with an additional bias unit feeding into every unit in the hidden and
output layers. Thinking of the constant 1 as an additional input feature, this
bias unit captures the intercepts ag, and Sy in model. The output function
gx(T) allows a final transformation of the vector of outputs T. For regression
tasks the identity function gx(T) = Ty is usually used. Early work in K-class
classification also used the identity function, but this was later abandoned in
favor of the softmax function described in equation 2.26.

Tk

gu(T) = (2.26)

T el
The units in the middle of the network, computing the derived features Z,,, are
called hidden units because the values Z,, are not directly observed. In general
there can be more than one hidden layer. We can think of the Z,, as a basis
expansion of the original inputs X; the neural network is then a standard linear
model, or linear multilogit model, using these transformations as inputs.

The neural network model has unknown parameters, often called weights,
and the main goal is to seek values for them that make the model fit the training
data well. Let us denote the complete set of weights by 6 showed in equation
2.27.

{aOm, ay;m=1,2,..., M} M(p + 1) weights,
(2.27)
{Bo, Brik=1,2,.., K} K(M+1)weights.

For regression purposes, let us use the sum-of-squared errors as error function
2.28.

R(0) = éi(yik_fk(xi))z- (2.28)

For classification purposes we can use either squared error or cross-entropy as
our measure of fit 2.29 with the corresponding classifier G(x) = argmax;_fi(x).

N K
R(O)=-)_Y yixlog fi(x:). (2.29)
i=1k=1

i=1
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With the softmax activation function and the cross-entropy error function, the
neural network model is exactly a linear logistic regression model in the hid-

den units, and all the parameters are estimated by maximum likelihood. The
generic approach to minimizing R(0) is by gradient descent, called back-propagation
in this setting. Because of the compositional form of the model, the gradient

can be easily derived using the chain rule for differentiation. This can be com-
puted by a forward and backward sweep over the network, keeping track only

of quantities local to each unit. Let z,;; = o(aom, + a;xi), from 2.25 and let

zi = (z1i,..,2pi). Then the error function R(0) is described by equation 2.30

with derivatives 2.31.

N N K 2
RO)=) Ri=) > (vik—felx))". (2.30)
i=1 i=1k=1
OR;
aﬁkl =—2(yir - fk(xi))g;c(ﬁlzzi)zmi;
P 2.31)
3 —=- > 2(vik _fk(xi))g;c(ﬁ]{zi)ﬁkmoj(“;];@xi)xil-
Ami k=1

Given these derivatives, a gradient descent update at the (r + 1)st iteration has
the form of equation 2.32 where y, is a constant usually known as learning rate.

N OR;
(r+1) _ a(n) 1
'Bkm - km_yrzaﬁ(r) !
’jvl 0}’;’" (2.32)
(r+1) _ (1) i
Ly _aml_yrza G
i=10a, .,

The derivatives of the error function 2.31 can be written as in equation 2.33.

OR;

i 2.33
OR; C ey ( )
aaml = SmiAil-

The quantities 0; and s,,; are "errors" from the current model at the output
and hidden layer units, respectively. From their definitions, these errors satisfy
equation 2.34 known as the back-propagation equations.

K
Smi =0 (a),xi) Y BrmOri. (2.34)
k=1
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Using this, the updates in 2.32 can be implemented with a two-pass algorithm.
In the forward pass, the current weights are fixed and the predicted values fk(xi)
are computed from formula 2.25. In the backward pass, the errors d; are com-
puted, and then back-propagated via 2.34 to give the errors s,,;. Both sets of
errors are then used to compute the gradients for the updates in 2.32, via 2.33.
This two-pass procedure is what is known as back-propagation.
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Chapter 3

Cryptocurrency Predictions

3.1 ForecastingBitcoin closing price series usinglin-
ear regression and neural networks models

In this thesis work we forecast daily closing price series of Bitcoin, Litecoin and
Ethereum cryptocurrencies, using data on prices and volumes of prior days.
Cryptocurrencies price behaviour is still largely unexplored, presenting new
opportunities for researchers and economists to highlight similarities and dif-
ferences with standard financial prices. We compared our results with various
benchmarks: one recent work on Bitcoin prices forecasting that follow differ-
ent approaches, a well-known paper that uses Intel, National Bank shares and
Microsoft daily NASDAQ closing prices spanning a 3-year interval and another,
more recent paper which gives quantitative results on stock market index pre-
dictions. We followed different approaches in parallel, implementing both sta-
tistical techniques and machine learning algorithms: the Simple Linear Regres-
sion (SLR) model for uni-variate series forecast using only closing prices, and
the Multiple Linear Regression (MLR) model for multivariate series using both
price and volume data. We used two artificial neural networks as well: Multi-
layer Perceptron (MLP) and Long short-term memory (LSTM). While the entire
time series resulted to be indistinguishable from a random walk, the partition-
ing of datasets into shorter sequences, representing different price “regimes”,
allows to obtain precise forecast as evaluated in terms of Mean Absolute Per-
centage Error(MAPE) and relative Root Mean Square Error (relativeRMSE). In
this case the best results are obtained using more than one previous price, thus
confirming the existence of time regimes different from random walks. Our
models perform well also in terms of time complexity, and provide overall re-
sults better than those obtained in the benchmark studies, improving the state-
of-the-art.

23
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Bitcoin is the world’s most valuable cryptocurrency, a form of electronic
cash, invented by an unknown person or group of people using the pseudonym
Satoshi Nakamoto [87], whose network of nodes was started in 2009. Although
the system was introduced in 2009, its actual use began to grow only from
2013. Therefore, Bitcoin is a new entry in currency markets, though it is of-
ficially considered as a commodity rather than a currency, and its price be-
haviour is still largely unexplored, presenting new opportunities for researchers
and economists to highlight similarities and differences with standard financial
currencies, also in view of its very different nature with respect to more tradi-
tional currencies or commodities. The price volatility of Bitcoin is far greater
than that of fiat currencies [19], providing significant potential in comparison
to mature financial markets [77] [29] [30]. According to [31] website, one of the
most popular sites that provides almost real-time data on the listing of the vari-
ous cryptocurrencies in global exchanges, on May 2019 Bitcoin market capital-
ization value is valued at approximately 105 billion of USD. Hence, forecasting
Bitcoin price has also great implications both for investors and traders. Even if
the number of bitcoin price forecasting studies is increasing, it still remains lim-
ited [74]. In this work, we approach the forecast of daily closing price series of
the Bitcoin cryptocurrency using data on prices and volumes of prior days. We
compare our results with three well-known recent papers, one dealing with Bit-
coin prices forecasting using other approaches, one forecasting Intel, National
Bank shares and Microsoft daily NASDAQ prices and one on stock market index
forecasting using fusion of machine learning techniques.

The first paper we compare to, tries to predict three of the most challeng-
ing stock market time series data from NASDAQ historical quotes, namely In-
tel, National Bank shares and Microsoft daily closed (last) stock price, using a
model based on chaotic mapping, firefly algorithm, and Support Vector Regres-
sion (SVR) [62]. In the second one [74] used different machine learning tech-
niques such as Artificial Neural Networks (ANN) and Support Vector Machines
(SVM) to predict, among other things, closing prices of Bitcoin. The third paper
we consider in our work proposes a two stage fusion approach to forecast stock
market index. The first stage involves SVR. The second stage uses ANN, Ran-
dom Forest (RF) and SVR [95]. We decided to predict these three share prices to
give a sense of how Bitcoin is different from traditional markets. Moreover, to
enrich our work, we applied the models also to two other two well-know cryp-
tocurrencies: Ethereum and Litecoin. In this work we forecast daily closing
price series of Bitcoin cryptocurrency using data of prior days following differ-
ent approaches in parallel, implementing both statistical techniques and ma-
chine learning algorithms. We tested the chosen algorithms on two datasets:
the first consisting only of the closing prices of the previous days; the second
adding the volume data. Since Bitcoin exchanges are open 24/7, the closing
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price reported on Coinmarketcap we used, refers to the price at 11:59 PM UTC
of any given day. The implemented algorithms are Simple Linear Regression
(SLR) model for univariate series forecast, using only closing prices; a Multiple
Linear Regression (MLR) model for multivariate series, using both price and
volume data; a Multilayer Perceptron and a Long Short-Term Memory neural
networks tested using both the datasets. The first step consisted in a statistical
analysis of the overall series. From this analysis we show that the entire series
are not distinguishable from a random walk. If the series were truly random
walks, it would not be possible to make any forecasts. Since we are interested
in prices and not in price variations, we avoided the time series differencing
technique by introducing and using the novel presented approach. Therefore,
each time series was segmented in shorter overlapping sequences in order to
find shorter time regimes that do not resemble a random walk so that they can
be easily modeled. Afterwards, we run all the algorithms again on the parti-
tioned dataset.

The reminder of this work is organized as follows. Section 2 presents the
methodology, briefly describing the data, their pre-processing, and finally the
models used. Section 3 presents and discuss the results. Section 4 draws the
conclusions.

3.1.1 Methods

In this section we first introduce some notions on time series analysis, which
helped us to take the operational decisions about the algorithms we used and to
better understand the results presented in the following. Then, we present the
dataset we used, including its pre-processing analysis. Finally we introduce our
proposed algorithms with the metrics employed to evaluate their performance
and the statistical tools we adopted.

3.1.2 Time Series Analysis
Time Series Components

Any time series is supposed to consist of three systematic components that can
be described and modelled. These are 'base level’, 'trend’ and 'seasonality’, plus
one non-systematic component called 'noise’. The base level is defined as the
average value in the series. A trend is observed when there is an increasing or
decreasing slope in the time series. Seasonality is observed when there is a re-
peated pattern between regular intervals, due to seasonal factors. Noise repre-
sents the random variations in the series. Every time series is a combination of
these four components, where base level and noise always occur, whereas trend
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and seasonality are optional. Depending on the nature of the trend and season-
ality, a time series can be described as an additive or multiplicative model. This
means that each observation in the series can be expressed as either a sum or
a product of the components [57]. An additive model is described by following
the linear equation:

y(t) = BaseLevel + Trend + Seasonality+ Noise 3.1)

A multiplicative model is instead represented by the following non-linear
equation:
y(t) = BaseLevel « Trend *» Seasonality * Noise (3.2)

An additive model would be used when the variations around the trend
does not vary with the level of the time series whereas a multiplicative model
would be appropriate if the trend is proportional to the level of the time se-
ries. This method of time series decomposition is called "classical decomposi-
tion" [57].

Statistical Measures

The statistical measures we calculated for each time series are the mean, la-
belled with p, the standard deviation o and the trimmed mean fi, obtained dis-
carding a portion of data from both tails of the distribution. The trimmed mean
is less sensitive to outliers than the mean, but it still gives a reasonable estimate
of central tendency and can be very helpful for time series with high volatility.

3.1.3 Collected data

We tested our algorithms on six daily price series. Three of them are stock mar-
ket series, all the data were extracted from the 'Historical Data’ available on
[116] website; the other ones are cryptocurrencies, namely Bitcoin, Ethereum
and Litecoin price daily series, all the data were extracted from /31] website.

* Daily stock market prices for Microsoft Corporation (MSFT), from 9/12/2007
to 11/11/2011.

* Daily stock market prices for Intel Corporation (INTC), from 9/12/2007 to
11/11/2010.

* Daily stock market prices for National Bankshares Inc. (NKSH), from
6/27/2008 to 8/29/2011.
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 Daily Bitcoin, Ethereum and Litecoin price series, from 15/11/2015 to
12/03/2020.

We state once more that we choose these price series and the related time
intervals as benchmark to compare our results with well known literature re-
sults obtained by using other methods.

Specifically, we have chosen for the stock market series the same time in-
tervals chosen in [62]. The choice of Bitcoin as criptocurrency is quite natu-
ral since it represents about 60% of the Total Market Capitalization. We chose
Ethereum and Litecoin since they are among the most important and well-
known cryptocurrencies. It is worth noting that, for the stock market series we
used the same data of the work we compare to, whereas for the cryptocurren-
cies we used all the available data to have more significant results.

The dataset was divided into two sets, a training part and a testing part.
After some empirical test the partition of the data which lead us to optimal so-
lutions was 80% of the daily data for the training dataset and the remaining for
the testing dataset.

3.1.4 Data pre-processing

For both models we prepared our dataset in order to have a set of inputs (X)
and outputs (Y) with temporal dependence. We performed a one-step ahead
forecast: our output Y is the value from the next (future) point of time while
the inputs X are one or several values from the past, i.e. the so called lagged
values. From now on we identify the number of used lagged values with the lag
parameter. In the Linear Regression and Univariate LSTM models the dataset
includes only the daily closing price series, hence there is only one single lag
parameter for the close feature. On the contrary, in the Multiple Linear Regres-
sion and Multivariate LSTM models the dataset includes both close and volume
(USD) series, hence we use two different /ag parameters, one for the close and
one for the volume feature. In both cases, we attempted to optimize the predic-
tive performance of the models by varying the lag from 1 to 10.

3.1.5 Univariate versus Multivariate Forecasting

A univariate forecast consists of predicting time series made by observations
belonging to a single feature recorded over time, in our case the closing price of
the series considered. A multivariate forecast is a forecast in which the dataset
consists of the observations of several features. In our case we used:

e for BTC, ETH and LTC series all the features provided by Coinmarketcap
website: Open, High, Low, Close, Volume.
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e for MSFT, INTC, NKSH series all the features provided by Yahoofinance
website: Date, Open, High, Low, Close, Volume.

We observed that adding features to the dataset did not lead to better predic-
tions, but performance and sometimes also results worsened. For this reason,
we decided to use in the multivariate analysis only the close and volume fea-
tures, that provided the best results.

3.1.6 Statistical Analysis

As a first step we carried out a statistical analysis in order to check for non-
stationarity in the time series. We used the augmented Dickey-Fuller test and
autocorrelation plots [9] [17]. A stochastic process with a unit root is non-stationary,
namely shows statistical properties that change over time, including mean, vari-
ance and covariance, and can cause problems in predictability of time series
models. Acommon process with unit root is the random walk. Often price time
series show some characteristics which makes them indistinguishable from a
random walk. The presence of such a process can be tested using a unit root
test.

The ADF test is a statistical test that can be used to test for a unit root in
a univariate process, such as time series samples. The null hypothesis Hj of
the ADF test is that there is a unit root, with the alternative H, that there is no
unit root. The most significant results provided by this test are the observed test
statistic, the Mackinnon’s approximate p-value and the critical values at the 1%,
5% and 10% levels.

The test statistic is simply the value provided by the ADF test for a given
time series. Once this value is computed it can be compared to the relevant
critical value for the Dickey-Fuller Test.

Critical values, usually referred to as a levels, are an error rate defined in the
hypothesis test. They give the probability to reject the null hypothesis Hy. So if
the observed test statistic is less than the critical value (keep in mind that ADF
statistic values are always negative [9]), then the null hypothesis Hj is rejected
and no unit root is present.

The p-value is instead the probability to get a "more extreme" test statistic
than the one observed, based on the assumed statistical hypothesis Hy, and its
mathematical definition is shown in equation 3.3.

Pvalue = P(t = Lobserved HO) (3.3)

The p-value is sometimes called significance, actually meaning the close-
ness of the p-value to zero: the lower the p-value, the higher the significance.



3.1. PRICE SERIES FORECASTING 29

In our analysis we performed this test using the adfuller() function provided
by the statsmodels Python library, and we chose a significance level of 5%.

Furthermore, the autocorrelation plot, also known as correlogram, allowed
us to calculate the correlation between each observation and the observations
at previous time steps, called lag values. In our case we employed the autocor-
relation_plot() function provided by the python Pandas library [78].

3.1.7 Forecasting

We decided to follow two different approaches: the first uses two well-known
statistical methods: Linear Regression (LR) and Multiple Linear Regression (MLR).
The second uses two very common neural networks (NN): Multilayer Percep-
tron (MLP) NN and Long Short-Term Memory (LSTM) NN. The reasons of this
choices are explained below.

Linear Regression and Multiple Linear Regression

Linear regression is a linear approach for modelling the relationship between
a dependent variable and one independent variable, represented by the main
equation:

y=bo+Db %, (3.4)

where y and X; are the dependent and the independent variable respec-
tively, while by is the intercept and b is the vector of slope coefficients. In our
case the components of the vector X;, our independent variable, are the values
of the closing prices of the previous days. Therefore, X; size is the value of the
lag parameter. In our case y represents the closing price to be predicted.

