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Abstract: The aging process in the kidneys has been well studied. It is known that the glomerular
filtration rate (GFR) declines with age in subjects older than 50–60 years. However, there is still
insufficient knowledge regarding the response of the aged kidney to environmental toxicants such
as mercury, cadmium, and lead. Here, we present a review on the functional decline and proposed
mechanisms in the aging kidney as influenced by metal pollutants. Due to the prevalence of these
toxicants in the environment, human exposure is nearly unavoidable. Further, it is well known that
acute and chronic exposures to toxic metals may be detrimental to kidneys of normal adults, thus
it may be hypothesized that exposure of individuals with reduced GFR will result in additional
reductions in renal function. Individuals with compromised renal function, either from aging or from
a combination of aging and disease, may be particularly susceptible to environmental toxicants. The
available data appear to show an association between exposure to mercury, cadmium and/or lead
and an increase in incidence and severity of renal disease in elderly individuals. Furthermore, some
physiological thiols, as well as adequate selenium status, appear to exert a protective action. Further
studies providing improved insight into the mechanisms by which nephrotoxic metals are handled
by aging kidneys, as well as possibilities of therapeutic protection, are of utmost importance.

Keywords: renal disease; aging; mercury; cadmium; lead; thiols; selenium

1. Introduction

The kidney appears to be a major site of age-related changes, in addition to being a
target for many environmental pollutants [1]. Long-term exposure to heavy metals such as
mercury, lead, and cadmium may accelerate age-related renal deteriorations, which in part
can be ascribed to the tendency of the accumulation of heavy metals in the kidneys during
the processing of primary urine. Due to the increased life expectancy of humans living in
the modern world, together with an increasing level of environmental metal pollutants with
long elimination half-lives, it is likely that older individuals today accumulate higher levels
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of such toxic agents than individuals did some decades ago. Furthermore, the number of
older individuals is increasing. Globally, more than 10% of the population are over the
age of 60, and this percentage is predicated to rise substantially by 2050 [2]. A thorough
understanding of the impact of age on various organs, including on the kidneys, is crucial
when managing general healthcare, since elderly individuals make up a significant fraction
of healthcare patients.

Numerous physiological changes occur in the aging kidneys, especially after the age
of 70. Although healthy elderly individuals appear to be capable of maintaining normal
renal function in spite of significant structural and physiological changes, this is achieved
at the cost of the renal functional reserve. However, when the functional reserve is lost,
kidneys have a reduced capacity to respond to external challenges, involving reduced
ability to eliminate toxicants. Thus, old individuals may be more susceptible than younger
ones when exposed to toxic metals from the environment.

The aging process results in numerous changes at the cellular and molecular levels.
One of these changes involves a decreased ability to repair injured cells [3]. Concomitantly,
acute phase reactants such as, e.g., C-reactive protein (CRP), tumor necrosis factor alpha
(TNF-α), and interleukin-6 (IL-6) are expressed at higher levels [4].

Mitochondrial injuries appear to be an important factor in cellular senescence. The
free radical theory of aging [5] states that generation and leakage of ROS (reactive oxygen
species) from the mitochondrial respiratory chain increases with age and leads to intra-
cellular oxidative damage. Deterioration of mitochondrial DNA will impair the function
of the respiratory chain, which is accompanied by additional ROS formation and DNA
injuries. These events are hypothesized to involve a continuous cycle of reactive radical
formation that may lead to accelerated aging [6]. Several studies have indicated that aging
is related to a declining expression of various anti-oxidative stress-related enzymes such as
the superoxide dismutases (SOD1 and SOD2), catalase, and the glutathione peroxidases
(GPXs) [7]. A reduction in the activities of these protective enzymes may lead to a further
increase in oxidative stress and cellular aging. Exposure to mercury, cadmium, or lead,
even on a low-grade scale, is known to affect anti-oxidative enzyme systems [8,9] and may
thus promote age-dependent organ changes, especially in the kidneys [10]. The aim of the
present review is to discuss the renal toxicity of mercury, cadmium, and lead compounds
in elderly subjects, and the possible protective role of sulfur and selenium compounds.

