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popular and powerful algorithm for the solution of many optimization prob-
lems. In the recent years it has been widely used for the solution of ill-posed
inverse problems. However, one of its drawback is the possibly high compu-
tational cost, since at each iteration, it requires the solution of a large-scale
least squares problem.

In this work we propose a computationally attractive implementation of
ADMM, with particular attention to ill-posed inverse problems. We signi�-
cantly decrease the computational cost by projecting the original large scale
problem into a low-dimensional subspace by means of Generalized Krylov Sub-
spaces (GKS). The dimension of the projection space is not an additional pa-
rameter of the method as it increases with the iterations. The construction
of GKS allows for very fast computations, regardless of the increasing size of
the problem. Several computed examples show the good performances of the
proposed method.
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1 Introduction

In many applications of science and engineering we need to solve problems of
the form

x∗ = argmin
x

1

2
∥Ax− b∥22 + µR (Lx) , (1)

where ∥·∥2 denotes the Euclidean norm, A ∈ Rm×n, b ∈ Rm denotes some
measured data, x ∈ Rn is the unknown signal we are interested in recovering,
µ > 0 is a �xed parameter, L ∈ Rs×n, and R : Rs → R∪{∞} is closed, proper,
and convex. We will assume that

N (A) ∩N (L) = {0}, (2)

where N (M) denotes the null space of the matrix M . Among the possible
applications one of the most relevant for our purposes is the solution of ill-posed
inverse problems. In this scenario A is assumed to be severely ill-conditioned
and may be rank de�cient and the data b are usually corrupted by some
errors; see, e.g., [26, 32, 33] for a discussion. In this case it is of interest to
construct a regularization term such that R (Lxtrue) ≈ 0 and R (Lx) ≫ 0
for x far from xtrue, where xtrue denotes the exact solution of the problem.
Many choices of regularization terms have been considered in the literature,
like Total Variation [39], ℓp norms with 0 < p ≤ 2 [13�16, 22, 27, 36, 38],
framelet/wavelet/Fourier transforms [11,19�21,24], etc.

We would like to mention that another application, which is extremely
relevant in statistics, where this kind of problems arise is linear regression and
variable selection. In this case the matrix A contains the values of n covariates
obtained over m observations, while the vector b collects the responses. The
desired vector x represents the parameters on which the phenomenon analyzed
depends and it is usually assumed to be sparse; see, e.g., [7, 8, 41].

Regardless of the application, once the minimization problem (1) is �xed,
we need to select an appropriate algorithm to numerically solve it. One of the
most popular methods for solving (1) is the Alternating Direction Multiplier
Method (ADMM); see [1�3,6] and references therein. This iterative algorithm

allows to decouple the term ∥Ax− b∥22 and the, possibly, non-linear term
R (Lx); see Section 2 for more details. In particular, if the proximal operator
of R (·) is known in closed form or can be cheaply computed, then the ADMM
is extremely competitive. In this scenario, as we will show later, the main
computational cost per iteration is the solution of a linear system of equations
of the form

(ATA+ ρLTL)y = g, (3)

where ρ > 0 is a �xed parameter. The linear system (3) is equivalent to the
least squares problem

min
y

∥∥∥∥[ A√
ρL

]
y −

[
g
0

]∥∥∥∥2
2

.

The matrix (ATA+ρLTL) is obviously symmetric and positive de�nite under
assumption (2). Moreover, if ρ is large enough, it is well-conditioned as well.
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Therefore, the solution of the system (3) can be easily computed using, for
instance, the cgls method; see, e.g., [5]. Nevertheless, this approach may lead
to a high overall computational cost.

Our purpose is to propose a very e�cient implementation of the ADMM
by projecting the problem into a fairly small Krylov-like subspace. In partic-
ular, we consider the so-called Generalized Krylov Subspaces (GKS). These
spaces are constructed iteratively and are enlarged at each iteration by adding
the normalized residual of the normal equation (3). Moreover, this procedure
allows us to solve, at each iteration, the projected linear system only by com-
puting a matrix-vector product with A and L and a matrix-vector product
with AT and LT . We would like to stress that it is not the aim of this paper to
discuss how to construct the model (1), nor how to determine the parameter
µ. Therefore, we will assume that (1) is given a priori and that our task is
merely to solve it.

To the best of our knowledge, Krylov methods have been coupled with
ADMM only in [4, 42]. In [4] the authors only consider the case in which the
operator A can be expressed as the Kronecker product of two matrices and
the regularization term is the TV norm. In this work we do not make any
assumption on the structure of A and we only require R to be closed, proper,
and convex. In [42] the authors �rst construct an appropriate Krylov subspace
of �xed dimension and solve (1) in the smaller space. Our approach di�ers
form the one in [42] in two ways: �rst we do not need to �x the dimension of
the search subspace as it is constructed throughout the iterations of ADMM,
second the space we use is not built using only A and b, but considering the
whole iterations and L. The latter point is extremely relevant because, as we
will show in the numerical examples, it allows us to obtain a higher degree
of accuracy than the one obtained by the method in [42]. Finally, we would
like to recall that in [38] GKS were coupled with an alternating minimiza-
tion algorithm for the solution of ℓp − ℓq minimization problem. Even though
alternating minimization is not equivalent to ADMM these two methods are
strictly related.

In this paper we do not consider acceleration techniques to improve the
speed of convergence of ADMM like the ones proposed in [9, 29]. However,
these techniques can be applied to the proposed method without substantially
changing the results reported in this paper. In fact, we are concerned with
lowering the computational cost of the single iteration of ADMM and not
with speeding up its convergence.

This paper is structured as follows: Section 2 describes ADMM applied to
(1), in Section 3 we describe our proposed method and derive some theoretical
results, Section 4 reports selected numerical experiments, and we draw some
conclusions and outline future work in Section 5.
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2 Alternating Direction Multipliers Method

In this section we describe how to use the ADMM to solve (1). We recall
that, if R (·) is closed, convex, and proper the iterates generated by ADMM
converge to a solution of (1); see below.

First we reformulate (1) as the following constrained minimization problem

min
x,z

{
1

2
∥Ax− b∥22 + µR(z); Lx = z

}
. (4)

The Augmented Lagrangian function associated to (4) is

Lρ(x, z;λ) =
1

2
∥Ax− b∥22 + µR(z) + λT (z− Lx) +

ρ

2
∥z− Lx∥22 ,

where ρ > 0 is a user-de�ned parameter, λ is the Lagrangian multiplier, and
the superscript T denotes the transposition.