This algorithm aims to find the curve that best fits the data, which best de-
scribes the relation between the dependent and independent variable. The al-
gorithm finds the best fitting line plotting all the possible trend lines through
our data and for each of them calculates and stores the amount (y — j/)z, and
then choose the one that minimizes the squared differences sum ¥ ;(y; — 7:)?,
namely the line that minimizes the distance between the real points and those
crossed by the line of best fit.

We then tried to forecast with multiple independent variables, adding to
the close price feature the observations of several features, including volume,
highest value and lowest value of the previous day. These information were
gained from Coinmarketcap website. In these cases we used a Multiple Linear
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Regression model (MLR). The MLR equation is:
- - n -
y:b0+b1-?cl+...+bn~?cn:b0+2bi-?ci (3.5)
i=1

where the index i refers to a particular independent variable and 7 is the di-
mension of the independent variables space.

We used the Linear and Multiple regression model of scikit learn [97]. We
decided to use this two models for several reasons: they are simple to write, use
and understand, they are fast to compute, they are commonly used models and
fit well to datasets with few features, like ours. Their disadvantage is that they
can model only linear relationships.

Multilayer Perceptron

A multilayer perceptron (MLP) is a feedforward artificial neural network that
generates a set of outputs from a set of inputs. It consists of at least three lay-
ers of neurons: an input layer, a hidden layer and an output layer. Each neu-
ron, apart from the input ones, has a nonlinear activation function. MLP uses
backpropagation for training the network. In our model we keep the structure
as simple as possible, with a single hidden layer. Our inputs are the closing
prices of the previous days, where the number of values considered depends
on the lag parameter. The output is the forecast price. The optimal number of
neurons were found by optimizing the network architecture on the number of
neurons itself, varying it in an interval between 5 and 100. We used the Python
Keras library [26].

LSTM Networks

Long Short-Term Memory networks are nothing more than a prominent vari-
ations of Recurrent Neural Network (RNN). RNN’s are a class of artificial neu-
ral network with a specific architecture oriented at recognizing patterns in se-
quences of data of various kinds: texts, genomes, handwriting, the spoken word,
or numerical time series data emanating from sensors, markets or other sources
[54]. Simple recurrent neural networks are proven to perform well only for
short-term memory and are unable to capture long-term dependencies in a
sequence. On the contrary, LSTM networks are a special kind of RNN, able at
learning long-term dependencies. The model is organized in cells which in-
clude several operations. LSTM hold an internal state variable, which is passed
from one cell to another and modified by Operation Gates (forget gate, input
gate, output gate). These gates control how much of the internal state is passed
to the output and work in a similar way to other gates. These three gates have
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independent weights and biases, hence the network will learn how much of the
past output and of the current input to retain and how much of the internal
state to send out to the output.

In our case the inputs are the closing prices of the previous days and the
number of values considered depends on the lag parameter. The output is the
forecast price. We used the Keras framework for deep learning. Our model
consists of one stacked LSTM layer with 64 units each and the densely con-
nected output layer with one neuron. We used Adam optimizer and MSE (mean
squared error) as a loss.

We optimized our LSTM model searching for the best set of epochs and
batch size "hyperparameters" values. These hyperparameters strongly depend
on the number of observations available for the experiment. Due to the re-
cently birth of the cryptocurrency markets, the dimensions of our datasets are
quite limited (around 1000 observations), therefore we decided to vary the epochs
hyperparameter from 300 to 800 with a step of 100. The Keras LSTM algorithm
we used sets as default value for batch size 32. So, for each fixed epoch, we
trained the model varying the batch size within the interval [22,82] with a step
of 10. We did not take into account values less than 300 epochs, nor greater
than 800 in order to avoid underfitting and overfitting problems. Furthermore,
we did not consider batch size values less than 22, since they would lead to ex-
tremely long training times. Similarly, batch size values greater than 82 would
not allow to find a good local minimum point of the chosen loss function dur-
ing the learning procedure. The results obtained during the hyperparameters
tuning are shown in figure 3.1.

This figure shows the MAPE error as a function of the batch size hyperpa-
rameter, for each fixed epoch. As can be seen from the figure, we considered the
batch size equal to 72 to be the optimal value. In fact, it is an excellent compro-
mise, having a low MAPE value, which is also practically the same for all tested
epochs. The optimal choice for the epochs hyperparameter is 600, which is the
one that minimizes the MAPE error for batch size equal to 72, and is consis-
tently among the best choices for almost all batch sizes considered. Therefore,
the best set of epochs and batch size "hyperparameters" values we chose is 600
and 72, respectively.

3.1.8 Time Regimes

The time series considered are found to be indistinguishable from a random
walk. This peculiarity is common for time series of financial markets, and in
our case is confirmed by the predictions of the models, in which the best result
is obtained considering only the price of the previous day.
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Figure 3.1: Bitcoin hyperparameters tuning results

The purpose is to find an approach that allow us to avoid time series dif-
ferencing technique, in view of the fact that we are interested in prices and not
in price variations represented by integrated series of d-order. For this reason,
each time series was segmented into short partially overlapping sequences, in
order to find if shorter time regimes are present, where the series do not resem-
ble a random walk. Finally, to continue with the forecasting procedure, a train
and a test set were identified within each time regime.

For each regime we always sampled 200 observations - namely 200 daily
prices. The beginning of the next regime is obtained with a shift of 120 points
from the previous one. Thus, every regime is 200 points wide and has 80 points
in common with the following one.

We chose aregime length of 200 days because, in this way, we obtain at least
5 regimes (from 5 to 12) for each time series to test the effectiveness of our algo-
rithms, without excessively reducing the number of samples needed for train-
ing and testing. The choice was determined also according to the following:
we performed the augmented Dickey-Fuller test on subsets of the data, starting
from the whole set and progressively reducing the data window and sliding it
through the data. The first subset of data that does not behave as random walks
appears at time interval of 230 days, which we rounded to 200.

Since the time series considered have different lengths, the partition in regimes
has generated:

* Bitcoin, Ethereum and Litecoin: 12 regimes
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* Microsoft: 8 regimes
* Intel and National Bankshares: 5 regimes

From a mathematical point of view, the used approach can be described as fol-
lows.

Let us target a vector 0A along the ¢ axis, with length 200. This vector is
identified by the points O(1,0), A(a,0) = (200,0). The length of this vector rep-
resents the width of each time regime.

Let OH be a fixed translation vector along the t axis, identified by the points
0O(1,0) and H(h,0) = (120,0). The length of OH represents the translation size.

For the sake of simplicity, let us label the OA and OH vectors with A and H.
. Let A’ be the vector A shifted by H and A" the vector A shifted by n times
H.

Therefore, the vector that identifies the nth sequence to be sampled along
the series is given by:

A"=A+nH (3.6)

where n € [0, %], being D the dimension of the sampling space, A the time
regimes width and h the translation size.
So the nth time regime is given by:

R" = f(A") = f(A+nH) (3.7)

where f is the function that maps the values along the ¢ axis (dates) to the
respective regimes y values (actual prices).

3.1.9 Performance Measures

To evaluate the effectiveness of different approaches, we used the relative Root
Mean Square Error (rRMSE) and the Mean Absolute Percentage Error (MAPE),
defined respectively as:

f’) 3.8)

1 N
lativeRMSE = | —
relative \Nl;( "

MAPE =

(y ’ 3.9)

In both formulas y; and f; represent the actual and forecast values, and N is
the number of forecasting periods. These are scale free performance measures,
so that they are well appropriate to compare model performance results across
series with different orders of magnitude, as in our study.
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3.1.10 Results
3.1.11 Time Series Analysis

In figure 3.2 we report the decomposition of Bitcoin (a-d) and Microsoft (e-h)
time series, for comparison purposes, as obtained using the seasonal_decompose()
method, provided by the Python statsmodels library [105].
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Figure 3.2: Decomposition of Bitcoin (a-d) and Microsoft (e-h) time series

The seasonal_decompose() method requires to specify whether the model is
additive or multiplicative. In the Bitcoin time series, the trend of increase at the
beginning is almost absent (from around 2016-04 to 2017-02); in later years, the
frequency and the amplitude of the cycle appears to change over time. The Mi-
crosoft time series shows a non-linear seasonality over the whole period, with
frequency and amplitude of the cycles changing over time. These considera-
tions suggest that the model is multiplicative. Furthermore, if we look at the
residuals, they look quite random, in agreement with their definitions. The Bit-
coin residuals are likewise meaningful, showing periods of high variability in
the later years of the series.

It is also possible to group the data at seasonal intervals, observing how the
values are distributed and how they evolve over time. In our work we grouped
the data of the same month over the years we considered. This is achieved with
the 'Box plot’ of month-wide distribution, shown in figure 3.3 (a: Bitcoin; b:
Microsoft). The Box plot is a standardized way of displaying the distribution of
data based on five numbers summary: minimum, first quartile, median, third
quartile and maximum. The box of the plot is a rectangle which encloses the
middle half of the sample, with an end at each quartile. The length of the box
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Figure 3.3: Seasonality of Bitcoin (a) and Microsoft (b) time series

is thus the inter-quartile range of the sample. The other dimension of the box
has no meaning. A line is drawn across the box at the sample median. Whiskers
sprout from the two ends of the box defining the outliers range. The box length
gives an indication of the sample variability, and for the Bitcoin samples shows
a large variance, in almost all months, except for April, September and Octo-
ber. Not surprisingly, bitcoin volatility is much higher than Microsoft one. The
line crossing the box shows where the sample is centred, i.e. the median. The
position of the box in its whiskers and the position of the line in the box also
tell us whether the sample is symmetric or skewed, either to the right or to the
left. The plot shows that the Bitcoin monthly samples are therefore skewed
to the right. The top whiskers is much longer than the bottom whiskers and
the median is gravitating towards the bottom of the box. This is due to the
very high prices that Bitcoin reached throughout the period between 2017 and
2018. These large values tend to skew the sample statistics. In Microsoft, an al-
ternation between samples skewed to the left and samples skewed to the right
occurs, except for the sample of October that shows a symmetric distribution.
Lack of symmetry entails one tail being longer than the other, distinguishing
between heavy-tailed or light-tailed populations. In the Bitcoin case we can
state that the majority of the samples are left skewed populations with short
tails. Microsoft shows an alternation between heavy-tailed and light-tailed dis-
tributions. We can see that some Microsoft samples, particularly those with
long tails, present outliers, representing anomalous values. This is due to the
fact that heavy tailed distributions tend to have many outliers with very high
values. The heavier the tail, the larger the probability that you will get one or
more disproportionate values in a sample.
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Table 3.1: Time Series Statistical Measures

Series 7} o 7}
BTC 4931,3 3970,0 4593,1
ETH 216,8 239,8 171,2
LTC 55,9 58,0 45,6
MSFT 26,2 3,9 26,3
INTC 19,9 3,6 19,9
NKSH 24,3 3,9 24,5

Tables 3.1 and 3.2 show the statistics calculated for each time series and for
each short time regime. The unit of measurement of the values in the tables
is the US dollar ($). In table 3.1 we can observe that the only series for which
the trimmed mean, obtained with trim_mean() method provided by the Python
scipylibrary [60], with a cut-off percentage of 10%, is significantly different from
the mean are Bitcoin, Ethereum and Litecoin. In particular the trimmed mean
decreased. This is due to the fact that these cryptocurrencies, for a long period
of time, registered a large price increment and this implies a shift of the mean
to the right (i.e. to highest prices). This confirms that cryptocurrencies distri-
bution is right-skewed. Table 3.2 shows that stock market series time regimes
present a lower o than BTC, ETH and LTC ones, namely that cryptocurrencies
distribution has higher variance.
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Figure 3.4: Microsoft time series autocorrelation plots

Figures 3.4 and 3.5 show the autocorrelation plots of BTC and MSFT series.
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Table 3.2: Regimes Statistical Measures

Series | h u o I
0 419,7 | 39,6 421,6
120 551,2 97,3 549,6
240 707,9 | 122,5 | 693,2
360 1110,1 | 358,8 1048,8
480 2481,2 | 1107,4 | 2414,0
BTC 600 7446,4 | 4808,8 | 6870,7
720 10359,6| 3082,8 | 9966,1
840 7536,5 | 1130,1 | 7424,8
960 5810,9 | 1382,3 | 5859,4
1080 | 4509,6 | 1101,3 | 4349,9
1200 | 8016,9 | 2752,9 | 8048,3
1320 | 9154,5 | 1477,4 | 9080,2
0 6,0 4,6 5,8
120 11,7 2,0 11,6
240 10,8 1,7 10,8
360 34,6 39,0 26,3
480 195,8 114,6 194,5
600 4419 | 281,8 | 3855
ETH 720 695,9 251,4 682,0
840 487,4 159,1 486,4
960 239,6 118,0 228,2
1080 | 144,6 34,0 141,8
1200 | 204,7 52,5 201,1
1320 | 186,8 | 42,5 181,7
0 3,5 0,4 34
120 3,9 0,5 39
240 3,9 0,2 3,9
360 8,2 8,1 6,2
480 33,8 19,3 33,3
600 102,6 85,4 86,1
Le 720 167,0 | 65,0 163,7
840 107,6 40,2 105,3
960 52,9 17,9 52,2
1080 | 50,5 19,9 48,7
1200 | 87,4 23,8 85,7
1320 | 67,2 22,3 64,5
0 30,7 2,8 30,5
120 26,1 3,2 26,4
240 20,6 3,9 20,4
360 22,8 3,8 22,8
MSET 480 28,2 2,3 28,4
600 26,8 2,2 26,7
720 26,1 1,3 26,1
840 26,0 1,2 26,0
0 23,5 2,4 23,5
120 20,0 3,6 20,3
INTC | 240 15,4 2,3 15,1
360 17,3 2,3 17,4
480 20,6 1,4 20,4
0 18,5 0,9 18,5
120 22,2 3,0 22,2
NKSH | 240 26,5 1,4 26,5
360 25,9 1,9 26,0
480 26,5 2,5 26,3
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Figure 3.5: Bitcoin time series autocorrelation plots

Table 3.3: Augmented Dickey-Fuller test results

Series ADF statistic p-value
BTC -2,12 0,24
ETH -2,17 0,22
LTC -2.34 0,16
MSFT -1,98 0,29
INTC -1,98 0,29
NKSH -2,10 0,25

The others stock market series are not presented because they show the same
features of the MSFT series. Both autocorrelation plots (sub-figures c) show a
strong autocorrelation between the current price and the closest previous ob-
servations and a linear fall-off from there to the first few hundred lag values. We
then tried to make the series stationary by taking the first difference. The auto-
correlation plots of the 'differences series’ (sub-figures d) show no significant
relationship between the lagged observations. All correlations are small, close
to zero and below the 95% and 99% confidence levels.

As regards the augmented Dickey-Fuller results, shown in table 3.3, looking
at the observed test statistics, we can state that all the series follows a unit root
process. We remind that the null hypothesis Hy of the ADF test is that there is
a unit root. In particular, all the observed test statistics are greater than those
associated to all significance levels. This implies that we can not reject the null
hypothesis Hy, but does not imply that the null hypothesis is true.



3.1. PRICE SERIES FORECASTING 39

Observing the p-values, we notice that for the stock market series we have
a low probability to get a "more extreme" test statistic than the one observed
under the null hypothesis Hy. Precisely, for both MSFT and INTC we got a
probability of 29%, for NKSH a probability of 25%. The same considerations
also apply to the Bitcoin, Ethereum and Litecoin cryptocurrency time series.
We conclude that Hy can not be rejected and so each time series present a unit
ro0t process.

We conclude that all the considered series show the statistical characteris-
tics typical of a random walk.

3.1.12 Time Series Forecasting

Table 3.4 and 3.5 show the best results, in terms of MAPE and rRMSE, obtained
with the different algorithms applied to the entire series. From now on, let us
label the closing and the volume features lag parameters with k, and k, respec-
tively. In particular, table 3.4 reports the results obtained using the Linear Re-
gression algorithm for univariate series forecast, using only closing prices, and
the Multiple Linear Regression model for multivariate series, using both price
and volume data.

Table 3.5 shows the results obtained with the LSTM neural network, distin-
guishing between univariate LSTM, using only closing prices, and multivariate
LSTM, using both price and volume data.

Small values of the M APE and r RM SE evaluation metrics suggest accurate
predictions and good performance of the considered model.

From the analysis of the series in their totality, it appears that linear models
outperforms neural networks. However, for both models, the majority of best
results are obtained for a lag of 1,thus confirming our hypothesis that the series
are indistinguishable from a random walk.