2. Mercury, Cadmium and Lead—Nephrotoxic Environmental Pollutants

Toxic metals are abundant in the general environment, and at even higher levels in
some occupational settings, implying that human exposure to these metals is inevitable. The
cumulated exposure in elderly individuals to these nephrotoxic pollutants may promote
age-dependent progression of renal deterioration [11]. Due to their function as the major
route of excretion from the body, kidneys in aged individuals are especially vulnerable to
heavy metal toxicity [10], mostly to mercury (Hg), cadmium (Cd), and lead (Pb). As for
mercury, even minor exposures from its use in dental amalgams, vaccines, eye drops, and
in traditional folk medicines may give rise to nephrotoxic effects, which may be difficult to
assess because effects usually arise months or years after a low or moderate exposure [12,13].
Mercury is known to significantly affect human biochemical processes by interfering with
the complex redox machinery used to regulate cell survival and mitochondrial function [14].
Cells with increased oxidative stress, for instance due to an inflammatory reaction in an
aged individual, are presumed to be more susceptible to Hg toxicity than healthy cells
under controlled conditions. Mercury occurs in three main forms, viz. elemental mercury
(Hg0), organic mercury (e.g., CH3Hg+, here denoted MeHg), and inorganic mercury (Hg2+,
Hg+), the latter forms often occurring as salts (e.g., HgCl2) [15]. All these forms have
effects on the kidneys [16]. While inorganic Hg compounds are well-known nephrotoxic
agents, exposure to elemental mercury vapor or to organic mercury may also involve
nephrotoxicity in addition to their neurotoxicity. Elemental mercury (Hg0) is a heavy liquid
at room temperature; it is highly volatile and at saturation at 25 ◦C one m3 of air contains
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20 mg of Hg0 that can be rapidly absorbed upon inhalation [17]. After uptake, a part of
Hg0 is oxidized to the nephrotoxic Hg2+ form [18].

Epidemiological studies gave evidence of renal injury following not only acute but
also chronic exposure to various forms of mercury [19,20]. The most severe nephropathy
is induced following exposure to inorganic salts of Hg2+ [16,21]. Accumulation of mer-
cury in proximal tubular cells has been found to exert negative effects on antioxidative
enzymes [22]. Thus, long-term exposure to mercury has been reported to decrease renal
expression of enzymes involved in protective actions such as NADPH-quinone oxidoreduc-
tase and glutathione S-transferase [23]. In experiments with healthy rats exposed to HgCl2,
renal levels of SOD, catalase, and glutathione (GSH) were lowered, indicating the oxidative
effects of Hg2+ [24]. Apparently, many of the injurious cellular effects of long-term mercury
exposure, even at low doses, are similar to those induced by aging.

As for cadmium (Cd), severe pollution with this metal was first recognized by its
skeletal manifestation named the itai-itai disease in Japan [25]. A few decades later, experi-
mental studies revealed the harmful consequences of Cd2+ involving severe damage and
histological changes in the kidneys, along with renal dysfunction [25].

In the liver and other tissues, Cd2+ forms a complex with the low molecular weight pro-
tein metallothionein (MT), which can be transported to and filtered by glomeruli, followed
by reabsorption into the proximal tubuli. Intracellularly, in tubular cells, the MT-complex
releases free Cd2+ upon overloading, thus causing renal damage, ia. through perturbing
calcium homeostasis, inducing oxidative stress, and downregulating mitochondrial en-
zymes [26,27]. The Cd2+-induced damage to proximal tubuli, identified as a reabsorptive
dysfunction, is manifested by a characteristic proteinuria that may include albumin, but
otherwise is dominated by low molecular weight proteins of which β2-microglobulin and
N-acetyl-β-D-glucosaminidase are used as markers [28]. A health survey in Sweden of
women around 60 years of age disclosed associations between low levels of urinary Cd
(around 0.6 µg/L) and increased levels of N-acetyl-β-D-glucosaminidase in urine, and also
the effects on GFR [29]. The effects of low-level Cd exposure on renal tubular function were
also observed in a later study by Wallin et al. [30]. An increased susceptibility for patients
with diabetes to develop tubular dysfunction upon low to moderate Cd2+ exposure has
been observed [31]. Associations between cadmium exposure and arterial hypertension
have also been reported [32].