The ADMM is obtained by minimizing alternatively Lρ with respect to the
primal variables x and z and by updating the dual variable λ; see Algorithm 1.

Algorithm 1: ADMM

1 z(0) = 0;
2 λ(0) = 0;
3 for k = 0, 1, . . . do

4 x(k+1) = argminx Lρ

(
x, z(k);λ(k)

)
;

5 z(k+1) = argminz Lρ

(
x(k+1), z;λ(k)

)
;

6 λ(k+1) = λ(k) + ρ
(
z(k+1) − Lx(k+1)

)
;

7 if

∥∥∥x(k+1)−x(k)
∥∥∥
2

∥x(k)∥2

< τ then

8 exit;

Consider the computation of x(k+1). We can rewrite it as

x(k+1) = argmin
x

Lρ(x, z
(k);λ(k))

= argmin
x

1

2
∥Ax− b∥22 −

(
λ(k)

)T
Lx+

ρ

2

∥∥∥z(k) − Lx
∥∥∥2
2

= argmin
x

∥∥∥∥∥
[

A√
ρL

]
x−

[
b

√
ρ
(
z(k) + λ(k)

ρ

)]∥∥∥∥∥
2

2

,

(5)
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i.e., x(k+1) can be obtained by solving a least squares problem. We now move
to the computation of z(k+1).

z(k+1) = argmin
z

Lρ

(
x(k+1), z;λ(k)

)
= argmin

z
µR(z) + (λ(k))T z+

ρ

2

∥∥∥z− Lx(k+1)
∥∥∥2
2

= argmin
z

µR(z) +
ρ

2

∥∥∥∥∥z− Lx(k+1) +
λ(k)

ρ

∥∥∥∥∥
2

2

= argmin
z

1

2

∥∥∥∥∥z− Lx(k+1) +
λ(k)

ρ

∥∥∥∥∥
2

2

+
µ

ρ
R(z),

i.e., z(k+1) can be computed by the proximal operator of R.
Assuming that R is easily proxable, the main computational cost of Al-

gorithm 1 is the solution of the least squares problem (5). In the following
section we will provide an e�cient way to compute x(k+1).

We now report the main theoretical result on ADMM. For a proof and
discussion see, e.g., [6]. We adapt the more general result in [6, Section 3.2] to
our notation and considered case

Theorem 1 Assume that the extended-real-valued function R is closed, proper,
and convex. Moreover, assume that the unaugmented Lagrangian L0 has a
saddle point, i.e., that there exists at least a point (x∗, z∗,λ∗) such that the
inequality

L0(x
∗, z∗;λ) ≤ L0(x

∗, z∗;λ∗) ≤ L0(x, z;λ
∗)

holds for all x, z, and λ, then the iterates generated by Algorithm 1 satisfy the
following

(i) Residual convergence: limk→∞
∥∥z(k) − Lx(k)

∥∥
2
= 0, i.e., the iterates ap-

proach feasibility;

(ii) Objective convergence: limk→∞
1
2

∥∥Ax(k) − b
∥∥2
2
+µR(z) = p∗, where p∗ is

the minimum of (4), i.e., the objective function of the iterates approaches
the optimal value;

(iii) Dual variable convergence: limk→∞ λ(k) = λ∗, where λ∗ is a dual optimal
point.

3 ADMM in Generalized Krylov Subspaces

We wish to propose a numerically cheap way of determining x(k+1). We de-

termine a solution in a fairly small subspace. Let Vk ∈ Rn×k̂ with k̂ ≪ n have
orthonormal columns and assume that these columns span the search space in
which we wish to �nd x(k+1). Therefore, x(k+1) can be expressed as

x(k+1) = Vky
(k+1).
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Substituting this expression into (5) yields

y(k+1) = argmin
y

∥∥∥∥∥
[

AVk√
ρLVk

]
y −

[
b

√
ρ
(
z(k) + λ(k)

ρ

)]∥∥∥∥∥
2

2

. (6)

De�ne the compact QR factorizations of AVk and LVk by

AVk = Q
(k)
A R

(k)
A Q

(k)
A ∈ Rn×k̂, R

(k)
A ∈ Rk̂×k̂,

LVk = Q
(k)
L R

(k)
L Q

(k)
L ∈ Rs×k̂, R

(k)
L ∈ Rk̂×k̂,

where Q
(k)
A and Q

(k)
L have orthonormal columns and R

(k)
A and R

(k)
L are upper-

triangular.
Substituting these factorizations in (6) we obtain

y(k+1) = argmin
y

∥∥∥∥∥
[

R
(k)
A√

ρR
(k)
L

]
y −

[
(Q

(k)
A )Tb

√
ρ(Q

(k)
L )T

(
z(k) + λ(k)

ρ

)]∥∥∥∥∥
2

2

.

Since k̂ ≪ n this least squares problem can be solved cheaply with direct
methods; see, e.g., [25].

Once we have computed y(k+1) we can enlarge the space by adding a new
vector, namely the normalized residual of the normal equations associated to
(5), i.e.,

(ATA+ ρLTL)x(k+1) = ATb+ ρLT

(
z(k) +

λ(k)

ρ

)
,

de�ned by

r(k+1) = AT (Ax(k+1) − b) + ρLT

(
Lx(k+1) − z(k) − λ(k)

ρ

)
.

Therefore, the new basis vector is obtained by v(k+1) = r(k+1)/
∥∥r(k+1)

∥∥
2
and

an orthonormal basis of the enlarged space is made up by the columns of
Vk+1 = [Vk, v(k+1)]. Note that the vector r(k+1) is orthogonal to the space
spanned by the columns of Vk. The search space constructed in this way is
referred to as Generalized Krylov Subspace (GKS); see, e.g., [37].

We can compute and store the matrices AVk+1 and LVk+1 by

AVk+1 =
[
AVk, Av(k+1)

]
and LVk+1 =

[
LVk, Lv

(k+1)
]
.

The QR factorizations of AVk+1 and LVk+1 can be easily computed from the
ones of AVk and LVk as

AVk+1 = [Q
(k)
A , q̃A]

[
R

(k)
A rA
0t τA

]
,

LVk+1 = [Q
(k)
L , q̃L]

[
R

(k)
L rL
0t τL

]
,
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where

rA =
(
Q

(k)
A

)T
(Av(k+1)), qA = Av(k+1) −Q

(k)
A rA,

τA = ∥qA∥2 , q̃A = qA/τA,

rL =
(
Q

(k)
L

)T
(Lv(k+1)), qL = Lv(k+1) −Q

(k)
L rL,

τL = ∥qL∥2 , q̃L = qL/τL;

see Daniel et al. [23] for details. Therefore, if we store the matrices AVk and
LVk, the computation of x(k+1) requires only one matrix-vector product with
A and with L and one with AT and LT . Note that the computation of r(k+1)

can be rewritten as

r(k+1) = AT
(
AVky

(k+1) − b
)
+ ρLT

(
LVky

(k+1) − z(k) − λ(k)

ρ

)
.