In order to perform the time series forecasting, we also implemented a Multi-
Layer Perceptron model. Since the LSTM network outperforms the MLP one, we
decided to show only the LSTM results. This is probably due to the particular
architecture of the LSTM network, that is able to capture long-term dependen-
cies in a sequence.

It should be noted that better predictions are obtained for stock market se-
ries rather than for the cryptocurrencies one. In particular, the best result is
obtained for Microsoft series, with a MAPE of 0,011 and k, equal to 1. This
is probably due to the high price fluctuations that Bitcoin and the other cryp-
tocurrencies have suffered during the investigated time interval. This is con-
firmed by the statistics shown in table 3.1. It must be noted that the addition
of the volume feature to the dataset does not improve the predictions.
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Table 3.4: Linear and Multiple Linear Regression results

Linear Regression Multiple Linear Regression

Series | MAPE rRMSE MAPE rRMSE ky | ky
BTC 0,026 0,040 0,026 0,037
ETH | 0,031 0,049 0,039 0,053
LTC 0,034 0,050 0,045 0,058
MSFT | 0,011 0,015 0,011 0,015
INTC | 0,013 0,017 0,013 0,017
NKSH | 0,014 0,019 12 | 0,013 0,018

— o R
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Table 3.5: Univariate and Multivariate LSTM results

Univariate LSTM Multivariate LSTM
Series | MAPE rRMSE k,| MAPE rRMSE ky| ky
BTC 0,027 0,041 1 | 0,038 0,048 2 |1
ETH 0,034 0,052 6 | 0,057 0,076 2 |1
LTC 0,035 0,051 1 | 0,039 0,054 1|1
MSFT | 0,012 0,015 1 |0,012 0,015 1|2
INTC 0,013 0,017 2 10,013 0,017 11
NKSH | 0,014 0,020 7 | 0,013 0,018 1|2

In order to perform prices forecast we changed the approach and decided to
split the time series analysis using shorter time windows of 200 points, shifting
the windows by 120 points, with the aim of finding local time regimes where
the series do not follow the global random walk pattern.

Table 3.6 and 3.7 show the results obtained with our approach of partition-
ing the series into shorter sequences. Let us label the moving step forward with
h. Particularly, in table 3.6 are presented the results obtained using the Linear
Regression algorithm for univariate series forecast, using only closing prices,
and the Multiple Linear Regression model for multivariate series, using both
price and volume data. This approach, has the advantage of being simple to im-
plement and requires low computational complexity. Nevertheless, has led to
good results, similar to those present in the literature, if not better as in the Mi-
crosoft, Bitcoin and National Bankshares cases, where the MAPE error is lower
that 1%.

Table 3.7 shows the results obtained with the LSTM neural network, distin-
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guishing between univariate LSTM, using only closing prices, and multivariate
LSTM, using both price and volume data. For each time regimes we show the
best results obtained on a specific time window defined by the k, and k, val-
ues reported in Tabs. 3.6 and 3.7. Note that we highlighted the best results in
bold. In particular, it is worth noting that introducing the time regimes, the best
result is obtained for the Bitcoin time series, outperforming also the financial
ones.

These results show how such innovative partitioning approach allowed us
to avoid the "random walk problem”, finding that best results are obtained us-
ing more than one previous price. Furthermore, this method leads to a signifi-
cant improvement in predictions. It is worth noting that, from this analysis the
best result arise from the Bitcoin series, with a MAPE error of 0,007, a temporal
window k,, of 7 and a translation step & of 120, obtained using both regression
models and LSTM network.

Another interesting consideration that arises from the results is that, as stated
previously in the analysis of the series in their entirety, the linear regression
models generally outperform the neural networks ones, while in the short-time
regimes approach the different models yielded to similar results.

For a direct feedback we report in table 3.8 the best results obtained in the
papers we compared to and our best ones. In the event that the best MAPE er-
ror results from different models, we consider the model whose computational
complexity is the least as best. It is noticeable that our results outperform those
obtained in the benchmark papers, providing notable contribution to the liter-
ature.

3.2 Blockchain Cryptocurrencies’ Price Movements
Classification Using Deep Learning

This part of the Ph.D. work shows the results obtained from a comparison be-
tween a restricted and a unrestricted Bitcoin price classification, verifying whether
the addition of technical indicators to the classic macroeconomic variables leads
to an effective improvement in the prediction of Bitcoin price changes. The
goal was achieved implementing different machine learning algorithms, such
as Support Vector Machine (SVM), XGBoost (XGB), a Convolutional Neural Net-
work (CNN) and a Long Short Term Memory (LSTM) neural network. Macroe-
conomic variables data were gained from Yahoo Finance website spanning a 4-
year interval with a hourly resolution, while technical indicators data are pro-
vided by the python talib library. The variance problem on test samples has
been taken into account through the cross validation technique which also al-
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Table 3.6: LR and MLR results with time regimes

Linear Regression Multiple Linear Regression
Series | h MAPE | rRMSE | k), MAPE | rRMSE | k, k,
0 0,015 0,025 4 0,012 0,014 8 10
120 0,007 | 0,010 7 0,007 0,011 1 1
240 0,029 0,050 4 0,031 0,052 5 1
360 0,034 | 0,041 1 0,037 0,045 |1 2
480 0,041 0,062 2 0,039 0,061 2 1
BTC 600 0,065 0,082 2 0,065 0,080 2 2
720 0,028 0,035 1 0,026 0,035 1 5
840 0,017 0,024 7 0,018 0,024 7 1
960 0,030 0,040 4 0,029 0,040 1 10
1080 | 0,029 0,039 1 0,022 0,031 3 3
1200 | 0,018 0,025 8 0,021 0,026 8 2
1320 | 0,020 0,026 5 0,021 0,027 7 7
0 0,045 0,060 7 0,042 0,056 10 6
120 0,022 | 0,029 1 0,022 0,028 1 1
240 0,031 0,047 4 0,033 0,046 1 3
360 0,053 0,078 1 0,053 0,078 2 2
480 0,048 0,077 1 0,050 0,077 1 1
ETH 600 0,060 0,080 1 0,053 0,069 3 8
720 0,039 0,051 1 0,036 0,049 1 7
840 0,048 0,070 7 0,064 0,084 5 1
960 0,051 0,068 1 0,055 0,071 4 1
1080 | 0,032 0,046 3 0,020 | 0,027 10 7
1200 | 0,024 0,031 8 0,022 0,029 1 8
1320 | 0,025 | 0,033 |1 0,028 0,035 |1 1
0 0,027 0,034 4 0,023 0,027 8 8
120 0,011 0,018 |3 0,011 0,017 1 4
240 0,030 0,046 5 0,031 0,047 5 2
360 0,075 | 0,098 |1 0,074 | 0,094 |3 3
480 0,073 0,111 1 0,074 0,112 1 1
LIC 600 0,077 0,096 2 0,058 0,074 8 7
720 0,040 0,049 1 0,040 0,047 1 1
840 0,032 0,045 9 0,031 0,043 9 3
960 0,047 0,060 3 0,048 0,062 1 1
1080 | 0,037 0,047 9 0,023 0,028 7 7
1200 | 0,026 0,032 8 0,027 0,034 8 1
1320 | 0,026 0,036 1 0,026 0,037 1 1
0 0,015 0,018 1 0,015 0,017 1 3
120 0,037 0,045 6 0,035 0,044 6 4
240 0,015 0,019 7 0,015 0,019 9 6
MSFT 360 0,010 0,014 3 0,012 0,018 1 1
480 0,011 0,015 2 0,010 0,012 3 7
600 0,009 0,011 4 0,009 0,011 5 1
720 0,008 | 0,011 7 0,007 0,009 10 8
840 0,012 0,015 1 0,012 0,015 1 10
0 0,014 0,019 5 0,013 0,017 6 10
120 0,036 0,045 7 0,035 0,043 7 4
INTC | 240 0,017 0,022 5 0,017 0,022 2 3
360 0,012 | 0,015 1 0,012 | 0,015 1 1
480 0,016 0,020 1 0,016 0,020 3 5
0 0,019 0,023 8 0,019 0,023 9 6
120 0,014 0,018 9 0,013 0,017 10 4
NKSH | 240 0,014 0,018 4 0,012 0,016 1 4
360 0,019 0,026 2 0,019 0,026 2 1
480 0,009 0,012 7 0,009 0,012 10 5
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Table 3.7: Univariate and Multivariate LSTM results with time regimes

Univariate LSTM Multivariate LSTM
Series | h MAPE | rRMSE | k, MAPE | rRMSE | k, ky
0 0,022 0,034 3 0,021 0,030 3 1
120 0,007 | 0,011 |4 0,007 | 0,010 |2 1
240 0,044 0,058 3 0,065 0,077 3 1
360 0,088 0,105 2 0,187 0,233 3 3
480 0,043 0,066 4 0,041 0,061 1 1
BTC 600 0,068 0,088 1 0,078 0,127 2 1
720 0,027 0,035 2 0,027 0,043 1 2
840 0,017 0,023 1 0,017 0,031 3 1
960 0,027 0,035 6 0,033 0,067 2 1
1080 | 0,025 0,038 3 0,030 0,106 3 1
1200 | 0,021 0,028 1 0,024 0,033 1 1
1320 | 0,018 0,025 1 0,020 0,028 1 2
0 0,051 0,065 6 0,054 0,068 3 1
120 0,022 0,028 1 0,023 0,031 1 3
240 0,034 0,049 1 0,035 0,048 1 2
360 0,217 0,248 5 0,284 0,349 3 3
480 0,049 0,077 2 0,050 0,076 1 1
ETH 600 0,074 0,109 3 0,164 0,396 1 1
720 0,039 0,052 3 0,037 0,079 3 1
840 0,067 0,092 1 0,052 0,252 1 1
960 0,053 0,067 1 0,062 0,101 1 1
1080 | 0,031 0,042 3 0,039 0,082 1 1
1200 | 0,026 0,035 1 0,025 0,049 1 3
1320 | 0,021 | 0,031 |2 0,022 | 0,031 1 1
0 0,045 0,054 5 0,063 0,079 3 1
120 0,010 | 0,016 |2 0,011 | 0,018 | 3 1
240 0,035 0,052 6 0,051 0,069 1 1
360 0,395 0,409 6 0,397 0,443 3 2
480 0,086 0,117 3 0,090 0,120 3 1
LTC 600 0,136 0,164 1 0,167 0,431 1 3
720 0,040 0,051 3 0,040 0,075 1 2
840 0,034 0,045 1 0,035 0,062 1 2
960 0,047 0,059 1 0,053 0,107 2 1
1080 | 0,047 0,055 1 0,034 0,121 1 3
1200 | 0,026 0,035 1 0,026 0,048 1 3
1320 | 0,028 0,038 2 0,028 0,038 1 1
0 0,014 0,017 1 0,014 0,017 1 2
120 0,121 0,139 1 0,054 0,064 3 1
240 0,017 0,023 2 0,017 0,023 1 3
MSET 360 0,017 0,021 4 0,031 0,044 3 1
480 0,012 0,015 1 0,012 0,016 1 2
600 0,009 0,012 3 0,009 | 0,012 | 3 1
720 0,008 | 0,011 |4 0,010 0,014 2 1
840 0,012 0,016 4 0,012 0,016 3 1
0 0,015 0,019 1 0,014 0,018 1 1
120 0,056 0,068 1 0,069 0,091 3 3
INTC | 240 0,017 0,021 3 0,017 0,022 3 1
360 0,012 | 0,015 |1 0,013 | 0,017 |1 1
480 0,017 0,021 1 0,020 0,025 1 1
0 0,021 0,027 1 0,023 0,027 3 1
120 0,015 0,018 6 0,014 0,019 1 3
NKSH | 240 0,016 0,022 1 0,017 0,022 1 3
360 0,020 0,027 1 0,023 0,030 1 3
480 0,010 | 0,014 |1 0,010 | 0,013 |1 1
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Table 3.8: Best Benchmarks Results compared to ours

Reference | Series Model MAPE

[74] BTC SVM:0.9- 0,011
1(Relief)

[95] S&P BSE SENSEX | SVR 0,009
MSFT SVR-CFA 0,052
[62] INTC SVR-CFA 0,045
NKSH SVR-CFA 0,046
BTC LR 0,007
ETH MLR 0,020
Our LTC Univariate LSTM | 0,010
Work MSFT MLR 0,007
INTC LR 0,012
NKSH LR 0,009

lowed to evaluate a more reliable estimate of the model’s performance. Fur-
thermore, the Grid Search technique was used to find the best hyperparameters
values for each implemented algorithm. The results were evaluated in terms
of the well known classification metrics, i.e. accuracy, precision, recall and fI
score. Based on the results, it was possible to demonstrate that the unrestricted
case outperforms the restricted one, verifying that the addition of the technical
indicators to the macroeconomic variables actually improves the accuracy on
Bitcoin price classification.

During the last decade we have witnesses an exponentially growing over
Cryptocurrencies traded and exchanged with a every day market cap of hun-
dreds of billions of USD Dollars globally ( 1 trillion to January 2021). The tech-
nology behind these crypto-markets are based on distributed ledgers and blockchains,
and cryptocurrencies rely upon these technologies to be mined, namely cre-
ated, and transferred among users and in general stakeholders. These tech-
nologies guaranties anonymity and safe transfer of value, which in the end gen-
erated the crypto-markets mentioned above.

In January 2021 the number of live projects connected to blockchain tech-
nologies and distributed ledgers' is more than 7000, and the trend is constantly
growing.

Bitcoin project is the first and the pioneering one, whose associated tokens

'https://www2.deloitte.com/content/dam/insights/us/articles/4600\
_Blockchain-five-vectors/DI\_Blockchain-five-vectors.pdf
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dominate the crypto-markets scene by both market volumes and capitalisa-
tion.

Due to the high volatility of crypto-markets, investors and stakeholders are
attracted by this technology, its outlooks, the potential to a constant growth in
values and the excess returns on their investments are exploited by investors
since the dawn of the Bitcoin in 2009.

The valuation and pricing of cryptocurrencies and digitally native tokens
and seets remains a non-trivial activity, due to the novelty of the platforms, mil-
lions of users and investors in the space. For the above reasons and the fact that
is has proven to be also safe and resilient to network attack, we focused in par-
ticular to Bitcoin for our analysis.

Several researchers have aimed their effort in quantitative investigations to
exploit information from cryptocurrencies prices time series and forecasting
prices insights [99] or to predict the next most likely jump in value, range from
theoretical models of pricing and adoption of digital tokens [12, 28, 32] to ma-
chine learning [3, 59] and neural network-driven [70] predictions of prices and
returns.

In this field, the current state of art of research have yielded insights on the
maturity, efficiency and structure of the cryptocurrency markets [11, 40, 106,
111,118].

Special attention has been devoted to the analysis of factors underneath the
high volatility of cryptocurrencies, ranging from extrapolating the mechanisms
driving the fluctuations to the model estimation point of view [61, 71]: some
research for instance highlighted a strong correlation with global economic ac-
tivity [33, 114] and volume of trades [16], and with open source development
communities supporting the cryptocurrencies [76, 90, 93].

In this part of Ph. D., we focus our investigation precisely on a comparison
of four different machine learning algorithms for Bitcoin price classification,
verifying whether the addition of technical indicators to the classic macroe-
conomic variables leads to an effective improvement in the prediction of Bit-
coin price changes. The four machine learning algorithms implemented are:
Support VectorMachine (SVM), XGBoost (XGB), Convolutional Neural Network
(CNN) and a Long Short Term Memory neural network (LSTM).

Macroeconomic variables data are extracted from Yahoo Finance website
spanning a 4-year interval with a hourly resolution, while technical indicators
data are provided by the python talib library. For each algorithm we further
compared a restricted vs unrestricted model. The restricted model consists of
Bitcoin price movements using only macroeconomic variables : Close, Open,
Low, High and Volume. The unrestricted model along with the macroeconomic
variables includes also technical analysis variables: Simple Moving Average,
Weighted Moving Average, Relative Strength Index, Rate of Change Percentage,
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Momentum and On-Balance Volume.

In order to take into account the variance problem on test samples we im-
plemented a cross validation technique which also allowed to evaluate a more
reliable estimation of the model’s performance. Furthermore, we fine-tuned all
four algorithms using the Grid Search technique to find the best hyper-parameters
values. The results were evaluated in terms of the well known classification
metrics, i.e. accuracy, precision, recall and f1 score. Based on the results, it was
possible to demonstrate that the multivariate case outperforms the univariate
one, verifying that the addition of the technical indicators to the macroeco-
nomic variables actually improves the accuracy on Bitcoin price classification.