Regarding compounds of lead (Pb), these pollutants are usually absorbed readily by
the intestines as well as by lungs upon exposure. From the circulation, Pb2+ is distributed
into different tissues and organs, including the liver and kidneys, where it may cause
oxidative damage to cells, ia. by uncoupling the respiratory chain in mitochondria [33].
Different hypotheses have been forwarded to explain the kidney toxicity of Pb2+. Due to
ionic similarities, Pb2+ may dysregulate the calcium homeostasis. As a result, Ca2+ release
from mitochondria is stimulated, accompanied by opening of the mitochondrial transitional
pores, resulting in generation of reactive species and oxidative stress [34]. Among the renal
cells, proximal tubuli appear to be particularly susceptible to Pb2+-induced damage, and
studies on primary cultures of rat proximal tubular cells conformed to the assumption
that Pb2+ elevates cytosol Ca2+ at the expense of mitochondrial Ca2+ [35]. Epidemiological
associations between lead exposure and arterial hypertension have been observed [36].
In a prospective study [37] the observed decline in renal function among middle-aged
and elderly individuals appeared to depend both on lead stores and circulating lead, the
decline in renal function being most pronounced among the individuals with diabetes or
hypertension at inclusion. Another prospective study on a cohort with age at inclusion
of almost 60 years and a follow-up period of 16 years revealed that even low-level lead
exposure was associated with decreased kidney function [38].

3. Functional Changes in Aging Kidneys and the Role of Environmental Pollutants

According to Denic et al. [39], almost 40% of the renal glomeruli become sclerotic by the
eighth decade of life. The pathogenesis of glomerulosclerosis is thought to involve several
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factors including alterations in blood flow and increased susceptibility to inflammatory
cytokines [40]. The phenomenon of increased inflammatory response in the elderly may
be related to reduced expression of sirtuins [41]. Existing data indicate that exposure to
Cd, Hg, and Pb can inhibit SIRT1 activity and thus exert proinflammatory actions [42]. As
nephrons are lost due to aging and inflammation, compensatory alterations occur in the
remaining nephrons leading to glomerular hyperfiltration and proteinuria [43].

Age-related changes also occur in renal tubuli, ia. with interstitial inflammation
and fibrosis [44]. Deposition of collagens, mediated by invading cells, is involved in
the pathogenesis of a slowly developing fibrosis. Structural changes are paralleled by
alterations in tubular function, leading ia. to a reduced ability to concentrate urine.

It has been estimated that the glomerular filtration rate (GFR) decreases, in average, by
approximately 10% per decade of life after an age of about 50–60 years [43]. This decrease
has in part been ascribed to reduction in the total number of functioning nephrons [45].
Aging also affects renal blood flow, presumably reflecting changes in cardiac output and
changed vascular resistance in afferent and efferent arterioles [46].

In patients with diseases such as diabetes and hypertension, the decline in renal func-
tion is usually more pronounced than in subjects without these diseases [47]. It has also
become apparent that progression of renal failure, for instance due to poorly controlled
diabetes, occurs more rapidly in elderly subjects compared with younger ones. Hyper-
tension, cardiovascular disease, diabetes, or metabolic syndrome with insulin resistance,
which are common in the elderly population, are considered significant risk factors for
the development of overt renal failure [48]. In USA, as in Europe, about 65% of adults
over the age of 60 have been diagnosed with hypertension, and a similar trend exists for
diabetes [49]. Thus, together with accumulation of heavy metals and other environmental
pollutants, diseases such as hypertension and diabetes may accelerate the physiological
age-related decline in renal function [10].

Heavy metals are largely deposited in renal tubuli thus leading to much higher
concentrations of heavy metals in tubular cells than in the rest of the body. Since heavy
metals mainly cause damage to the tubular cells, a typical pattern in heavy metal poisoning
is tubular proteinuria. The reabsorption and concentration of metal ions in the tubular
cells is usually an energy requiring process, as they are in most cases carried by amino
acid transporters. In general, an early urinary marker for tubular damage is the kidney
injury molecule (KIM-1) [50]. Urinary β2-microglobulin (β2M) is regularly used to monitor
kidney status and suspected injuries in industrial workers exposed to heavy metals.

A combination of two types of exposures, atherosclerosis, and heavy metals, will
most likely increase the risk of injury. Kidney injuries in clinical medicine are mainly
monitored by urine albumin and urine albumin/creatinine ratio, which mainly detect
glomerular injuries, even if use of biomarkers for tubular injury may give important
additional information.