We now show the convergence of Algorithm 2.

Theorem 2 Assume that the extended-real-valued function R is closed, proper,
and convex. Moreover, assume that the unaugmented Lagrangian L0 has a
saddle point, i.e., that there exists at least a point (x∗, z∗,λ∗) such that the
inequality

L0(x
∗, z∗;λ) ≤ L0(x

∗, z∗;λ∗) ≤ L0(x, z;λ
∗)

holds for all x, z, and λ, then the iterates generated by Algorithm 2 satisfy the
following

(i) Residual convergence: limk→∞
∥∥z(k) − Lx(k)

∥∥
2
= 0, i.e., the iterates ap-

proach feasibility;

(ii) Objective convergence: limk→∞
1
2

∥∥Ax(k) − b
∥∥2
2
+µR(z) = p∗, where p∗ is

the minimum of (4), i.e., the objective function of the iterates approaches
the optimal value;

(iii) Dual variable convergence: limk→∞ λ(k) = λ∗, where λ∗ is a dual optimal
point.

Proof The proofs follows trivially from Theorem 1 as, after at most n itera-
tions, we have that the space spanned by the columns of Vn is Rn. Therefore,
after at most n iterations Algorithm 1 and Algorithm 2 coincide. ⊓⊔

The proof of Theorem 2 suggests that at least n iterations are required to
compute a good approximation of the limit point of the algorithm. However,
as we will see in the numerical examples, this is not the case and few iterations
are required to compute a good approximate solution.

We now can show our main theoretical result which sheds some light on
the convergence properties of Algorithm 2 in the �rst n iterations.

Firstly we recall that, for the standard ADMM, the quantity

h(k) =
1

ρ

∥∥∥λ(k) − λ∗
∥∥∥2
2
+ ρ

∥∥∥z(k) − z∗
∥∥∥2
2
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Algorithm 2: ADMM in GKS

1 z(0) = 0;
2 λ(0) = 0;
3 Construct a matrix V0 ∈ Rn×k0 such that V T

0 V0 = I;
4 Compute and store AV0 and LV0;

5 Compute the compact QR factorizations AV0 = Q
(0)
A R

(0)
A and LV0 = Q

(0)
L R

(0)
L ;

6 for k = 0, 1, . . . do

7 y(k+1) = argminy

∥∥∥∥∥
[

R
(k)
A√

ρR
(k)
L

]
y −

[
(Q

(k)
A )Tb

√
ρ(Q

(k)
L )T

(
z(k) + λ(k)

ρ

)]∥∥∥∥∥
2

2

;

8 z(k+1) = argminz
1
2

∥∥∥z− LVky
(k+1) + λ(k)

ρ

∥∥∥2
2
+ µ

ρ
R(z);

9 λ(k+1) = λ(k) + ρ(z(k+1) − LVky
(k+1));

10 if

∥∥∥y(k+1)−y(k)
∥∥∥
2

∥y(k)∥
2

< τ then

11 exit;

12 r(k+1) = AT
(
AVky

(k+1)−
)
+ ρLT

(
LVky

(k+1) − z(k) − λ(k)

ρ

)
;

13 v(k+1) = r(k+1)/
∥∥r(k+1)

∥∥
2
;

14 Vk+1 =
[
Vk, v(k+1)

]
;

15 AVk+1 = [AVk, Av(k+1)];
16 LVk+1 = [LVk, Lv(k+1)];

17 rA =
(
Q

(k)
A

)T
(Av(k+1));

18 qA = Av(k+1) −Q
(k)
A rA;

19 τA = ∥qA∥2;
20 Q

(k+1)
A = [Q

(k)
A , q̃A];

21 R
(k+1)
A =

[
R

(k)
A rA
0t τA

]
;

22 rL =
(
Q

(k)
L

)T
(Lv(k+1));

23 qL = Lv(k+1) −Q
(k)
L rL;

24 τL = ∥qL∥2;
25 Q

(k+1)
L = [Q

(k)
L , q̃L];

26 R
(k+1)
L =

[
R

(k)
L rL
0t τL

]
;

27 x∗ = Vky
(k+1);

is a Lyapunov function for the algorithm, i.e., a nonnegative quantity that
decreases monotonically with the iterations; see, e.g., [6]. We wish to show
that, even though h(k) is not a Lyapunov function for Algorithm 2, we can
describe how it evolves in the �rst n iterations.

We �rst need to reformulate our problem in an equivalent form. From
Theorem 2 we know that Algorithm 2 converges. Therefore, after at most n
iterations, the GKS coincides with Rn and the algorithm has constructed an
orthonormal basis for Rn denoted by {v1, . . . ,vn}. Let V = [v1, . . . ,vn], we
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can reformulate (4) as

min
x,z

{
1

2
∥AV x− b∥22 + µR(z); LV x = z

}
, (7)

where, with a slight abuse of notation, we have denoted by x the coe�cient of
the vector x in (4) with respect to the basis V . Obviously the minimization
problems (4) and (7) are equivalent and applying Algorithm 2 to either the
�rst or the second one does not change the iterations. Moreover, we denote by
Lρ the augmented Lagrangian of (7) and by (x∗, z∗,λ∗) a saddle point of L0.
We introduce some additional notation

f(x) =
1

2
∥AV x− b∥22 ,

g(z) = µR(z),

p(k) = f
(
x(k)

)
+ g

(
z(k)

)
,

p∗ = f (x∗) + g (z∗) ,

r(k) = z(k) − LV x(k),

where x(k), z(k), and λ(k) denote the iterates computed by Algorithm 2 applied
to (7). Note that the iterates of Algorithm 2 applied to (4) can be obtained by

multiplying x(k), z(k), and λ(k) by V . Finally, let x∗ = [x∗
1, x

∗
2, . . . , x

∗
n]

T , then
we de�ne, for k ≤ n

x∗
k = [x∗

1, x
∗
2, . . . , x

∗
k, 0, . . . , 0]

T .