This work is organised as follows. In Sec. 3.2.1, we describe how the affect
metric time series are constructed and the preliminary analysis performed. In
Sec. 3.2.8, we present the results and their implications. In Sec. 3.2.11, we
discuss the limitations of this study.

3.2.1 Methodology

In this section we first introduce some notions on time series in order to better
understand the analysis presented in the following and we present the dataset
we used, including its pre-processing analysis. Finally we introduce our pro-
posed algorithms with the metrics employed to evaluate their performance.

3.2.2 Collected data

We conduct our analysis on the Bitcoin hourly price series. We considered all
the available macroeconomic variables, extracted from the yahoofinance web-
site, for a 4-year period spanning from 2015/10/08 to 2019/10/03, for a total of
34922 observations. These macroeconomic features are listed below.

* Close: the last price at which the Bitcoin traded during the regular trading
hour.

* Open: the price at which the Bitcoin first trades upon the opening of an
exchange on a trading hour.

* Low: the lowest price at which the Bitcoin trades over the course of a trad-
ing hour.

* High: the highest price at which the Bitcoin traded during the course of
the trading hour.

e Volume: the number of Bitcoin trades completed.
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From the knowledge of these variables it was possible to calculate the technical
indicators values thanks to some specific function provided by the talib python
library. The selected technical analysis variables are listed below.

* Simple Moving Average (SM A): calculated as the arithmetic average of
the Bitcoin closing price over some period (known as timeperiod.

* Weighted Moving Average (WM A): is a moving average calculation that
more heavily weights recent price data.

* Relative Strength Index (RSI): is a momentum indicator that measures
the magnitude of recent price changes to evaluate overbought or oversold
conditions in the price of a stock or other asset (in this case Bitcoin price).

* Price Rate Of Change (ROC): it measures the percentage change in price
between the current price and the price a certain number of periods ago.

* Momentum: is the rate of acceleration of a security’s price or volume that
is, the speed at which the price is changing (useful to identify trends).

* On Balance Volume (OBV): is a technical trading momentum indicator
that uses volume flow to predict changes in stock price.

For each selected variable, except for the OBV feature, we set a timeperiod of
10.

3.2.3 Restricted versus Unrestricted Classification

The restricted classification analysis consists of classifying Bitcoin price move-
ments using only macroeconomic variables, so the dataset in this case is made
by the following features: Close, Open, Low, High and Volume. A unrestricted
classification is a classification in which the dataset consists not only of the
macroeconomic variables listed above, but also of technical analysis variables.
In this case the purpose is to ascertain if the addition of the technical analysis
features to the dataset can lead to an effective improvement in the Bitcoin price
changes classification.

3.2.4 Exploratory Data Analysis

The target variable is a categorical variable that includes three unique classes
that are listed in the following.

* Upwards movements. This class it has been encoded with 1 and repre-
sents a condition of rising prices.
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* Stability. This category stands for price stability, when the price has not
changed in the hour, and it has been encoded with 0.

* Downwards movements. This class, labeled with —1 represents a condi-
tion of falling prices.

Figure 3.6 shows the class distribution along the dataset, highlighting that we
are dealing with a very imbalanced classification problem.
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Figure 3.6: Classes distribution

Table 3.9 shows that most of the data are instances of classes 1 and —1, with
48,8% and 44% respectively, while the remaining 7, 2% of the data are instances
of class 0.

Table 3.9: Class instances counts and percentages

Classes Counts Percentages

1 17062 48,8%
-1 15355 44%
0 2504 7,2%

These findings led us to verify whether the instances of class 0 are evenly
distributed along the dataset or whether they are more concentrated in some
periods than in others. For this reason, the whole dataset, ranging from October
2015 to October 2019, was splitted into one year bins, with the purpose to test
how many instances of class zero fall in each interval.

Table 3.10 and figure 3.7 show that price stability, in the Bitcoin market, is
a market condition that occurred in the years immediately following the birth
of the cryptocurrency, when its price behaviour was almost constant. Another
thing that it is worth noting is that in this analysis we are working with hourly
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Table 3.10: Distribution of stability class instances into 1-year bins

Bins Amount of 0 instances
2015 - 2016 1838
2016 - 2017 545
2017 - 2018 66
2018 - 2019 55

1750

1500

1250
§ 1000
<3

750

500

250

— ——
2015-2016 2016-2017 2017-2018 2018-2019
bins

Figure 3.7: Count plot of stability class instances into 1-year bins

time series prices, therefore the condition of price stability is more likely than
in the case with daily frequency dataset. Table 3.11 reports the results obtained
with the same dataset, ranging from October 8, 2015 to October 3, 2019, but
with daily frequency, showing that in 1456 data only one instance of class zero
occurs, thus confirming our hypotheses.

Table 3.11: Class instances counts and percentages of daily data

Classes Counts Percentages

1 824 56,6%
-1 631 43,3%
0 1 0,1%

Considering that 73% of the 0 class instances fall in the first bin, ranging
from October 2015 to October 2019, and that Bitcoin prices are characterised by

high volatility, let us conclude that the condition of price stability in the current
Bitcoin market is almost non-existent.
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At this point, the dataset results in a dataset with a balanced class distribu-
tion. In this cases the accuracy metrics turns out to be a well-defined metric to
evaluate the performance of a classification model.

3.2.5 Data pre-processing

Since we are dealing with a supervised learning problem we prepared our dataset
in order to have a set of X inputs and y outputs with temporal dependence. The
X inputs includes the predictors of the model, i.e. one or several values from
the past, the so called lagged values, of the selected features discussed in the
Collected Data section. The target variable y is a binary variable of zeros and
ones. The 0 instance stands for downward price movements, which is a falling
price condition. A 0 instance is obtained when the difference between the price
at time ¢ and the price at previous time ¢ —1 is less than 0. The 1 instance repre-
sents upward price movements, which is a rising price condition. A 0 instance
is obtained when the difference between the price at time ¢ and the price at pre-
vious time ¢ — 1 is greater than 0. In both the restricted and unrestricted model,
a number of lagged values equal to 5 were taken for each considered variable.

Principal Component Analysis

Principal component analysis (PCA) is a machine learning technique used to
solve several tasks such as, exploratory data analysis problems and predictive
model implementation. PCA is also one of the most commonly used technique
for dimensionality reduction, that is a method used to reduce the number of
input variables for a predictive model. This procedure may lead to a simpler
predictive model with better performance, both in terms of a specific moni-
tored prediction error and execution speed. PCA was introduced for the first
time in 1901 by Pearson [96] and it was later developed by Hotelling [55], [56]
in the 1930s. This technique is commonly used when dealing with data set
with a large number of inputs, often very correlated. PCA consist of produc-
ing a small number of linear combinations Z,, with a specific method, where
m=1,..., M, of the original predictors X;, wherei =1,..., Nand M < N. The Z,,
are then used in place of the X; of the original data set as inputs in the consid-
ered predictive model. The methods used to create the new shrinkage features
differ in how the linear combinations are constructed, each leading to a dif-
ferent result. A popular approach to create these linear combinations 7, is to
use techniques from the field of linear algebra known as feature projection and
the algorithms used are referred to as projection methods. These methods are
able to reduce the number of dimensions in the feature space by performing a
orthogonal projection of the data onto a lower dimensional linear space, such
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that the variance of the projected data is maximized, whilst also capturing the
most important structure and essence of the original data [13]. The resulting
features Z,, can then be fed as inputs of a considered predictive model for the
training phase.

In this analysis the PCA method [98] provided by the sklearn python library
was used to implement the PCA technique. The PCA method was applied to
our original data set and the resulting features were used to train all the imple-
mented models.

3.2.6 Algorithms
Support Vector Machine

Support Vector Machines are supervised learning algorithms used for machine
learning applications to solve classification and regression problems. The orig-
inal SVM algorithm was introduced by Vapnik and Chervonenkis [112] in 1963.
In 1992 Boser, Guyon and Vapnik [15] developed a new SVM version for non-
linear classification problems by applying kernel functions to maximum mar-
gin hyperplanes. SVM'’s are based on statistical learning frameworks and they
are one of the most robust and commonly used prediction methods in machine
learning applications. The original SVM implementation is a linear classifier
involving a linear kernel for linearly separable data. In this problems the input
space can always be divided into a collection of regions with linear decision
boundaries. In a p-dimensional space a linear classifier is a (p—1)-dimensional
hyperplane described by equation 3.10, where w is the normal vector to the hy-
perplane, (x1, y1),..., (X5, yn) are n points of a given training data set and y; is
the class to which the point x; belongs.

wix—-b=0 (3.10)

The hyperplane that best classifies the data is the one that represents the
largest separation, better known as margin, between the classes. Therefore,
this hyperplane is chosen so that the distance from it to the nearest data point
on each side is maximized. If the data is linearly separable, then such a hy-
perplane exists and it is known as the maximum-margin hyperplane. In 1992
Boser, Guyon and Vapnik introduce an extension of the original SVM algorithm
useful when dealing with non-linearly separable data where the classes overlap.
In this cases the SVM produces non-linear boundaries by constructing a linear
boundary in a large, transformed version of the feature space. More specifi-
cally, this extended version creates non-linear classifiers by simply replacing
every dot product in the 3.10 with a non-linear kernel function. These kernel
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functions allow the original space to be mapped to a higher dimensional fea-
ture space, thus making the separation between classes more obvious in this
transformed space. The most commonly used kernels are listed below.

e Polynomial: k(%, y) = (%- )¢

_IE-gIP
* Gaussian radial basis function (rbf): k(X,y) =e 202

* Hyperbolic tangent: k(X,y) = tanh(kX-y+c), where k>0and c<0

In this analysis we used the Support Vector Classification (SVC) method
provided by the sklearn python library.

XGBoost

We refer to the term XGBoost as a gradient boosting algorithm, but actually
XGBoost is a famous open-source software library which provides a gradient
boosting framework for several programming languages including C++, Java,
Python, R, Julia, Perl and Scala. XGBoost was initially conceived as a research
project by Tianqi Chen [24] with the purpose of providing a terminal appli-
cation which could be configured using a suitable configuration file. Later it
became one of the most famous and used libraries for machine learning ap-
plications with several package implementations for different programming
languages such as Python, R, Java, Scala and so on and so forth. Gradient
boosting is one of the most powerful machine learning techniques for regres-
sion and classification problems. This technique was firstly introduced by Leo
Breiman [18] by observing that boosting can be interpreted as an optimization
algorithm on a suitable cost function. The main intuition behind boosting is
a procedure that combines the outputs of many "weak" classifiers to produce
a powerful "committee" [52]. A weak classifier is one whose error rate is only
slightly better than random guessing, typically decision trees. The purpose of
boosting is to sequentially apply the weak classification algorithm to repeatedly
modified versions of the data, therefore producing a sequence of weak classi-
fiers. The predictions from all of them are then combined through a weighted
majority vote to produce the final prediction. In this analysis we implemented
the Python API reference of xgboost provided by the sklearn python library.

Convolutional Neural Network

Convolutional Neural Network (CNN) is a specific class of neural networks most
commonly used for deep learning applications involving image processing, im-
age classification, natural language processing and financial time series. The



3.2. PRICE CHANGES CLASSIFICATION 53

most important part in the CNN network is the convolutional layer that gives
the network its name. This layer employs a mathematical operation called con-
volution. In this context, a convolution is a linear operation that involves a
multiplication between a matrix of input data and a two-dimensional array of
weights, known as filter. This networks use convolution operation in at least
one of their layers.

Convolutional neural netowrks have a similar architecture to traditional neu-
ral networks, including an input and an output layer, as well as multiple hidden
layers. The main feature of a CNN is that their hidden layers typically consist of
a series of convolutional layers that convolve with the multiplication described
above.

For their implementation we used the Keras framework [27] for deep learn-
ing. Our model consists of two stacked 2-dimensional CNN layers, one densely
connected layer with 64 neurons and finally the densely connected output layer
with one neuron.

Long Short Term Memory

Long Short-Term Memory networks are a prominent variations of Recurrent
Neural Network (RNN) used in the field of deep learning. RNN'’s are a class of
artificial neural network with a specific architecture specialized in recognizing
patterns in sequences of data of various kinds: texts, genomes, handwriting,
the spoken word, or numerical time series data emanating from sensors, mar-
kets or other sources. The main disadvantage of traditional recurrent neural
networks is their inability to capture long-term dependencies in a sequence of
data, thus they perform well only for short-term memory dependencies. On
the contrary, LSTM networks are a special kind of RNN, able at learning long-
term dependencies. The model is organized in cells which include several op-
erations. LSTM hold an internal state variable, which is passed from one cell
to another and modified by Operation Gates (forget gate, input gate, output
gate). These gates control how much of the internal state is passed to the out-
put and work in a similar way to other gates. These three gates have indepen-
dent weights and biases, hence the network will learn how much of the past
output and of the current input to retain and how much of the internal state to
send out to the output. In this analysis we used the Keras framework [27] for
deep learning. Our model consists of one stacked LSTM layer and the densely
connected output layer with one neuron.
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3.2.7 Hyper-parameters tuning

The hyper-parameters tuning technique is a technique for optimising the hyper-
parameters of a given algorithm in order to identify the best hyper-parameters

configuration that allow the algorithm to achieve the best performance, in terms
of the monitored prediction error. For each implemented algorithm, the hyper-

parameters to be optimised are selected, and for each hyper-parameter an ap-

propriate searching interval is defined, including all the values to be tested.

Once the hyper-parameters of the model with their searching intervals have

been selected, the algorithm is fitted on a specific portion of the data set with

the first chosen hyper-parameter configuration, after that the fitted model is

tested on a portion of data not seen during the training phase. This test proce-

dure returns a specific value for the chosen prediction error.

Table 3.12: SVM'’s hyper-parameter searching intervals

SVM hyper-parameters

gamma

C coefficient kernel (kernel coefficient for rbf)

searching interval (1,5, 10,100) (rbf, linear) (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9)

To make the hyper-parameter optimisation procedure as robust as possi-
ble, a model validation technique is used, for assessing how the performance
achieved by a given model will generalize to an independent data set. This val-
idation technique involves the partition of a data sample into a training set,
used to fit the model, and a test set used to validate the fitted model. In our
analysis we implemented the KFold cross-validation method provided by the
sklearn python library.

Table 3.13: XGB’s hyper-parameter searching intervals

XGB hyper-parameters

booster eta max_depth
searching interval (gbtree, gblinear, dart) (0.1, 0.2, 0.3, 0.4) 4,5,6,7)

The optimisation procedure ends when all possible combinations of hyper-
parameter values have been tested. The hyper-parameter configuration that
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will be chosen will be the one with which the algorithm has achieved the best
performance in terms of the chosen prediction error. Tables 3.12, 3.13, 3.14 and
3.15 show the chosen searching intervals for each implemented algorithm.

Table 3.14: CNN’s hyper-parameter searching intervals

CNN hyper-parameters

epochs batch_size optimizer activation neurons
searching interval (100, 200, 300) (32,64, 128) (adam, Nadam, Adamax) (relu, tanh) (8, 16, 32)

Table 3.15: LSTM’s hyper-parameter searching intervals

LSTM hyper-parameters

epochs batch_size optimizer activation neurons

searching interval (50, 100, 200) (32, 64,128) (adam, Nadam, Adamax) (relu, tanh) (64, 128)

3.2.8 Results and Discussion

In this section the results obtained for the restricted and unrestricted model
are reported, evaluated in terms of the well-known classification error metrics,
namely accuracy, f1_score, precision and recall. For each of these metrics we
report their mean and standard deviation obtained on the 10 folds in which the
dataset was split during the Gridsearch procedure for the identification of the
best hyperparameter configuration.

3.2.9 Restricted Model

Table 3.17 shows the best results obtained for the Neural Networks models,
through the Gridsearch technique in terms of the classification error metrics.
The best identified parameters with the related results obtained for the SVM
and XGBoost models are reported in table 3.18 and 3.19 respectively.

The neural network that achieved the best accuracy is CNN, with an average
accuracy of 53.7% and a standard deviation of 2.9%. Among the implemented
machine learning models, the one that achieved the best accuracy is SVM, with
an average accuracy of 54% and a standard deviation of 2.8%. In the restricted
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analysis, the model that produced the best performance is SVM. It is worth not-
ing that the model’s performances in terms of the prediction error is quite sim-
ilar, with an average accuracy of around 54%, while from the point of view of
execution speed, the SVM and XGB models outperforms neural networks.