Although urinary excretion of low-molecular weight protein is an early sign of
cadmium-induced kidney damage, hypercalciuria also represents a sign of tubular dys-
function, and together with the disruption of the vitamin D metabolism can contribute to
the development of osteoporosis [51].

Exposure to inorganic mercury may lead to heavy proteinuria with hypoproteinemia
and edema [52]. Today, the most common route of human exposure to mercury compounds
is via the ingestion of food, primarily of fish contaminated with MeHg. Large predatory
fishes, such as swordfish and shark, may contain high levels of MeHg and represent
a major source of mercury exposure [53]. Upon ingestion, MeHg is rapidly absorbed
by the gastrointestinal tract, with some being distributed to the kidneys, mostly after
biotransformation to the inorganic form [54].

Recent epidemiological studies in human populations indicate that the renal burden of
mercury increases with age [55]. Interestingly, chronic exposure to MeHg has been reported
to correlate with development of type II diabetes and hypertension [56]. Apparently,
exposure to mercury may enhance the progression of renal failure. A study of residents
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living near a mine in southwestern China reported that individuals above 60 years of age
had higher blood mercury and increased serum creatinine as compared with younger adults
in the same area [57]. Altogether, several studies have shown that prolonged exposure to
nephrotoxic metals, such as mercury, cadmium, and lead can exacerbate renal insufficiency
in older individuals [58,59].

4. Interactions of Heavy Metals with Endogenous Thiols

Within biological systems, e.g., in blood, mercury ions, and to some extent also
cadmium and lead are bound to thiol-containing biomolecules, such as albumin, MT,
glutathione (GSH) and cysteine (Cys-SH) [60] (Figure 1). As for renal uptake, research
has indicated that mercuric ions are taken up in proximal tubular cells across the luminal
border as a Cys-S-conjugate [61]. Since the conjugate Cys-S-Hg-S-Cys has similarities with
the amino acid cystine (Cys-S-S-Cys) (Figure 1), it seems reasonable that this amino acid-
mercuric conjugate uses the cystine transporter to enter into the tubular cells. Similarly, due
to mimicry with methionine, the Cys-S-conjugates of MeHg have also been presumed to be
substrates for the corresponding amino acid carrier [62]. In contrast, cadmium is considered
to be taken up into the same tubular cells as complexes with the low molecular weight
protein MT, after which Cd-MT complexes are transferred to lysosomes and degraded [63].
Intracellularly, MT ties up a significant part of mercuric ions in a complex that is not easily
transported out of cells, leading to intracellular retention of mercuric ions, in addition to
retention of other heavy metal ions [64].

Figure 1. Molecular formulae of (a) glutathione, (b) cysteine and (c) cystine.

Heavy metal ions, in particular mercuric ions, also have a strong affinity for GSH and
may be bound and detoxified by GSH intracellularly [17]. Physiologically, the concentration
of GSH in renal tubular cells is about 3 mmol/L, which makes this peptide well suited
for tying up intracellular metal ions. Exposure of experimental animals to HgCl2 lowered
renal levels of intracellular GSH [65], suggesting that GSH is utilized as a complexing
and/or protecting agent during the exposure. Although the binding of heavy metal ions to
intracellular SH-molecules represents a protective mechanism, the same binding may also
contribute to intracellular retention of the metals.

In chronic low-dosed exposure, acetylcysteine (Figure 2) may be used as a protecting
agent due to its ability to increase the cellular GSH-levels [66], which secondarily will raise
the enzymatic activity of GPX [67]. As for the chelating thiols 2,3-dimercaptopropane-1-
sulfonic acid (DMPS) and 2,3-dimercaptosuccinic acid (DMSA) (Figure 2), these drugs are
reserved for acute poisoning cases [68].
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Figure 2. Molecular formulae of (a) DMSA, (b) DMPS and (c) acetylcysteine.

5. Selenium—A Renal Protector with Chelating Properties

The process of aging appears to be related to a redox imbalance in cells characterized by
increased ROS production or decreased efficacy of ROS scavenging, resulting in impaired
cellular functions [5]. Supplementation of selenium in vivo has been reported to enhance
antioxidant capacity, especially by increasing antioxidant enzyme activity, e.g., the activity
of GPX [69]. Of particular interest is the observed increase in serum GPX3 upon selenium
supplementation, as this selenoenzyme is formed in the kidneys and found accumulated
in the basement membrane surrounding renal proximal tubules [70].