We are now in position to show our main result

Theorem 3 With the assumptions of Theorem 2 and the notation above we
have, for k ≤ n,

h(k+1) ≤ h(k) − ρ
∥∥∥r(k+1)

∥∥∥2
2
− ρ

∥∥∥z(k+1) − z(k)
∥∥∥2
2
+ C ∥x∗ − x∗

k∥2 ,

where C ≥ 0 is a constant independent of k and x(k).

Proof The proof of this result is obtained by following the same steps of [6,
Appendix A] with some substantial modi�cations.

By de�nition of (x∗, z∗λ∗) it holds

L0(x
∗, z∗;λ∗) ≤ L0

(
x(k+1), z(k+1);λ∗

)
,

since LV x∗ = z∗ it holds L0(x
∗, z∗;λ∗) = p∗, therefore,

p∗ ≤ p(k+1) + (λ∗)T
(
z(k+1) − LV x(k+1)

)
= p(k+1) + (λ∗)

T
r(k+1).
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Let ιk be the indicator function of the linear subspace spanned by the �rst k
columns of the identity matrix, i.e.,

ιk(x) =

{
0 if xk+1 = . . . = xn = 0,
∞ else.

By construction we have that x(k+1) minimizes Lρ

(
x, z(k);λ(k)

)
+ιk(x). Since

f is di�erentiable and convex, we have

0 ∈ ∇f
(
x(k+1)

)
+ V TLTλ(k) + ρV TLT

(
z(k) − LV x(k+1)

)
+ ∂ιk

(
x(k+1)

)
,

where ∂ιk(x) denotes the subgradient of ιk at x. Using the fact that λ(k) =

λ(k+1) − ρr(k+1) and rearranging the terms we obtain

0 ∈ ∇f
(
x(k+1)

)
+ V TLT

(
λ(k+1) − ρ

(
z(k+1) − z(k)

))
+ ∂ιk

(
x(k+1)

)
.

This implies that x(k+1) minimizes

f(x) +
(
λ(k+1) − ρ

(
z(k+1) − z(k)

))T
LV x+ ιk (x) .

Observe that ιk(x
∗
k) = 0, therefore,

f
(
x(k+1)

)
+
(
λ(k+1) − ρ

(
z(k+1) − z(k)

))T
LV x(k+1) + ιk

(
x(k+1)

)
≤ f (x∗

k) +
(
λ(k+1) − ρ

(
z(k+1) − z(k)

))T
LV x∗

k + ιk (x
∗
k)

+ f (x∗)− f (x∗) +
(
λ(k+1) − ρ

(
z(k+1) − z(k)

))T
LV (x∗ − x∗)

(8)

Similarly as above we can show that z(k+1) minimizes g(z) +
(
λ(k+1)

)T
z.

Therefore,

g
(
z(k+1)

)
−
(
λ(k+1)

)T
z(k+1) ≤ g (z∗)−

(
λ(k+1)

)T
z∗ (9)

Adding (8) and (9), rearranging the terms, and using the fact that z∗ = LV x∗

we obtain

f
(
x(k+1)

)
+ g

(
z(k+1)

)
− (f (x∗) + g (z∗))

≤ −
(
λ(k+1)

)T
r(k+1) + ρ

(
z(k+1) − z(k)

)T (
LV x∗ − LV x(k+1)

)
+ γk

= −
(
λ(k+1)

)T
r(k+1) − ρ

(
z(k+1) − z(k)

)T (
−r(k+1) +

(
z(k+1) − z∗

))
+ γk,

where

γk = f (x∗
k)− f (x∗) +

(
λ(k+1) − ρ

(
z(k+1) − z(k)

))T
LV (x∗

k − x∗) .
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Summarizing we have obtained that

p∗ − p(k+1) ≤ (λ∗)
T
r(k+1)

p(k+1) − p∗ ≤ −
(
λ(k+1)

)T
r(k+1)

− ρ
(
z(k+1) − z(k)

)T (
−r(k+1) +

(
z(k+1) − z∗

))
+ γk

(10)

Summing the inequalities in (10) and multiplying through by 2 we obtain

0 ≥ 2
(
λ∗ − λ(k+1)

)
r(k+1) − 2ρ

(
z(k+1) − z(k)

)T (
z∗ − z(k+1)

)
− 2γk

Proceeding as in the proof of the inequality A.1 in [6] we obtain that

h(k+1) ≤ h(k) − ρ
∥∥∥r(k+1)

∥∥∥2
2
− ρ

∥∥∥z(k+1) − z(k)
∥∥∥2
2
+ 2γk.

Since the steps the inequality above are the same as in the proof of A.1 in [6]
we do not report them here.

We now show that
2γk ≤ C ∥x∗ − x∗

k∥2 .
Since k = 1, 2, . . . , n, we have that there exist two constants C1 and C2 such

that,
∥∥z(k+1) − z(k)

∥∥
2
≤ C1 and

∥∥∥λ(k)
∥∥∥
2
≤ C2 for all k. We have

2γk ≤ ∥AV x∗
k − b∥22 − ∥AV x∗ − b∥22 + 2(C1 + C2) ∥L∥2 ∥x

∗
k − x∗∥2

= ∥AV x∗
k∥

2
2 + 2bT (AV x∗ −AV x∗

k)− ∥AV x∗∥22
+ 2(C1 + C2) ∥L∥2 ∥x

∗
k − x∗∥2

≤ (AV x∗
k +AV x∗)

T
(AV x∗

k −AV x∗)

+ 2 ((C1 + C2) ∥L∥2 + 2 ∥b∥2 ∥A∥2) ∥x
∗
k − x∗∥2

≤
(
∥A∥22 ∥x

∗ + x∗
k∥2 + 2 ((C1 + C2) ∥L∥2 + 2 ∥b∥2 ∥A∥2)

)
∥x∗

k − x∗∥2

≤
(
∥A∥22 (∥x

∗∥2 + ∥x∗
k∥2) + 2 ((C1 + C2) ∥L∥2 + 2 ∥b∥2 ∥A∥2)

)
∥x∗

k − x∗∥2
(a)

≤ 2
(
∥A∥22 ∥x

∗∥2 + (C1 + C2) ∥L∥2 + 2 ∥b∥2 ∥A∥2
)
∥x∗

k − x∗∥2
= C ∥x∗

k − x∗∥2 ,

where the inequality (a) follows from the fact that ∥x∗
k∥2 ≤ ∥x∗∥2. ⊓⊔

The result in Theorem 3 shows that, if ∥x∗
k − x∗∥2 is small enough, then we

recover the same convergence property of standard ADMM. Since

∥x∗
k − x∗∥2 = ∥V x∗

k − V x∗∥2 ,

we have that the quantity γk is small for k ≪ n if the �rst k basis vector
constructed by Algorithm 2 well capture the behavior of the solution x∗. This
is usually true for k relatively small in practical applications.
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4 Numerical Examples

We now show the performances of our proposed method on some selected nu-
merical examples. In particular, we consider three instances of image deblur-
ring, two for black and white images and one with a color image, one of com-
puter tomography, and one of seismic travel-time tomography; see, e.g., [35] for
details on image deblurring, [17] for details on computer tomography, and [34]
for details on seismic tomography. In all cases the matrix A is severely ill-
conditioned. Moreover, we consider one regression problem where the matrix
A is rectangular with more columns than rows and the exact solution is known
to be sparse.