Table 3.16: Unrestricted model - SVM and XGB results

SVM XGBoost

accuracy f1_score precision recall accuracy f1_score precision recall

(u+t0) (u+0) (u+0) (u+0) (uto) (uto) (uto) (uto)
(0.546 £0.027) (0.420+0.170) (0.537£0.023) (0.404+0.224) | (0.546+0.029) | (0.374+0.194) | (00.539+0.052 | (0.354 +0.255)

Table 3.17: Restricted model - Neural networks results

Model | epochs | batch size | optimizer | activation | neurons aceuracy f1_score precision recall

(u+o) (u+0) (u+0) (ux0)
CNN 50 32 Nadam tanh 16 (0.537+£0.029) | (0.472+0.143) | (0.511+0.025) | (0.495+0.027)
LSTM 300 128 Adamax relu 128 (0.535+£0.034) | (0.456+0.200) | (0.485+0.082) | (0.503 +0.285)

Table 3.18: Restricted model - SVM and XGB best identified parameters

SVM XGBoost
C coefficient | kernel | gamma | booster | eta | max_depth
100 rbf 0.1 gbtree | 0.2 4

3.2.10 Unrestricted Model

Table 3.20 shows the best results obtained for the Neural Networks models,
through the Gridsearch technique in terms of the classification error metrics.
The best identified parameters with the related results obtained for the SVM
and XGBoost models are reported in table 3.21 and 3.16 respectively.

The results obtained for the unrestricted model, highlights that in general
the addition of technical analysis variables to the dataset leads to an effective
improvement in the average accuracy, namely the prediction error. This find-
ing occurs for all the implemented models and this allows one to exclude that
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Table 3.19: Restricted model - SVM and XGB results
SVYM XGBoost

accuracy f1_score precision recall accuracy f1_score precision recall

(u+x0) (ux0) (ux0) (u+0) (u+0) (u+0) (u+0) (u+0)
(0.540£0.028) | (0.385+0.206) | (0.515+0.035) | (0.374+0.242) | (0.528+£0.025) (0.521+0.080) (0.504+0.038) (0.555+0.135)

Table 3.20: Unrestricted model - Neural networks results

. - Lo accuracy f1_score precision recall

Model | epochs | batch size | optimizer | activation | neurons wto) (to) (o) (o)
CNN 50 128 adam tanh 16 (0.547 £0.025) | (0.384+0.180) | (0.538+0.033) (0.356+0.241)
LSTM 50 64 Nadam relu 32 (0.545+0.027) | (0.435+0.175) | (0.541+0.060) (0.430+0.228)

Table 3.21: Unrestricted model - SVM and XGB best identified parameters

SVM XGBoost
C coefficient | kernel | gamma | booster | eta | max_depth
1 rbf 0.1 gblinear | 0.4 6
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this result is a statistical fluctuation and its dependence on the particular fore-
casting algorithm implemented. The best result obtained with the unrestricted
model is achieved by the CNN model, with a mean accuracy of 54.7% and a
standard deviation of 2.5%. It is worth noting that in the unrestricted analy-
sis, neural networks models outperforms machine learning models in terms of
prediction error, while from the point of view of execution speed SVM and XGB
models still outperforms neural networks.

3.2.11 Threats to Validity

Threats to external validity concern the generalisation of our results. In this
study, we analysed the time series of only one cryptocurrency and thus different
ecosystems may yield different results.

Threats to internal validity concern confounding factors that can influence
the obtained results. Based on empirical evidence, we assume that technical
indicators and classic macroeconomic variables are exhaustive for our model
but there are other factors which may influences the price movements and are
not taken into account in this study.

Threats to construct validity focus on how accurately the observations de-
scribe the phenomena of interest. The detection and classification of price’s
movements are based on objective data that describe the whole phenomena
with respect of the time behaviour analyzed.

3.3 Onthe Mutual-Influence between Blockchain De-
velopment Communities and Cryptocurrency Price
Changes

This thesis work aims to identify and model relationships between cryptocur-
rencies market price changes and topic discussion occurrences on social me-
dia. The considered cryptocurrencies are the two highest in value at the mo-
ment, Bitcoin and Ethereum. At the same time, topics were realized through a
classification of the comments gained from the Reddit social media platform,
implementing a Hawkes model. The results highlight that it is possible to iden-
tify some interactions among the considered features, and it appears that some
topics are indicative of certain types of price movements. Specifically, the dis-
cussions concerning issues about government, trading and Ethereum cryptocur-
rency as an exchange currency, appear to affect Bitcoin and Ethereum prices
negatively. The discussions of investment appear to be indicative of price rises,
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while the discussions related to new decentralized realities and technological
applications is indicative of price falls.

Cryptocurrencies arouse keen interest not only in the scientific and finan-
cial fields but also within social media communities, making the analysis of
their price behaviours one of the most discussed topics of the last few years.
Over the years, several approaches have been developed in seeking to fore-
cast cryptocurrency price movements [68, 69]. S. McNally et al. tried to as-
certain with what accuracy the direction of Bitcoin price in USD can be pre-
dicted using machine learning algorithms like LSTM (Long short-term mem-
ory) and RNN (Recurrent Neural Network) [79]. Naimy and Hayek tried to fore-
cast the volatility of the Bitcoin/USD exchange rate using GARCH (Generalized
AutoRegressive Conditional Heteroscedasticity) models [85]. Several are also
the studies that tried to use online information, including social media top-
ics discussions, to predict cryptocurrencies price changes, for example, Google
searches for Bitcoin-related terms have been shown to have a relationship with
the Bitcoin price [67]. D. Garcia and E Schweitzer have considered the strength
and polarisation of opinions displayed in Twitter submissions, founding that
an increase in the polarisation of sentiment (disagreement of sentiment) pre-
ceded a rise in the price of Bitcoin [45]. In another work, several machine
learning pipelines were implemented with the objective of identifying cryp-
tocurrency market movement, in order to prove whether Twitter data relating
to cryptocurrencies can be utilized to develop advantageous crypto coin trad-
ing strategies [108]. E Valencia et al. proposed to use most common machine
learning tools, such as neural networks, support vector machines and random
forest, and available social media data for predicting the price movement of
the Bitcoin, Ethereum, Ripple and Litecoin cryptocurrency market movements,
showing that it is possible to predict cryptocurrency markets using machine
learning and sentiment analysis and that, in this case study, neural networks
outperform the other models [44]. A recent exploration monitored the activ-
ity on the social media platform Reddit in order to detect the epidemic-like
spread of investment ideas beneficial in the prediction of cryptocurrency price
bubbles [101]. Thanks to the many works in literature, which helped to prove
the existence of possible cause-effect relationships between the cryptocurrency
price changes and online information, we can state that the knowledge of the
discussion topics that affect price would be a useful component of any trading
model.

The purpose of this work is to ascertain the existence of possible relation-
ships between cryptocurrency market prices and social media discussions in
order to understand what topics have the potential to predict price movements.
It is in fact well known that developers moods can affect software quality [91]
and if this concept is applied in the field of cryptocurrency software production
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and to their quality metrics [38] this may affect cryptocurrency market prices
as well. The first step was to retrieve the discussions comments from the so-
cial media platform Reddit, which has been shown to be one of the most valu-
able sources of information relating to cryptocurrency markets. Secondly, the
occurrence of particular topics from social media content were evaluated, us-
ing dynamic topic modelling, that is an extension of Latent Dirichlet Allocation
(LDA). Finally, a Hawkes model was implemented to identify hidden interac-
tions between topics and cryptocurrency market prices.

3.3.1 Methodology

3.3.2 Data Sources

The social media platform Reddit is an American social news aggregation, web
content rating, and discussion website that reaches about 8 billion page views
per month. Reddit is built over multiples subreddits, where each subreddit is
dedicated to the discussion of a particular subject. Therefore, there are spe-
cific subreddits related to major cryptocurrency projects. In this work, for each
cryptocurrency considered, two subreddits are analyzed, one technical and one
trading related. In Tab. 3.22 are shown the considered subreddits. For each sub-

Table 3.22: Considered subreddits

Cryptocurrency | Technical Discussions | Trading Discussions
Bitcoin 1/Bitcoin 1/BitcoinMarkets
Ethereum r/Ethereum r/EthTrader

reddit a given amount of comments were fetched, for a total of almost one mil-
lion of comments analyzed. Regarding the cryptocurrencies choice, we decided
to use the two highest in value at the moment: Bitcoin and Ethereum. The his-
torical price data were extracted from the "Historical Data" section available
on Crypto Data Download website, specifically from the Coinbase trading ex-
change. The hourly prices time series were retrieved, stored and then aggre-
gated to the required granularity. The sample period considered in this work
is the entire 2019 year, that is from January 1 2019 to December 31?" 2019.
The chosen data period is a suitable one, since in September 2019 a significant
fall in the Bitcoin price occurred with consequent ripple effects on Ethereum
prices, allowing us to investigate the interaction between prices and social me-
dia during this considered period.
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3.3.3 Topic Modelling

A topic model is a specific statistical model used to identify the abstract top-
ics within a collection of documents. Topic modelling is a frequently used text-
mining tool for discovery themes occurring within a corpus automatically, find-
ing a distribution of words in each topic and the distribution of topics in each
document. In this work, we used the Latent Dirichlet Allocation (LDA) [34],
which is a popular unsupervised learning technique for topic modelling, intro-
duced in 2003. This type of topic model assumes that each document contains
multiple topics to different extents. In the following, we briefly discuss, for the
sake of brevity, the generative process by which LDA assumes each document
originates.

* The first step is to choose, for each document, the number of words N to
generate.

¢ The process then randomly chooses a distribution over topics. This pa-
rameter is usually labelled as 6.

e Finally, for each word to be generated in the document, the process ran-
domly chooses a topic, Z,, from the distribution of topics, and from that
topic chooses a word, W,,, using the distribution of words in the topic.

If we consider a given document d and topic ¢, so the variables of interest in
this model are the distribution of topic ¢ in document d and the distribution
of words in topic t. These variables are latent, hidden parameters that can be
estimated via inference for any specific dataset. It has been proven that the
standard LDA model can not understand both the ordering of words within a
document and the ordering of documents within a corpus. For this reason, in
2006, an extension of this model was developed [14]. This LDA model extension
is known as dynamic topic model and even if it still has no understanding of the
order of words in a document, at least the order of documents in the corpus is
accounted for.

3.3.4 Hawkes Model

The Hawkes process is a point process class [88], also known as a self-exciting
counting process, in which the impulse response function explicitly depends
on past events [53]. In this type of process, the observation of an event causes
the increase of the process impulse function. From a mathematical point of
view, a point process is a Hawkes process if the impulse function A(¢|H;) of the
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process takes the form of (3.11).

A(tlH) =200+ Y. ¢p(t—1) 3.11)

iiti<t

In equation (3.11) H; represents the history of given past events, A (f) is a posi-
tive function that determines the basic intensity of the process and ¢ is another
positive function known as memory kernel, since it depends on past events oc-
curred before time t. Hawkes models can be used to identify dynamics inter-
actions between a group of K processes. The occurrence of an event on a par-
ticular process can cause an impulse response on that process (self-excitation),
determining an increase of the likelihood of further events, and on other pro-
cesses (mutual-excitation). Given events occurring on a number of processes,
a Hawkes model can be used in order to quantify previously hidden connec-
tions between the processes. In this work, we applied a Hawkes model with
the purpose of deciphering how topics are related to one another, and how
price changes are related to the topic occurrence. Once the Hawkes model is
fitted on the consider data, it will contain some weights representing the di-
rectional strength of any interaction between processes interpreted as the ex-
pected number of events on a specific process resulting from an event on an-
other process.

3.3.5 Results

Before applying topic modelling, the corpus has been pre-processed. Topics
were therefore obtained removing stop words (such as the word “the”), links,
special characters and varied punctuation. Part-of-speech (POS) tagging was
used to categorize words into types; nouns and adjectives are maintained while
other types are removed. Furthermore, stemming techniques were applied in
order to reduce derived words to their base root. These techniques allow to
group different terms into one unique root term and thus to simplify the num-
ber of features, to increase attention to the most critical terms. After this data
pre-processing step, we applied the LdaModel method provided by the Gensim
python library [102] in order to identify distinct topics through topic modelling
technique, thus generating a time series of topic occurrence. For insight into
this topics selection process, Fig. 3.8 shows all topics selected for their coherent
cryptocurrency-related content. For the sake of brevity, we only report those for
the r/Bitcoin subreddit.

The chosen topics are then analysed in a Hawkes model, alongside mar-
ket prices. We used the HawkesConditionalLaw method provided by the tick
python library [6]. Once the topics were created, the creation of the features in
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r/Bitcoin

N. Topic Label Topic words

[ personal ‘money’, 'time', ‘wallet’, ‘way‘, 'thing', ‘work’,
investment ‘coin’, 'transact', ‘crypte’, ‘point’, ‘actual’, 'try’,
‘mean’, 'mine’', ‘sure’, ‘person’

1 Bank 'price’, 'exchange', 'thank', 'day’', 'dollar', 'atm',

‘wrong', ‘shit', ‘purchase’, ‘withdraw', ‘satoshi’,

“check', 'list', 'demand’, ‘name‘, 'hope’, 'google’,
‘com’, 'lt"

2 Bitcoin & ‘bitcoin’, ‘btc’, ‘year', ‘new’, "look’', 'post’,

Blockchain "currency', 'question’, 'remove', 'address', 'node’,

‘network', ‘change’, ‘free’, ‘month‘, ‘internet’,
‘user', ‘power', 'believe’

3 Government ‘people’, ‘goed’, 'market’, ‘value', 'govern', 'right',
‘world’, 'account’, ‘reason’, 'everyone', ‘country’,
'maybe', 'talk', 'idea‘', 'guy', 'last’

4 Trading ‘gt', 'use’, ‘bank’, ‘pay’, ‘fee', ‘cash’, ‘gold’,
‘trade', ‘tax', ‘scam’', ‘lol*, ‘need', ‘word’,
‘coinbase’, ‘rate’, ‘kyc', ‘ask', "trust’

Figure 3.8: Selected topics from r/Bitcoin subreddit

events and processes was performed. Data were aggregated into sixty-minute
groups (At =60min).

Furthermore, two features were processed from each cryptocurrency prices,
namely the delta_price feature, which is the difference between the close
price and the hourly open price, and the log_return feature, i.e. the logarithm
of the difference between higher price and hourly lower price. We then consid-
ered a total of fourteen features, five topics and two price feature for each cryp-
tocurrency. Let us label the maximum time parameter for which an individual
event can affect with max_lag. In this work, different values of max_lag were
tested. We chose these max_lag values according to the length of the period
and the number of events associated per interval.

Fig. 3.9 shows the connections strength between the considered processes
for Bitcoin and Ethereum technical discussions for a max_Ilag of 24. The coef-
ficients of the Hawkes matrix represents the weights extracted from the Hawkes
model fitted to the dataset and they are displayed from the vertical to the hor-
izontal axis. There is a general pattern of soft self-excitement positive relation-
ships between all the variables, highlighted by the coefficients placed on the di-
agonal. Some causal relationship are established between topic_0 (related to
discussion investments) of the Bitcoin and fopic_3 and 4 of Ethereum (related
to discussions about decentralized realities and deployment applications).

The Bitcoin and Ethereum log_return feature is negatively affected by Bit-
coin topic_0 feature, while positively affected by Ethereum topic_3 and 4.
The results obtained with a max_lag of 48, shown in Fig. 3.10, highlights that
the self-excitement relationship are no longer present and the appearance of
some interesting causal relationship between btc_log_return feature and Bit-
coin and Ethereum delta_return features. It also appears that Bitcoin and
Ethereum topics negatively affect the delta_price feature of both cryptocur-
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Figure 3.9: Hawkes matrix for r/Bitcoin and r/Ethereum with max_lag 24.

rencies.

Fig. 3.11 shows the connections strength between the considered processes
for Bitcoin and Ethereum trading discussions for a max_lag of 24. In this case
the relationships between topics features and the variables related to the prices
are almost zero, instead the self-excitement relationships between all the fea-
tures are stronger than those occurred in the technical discussion case.

In Fig. 3.12 are reported the results obtained with a max_lag of 48 always
for Bitcoin and Ethereum trading discussions.

It appears that there are no substantial differences compared to the pre-
vious case with max_lag equal to 24; the only interesting observation that is
worth noting is that all the negative relationships established between the top-
ics features become positive in this case.

A study focused only on September 2019 period was also performed, since
in September 24 a significant fall in the Bitcoin price was occurred with several
ripple effects on Ethereum prices.