A recent placebo-controlled study of an elderly Swedish population showed an associ-
ation between low selenium (Se) status and age-related reduction in renal function [71]. In
this study, dietary supplementation for four years with selenium 200 mg/day (as SelenoPre-
cise, Pharma Nord, Denmark) and coenzyme Q10, significantly improved kidney function
as compared with the functional indices in the placebo group. The improvement of kidney
function was attributed to optimized function of antioxidative selenoenzymes such as
GPXs and thioredoxin reductase, although it is known that selenol compounds can also act
as strong chelating agents, e.g., against mercurials [72]. However, it should be noted that
supra-nutritional intakes of selenium above about 300 mg/day may exert prooxidative
effects [73], and have been associated with increased risk of type 2 diabetes mellitus [74].
Interestingly, low serum selenium is commonly reported in patients with advanced renal
disease [75]. Low serum selenium levels in patients on hemodialysis or peritoneal dialysis
has been ascribed to diminished selenium retention due to chronic oxidative stress [76]. In
a recent study on a cohort with end-stage renal disease, patients with low serum selenium
values (<63 µg/L) showed an increased mortality risk, as compared to patients with normal
or high selenium (>118 µg/L) [77]. One important pathway of selenium to the kidney
is the uptake of circulating selenoprotein-P fragments by megalin/LRP2 a multiligand
receptor mediating endocytosis in the plasma membrane of the tubular cells [78,79]. This
receptor, either alone or in concert with cubulin, functions as a receptor for reabsorption
from primary urine of low molecular proteins, e.g., vitamin D binding protein [80], a
function that may be compromised in tubular injury.

Mercury, as well as lead and cadmium, may be bound and detoxified by selenium
compounds, mainly selenite or selenomethionine (Figure 3) [72].
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Figure 3. Molecular formulae of (a) selenomethionine and (b) sodium selenite.

Several studies in humans have shown that administration of Se to individuals ex-
posed to mercury reduced the severity of Hg intoxication [81]. However, it is not clear
whether Hg-Se complexes are excretable forms of mercury. Of note, the binding affinity
of mercury is greater for Se compounds than for thiols [15]. Sugiura et al. [82], from their
NMR measurements, reported that the order of binding affinity of various selenium and
sulfur donor groups toward methylmercury is in the order SeH > SH > Se-Se > S-S, SeCH3,
SCH3. However, the concentration of selenium in blood is only about 1 µmol/L [83] while
the concentration of albumin-SH, Cys, and GSH in blood is approximately 500, 275, and
850 µmol/L, respectively [84]. Since the normal blood SH-concentrations of albumin-SH
and GSH (totally above1000 µmol/L) are significantly greater than that of selenium, it
appears reasonable that the major fraction of circulating mercury is bound to albumin
and/or GSH rather than to Se-proteins, although a minor fraction of circulating mercury is
coordinated to selenium compounds. A recent review of Spiller et al. [85] remarks, besides
the role of selenium supplementation, the pros and cons of chelation, and the impact of
chelation and selenium on the different forms of mercury.

6. Discussion and Conclusions

The aging process in the kidneys has been studied and characterized comprehensively.
It is well known that glomerulosclerosis leads to decreased GFR. However, there is little
information regarding the response of the aged kidneys to environmental toxicants such
as mercury, cadmium, and lead. Due to the prevalence of mercury, cadmium, and lead in
the environment, human exposure is practically unavoidable. Further, it is well known
that not only acute but also chronic exposures to toxic metals may be detrimental to
the kidneys of healthy adults. Available research indicates that long-term exposure of
individuals with reduced GFR to these metals may result in additional reductions in renal
function. Individuals with compromised renal function, either from aging, disease, or a
combination of both, may be particularly susceptible to these toxicants. Available data
show an association between exposure to mercury, cadmium, and lead and an increase
in incidence and severity of renal disease. Of note, early signs of renal dysfunction often
go unnoticed, which implies that individuals with reduced renal function are unaware
that they may be at risk. Preliminary observations indicate that some physiological thiol
amino acids, as well as adequate or supra-nutritional selenium supplementation, exert
nephroprotective actions, but further studies are necessary on these therapeutic possibilities.
Improved insights into the manner in which heavy metals are handled by aging kidneys is
of utmost importance.
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