We will compare our method with the classical ADMM algorithm and the
proposal in [42]. The algorithm in [4] coincides with Algorithm 2 if A is the
Kronecker product of two matrices, L is a discretization of the gradient, and
either R(·) is the isotropic on anisotropic Total Variation norm.

Moreover, when possible, we compare our proposal with the algorithm de-
scribed in [38]. In this paper the authors consider the ℓp − ℓq minimization
in GKS. In particular, we consider the implementation described in [36]. The
considered method is not strictly speaking a versions of ADMM, however,
the method described in [38] can be seen equivalently as an alternating mini-
mization method or a Majorization-Minimization (MM) method. We denote,
following the notation in [36], this method by A-MM-GKS; see [36] for more
details. The main cost per iteration for this method is a matrix-vector product
with A, one with AT , one with L, and one with LT . However, A-MM-GKS
algorithm requires, at each iteration, to compute a QR factorization of two
skinny and tall matrices of increasing dimensions.

We consider di�erent choices for R(z) and two di�erent choices of L: a
discretization of the gradient, denoted by LG, and a framelet operator, denoted
by LF .

Since we are dealing with two dimensional problems we de�ne the following
discretization of the gradient. Let L1 be de�ned as follows

L1 =


−1 1

. . .
. . .

−1 1
1 −1

 ,

we de�ne LG by

LG =

[
L1 ⊗ I
I ⊗ L1

]
,

where ⊗ denotes the Kronecker product.
Framelets are extensions of wavelets. They are de�ned as rectangular ma-

trices LF ∈ Rs×n with s ≥ n such that LT
FLF = I. Tight frames have been

used in many image restoration applications, including inpainting and deblur-
ring [11,12,18,19,21]. The essential feature of tight frames is their redundancy.
Due to the redundancy, the loss of some information can be tolerated. Usually
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images have a very sparse representation in the framelet domain. We will use
tight frames determined by linear B-splines; see, e.g., [19].

Depending on the example, we will consider as R(z) one or more of the
following

� Isotropic TV, de�ned by

∥z∥I−TV =

n∑
i=1

∥∥∥∥[((L1 ⊗ I)z)i
((I ⊗ L1)z)i

]∥∥∥∥
2

;

� Anisotropic TV, de�ned by

∥z∥A−TV = ∥LGz∥1;

� ℓ1 norm in the framelet domain, i.e.,

∥LF z∥1;

� ℓ1 norm in the time domain, i.e.,

∥z∥1.

We recall here that the proximal operator of the ℓ1 norm is de�ned by

argmin
z

1

2
∥y − z∥22 + µ∥z∥1 = Sµ(y),

where
Sµ(y) = sign(y)(|y| − µ)+,

where all the operations are meant element-wise and (y)+ = max{y, 0}. More-
over, the proximal operator of the ℓ2 norm can be computed by

argmin
z

1

2
∥y − z∥22 + µ∥z∥2 =

(
1− µ

max{∥z∥2 , µ}

)
z.

We now give some details on how we implemented the two ADMM we are
comparing with. For Algorithm 1 the only thing that we need to discuss is
the solution of the least squares problem (5). To solve this we use the CGLS

algorithm. This is an e�ective choice as the matrix

[
A√
ρL

]
is well conditioned

and, therefore, this method converges really fast; see, e.g., [5] for a discussion.
The implementation of the method in [42] is very similar to the one of

Algorithm 2. The main di�erence is that the search subspace is not enlarged
at each iteration. In this case to determine the initial subspace we use ℓ steps
of the Golub-Kahan bidiagonalization method with initial vector b. After ℓ
steps are performed we obtain the decompositions

AVℓ = UT
ℓ+1Bℓ+1,ℓ and ATUℓ = VℓB

T
ℓ,ℓ,

where Bℓ+1,ℓ ∈ Rℓ+1×ℓ is lower bi-diagonal, Bℓ,ℓ ∈ Rℓ×ℓ is the leading block
of Bℓ+1,ℓ, and Uℓ+1 = [u1, . . . ,uℓ+1] ∈ Rm×ℓ+1 and Vℓ = [v1, . . . ,vℓ] ∈ Rn×ℓ
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have orthonormal columns and uℓ+1 = b/ ∥b∥2. The columns of Vℓ span the
Krylov subspace Kℓ(A

TA,ATb), where

Kℓ(A
TA,ATb) = span{ATb, ATAATb, (ATA)2ATb, . . . , (ATA)ℓ−1ATb};

see, e.g., [31] for more details on Golub-Kahan bidiagonalization.
In [42] the authors look for x(k+1) of the form

x(k+1) = Vℓy
(k+1).

Plugging this relation and the decompositions above in (5) yields

y(k+1) = argmin
y

∥∥∥∥∥
[
Bℓ+1,ℓ√
ρRL

]
y −

[
e1 ∥b∥2√

ρ(QL)
T
(
z(k) + λ(k)

ρ

)]∥∥∥∥∥
2

2

,

where LVℓ = QLRL is the QR factorization of LVℓ. We summarize these
computations in Algorithm 3.