Specifically, the Hawkes model was fitted in different time period:

e In the period before the price fall, that is from 1/ to 20°" September with
amax_lag of 24.

* To the period just before the fall, 21-23 September with a max_lag equal
to 12.

 To the turbulent period of 24 — 26 September, with a max_lag of 6.
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Figure 3.11: Hawkes matrix for r/BitcoinMarkets and r/EthTrader, max_lag 24.
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Figure 3.12: Hawkes matrix for r/BitcoinMarkets and r/EthTrader, max_lag 48.

For the sake of brevity, we only discuss the results without showing the Hawkes
matrices, since they are similar to those already analyzed. Let us start by dis-
cussing the results related to the technical discussions. The results obtained
for the period before the price fall, with a max_lag of 24, does not show rele-
vant information, In general, only Bitcoin’s topic_0 (personal investment) and
Ethereum’s topic_3 (decentralized Al) features appear to affect other variables,
but only weakly on prices. More interesting results are obtained for the period
just before the Bitcoin price fall, i.e. the period between 20 — 23 September
with max_lag set to 12. It appears that the Hawkes model fitted in this pe-
riods yields strong weights for the log_return features, above all on topic_0
with positive effects and on Ethereum topic_3 and 4 with significant negative
effects. In this period, the relationships between topics and the features related
to the cryptocurrency prices are almost zero, while very strong causal effects
among the topics are evident. The analysis related to the trading discussions
performed in the turbulent period of 24 — 26 September with a max_lag of
6, shows that Ethereum topic_2 and 3 (Ethereum domain and Government)
strongly influence the Ethereum delta_return and the Bitcoin log_return
features.
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3.4 OntheImpactof Development Practices on Cryp-
tocurrency Prices

The network of developers in distributed ledgers and blockchains open source
projects is essential to maintaining the platform: understanding the structure
of their exchanges, analysing their activity and its quality (e.g. issues resolution
times, politeness in comments) is important to determine how “healthy” and
efficient a project is. The quality of a project affects the trust in the platform,
and therefore the value of the digital tokens exchanged over it.

In this Ph.D. work, we investigate whether developers’ emotions can ef-
fectively provide insights that can improve the prediction of the price of to-
kens. We consider developers’ comments and activity for two major blockchain
projects, namely Ethereum and Bitcoin, extracted from Github. We measure
sentiment and emotions (joy, love, anger, etc.) of the developers’ comments
over time, and test the corresponding time series (i.e. the affect time series) for
correlations and causality with the Bitcoin/Ethereum time series of prices. Our
analysis shows the existence of a Granger-causality between the time series of
developers’ emotions and Bitcoin/Ethereum price. Moreover, using an artifi-
cial recurrent neural network (LSTM), we can show that the Root Mean Square
Error (RMSE) - associated with the prediction of the prices of cryptocurrencies
- significantly decreases when including the affect time series.

The ecosystem of cryptocurrencies traded and exchanged every day has
been exponentially growing over the past ten years. The platforms - distributed
ledgers and blockchains - cryptocurrencies rely upon to be created and trans-
ferred are developed (in most cases) in the form of open source projects. Devel-
opers from across the globe are constantly contributing to open source projects
maintaining the codes and software that ensure the platform’s correct function-
ing. According to a Deloitte report?, there are currently more than 6500 active
projects connected to distributed ledger technologies (DLT) and blockchains.
The pioneering ones are the Bitcoin and Ethereum projects, whose associated
tokens also dominate the crypto scene by market capitalisation.

Investors are attracted to this technology, not only by its future outlooks
and potential but also by the excess returns on their investments that can be
achieved by exploiting the highly volatile crypto-market. Nonetheless, valua-
tion and pricing of cryptocurrencies and digitally native tokens remains a non-
trivial task, due to the peculiarity of the platforms, users and investors in the
space.

Quantitative investigations aimed at extracting information from the time

2https://www2.deloitte.com/content/dam/insights/us/articles/4600_
Blockchain-five-vectors/DI_Blockchain-five-vectors.pdf
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series of cryptocurrency prices and predicting prices drivers [99] or the next
most likely jump, range from theoretical models of pricing and adoption of dig-
ital tokens [12, 28, 32] to machine learning [3, 59] and neural network-driven
[70] forecasts of prices and returns. Analyses of the cryptocurrency markets
[40,106,111] yielded insights on their maturity, efficiency and structure. A large
body of literature is also looking at the volatility of cryptocurrencies, from the
model estimation point of view [61, 71] as well as by extrapolating the mecha-
nisms driving the fluctuations. Studies showed, for example, a strong correla-
tion with global economic activity [33, 114] and volume of trades [16].

In the crypto space, where everything is decentralised and shared in a peer-
to-peer fashion between users, developers and investors, “social" aspects ap-
pear to play a crucial role: discussions about platforms’ quality are held over
public forums (e.g. Reddit), news about next developments are shared over the
informal news channel of Twitter and updates on development activities are
publicly accessible over open source development platforms such as Github.
Investors’ sentiment and trading activities, which in turn impact prices, are,
therefore, inevitably informed and influenced via those channels. For this rea-
son, new types of data have been recently used to improve models and predic-
tions. “Social" sentiment is extracted using data gathered from users’ online
communities [65] — e.g. online forums such as BitcoinTalk® — and from online
news and tweets [5,63,72]. For instance, a suitably built sentiment index can be
used to test for speculative bubbles in cryptocurrency prices [23]. More broadly,
Google search data related to cryptocurrencies can be relevant to characterise
the set of Bitcoin users [119]. Temporal topic analysis of Bitcoin and Ethereum
discussions on Reddit also show correlations with variations of cryptocurrency
prices [100].

Developers in open source blockchain and DLTs projects are also crucial en-
tities, responsible for the maintenance and updates of the platforms. The idea
that the human aspects of software development are of paramount importance
to ensure high team productivity, software quality and developers satisfaction
is already well-established in software engineering [39, 49, 82]. These studies
have shed light on the importance of all the social and human aspects associ-
ated with the software development processes, and empirically demonstrated
how a positive environment may have an impact on team productivity, soft-
ware quality and developers’ satisfaction [47,64]. Moreover, standard metrics
extracted from open source development platforms such as Github?* and Bit-
bucket® can be used to rank the top crypto tokens [89]: metrics include number

Shttps://bitcointalk.org
“https://github.com
Shttps://bitbucket.org
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of commits and issues, forks and number of contributors to the code.

Tools to extract sentiment specifically built for the software engineering do-
main and language are also available. For example, Murgia et al. [82] demon-
strated the feasibility of a machine learning classifier using emotion-driving
words and technical terms to identify developers’ comments containing grati-
tude, joy and sadness. Islam et al. [58] studied how developers’ emotions affect
the software development process. They reconstructed the emotional varia-
tions by means of a sentiment analysis on commit messages using the Sen-
tiStrength tool [37], showing how emotions influence different typologies of
software development tasks.

In this analysis, we focus our investigation precisely on the impact of de-
velopers’ activities and emotions, sentiment and politeness on the cryptocur-
rencies issued and transferred over the platform they contribute to develop. In
particular, we consider comments written by GitHub contributors of the two
main blockchain projects, Bitcoin and Ethereum, and we perform emotions
mining (love, joy, anger, sadness), sentiment analysis [82], politeness and VAD
analysis6 of the comments [39, 75]. In the following, we will generally refer to
emotions, sentiment, politeness and VAD metrics as affect metrics, in line with
recent works in psychology and computer science (e.g. [48,104]), where affect
is an umbrella term for discrete emotional states as well as emotional dimen-
sions and moods. In Sec. 3.4.1, we will describe in more details the meaning of
the affect metrics and how they are measured.

The main idea of this study is to understand whether emotions mining,
sentiment analysis, politeness, and VAD analysis can be used to improve the
prediction power of machine learning algorithms for the returns of the Bit-
coin/Ethereum cryptocurrency. More generally, these metrics could be useful
to monitor the health and quality of projects and platforms from a software en-
gineering point of view.

We aim at understanding the interplay between developers’ affect and cryp-
tocurrency returns and we will focus on the two following aspects:

* Does the affect of Bitcoin and Ethereum communities influence varia-
tions in returns?
Using Granger causality tests we will show that the affect metrics extracted
from the contributors’ comments influence the cryptocurrency prices.

* Is the affect of Bitcoin and Ethereum communities able to improve the
error on the prediction of returns?

6valence, Arousal and Dominance: these metrics are used to respectively evaluate the (i)
engagement, (ii) confidence and (iii) responsiveness of a person in conducting a task or an
activity. More details will follow in Sec. 3.4.2.
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Using a LSTM neural network we will show that including the affect time
series as features in the training set significantly improves the prediction
error.

This work is organised as follows. In Sec. 3.4.1, we describe the dataset,
the process to construct the affect time series and the tools used for the analy-
ses (Granger causality test and Long-Short term memory for the prediction of
returns). In Sec. 3.2.8, we present the results and their implications. In Sec.
3.2.11, we discuss the limitations of this study.

3.4.1 Dataset and Methods

In this section, we describe how affect time series are constructed using the
comments of Ethereum and Bitcoin developers on Github for the period of De-
cember 2010 to August 2017.

Both the Bitcoin and Ethereum projects are open source, hence the code
and all the interactions among contributors are publicly available on GitHub
[92]. Active contributors are continuously opening, commenting on, and clos-
ing so-called “issues”. Anissueis an element of the development process, which
carries information about discovered bugs, suggestions on new functionali-
ties to be implemented in the code, or new features actually being developed.
Monitoring the issues constitutes an elegant and efficient way of tracking all
the phases of the development process, even in complicated and large-scale
projects with a large number of remote developers involved. An issue can be
“‘commented” on, meaning that developers can start sub-discussions around
it. They normally add comments to a given issue to highlight the actions being
undertaken or to provide suggestions on its possible resolution. Each comment
posted on GitHub is timestamped, hence it is possible to obtain the exact time
and date and generate a time series for each affect metric considered in this
study.

An example of a developer’s comment extracted from Github for Ethereum
can be seen in Table 3.23. Quantitative measures of sentiment and emotions as-
sociated with the comments, as reported in this example, are computed using
state-of-the-art tools of textual analysis (further details below). The affect met-
rics computed for each comment are emotions such as love (L), joy (J), anger
(A), sadness (S), VAD (valence (Val), dominance (Dom), arousal (Ar)), polite-
ness and sentiment (Pol and Sent respectively).

The Bitcoin and Ethereum price time series were extracted from the API of
CoinMarketCap ” using daily closing prices.

“https://coinmarketcap.com/
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Comment L{J|A|S| Val | Dom | Ar | Pol | Sent
Perhaps there’s simply
nothing new to translate?
The reason I updated
Transifex in the first
place was to be sure the
strings with subtle En-
glish changes (that don’t
change the meaning) | 00| 0| 1| 193 | 1.88 | 1.26 | imp 1
didn't reset the trans-

lation - so those were
imported from the old
translations. Though I
seem to recall at least
one truly new string -
Transaction or such.

Table 3.23: Example of comments and the corresponding values of affect (love
(), joy (J), anger (A), sadness (S)), VAD (valence (Val), dominance (Dom),
arousal (Ar)), politeness and sentiment (Pol and Sent respectively).
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3.4.2 Measuring Affects Metrics

In our analysis, we focus on four main classes of affect metrics: emotions (love,
joy, anger, sadness), VAD (valence, arousal, dominance), Politeness, Sentiment.
As we specify below, for each affect metric class, we use a tailor-made tool to
extract it from the text of the comments.

For the detection of emotions, we use the tool developed by Ortu et al. [84]
and extended by Murgia et al. [83]. This tool is particularly suited for our analy-
sis as the algorithm has been trained on developers’ comments extracted from
Apache, a Jira-based data repository, hence within the Software Engineering
domain. The classifier is able to detect love, anger, joy and sadness with an F;
score® close to 0.8 for all of them.

Valence, Arousal and Dominance (VAD) represent conceptualised affective
dimensions that respectively describe the interest, alertness and control a sub-
ject feels in response to a certain stimulus. In the context of software develop-
ment, VAD measures may give an indication of the involvement of a developer
in a project as well as their confidence and responsiveness in completing tasks.
Warriner et al.’s [115] has created a reference lexicon containing 14,000 English
words with VAD scores for Valence, Arousal, and Dominance, that can be used
to train the classifier, similarly to the approach by Mantyla et al. [75]. In [75], the
authors extracted valence-arousal-dominance (VAD) metrics from 700,000 Jira
issue reports containing over 2,000,000 comments. They showed that issue re-
ports of different type (e.g., feature request vs bug) had a fair variation in terms
of valence, while an increase in issue priority would typically increase arousal.

For politeness detection, we use the tool proposed by Danescu et al. [35],
which output a binary classification of the text as polite or impolite. This tool
is particularly suitable in the context of our analysis as the algorithm has been
trained using over 10,000 manually labelled requests from Wikipedia and Stack-
Overflow. Indeed, in both data sources-but more specifically StackOverflow—
contributors make use of technical terms and jargon, similarly to conversations
among developers in online forum or development platforms.

Finally, the sentiment is measured using Senti4SD tool [20]. The algorithm
extracts the degree of positive (ranging from 1 to 5), neutral (0) and negative
(ranging from -1 to -5) sentiment in short texts. This tool is also trained on
developers’ comments.

8The F; score tests the accuracy of a classifier and it is calculated as the harmonic mean of
precision and recall.
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3.4.3 Affect Time Series

Once numerical values of the affect metrics are computed for all comments
(as shown in the example in Table 3.23), we consider the timestamps (i.e. dates
when the comments were posted) to build the corresponding affect time series.
The affect time series are constructed by aggregating sentiment and emotions
of multiple comments published on the same day. For a given affect metric, e.g.
anger, for a specific day, we construct the time series by averaging the values of
the affect metric over all comments posted on the same day.

Affect Metrics Time Series Ethereum

»
7
&

o 9
& o
5

S

Date

Figure 3.13: Bitcoin affect time series. Affect time series reconstructed from
the comments of Bitcoin developers.

In Figure 3.13 and 3.14 we show the time series for all affect metrics for Bit-
coin and Ethereum, respectively. We also report in Table 3.24 and 3.25 in more
details the summary statistics of the affect time series for both cryptocurrencies
respectively.

In Figure 3.15, we also show the boxplots of the data distributions for each
affect time series for the Bitcoin and Ethereum case.

The box width gives an indication of the sample’s variability. In the Bitcoin
case, all the affect metrics show a small variance, particularly if we consider
anger, joy and love time series. Moreover, all distributions are symmetric, ex-
cept that for the anger, joy, sadness and love samples. For Ethereum, instead,
the time series of sentiment, arousal, valence and dominance present a broader
distribution compared to the corresponding Bitcoin ones. Further analyses of
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Affect Metrics Time Series Ethereum

— politeness — arousal

— sentiment 04

25 — valence — dominance — oy
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Figure 3.14: Ethereum affect time series. Affect time series reconstructed from
the comments of Ethereum developers.

Statistic sentiment arousal valence dominance anger sadness joy love
mean -0.043081 0.984999 1.431276 1.442303  0.040907  0.244030 0.077308 0.049961
std 0.807408 0.541344 0.821061 0.805969  0.227526  0.595813  0.291157 0.227564
min -4.000000 0.000000 0.000000 0.000000  0.000000  0.000000  0.000000 0.000000
25% 0.000000 0.750000 1.080000 1.100000  0.000000  0.000000  0.000000 0.000000
50% 0.000000 1.040000 1.470000 1.490000  0.000000  0.000000  0.000000 0.000000
75% 0.000000 1.270000 1.840000 1.860000  0.000000  0.000000  0.000000 0.000000
max 4.000000 6.150000 7.890000 7.220000 12.000000 38.000000 12.000000 4.000000

Table 3.24: Summary statistics of affect metrics for Bitcoin. Mean, standard
deviation, min-max values considering all Github comments for sentiment,
arousal, valence, dominance, anger, joy, love.

Statistic sentiment arousal valence dominance anger sadness joy love
mean 0.039835 1.271606 1.831578 1.829091 0.035780  0.224817  0.056057 0.132588
std 0.794382 0.837046 1.264279 1.188470 0.217238  0.547257  0.273674 0.365146
min -3.000000 0.000000 0.000000 0.000000 0.000000  0.000000  0.000000 0.000000
25% 0.000000 0.900000 1.290000 1.300000 0.000000  0.000000  0.000000 0.000000
50% 0.000000 1.150000 1.640000 1.660000 0.000000  0.000000  0.000000 0.000000
75% 0.000000 1.420000 2.050000 2.060000 0.000000  0.000000  0.000000 0.000000
max 4.000000 5.570000 8.210000 7.000000 6.000000 15.000000 14.000000 3.000000

Table 3.25: Summary statistics of affect metrics for Ethereum. Mean, stan-
dard deviation, min-max values considering all Github comments for senti-
ment, arousal, valence, dominance, anger, joy, love.
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Figure 3.15: Distributions of the affect time series. Boxplot of the Bitcoin
(top panel) and Ethereum (bottom panel) distributions for all affect metrics and
all Github comments.

the stationarity of the time series can be found in the Supplementary Material
(Sec. 1).

3.4.4 Granger Causality test

The Granger causality test is a statistical hypothesis test useful to assess whether
a given time series shows some potential predictability power on another time
series. In the Granger-sense, a time series X Granger-causes Y if X is able to
improve the prediction of Y with respect to a forecast, considering only past
values of Y [46]. Equivalently, if we define I, as the information set of the
form (x;,...,X¢—7, ¥¢-1,.., Yr—7) (wWhere 7 is the number of lags or observations
included in the regression), then x; Granger-causes y; if the variance of the op-
timal linear predictor of y; based on I is smaller than the variance of the op-
timal linear predictor of y; based on the information set I'; = (y;-1,..., ys—7) of
lagged values of y; only:

O'Z(J/tU/t—r,xt—r) <02(J/t|J’t—r),VT€N- (3.12)
The procedure of the Granger-causality test is as follows.

1. The time series of cryptocurrency returns (e.g. BTC returns) (y;) is re-
gressed on its past values excluding the metric series in the regressors.
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The so-called restricted regression can be written as

T
ye=a+) piye-i+ée, (3.13)
i=1
where « is a constant and the error term &; is an uncorrelated white-

noise process. We, then, calculate the restricted sum of squared residuals
(SSRy)

N
SSRy1) =Y [yi— 7i(T:)]°, (3.14)
i=1

where N is the number of observations, 7 is the number of lags included
in the regression, I'; is the information set, and y; are the predicted val-
ues.

2. We compute a second regression including the lagged values of the affect
time series in the regressors. This unrestricted regression reads

T T
Vi=a+ Y piYesit+ Y YViXe—i+Er (3.15)
i=1 i=1
As before, we evaluate the unrestricted sum of squared residuals (SSR;,)
as follows

N
SSR,() =Y [yi—9:i(TH)]%. (3.16)
i=1

3. Finally, if SSR,, < SSR, the affect time series considered for the analysis
Granger-causes the cryptocurrency returns series.

To determine the presence of (direct and reverse) Granger causality between
affect and return time series we use a two-step approach: (i) we first tested the
null-hypothesis rejecting it if the p-values are below the chosen significance
level and then (ii) we restricted the set of time series to the ones minimising
also the information loss (using the Akaike criterion specified below). Both ap-
proaches are standard tools used for the optimal lag selection in the economet-
ric literature [8,73,110].

For this analysis we have implemented the grangercausalitytest test using
the statsmodels® Python library. This tool tests for Granger non-causality of two
time series, i.e. the null hypothesis Hj is that the chosen affect metric series
does not Granger-cause the Bitcoin or Ethereum returns series. We reject the
null hypothesis if the p-values are below a desired size of the test, choosing a
5% significance level. The p-values are computed using the Wald test as per the

Yhttps://www.statsmodels.org/stable/index.html.
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standard Python Statsmodel libraries [42]. The number of lags included in the
regression models can be tuned by the 7 parameter. For any fixed value of 7, a
Granger causality test is computed for all lags up to 7.

The two possible outcomes of the Granger test are:

e The observed p-values are less than the 5% significance level: rejection
of the null hypothesis Hy. The affect time series Granger cause the cryp-
tocurrency returns one.

* The observed p-values are greater than the 5% significance level: Hy can-
not be rejected. The affect time series does not Granger cause the cryp-
tocurrency returns one.

The AIC metric was also monitored for the two models (restricted and un-
restricted) for each lag value to check for consistency with the results obtained
with the Granger causality test. The Akaike Information Criterion (AIC) is a sta-
tistical tool, based on information theory, that can be used for model selection.

The AIC metric provides an estimate of the quality of a given model, based
on the loss of information: the best model minimises the information loss. AIC
for least squares model fitting can be mathematically defined as

AIC =2(k+1)+nlog(SSR), (3.17)

where 7 is the sample size and k is the number of parameters [10]. If the AIC
is not minimal for the model with the smallest p-value, we cannot validate the
test and we conclude that the Granger causality test has highlighted a spurious,
non-statistically significant correlation. Therefore, we restrict the set of affect
time series effectively showing Granger causality with returns, to the ones for
which not only the p-value is below the chosen significance level but also the
AIC is minimal.

We perfom the Granger test on the stationary affect time series selected via
the analysis available in Sec. 1 of the Supplementary Material. According to
our analysis, the stationary affect time series that we will consider for the Bit-
coin case are sentiment, sadness, arousal, valence, love and dominance. For the
Ethereum case we will use sentiment, anger, arousal, valence, love, dominance,
joy and politeness. It is worth noting that the Granger causality test is sensitive
to the number of lags input in the model. For this reason, we have analysed a
large range of lags, of the order of five months. More specifically, the T parame-
ter was set to 150.
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3.4.5 Long Short-Term Memories and predictions

For our prediction task of the cryptocurrency prices, we use a Recurrent Neu-
ral Network (RNN). A RNN, at its most fundamental level, is simply a type of
densely connected neural network. However, the key difference with respect to
normal feed-forward networks is the introduction of time, with the output of
the hidden layer in a recurrent neural network being fed back into itself. RNNs
are often used in stock-market predictions [36, 79, 103] and more recently also
for Bitcoin and cryptocurrency prices [25, 79].

In this analysis, we use a Long-Short Term Memory (LSTM) RNN to predict
Bitcoin and Ethereum returns. In our model, we use the previous day returns
and affect metrics for the prediction of the returns of the current day (1-day
forecast horizon). We decided to use this short forecast horizon model — which
is normally a benchmark of more sophisticated prediction algorithms — as we
are mostly concerned about demonstrating a possible improvement in Root
Mean Square Error (RMSE)!? when inputting in the model the affect time series
rather than building a sophisticated prediction model.

The affect time series used for this analysis are the ones that showed Granger-
causality with the Bitcoin and Ethereum returns time series. Indeed, the test as-
sessed whether a given affect time series had some potential predictive power
over the cryptocurrency returns time series. As reported in Sec. 3.4.7, we se-
lected sentiment and sadness for Bitcoin and sentiment, anger, arousal, domi-
nance, valence and love for Ethereum.

We designed the LSTM with 50 neurons in the first hidden layer and 1 neu-
ron in the output to predict the cryptocurrency returns. To configure the LSTM,
we use a sigmoid activation function, we calculate the Mean Absolute Error
(MAE) loss function and we use the efficient Adam version of stochastic gra-
dient descent [66] for the optimal choice of models’ parameters. We train the
LSTM, first, using only data related to the cryptocurrency (Ethereum or Bitcoin)
returns time series and, then, we incrementally add the correlated (via Granger-
causality) affect metrics features.

We first apply the LSTM using only the cryptocurrency returns (Bitcoin or
Ethereum returns time series) as a feature, i.e. solving in this case a univariate
regression problem. Then, we incrementally add the affect metrics, i.e. con-
sidering a multivariate regression problem, to analyse potential effects on the
RMSE associated with the predictions. Our analysis is performed by training
the LSTM for 50 epochs and recording for each epoch the corresponding RMSE
value. Figures 3.16a and 3.16b show the loss of the RNN models against the

10The RMSE is defined as the standard deviation of the residuals or prediction errors, i.e.

RMSE = \/%Zlfl:l(yi - 7:)2, where n is the number of observation, y;,i = 1,...,n are the ob-

served values and y;,i = 1,..., n, the predictions.
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Figure 3.16: RNN Loss against number of epochs. Panel (a) RNN trained with
Bitcoin only data (1) first and then sequentially adding sentiment

(2) and sadness (3).

Panel (b) RNN trained with Ethereum returns data only (1), then adding
sequentially sentiment (2), anger (3), arousal (4), valence (5), dominance (6),
love (7).

epochs. We can see that after 50 epochs the loss converges to a stationary value
for all models. Finally, all models where trained using 70% of data for training
and 30% for testing.

3.4.6 Results

In this section, we summarise the results of our analysis concerning testing
for (i) causality between affect time series and cryptocurrency returns and (ii)
improvement in Root Mean Square Error (RMSE) for the prediction of returns
when including affect time series.

3.4.7 Does the affect of Bitcoin and Ethereum communities in-
fluence variations in returns?

In this section, we focus on understanding if there exists a causal relationship
between affect time series and the time series of Bitcoin/Ethereum returns. The
analysis is performed using the Granger causality test [46], which informs on
whether changes in a time series — in our case the returns time series — are in-
duced or connected to a variation in a second correlated time series — in our
case the affect time series. Details on the Granger test can be found in Sec.
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3.4.4. As we will show in the following, the Granger test is detecting significant
Granger-causality (both direct and reverse causality) between affect time series
and cryptocurrency returns. Via this analysis, we are also able to give an esti-
mate of the time lag or delay after which effects of variations in the affect time
series are “visible" in the cryptocurrency returns time series.

Granger causality test - Bitcoin

Let us start with the Bitcoin returns time series analysis. The Granger test high-
lights that only sentiment and sadness metrics Granger-cause the Bitcoin series.
According to the test, instead, there is no casual relationship between the Bit-
coin returns and arousal, valence, love and dominance time series, for any con-
sidered lag value. In order to select the time lag for the Granger causality, we
monitor the p-values as a function of the time lag and select — among the time
lags with p-values falling below the significance level — the time lag associated
with the minimal p-value.

As an illustration, we show in Fig. 3.17 the p-values obtained for each lag
value, up to the chosen 7 for the two affect time series that displayed statisti-
cally significant Granger causality with the Bitcoin returns time series.

observed p-values

e

|

50 100 150 50 100 150

lag values lag values

Figure 3.17: Bitcoin direct causality - p-values as a function of lags.
Left: Bitcoin returns - sadness time series direct causality. Right: Bitcoin returns
- sadness time series direct causality.

A reverse Granger-causality test was also conducted, in order to test whether
cryptocurrency prices influence the affect time series, hence developers’ be-
haviour and feelings. Specifically, we obtain that Bitcoin returns Granger-cause
only sentiment and sadness affect metrics. In this case we therefore deal with a
bidirectional causality, whereby sadness and sentiment series increase the pre-
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diction of the Bitcoin price returns and vice versa. The complete table contain-
ing p-values and associated time lags for all affect metrics for direct and reverse
causality can be found in Sec. 1 of the Supplementary Material.

We have also checked of the AIC values of the models to ascertain that the
Granger test was not capturing spurious effects.

AIC values as a function of the time lags can be found for all affect metrics
Granger-causing the Bitcoin returns in Sec. 2 of the Supplementary Material.
We have, then, selected only the affect time series showing a significant causal
relationship, and also minimising the information loss.

The final set of time series showing a robust Granger (direct and/or reverse)
causality with Bitcoin returns according to both the p-value and the AIC tests,
including the minimum observed p-values and their corresponding time lag, is
reported in Table 3.26.

Table 3.26: Bitcoin Granger Causality tests. Minimum observed p-values and
corresponding lag values for sadness and sentiment times series.

Granger Causality Test Reverse Granger Causality Test
Series p-value lag value | p-value lag value |
sadness 0.019 87 9.504e-8 41
sentiment | 0.003 132 0.040 137

Granger causality test - Ethereum

We repeat the analysis for the Ethereum returns time series. In this case, we
find significant (direct) Granger-causality between the anger, sentiment, va-
lence, arousal, love and dominance metrics series and the Ethereum returns
time series. Instead, we can conclude that joy and politeness metrics do not
Granger cause the Ethereum returns series.

As an illustration of the process for lag selection, we show in Fig. 3.18 the p-
values obtained for each lag value, up to the chosen 7, for the affect time series
that are correlated with the Ethereum returns (direct causality).

The reverse Granger-causality test results highlight, instead, that joy, va-
lence, arousal, love and dominance affect metric influences the returns of Ethereum.

As for the Bitcoin analysis, we select as time lag for the Granger causality,
the value associated with the minimal significant p-value. The complete table
containing p-values and associated time lags for all affect metrics for direct and
reverse causality can be found in Sec. 1 of the Supplementary Material.

We, then, further restrict the set of time series showing Granger-causality, by
checking using the AIC criterion that the AIC associated with the models with
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Figure 3.18: Ethereum direct causality - p-values as a function of lags.

Left: p-values for the direct causality tests between sentiment, anger, love affect
time series and returns. Right: p-values for the direct causality tests between
valence, arousal and dominance affect time series and returns.

the selected time lag is also minimal, therefore removing cases with possibly
spurious correlations.

As an example, we show here the analysis for the love metric. In Figure 3.19
we report the AIC values as a function of the lag parameter. We notice that the
lowest values of AIC (corresponding to minimal information loss) are recorded
in correspondence with the time lag values (~ 19) associated with the lowest p-
value. This analysis is, therefore, consistent with the Granger test results. Simi-
lar conclusions can be drawn for other affect time series “Granger-causing" the
Ethereum returns. AIC values as a function of the time lags can be found for all
affect metrics Granger-causing the Ethereum returns in Sec. 2 of the Supple-
mentary Material.

The final set of time series showing a robust Granger (direct and/or reverse)
causality with Ethereum returns according to both the p-value and the AIC tests
is reported in Table 3.27. As before, we summarise the results of the Granger
test, including time lags and the associated p-values.

To summarise, in this case, we have a unidirectional Granger-causality from
anger, sentiment, valence, arousal, love and dominance series to Ethereum re-
turns and a reverse unidirectional causality from Ethereum returns to joy met-
ric series.

General remarks for the Bitcoin and Ethereum analysis

In general, for both cryptocurrencies, the observed p-values are well below the
chosen 5% significance level. In particular, the p-values obtained for the sen-
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Figure 3.19: Ethereum - Love AIC and p-values. AIC values (see Eq. (3.17))
(blue line) and p-values (red lines) as a function of the number of lags.

Table 3.27: Ethereum Granger Causality tests. Minimum observed p-values
and corresponding lag values for different affect time series.

Granger Causality Test Reverse Granger Causality Test
Series p-value lag value | p-value lag value |
Joy - - 0.011 1
love 0.002 19 - -
anger 0.041 72 - -
valence 0.028 2 - -
arousal 0.018 2 - -
sentiment 0.006 134 - -
dominance | 0.024 2 - -
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timent metric is even below the 1% significance level, in both the Bitcoin and
Ethereum analysis.

In terms of time lag, the test highlights that the Bitcoin returns time series
seems to be affected by sadness metrics and developers sentiment only after a
period of the order of 3—5 months (see Tables 3.26, 3.27). Similar considerations
can be made in the case of Ethereum for the Anger and Sentiment affect time
series. Dominance, Arousal, Valence and Love metrics series appears, instead,
to have short-term effects on the Ethereum returns time series.

We could speculate that the short-term and long-term nature of the effects
of affect metrics on returns is related to the nature of cryptocurrencies itself.
For instance, on the Ethereum platforms, developers can issue multiple tokens
with different features and often the developers themselves are those advertis-
ing the tokens and making transactions to increase their values. As highlighted
in a recent research!! a dominant fraction of the transactions on the Ethereum
blockchain appears to be handled by token teams giving new tokens for free
(airdrops) to Ethereum users, therefore possibly impacting the total valuation
of the platform.

In the Bitcoin case, the long-term effect of changes in developers’ affect
metrics may be correlated with the market efficiency. Indeed, in [71,111] the
authors show that the Bitcoin market is not efficient, i.e. that all information is
not instantly incorporated into prices, hence the large time lag of the causality.

Finally, disagreements among developers of a platform may signal and lead
to a fork event, which in turn generates price movements as shown in [22].
From the onset of a disagreement within the community to the actual fork at-
tempt there is generally a significant time lag, possibly of weeks or months,
compatible with our results.

Regarding the reverse causality, in the Bitcoin case we notice rather high lag
values (as for the direct causality, i.e. affect metrics — Bitcoin returns), hence
the Bitcoin community does not react immediately to price news. In Ethereum,
instead, price movements impact the community with a time lag of 1-day. We
could speculate that this effect is once again related to the different uses of
the two blockchain platforms (e.g. multiple tokens issued on the Ethereum
blockchain). In a related study on topic analysis of tech forums on Reddit [100],
authors also find that topics on “fundamental cryptocurrency value" are very
frequent in the Ethereum community threads and are correlated with increase
in prices.