Algorithm 3: ADMM in KS

1 z(0) = 0;
2 λ(0) = 0;
3 Run ℓ steps of the Golub-Kahan bidiagonalization process obtaining Uℓ+1, Vℓ, and

Bℓ+1,ℓ;
4 Compute LVℓ;
5 Compute the compact QR factorization LVℓ = QR;
6 for k = 0, 1, . . . do

7 y(k+1) argminy

∥∥∥∥∥
[
Bℓ+1,ℓ√
ρRL

]
y −

[
e1 ∥b∥2√

ρQT
L

(
z(k) + λ(k)

ρ

)]∥∥∥∥∥
2

2

;

8 z(k+1) = argminz
1
2

∥∥∥z− LVℓy
(k+1) + λ(k)

ρ

∥∥∥2
2
+ µ

ρ
R(z);

9 λ(k+1) = λ(k) + ρ(z(k+1) − LVℓy
(k+1));

10 if

∥∥∥y(k+1)−y(k)
∥∥∥
2

∥y(k)∥2

< τ then

11 exit;

12 x∗ = Vℓy
(k+1);

Finally, we describe how we set the parameters in the considered algo-
rithms. We set ρ = 10−1 for the image deblurring example and ρ = 1 for the
other examples, τ = 10−4 for all methods, and we set a maximum number of it-
erations of 500. In Algorithm 2 we set V0 = ATb/

∥∥ATb
∥∥
2
and in Algorithm 3

we set ℓ = 100. The selection of the parameter µ is out of the scope of this
paper and we do not dwell on it, we �x a �reasonable� value by hand in each
performed test. We would like to stress that the reduced computational cost of
our proposal makes possible to run a-posteriori choice rules for the selection of
the regularization parameter µ, e.g., Cross Validation [40], Generalized Cross
Validation [30], and L-curve [33], e�ciently.
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We compare the methods in terms of speed and accuracy. To assess the
accuracy of the methods we use the Relative Restoration Error (RRE), de�ned
by

RRE(x) =
∥x− xtrue∥2
∥xtrue∥2

,

and the Structure SIMilariry index (SSIM). The de�nition of the SSIM is
involved and we do not report it here, we recall that this index is a statistical
measure that asses how similar two images are to the human eye, its value is
between 0 and 1, where a low SSIM implies that two images are perceived as
very di�erent while a high value implies that they perceived as similar.

All the computations were performed on Matlab 2021b with 15 signi�cant
digits, running on a laptop with an AMD Ryzen 7 5800HS CPU with 16GB
of RAM.

Cameraman. We �rst consider an image deblurring problem. We blur the cam-
eraman image in Figure 1(a) with the non-symmetric PSF in Figure 1(b).
To the blurred image we add white Gaussian noise η such that ∥η∥2 =
0.01 ∥Axtrue∥2, i.e., we add 1% of white Gaussian noise, obtaining the blurred
and noisy image in Figure 1(c). To simulate realistic data we crop the bound-
aries of the image and, since the image is generic, we impose re�exive boundary
conditions. We �x µ = 10−1 for all methods and considered regularization op-
erators.

Note that, since the PSF is not separable, the method described in [4]
cannot be applied.

We consider in this example R to be either the anisotropic TV or the
sparsity inducing term in the framelet domain and report the obtained results
in Table 1. We can observe that our proposed method and the one in [42]
are less computationally demanding than the standard ADMM. However, the
proposed method is able to achieve a higher level of accuracy than Algorithm 3
and obtains basically the same solution as the standard ADMM. One could
improve the accuracy of Algorithm 3 by signi�cantly enlarging the Krylov
subspace, however, this would increase the computational cost to the point
that it would be higher than the one of Algorithm 2 without obtaining the
same accuracy. To illustrate this we report in Table 2 the results obtained with
Algorithm 3 with larger values of ℓ, namely 200 and 300. We only consider
L = LG as the results with L = LF are similar. We can observe that with
larger ℓ the results very slightly improve, however, Algorithm 3 is still not
able to recover the exact solution produced by standard ADMM and its cost
becomes larger than the one of our proposed method. Moreover, we would
like to stress that the dimension of the Krylov subspace is not a parameter
in our method, while it is in Algorithm 3. We would like to observe that, in
this case, our method looks for a solution in a 208-dimensional subspace, while
Algorithm 3 looks for a solution in a subspace of dimension 300, nevertheless,
our method is able to determine an approximation of the exact image that is
more accurate. We can deduce that the GKS contains more information than



16 Alessandro Buccini

(a) (b) (c)

Fig. 1 Cameraman test case: (a) true image (239 × 239 pixels), (b) PSF (17 × 17 pixels),
(c) blurred and noisy image with 1% of white Gaussian noise.

the standard KS, this is due to the fact that our method incorporates into the
construction of the search subspace the information collected throughout the
iterations as well as the operator L. Finally, we compare our approach with
the A-MM-GKS algorithm. We can observe that, the A-MM-GKS method
provides a slighter more accurate reconstruction thant the other methods,
however, the computational cost for L = LG is signi�cantly higher than the
one of Algorithm 2 even though less iterations are performed. This is due to the
fact that, at each iteration, the computation of QR factorization of matrices
of increasing dimension is required. Moreover, for L = LF the computational
cost of A-MM-GKS becomes unbearable being almost 1000 times larger than
the one of Algorithm 2.

We report the obtained reconstructions in Figure 2. From the visual inspec-
tion of these reconstructions we can con�rm that the approximate solutions
computed by Algorithm 2 are indistinguishable from the ones obtained using
standard ADMM and that the ones obtained with Algorithm 3, although of
high quality, are far from the exact ones.

Satellite. We now consider a di�erent image deblurring example. We consider
the satellite image in Figure 3(a) and we blur it with the Gaussian PSF in Fig-
ure 3(b). We add to the blurred image 10% of white Gaussian noise obtaining
the blurred and noisy image in Figure 3(c). Similarly as in the previous case
we do crop the boundaries to simulate realistic data. Since the image is an as-
tronomical image we impose Dirichlet boundary conditions. In this case we �x
µ = 10−1 as well. Similarly as before we consider R to be either the anisotropic
TV or the sparsity inducing term in the framelet domain, i.e., ∥LF z∥1.

Since the PSF is separable the method proposed in [4] coincides with Al-
gorithm 2 when R(z) = ∥LGz∥1.

We report the computed results in Table 1. We can observe that the
proposed method produces very similar reconstructions to the ones obtained
by standard ADMM and that they are slightly more accurate, even though
the di�erence is negligible. However, the computational cost of both Algo-
rithms 2 and 3 is much lower than the one of standard ADMM. We can also
see that, in this case for L = LG our proposed method is the fastest among
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(a) (b) (c)

(d) (e) (f)

Fig. 2 Cameraman test case, reconstructions: (a) Algorithm 1 with L = LG, (b) Algo-
rithm 3 with L = LG, (c) Algorithm 2 with L = LG, (d) Algorithm 1 with L = LF , (e)
Algorithm 3 with L = LF , (f) Algorithm 2 with L = LF .

(a) (b) (c)

Fig. 3 Satellite test case: (a) true image (241 × 241 pixels), (b) PSF (15 × 15 pixels), (c)
blurred and noisy image with 10% of white Gaussian noise.

the three ADMMs, while for the case L = LF the computational cost of Al-
gorithm 2 is higher than the one of Algorithm 3. Nevertheless, our proposed
method is able to provide a more accurate reconstruction of the exact image. To
achieve the same level of accuracy one would need to enlarge ℓ in Algorithm 3
to a point where this method would be no longer computationally attractive.
Similarly as before the A-MM-GKS produces very similar reconstructions to
the other methods in term of accuracy, however, the computational cost is
signi�cantly higher. These observations are con�rmed by the visual inspection
of the reconstructions in Figure 4.
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(a) (b) (c)

(d) (e) (f)

Fig. 4 Satellite test case, reconstructions: (a) Algorithm 1 with L = LG, (b) Algorithm 3
with L = LG, (c) Algorithm 2 with L = LG, (d) Algorithm 1 with L = LF , (e) Algorithm 3
with L = LF , (f) Algorithm 2 with L = LF .

Color image. We consider now the deblurring of a color image. A color image
in the RGB format can be seen as three two-dimensional images, one carrying
the information on the red channel, one carrying the information of the green
channel, and one carrying the information of the blue channel. We vectorize
our image so that the three channels are stacked one above the other, i.e.,

x =

xR

xG

xB

 .

Let AR, AG, and AB be three blurring matrices and AC ∈ R3×3, our operator
A is of the form

A = (AC ⊗ I)

AR

AG

AB

 ,

where ⊗ denotes the Kronecker product, AC ∈ R3×3, and I is the identity
matrix, i.e., the blurred matrix is obtained by blurring each channel separately
and then the three channels are mixed using the coe�cient in AC .

We consider the image in Fig. 5(a) and blur each channel with the same
motion PSF in Fig. 5(b) and de�ne

AC =
1

10

6 2 2
1 8 1
1 3 6

 .
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(a) (b) (c)

Fig. 5 Color image test case: (a) true image (242× 242 pixels), (b) PSF (7× 7 pixels), (c)
blurred and noisy image with 1% of white Gaussian noise.

We add 1% of white Gaussian noise and obtain the blurred and noisy im-
age in Fig. 5(c). In this case we �x µ = 10−1. Let L̃G and L̃F denotes the
regularization operator de�ned for two-dimensional images, in this case we set

LG =

L̃G

L̃G

L̃G

 and LF =

L̃F

L̃F

L̃F

 .

We would like to stress that, since A is not a Kronecker product of two
matrices, the method described in [4] cannot be used.

We can �nd the results obtained with the various methods in Table 1. We
can observe that Algorithm 1 and Algorithm 2 produce very similar recon-
structions for L = LF and our proposal outperforms the standard ADMM
for L = LG. In both cases the computational cost of our method is lower,
especially if the cost-per-iteration is considered. Algorithm 3 is outperformed
by our method in terms of accuracy, even though the computational cost is
lower, even if the di�erence is not very pronounced.

Finally, we can observe that, for L = LG, the A-MM-GKS required almost
1 hour of computational time to converge, while for L = LF the method had
to be stopped as it did not converge even after 2 hours of computations.

We report some computed solution if Figure 6. We can observe that for
L = LG the reconstruction computed by Algorithm 2 is signi�cantly better
than the ones obtained with the other two algorithms. Even though it is not
shown here, the approximate solution computed by A-MM-GKS is extremely
similar to the one obtained by our proposal, however, as we noted above, the
computational cost for computing it is too high. Finally, we can observe that
for both choices of L the reconstruction obtained in Algorithm 3 is a�ected by
some ringing e�ect.

Tomography. We consider now a tomography example. We consider the Shep-
Logan phantom in Figure 7(a) and shine it with 181 rays at 36 equispaced
angles between 0 and π. We add 1% of white Gaussian noise to the com-
puted sinogram, obtaining the one in Figure 7(b). These computations were
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(a) (b) (c)

(d) (e) (f)

Fig. 6 Color image test case, reconstructions: (a) Algorithm 1 with L = LG, (b) Algorithm 3
with L = LG, (c) Algorithm 2 with L = LG, (d) Algorithm 1 with L = LF , (e) Algorithm 3
with L = LF , (f) Algorithm 2 with L = LF .

performed using the IRtools toolbox [28]. We �x µ = 2. Like in the �rst two ex-
amples we consider R to be either the anisotropic TV or the sparsity inducing
term in the framelet domain.

Note that, since A is not a Kronecker product of two matrices the method
proposed in [4] cannot be applied.

The obtained results are reported in Table 1. We can observe that, simi-
larly to the previous case, the two Krylov methods are sensibly cheaper than
the standard method and that Algorithm 3 is the fastest among the two. How-
ever, the approximate solutions obtained by Algorithm 3 are of poor quality
when compared with the ones obtained by standard ADMM and our pro-
posed method that are basically identical for both choices of L. Moreover,
we can observe that, di�erently from the examples above, the A-MM-GKS is
computationally competitive, as it converges in few iterations. However, the
accuracy of the computed solution is usually lower than the one obtained with
Algorithms 1 and 2. We would like here to stress that a more careful tuning
of µ for L = LF could have produced better results with all the considered
method, however, the main point of this work is to show that our algorithmic
proposal can produce very similar accuracy of the computed solution com-
pared to standard ADMM with a much lower computational cost. Therefore,
we do not dwell further on the choice of µ. We report the computed solutions
in Figure 8. From the visual inspection of these reconstructions we can see
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(a) (b)

Fig. 7 Tomography test case: (a) true image (128 × 128 pixels), (b) sinogram (36 angles
and 181 rays) with 1% of white Gaussian noise.

(a) (b) (c)

(d) (e) (f)

Fig. 8 Tomography test case, reconstructions: (a) Algorithm 1 with L = LG, (b) Algo-
rithm 3 with L = LG, (c) Algorithm 2 with L = LG, (d) Algorithm 1 with L = LF , (e)
Algorithm 3 with L = LF , (f) Algorithm 2 with L = LF .

that the reconstructions obtained with ADMM and our proposed method are
extremely accurate, especially for L = LG.