Uhttps://research.tokenanalyst.io/classifying-ethereum-users-using-blockchain-data/
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3.4.8 Is the affect of Bitcoin and Ethereum communities able
to improve the error on the prediction of returns?

As we discussed in the previous analysis, the decisions taken by the commu-
nity of developers may have a non-negligible impact on the crypto-market. In
this section, we further investigate the predictive power of the affect time series
over the cryptocurrency returns. In particular, we use a deep learning algorithm
to predict the cryptocurrency returns in two scenarios, (i) using only the cryp-
tocurrency returns as a feature or (ii) incrementally adding the affect metrics
to determine whether the additional affect metrics features yield an improve-
ment in the prediction of the Root Mean Square Error (RMSE). By prediction of
the RMSE we mean the average squared error of the correct estimation of the
daily returns compared with the actual returns. The details of the algorithm we
used were described previously in Sec. 3.4.5.

The results obtained for the RMSE of the predictions (measured at the end
of the test phase, i.e. after 50 training epochs) are summarised in Table 3.28
and 3.29 for Bitcoin and Ethereum respectively. We compute the RMSE value
by varying the number of features used in the algorithm. We consider as fea-
tures the affect time series that showed direct Granger causality with the Bitcoin
returns (see Table 3.26). For the Bitcoin analysis (Table 3.28), the 1-feature case
corresponds to including only the time series of Bitcoin returns, while the 3-
feature case includes the return time series together with the sadness and sen-
timent time series. We proceed in a similar way for the Ethereum case, where
we incrementally include affect time series to the prediction model for the re-
turns (considering the affect metrics that showed causality with the returns,
summarised in Table 3.27).

Features RMSE

1 - 0129
2 0.032
3 0.013

Table 3.28: Bitcoin prediction errors. Root Mean Square Error (RMSE) of pre-
dictions considering (1) only Bitcoin returns and then sequentially adding sen-
timent(2) and sadness (3) time series as features.

Interestingly, we find that including the affect time series in models (based
on LSTM neural networks) for the prediction of cryptocurrency returns yield a
decrease in the RMSE. This result holds true for the prediction of the time series
of both the Bitcoin and Ethereum returns. Indeed, in both Table 3.28, 3.29, we
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Features RMSE

0.082
0.113
0.114
0.114
0.114
0.048

N OO W -

Table 3.29: Ethereum prediction errors. Root Mean Square Error (RMSE) of
predictions considering Ethereum returns (1), then adding sequentially senti-
ment (2), anger (3), arousal (4), valence (5), dominance (6), love (7) time series.

can see that when adding all the affects metrics, the RMSE of the predictions
is significantly improved, from 0.129 to 0.013 (90% of improvement) for Bitcoin
and from 0.178 to 0.048 (73% of improvement) for Ethereum.

We compared the distributions of the RMSEs for the 1-feature model (in-
cluding only cryptocurrency returns) and the final model with all the features.
The distributions of RMSEs include the RMSE values for each one of the 50
training epochs for the two models (including 1-feature only or all affect met-
rics respectively). For this comparison we used the Wilcoxon Rank-Sum test, a
nonparametric test that does not assume specific characteristics of the distri-
butions, e.g. normality, compared to equivalent tests (e.g. the Welch test) [43].
We find that the two distributions are statistically different with a p — value
of 0.0002 for Bitcoin (effect size of 0.56) and 0.00001 for Ethereum (effect size
0.48).

To summarise, we show that (i) by aggregating all the features (i.e. all af-
fect metrics) we obtain — for both Bitcoin and Ethereum — a significant increase
in predictive power than when considering them separately. Moreover, (ii) we
provide examples of cases where also the partial aggregation (using only some
of the affect metrics that Granger-cause the returns, e.g. considering Ethereum
returns and the anger time series) is better than inputting only the time series
of returns for the prediction task. These examples are non-exhaustive of all
possible combinations of affect time series and returns as input of the neural
network, but serve as illustrations that a decrease in prediction error can be
induced by the addition of the affect metric.
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3.4.9 Threats To Validity

Threats to external validity concern the generalisation of our results. In this
study, we analysed comments from GitHub for Bitcoin and Ethereum open
source projects. Our results cannot be representative of all other cryptocur-
rencies and this could, indeed, affect the generality of the study. Replication
of this work on other open source cryptocurrency-related projects is needed to
confirm our findings. Additionally, the politeness tool can be subject to bias
due to the domain used to train the machine learning classifier.

Threats to internal validity concern confounding factors that can influence
the obtained results. Based on empirical evidence, we assume a relationship
between the emotional state of developers and what they write in issue re-
ports [94]. Since the main goal of developers’ communication is the sharing
of information, the consequence of removing or camouflaging emotions may
make comments less meaningful and cause misunderstandings. This work is
focused on sentences written by developers for developers. To illustrate the in-
fluence of these comments, it is important to understand the language used
by developers. We believe that all the tools used for measuring the affect met-
rics are valid in the software development domain. The comments used in this
study were collected over an extended period from developers unaware of be-
ing monitored, therefore, we are confident that the emotions, sentiment, po-
liteness and VAD metrics we analysed are genuine ones.

Threats to construct validity focus on how accurately the observations de-
scribe the phenomena of interest. The detection of emotions from issue reports
presents difficulties due to vagueness and subjectivity. Emotions, sentiment
and politeness measures are approximated and cannot perfectly identify the
precise context, given the challenges of natural language and subtle phenom-
ena like sarcasm.
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Chapter 4

Related Works

Over the years many algorithms have been developed for forecasting time se-
ries in stock markets. The most widely adopted are based on the analysis of past
market movements [1]. Among the others, [4] proposed a prediction system us-
ing a combination of genetic and neural approaches, having as inputs technical
analysis factors that are combined with daily prices. [41] discussed a hybrid pre-
diction model that combines differential evolution-based fuzzy clustering with
a fuzzy inference neural network for performing an index level forecast. [62]
presented a forecasting model based on chaotic mapping, firefly algorithm, and
support vector regression (SVR) to predict stock market prices. Unlike other
widely studied time series, still very few researches have focused on bitcoin
price prediction. In a recent exploration [80] tried to ascertain with what ac-
curacy the direction of Bitcoin price in USD can be predicted using machine
learning algorithms like LSTM (Long short-term memory) and RNN (Recur-
rent Neural Network). [86] tried to forecast the volatility of the Bitcoin/USD ex-
change rate using GARCH (Generalized AutoRegressive Conditional Heteroscedas-
ticity) models. [109] studied and applied a-Sutte indicator and Arima (Autore-
gressive Integrated Moving Average) methods to forecast historical data of Bit-
coin. [107] proposed the use of Fast Wavelet Transform to forecast Bitcoin prices.
[117] examined a few complexity measures of the Bitcoin transaction flow net-
works, and modeled the joint dynamic relationship between these complexity
measures and Bitcoin market variables such as return and volatility. [7] pre-
sented a forecasting Bitcoin exchange rate model in high volatility environ-
ment, using autoregressive integrated moving average (ARIMA) algorithms. [21]
studied the predictability of cryptocurrencies time series, comparing several al-
ternative univariate and multivariate models in point and density forecasting of
four of the most capitalized series: Bitcoin, Litecoin, Ripple and Ethereum, us-
ing univariate Dynamic Linear Models and several multivariate Vector Autore-
gressive models with different forms of time variation. [113] used knowledge
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of statistics for financial time series and machine learning to fit the parametric
distribution and model and forecast the volatility of Bitcoin returns, and an-
alyze its correlation to other financial market indicators . Other approaches
try to predict stock market index using fusion of machine learning techniques
[95]. [2] introduced a novel concept of chainlets, or bitcoin subgraphs, to eval-
uate the local topological structure of the Bitcoin graph over time and the role
of chainlets on bitcoin price formation and dynamics. [50] predicted the fu-
ture price of bitcoin investigating the predictive power of blockchain network-
based, in particular using the bitcoin transaction graph.

Quantitative investigations aimed at extracting information from cryptocur-
rencies prices time series and predicting prices drivers [11,99] or the next most
likely jump, range from theoretical models of pricing and adoption of digital
tokens [12, 28, 32] to machine learning [3, 59] and neural network-driven [70]
forecasts of prices and returns.

Several are also the studies that tried to use online information, including
social media topics discussions, to predict cryptocurrencies price changes, for
example, Google searches for Bitcoin-related terms have been shown to have a
relationship with the Bitcoin price [67]. For this reason, new types of data have
been recently used to improve models and predictions. “Social" sentiment is
extracted using data gathered from users’ online communities [65] — e.g. on-
line forums such as BitcoinTalk! — and from online news and tweets [5, 63, 72].
For instance, a suitably built sentiment index can be used to test for specula-
tive bubbles in cryptocurrency prices [23]. More broadly, Google search data
related to cryptocurrencies can be relevant to characterise the set of Bitcoin
users [119]. Temporal topic analysis of Bitcoin and Ethereum discussions on
Reddit also show correlations with variations of cryptocurrency prices [100]. D.
Garcia and E Schweitzer have considered the strength and polarisation of opin-
ions displayed in Twitter submissions, founding that an increase in the polar-
isation of sentiment (disagreement of sentiment) preceded a rise in the price
of Bitcoin [45]. In another work, several machine learning pipelines were im-
plemented with the objective of identifying cryptocurrency market movement,
in order to prove whether Twitter data relating to cryptocurrencies can be uti-
lized to develop advantageous crypto coin trading strategies [108]. E Valencia et
al. proposed to use most common machine learning tools, such as neural net-
works, support vector machines and random forest, and available social media
data for predicting the price movement of the Bitcoin, Ethereum, Ripple and
Litecoin cryptocurrency market movements, showing that it is possible to pre-
dict cryptocurrency markets using machine learning and sentiment analysis
and that, in this case study, neural networks outperform the other models [44].

"https://bitcointalk.org
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A recent exploration monitored the activity on the social media platform Red-
dit in order to detect the epidemic-like spread of investment ideas beneficial
in the prediction of cryptocurrency price bubbles [101]. Developers in open
source blockchain and DLTs projects are also crucial entities, responsible for
the maintenance and updates of the platforms. The idea that the human as-
pects of software development are of paramount importance to ensure high
team productivity, software quality and developers satisfaction is already well-
established in software engineering [39, 49, 82]. These studies have shed light
on the importance of all the social and human aspects associated with the soft-
ware development processes, and empirically demonstrated how a positive en-
vironment may have an impact on team productivity, software quality and de-
velopers’ satisfaction [47,64]. Moreover, standard metrics extracted from open
source development platforms such as Github? and Bitbucket® can be used to
rank the top crypto tokens [89]: metrics include number of commits and issues,
forks and number of contributors to the code.

2https://github.com
Shttps://bitbucket.org
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Chapter 5

Conclusion

These three years of PhD research aimed to study the well-known time series
prediction problem in the field of financial markets, specifically cryptocurrency
market, in order to develop an innovative approach to enrich the state-of-the-
art. The main goal of the proposed approach is to ascertain if the progressive
addition of variables of different sources can effectively improve the prediction
of cryptocurrency prices. The variables included in this work can be grouped
into three major categories. The first one contains the trading variables, such as
close and open prices, volumes and so on and so forth. The second class of vari-
ables consist of technical variables, i.e. technical analysis variables calculated
from the trading ones. Finally the social variables generated from online infor-
mation and social media comments, such as users’ sentiment, politeness and
emotions. The analysis were conducted using traditional econometrics meth-
ods and state-of-the-art Artificial Intelligence algorithms.

Forecasting Bitcoin closing price series using linear regression and neural
networks models.
This part of the Ph.D. work can be considered as a first approach to cryptocur-
rency price prediction problem with the purpose of forecasting daily closing
price series of Bitcoin, Litecoin and Ethereum cryptocurrencies, using data on
prices and volumes of prior days. In this work both statistical techniques and
artificial intelligence algorithms were implemented. The considered financial
time series resulted to be indistinguishable from a random walk, so the series
were partitioned into shorter overlapping sequences in order to identify dif-
ferent stationary price regimes. The results confirmed the correctness of our
hypothesis of identifying time regimes that do not resemble a random walk
and that are easier to model, finding that best result are obtained using more
than one previous prices. It is important to emphasize that the identification of
short-time regimes within the entire series, allowed us to obtain leading-edge
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results in the field of financial series forecasting. This study is a starting point
to the development of our innovative proposed approach since the analysed
data only includes trading variables, specifically close, open, high, low prices
and volumes.

Blockchain Cryptocurrencies’ Price Movements Through Deep Learning.
Technical Analysis is a trading discipline employed to gain speculative insights
and trading opportunities in price trends, always used as a support in predict-
ing traditional stock market price series. These considerations led us to ver-
ify whether this trading technique could also affect cryptocurrency prices. For
this reason we decided to assess whether the addition of technical indicators
to the classic macroeconomic variables can lead to an effective improvement
in the prediction of Bitcoin price changes. This purpose was achieved imple-
menting machine learning techniques, such as Support Vector Machine and
XGBoost models and deep learning algorithms, namely CNN and LSTM neu-
ral networks. In the restricted analysis the model that achieved the best per-
formance, both in terms of the chosen prediction error and execution speed,
is SVM with an average accuracy of 54% and a standard deviation of 2.8%. In
the unrestricted case, the best result is achieved by the CNN neural network
with an average accuracy of 54.7% and a standard deviation of 2.5%. The most
important thing that is worth noting is that, the results obtained for the unre-
stricted model highlights that in general the addition of technical analysis vari-
ables to the dataset leads to an effective improvement in the average accuracy.
We can state that this finding is not the result of a statistical fluctuation since
all the implemented models yielded the same achievements. For the same rea-
son, we can furthermore exclude the dependence of the obtained results on the
particular implemented algorithm. These promising findings led us to deeply
investigate the discussed approach.

Does online information influence cryptocurrency prices?

The strong interest aroused from cryptocurrencies not only in the scientific
and financial fields but also within social media communities, led us to the
conjecture that the inclusion of social media variables and online informa-
tion to the datasets could further improve cryptocurrency price predictions.
This conjecture was confirmed by this analysis which proved the existence of
possible causal-effect relationships between web and social events and cryp-
tocurrency price variations. This goal was achieved by implementing the well-
known Hawkes model to indentify and and model relationships between cryp-
tocurrencies market price changes and topic discussion occurrences on social
media. The results obtained in this analysis highlighted that it is possible to
identify some interactions among the considered features, and it appears that
some topics are indicative of certain types of price movements. Specifically,
the discussions concerning issues about government, trading and Ethereum
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cryptocurrency as an exchange currency, appear to affect Bitcoin and Ethereum
prices negatively. The discussions of investment appear to be indicative of price
rises, while the discussions related to new decentralized realities and techno-
logical applications is indicative of price falls.
Impact of Development Practices on Cryptocurrency Prices.

The confirmation of the presence of correlation patterns between online in-
formation and cryptocurrency prices led us to conduct a more deeply inves-
tigation on the existence of possible relationships between network develop-
ers comments and cryptocurrencies. Blockchain development processes have
deep foundations within the community, with the community itself being the
“heart and brain” of all critical decisions around the improvements and changes
on the platforms. Investors and crypto-market players look at the develop-
ment activities and read the technical reports of the developers to try to predict
the success of the platforms they are betting on. There is, indeed, a connec-
tion between the development activities and the valuation of cryptocurrencies.
For this reason this study investigated whether developers’ emotions can effec-
tively provide insights that can improve the prediction of the price of tokens.
Our analysis proved the existence of a Granger-causality between the time se-
ries of developers’ emotions and Bitcoin/Ethereum price. Moreover, using an
artificial recurrent neural network, we showed that the error (RMSE) associated
with the prediction of the prices of cryptocurrencies significantly decreases
when including the affect time series. These results highlights the existence
of a connection between the development activities and the valuation of cryp-
tocurrencies.

Several are the papers already in the literature that try to study and pre-
dict the behaviour of Bitcoin prices, or more generally of cryptocurrency prices.
Nevertheless, the analysis of the cryptocurrency market is still one of the most
discussed topics and at the same time difficult to interpret and analyse. The
main focus of this work is the introduction of a novel approach that lead to
an effective improvement in cryptocurrency price prediction through the pro-
gressive addition to the dataset of variables of different sources, particularly
trading, technical and social variables. This findings allow the development of
more accurate cryptocurrencies prediction models, serving as a source of in-
formation for speculators and investors.
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