Seismic Tomography. We consider now a seismic tomography problem. The
matrix A ∈ R180000×90000 is extremely ill-conditioned and the data is corrupted
by 0.5% of white Gaussian noise. As the problem is extremely large we reduce
the maximum number of iteration to 200. We set µ = 10. We report the exact
solution and the measured data in Fig. 9. The computations are made using
the IRtools toolbox [28].
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(a) (b)

Fig. 9 Seismic tomography test case: (a) true image (300×300 pixels), (b) sinogram (600×
300) with 0.5% of white Gaussian noise.

In this case we consider the two TV terms for R, isotropic and anisotropic.
For the isotropic TV note that the A-MM-GKS cannot be applied.

We report the obtained results in Table 1. We can observe that, similarly
as above the projection the the Krylov subspaces greatly improves the com-
putational cost of the methods. However, even though our proposed method
is more expensive than the one in [42] it is able to provide more accurate ap-
proximate solutions with a reasonable computational e�ort. Note that, for the
isotropic TV, the A-MM-GKS algorithm provides a slightly more accurate re-
construction than our proposal, however, the computational cost is extremely
higher and does not justify, in our opinion, the slight improvement in quality.
Some of the obtained reconstructions are reported in Fig. 10.

Linear Regression. For our last example we create a matrix A ∈ R1000×5000

where each entry is a realization of a Gaussian random variable with 0 mean
and variance equal to 1. The obtained matrix is well-conditioned, in particular,
its conditioning number is smaller than 3. We generate a sparse exact solution
xtrue where only 10 randomly selected entries are nonvanishing. These entries
are random integers between 1 and 15. We generate the data by adding 5% of
white Gaussian noise to Axtrue. We �x µ = 100. As the signal is sparse in the
canonical domain we only consider R(z) = ∥z∥1.

We report the computed results in Table 1, note that, in this case, the SSIM
cannot be computed. We can observe that both the Krylov-based methods and
the A-MM-GKS are sensibly faster than the standard ADMM. However, the
one proposed in [42] fails to identify a meaningful approximation of the exact
solution, while our proposed method determines a very accurate approximate
solution. On the other hand, while the A-MMM-GKS is able to identify an
accurate reconstruction of the exact solution its computational cost is higher
than the one of our proposal, especially if the cost-per-iteration is taken into
account.
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Table 1 Comparison of the results obtained in all the examples with the considered meth-
ods: Relative Restoration Error (RRE), Structure SIMilarity index (SSIM), CPU time in
seconds, number of iterations performed.

Example R(z) Method RRE SSIM CPU time Iter.

Cameraman

∥LGz∥1

ADMM 0.06822 0.87888 25.27 139
ADMM in KS 0.097358 0.75951 3.6344 40
ADMM in GKS 0.067995 0.8787 9.07 207
A-MM-GKS 0.066796 0.88053 33.603 129

∥LF z∥1

ADMM 0.070249 0.88257 13.74 68
ADMM in KS 0.096965 0.75913 5.3126 25
ADMM in GKS 0.072066 0.88084 5.4576 94
A-MM-GKS 0.07125 0.87062 3409.5 500

Satellite

∥LGz∥1

ADMM 0.25355 0.63011 76.531 500
ADMM in KS 0.27394 0.50771 3.431 18
ADMM in GKS 0.25134 0.63118 1.9967 83
A-MM-GKS 0.2689 0.6133 196.58 283

∥LF z∥1

ADMM 0.23635 0.78978 37.642 183
ADMM in KS 0.2743 0.55217 5.6708 19
ADMM in GKS 0.23618 0.78985 28.107 251
A-MM-GKS 0.23766 0.72616 51.689 82

Color image

∥LGz∥1

ADMM 0.084949 0.89375 42.539 102
ADMM in KS 0.08435 0.8854 12.982 130
ADMM in GKS 0.07122 0.91908 25.021 228
A-MM-GKS 0.071845 0.92022 2904.2 500

∥LF z∥1

ADMM 0.076914 0.91347 96.815 131
ADMM in KS 0.08305 0.88645 26.064 96
ADMM in GKS 0.071594 0.92041 49.676 174
A-MM-GKS � � �

Tomography

∥LGz∥1

ADMM 0.059347 0.98108 22.324 500
ADMM in KS 0.37327 0.46252 1.023 78
ADMM in GKS 0.060076 0.98561 9.2513 444
A-MM-GKS 0.073317 0.97059 2.6686 53

∥LF z∥1

ADMM 0.18735 0.95966 25.627 481
ADMM in KS 0.37384 0.46517 2.7472 150
ADMM in GKS 0.18519 0.96245 28.517 500
A-MM-GKS 0.2124 0.90675 4.195 46

Seismic Tomography

∥z∥I−TV

ADMM 0.1161 0.48202 128.06 69
ADMM in KS 0.11357 0.45713 16.621 130
ADMM in GKS 0.058921 0.67843 107.91 500

∥LGz∥1

ADMM 0.11585 0.48237 130 70
ADMM in KS 0.11427 0.45704 16.82 146
ADMM in GKS 0.055258 0.67215 108.97 500
A-MM-GKS 0.030537 0.88749 387.62 251

Linear Regression ∥z∥1

ADMM 0.054968 � 7.106 147
ADMM in KS 0.89135 � 1.0226 327
ADMM in GKS 0.055126 � 0.9977 172
A-MM-GKS 0.052736 � 1.8939 44

Table 2 Cameraman test case: Results obtained with Algorithm 3 with ℓ ∈ {200, 300} and
L = LG.

ℓ RRE SSIM CPU time Iter.
200 0.097344 0.75947 17.2 40
300 0.097343 0.75948 35.6 40



24 Alessandro Buccini

(a) (b) (c)

(d) (e) (f)

Fig. 10 Seismic tomography test case, reconstructions: (a) Algorithm 1 with R(z) =
∥z∥I−TV, (b) Algorithm 3 with R(z) = ∥z∥I−TV, (c) Algorithm 2 with R(z) = ∥z∥I−TV, (d)
Algorithm 1 with R(z) = ∥LGz∥1, (e) A-MM-GKS with R(z) = ∥LGz∥1, (f) Algorithm 2
with R(z) = ∥LGz∥1.

5 Conclusions

In this paper we have introduced a numerically attractive implementation
of the ADMM for the solution of ill-posed inverse problems. The proposed
method combined ADMM with GKS to project the, possibly very large prob-
lem, into a subspace of fairly small dimension. Moreover, our method did not
introduce any additional parameter as the dimension of the projection sub-
space is automatically determined by the algorithm itself. Matters of future
research include the application of this method to non-linear problems and to
bi-linear functions; see, e.g., [10] and computationally e�cient strategy for the
determination of the parameter µ.
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